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Abstract

We present an algorithm for interpolating the visible portions of a
point cloud that are sampled from opaque objects in the environment.
Our algorithm projects point clouds onto a sphere centered at the observ-
ing locations and performs essentially non-oscillatory (ENO) interpolation
to the projected data. Curvatures of the occluding objects can be ap-
proximated and used in many ways. We show how this algorithm can be
incorporated into novel algorithms for mapping an unknown environment.

1 Visibility

The problem of visibility involves the determination of regions in space visible
to a given observer when obstacles to that sight are present. When the observer
is replaced by a light source in the simplified geometrical optics setting with
perfectly absorbing boundary condition at the obstacles, the problem translates
to that of finding illuminated regions. In this regard, the visibility problem is
highly related to the high frequency wave propagation problems and is needed
in many computational high frequency wave approaches [2]. We will interchange
the term visibility with illumination, and occlusion with shadow freely in this
paper.

In visualization, visibility information can be used to make complicated ren-
dering processing more efficient by skipping over occlusion. In robotics mission
planning, achieving certain visibility objectives may be part of the mission.
Video camera surveillance design is one such example.

Visibility problems have also been studied by geometers. For example, H.
Wente asked if connectedness of the on surface shadow is sufficient to imply
convexity of the occluding surface [4].

In general, one may consider the following classes of visibility problems:

1. Given occluders, construct shadow volume and its boundary;

2. Given a projection of visible regions, construct the occluders;

3. Find location(s) that maximize visibility using certain predefined metric.
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In many visualization applications, (1) is solved by projecting triangles.
Wente’s question can be viewed as in category (2). Problems related to surveil-
lance is related to (2). We will present an algorithm for a problem related to
both (1), (2), and (3).

1.1 Representations of Visibility

Today computational geometry and combinatorics are the primary tools to solve
visibility problems [5][17],[3]. The combinatorial approach is mainly concerned
with defining visibility on polygons and more general planar environments with
special structure. All the results are based on an underlying assumption of
straight lines of sight. The simplified representation of the environment is a
major limitation of this methodology. Furthermore, the extension of these al-
gorithms to three dimensional problems may be extremely complicated.

Our goal is to define such a representation of visibility as to be able to solve
the problems considered in computational geometry [5] on general environments
in two or three dimensions, independent of the integral field defining the lines
of sight, utilizing minimum information about the environment.

One attempt was to introduce the level set representation of the occluding
objects and the visibility function, defined in [15]. While this algorithm can be
applied to general types of environment, easily extended to three dimensions,
and curved lines of sight, it requires a priori knowledge of the occluding objects
to construct the level set representation of the environment. This information
may not be available in some important real life applications, e.g. navigation in
an unknown environment, or if the occluding objects are represented by open
surfaces.

Another method for visibility representation was introduced by LaValle et
al in [6], [13]. This is a rather minimal framework based on detecting disconti-
nuities in depth information (called gaps) and their topological changes in time
(referred to as gap critical events). The “visible” environment is represented by
a circle centered at the vantage point, with gaps marked on the circumference
in the order of their appearance to the observer. Note that no distance or angu-
lar information is provided. As with most combinatorial approaches, LaValle’s
method works only on regions having special geometries.

In [18], an algorithm extracting planar information from point clouds is
introduced and used in mapping outdoor environment. In [10], depth to the
occluders is estimated by a trinocular stereo vision system and is then combined
with a predetermined “potential” function so that a robot can moved to the
desired location without crashing into obstacles.

Here we introduce a new model which, similarly to the level set representa-
tion, can handle complicated geometries and curved lines of sight. In contrast
to LaValle’s representation, we utilize distance and angular information, which,
in practice, can be easily provided by the sensor.

2 Visibility Interpolation and Dynamics

Assume we have a set of points P that are “uniformly” sampled from the oc-
cluding surfaces. In practice this data could be obtained from sensors such as

2



Figure 1: Demonstration of visibility

LIDAR or even from triangulated surfaces (here P would be the set of ver-
tices). Given a vantage point, our algorithm would produce a subset of visible
data points and a piecewise polynomial interpolation of the visible portions of
the surfaces. Unlike the level set representation [15], our algorithm can handle
open surfaces and does not require a priori knowledge of occluding surfaces to
construct visibility.

2.1 Basic Formulation

Let us begin by introducing some notations. Let x0 denote the vantage point
(always assume x0 outside of the objects). Consider Ω ⊂ Rd (d = 2, 3) – a set
of objects in question, Γ = ∂Ω, and Γ∗x0

– visible portion of Γ with respect to
x0. Denote by φ the signed distance function to Γ. We define the view direction
from x0 to x by ν (x0, x) := (x− x0) /|x − x0|. For any two points in space x1

and x2, we say that x1 ≤ x2 (x1 is “before” x2) if ν (x0, x1) = ν (x0, x2) and
|x1 − x0| ≤ |x2 − x0|. Also, a point y ∈ Γ is called a horizon point if and only
if ν (x0, y) · n(y) = 0, where n(y) is the outer normal of Γ at y. Lastly, a point
y ∈ Γ is called a cast horizon point if and only if there is a point y∗ such that
y∗ ≤ y and y∗ is a horizon point.

Observe that the visibility status of points sharing the same radial direction
with respect to the vantage point satisfies a causality condition. That is, if x1

is occluded and x1 ≤ x2, then x2 is also occluded. We set

ρx0(p) :=
{

minx∈Ω̄{|x− x0| : ν (x0, x) = p}, if exists
∞, otherwise (1)

Define the visibility indicator Θ(x, x0) := ρ(ν(x, x0))−|x−x0| such that {Θ ≥ 0}
is the set of visible regions and {Θ < 0} is the set of occluded regions. See Fig.
1 for an example.

Assume, in addition, that the sampling of points is “uniform”. That is, we
can find an ε > 0, such that ε-balls centered at each sampled point on Γ connect
the connected components and do not connect disconnected components of Γ.
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Let P ⊂ Rd be the sampled data set. Enumerate all the points yi ∈ P .
Define the projection operator πx0 : Rd 7→ Sd−1, mapping a point onto the unit
sphere centered at x0. Then we can construct the following piecewise constant
approximation to the surface on a sphere:

ρ̃x0(z) = min (ρx0(z), |x0 − yi|) , for every z ∈ πx0B (yi, ε) . (2)

In addition we can define an auxiliary function Rx0 : Sd−1 7→ P , which records
P̃ ⊂ P – a subset of all points in P visible from x0:

Rx0(z) :=
{

yi, if ρx0(z) > |x0 − yi|
value unchanged, otherwise (3)

In case the surface normals are available for each data point, we can use ellipse
instead of a ball in the above construction. In [11], a similar projection approach
is proposed for rendering purposes.

2.2 Smoother Reconstruction by ENO Interpolation

Note that analytically the visibility function ρ is piecewise continuous with
jumps corresponding to the locations of horizons. Smoothness of ρ in each
of its continuous pieces relates to the smoothness of the corresponding visible
part of Γ, i.e. Γ∗x0

. In the previous section we obtained a piecewise constant
approximation ρ̃x0 of the visibility function and recorded an auxiliary function
Rx0 which keeps track of the visible data points serving as “originators” of the
constant values of ρ̃x0 . We will use Rx0 to construct a piecewise polynomial
approximation ρint to the visibility function which would preserve the jumps.
ENO (Essentially Non-Oscillatory) interpolation introduced by Harten et al [7]
is used to compute such a ρint.

For example, consider a two dimensional reconstruction on S1. First, pa-
rameterize S1 by angles θ ∈ [−π, π). Then sort the visible points pi ∈ P̃ in
the increasing order of the angle they form with respect to the vantage point:
ρ−1

x0
(pi) = arg(pi−x0). To construct a piecewise linear interpolation ρ

ENO(1)
x0 use

the values of ˜ρx0(θ), where θ ∈ I[ρ̃−1(pi), ρ̃−1(pi+1)). Similarly, we can obtain
ρ

ENO(p)
x0 – a piecewise p-th order interpolation. See Fig.2 for an example.

ENO interpolation can be applied in two steps to compute an approximation
on S2 for organized data clouds. Let θ1 and θ2 parameterize S2. We first ENO-
interpolate ρ

(0)
x0 (·, θ2) in the θ1 direction to obtain ρ

ENO(p,∗)
x0 . Then use ρ

(0)
x0 (θ1, ·)

and ρ
ENO(p,∗)
x0 to interpolate in θ2 direction to obtain ρ

ENO(p,q)
x0 . Figure 3 is an

example in three dimensions.
We shall use the piecewise p-th order approximation ρ

ENO(p)
x0 to compute

derivatives on the occluding surfaces (away from the edges) and easily extract
various geometric quantities.

2.3 Curved Lines of Sight

To demonstrate the flexibility of our formulation, consider the case when the
lines of sight are no longer straight. Then we can not use the relation ν(x, x0) =
(x − x0)/|x − x0| in the definition of the visibility function (1). As in [15], we
consider instead the flow lines connecting x0 to the data points p ∈ P . The
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Figure 2: Points visible from (0.5,−0.5), corresponding visibility function ρ(θ),
and the edges (horizon points)
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Figure 3: Visible points from a vantage point marked by red star and corre-
sponding visibility function ρ(θ1, θ2)
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Figure 4: Visible points from two vantage points, one of the corresponding
visibility maps ρ(θ1, θ2), and a reconstruction of the surface.
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Figure 5: Left: non-straight lines of sight; Right: corresponding visibility func-
tion ρ(θ)

construction of the visibility function is done as follows. First, we construct the
distance function ϕ on the whole domain D by solving the eikonal equation

|∇ϕ(x)| = r(x), in D, ϕ(x0) = 0, (4)

where r(x) > 0 is the variable index of refraction. We use the fast sweeping
technique from [16] to solve (4). To determine the polar coordinates (θ, ρ(θ))
corresponding to the point p on the occluding surface we then solve

∂x
∂t = −∇ϕ(x),
x|t=0 = p,

(5)

to trace point p back to x0 along the line of sight connecting them. Then θ is
the angle made by ∇ϕ at x0, and ρ(θ) = ϕ(p). The visibility function can be
constructed using the causality condition with respect to ϕ. See Figure 5.

Such computations may be useful when determining visibility in regions with
variable refraction such as water or fog, or in anisotropic medium (in this case,
one needs to solve more general Hamilton-Jacobi equations as considered in
[15]).

2.4 Dynamics

When the lines of sight are straight, we can derive how the visibility changes
along with a moving vantage point x0. In two dimensions let us consider a
coordinate system centered at x0 with the visible portions of the occluding
surfaces parameterized by polar coordinates. A point z on the occluder is visible
from x0. Assume the observer moves with the velocity v = (v1, v2). The value
of the visibility function is ρx0(θ) = |z−x0|. Suppose during the period of time
∆t the observer has moved to a new location x0+v∆t. The corresponding value
of the visibility function is ρ̃x0+v∆t(θ̃) = |z − (x0 + v∆t)|. The angle between
the velocity vector v and the x-axis is ϕ = tan−1 v2

v1
. The angle between z − x0

and the velocity vector v is ψ. Then, the angle between z − x0 and the x-axis
is θ = ϕ + ψ.
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We can obtain the following expressions:

dθ

dt
= |v| sin ψ, (6)

d

dt

(
ρ(θ(t), t)

)
= ρt + ρθθt =

d

dt
|x0(t)− z|. (7)

Now we can put (6) and (7) together to get

ρt + |v(t)| sin ψρθ = v(t) ·
(

cos θ
sin θ

)
. (8)

Now let us consider the motion of horizon points e1 and e2. Note that
(ei − x0) · nei

= 0, where nei
is the outer unit normal to the occluding surface

at the point ei for i = 1, 2. That is, ei − x0 is tangent to the occluding surface
at the horizon point. Without loss of generality, in all future computations we
will consider just e1.

In the coordinate system centered at x0, θ = ϕ + ψ is the angle between
e1−x0 and the x-axis. The value of the visibility function is ρx0(θ) = |e1−x0|.
Now suppose the observer moves to a new position x0 + v∆t, moving with the
velocity v = (v1, v2). For this new location, the position of the edge has changed
to ẽ1 and the corresponding value of the visibility function is ρ̃x0+v∆t(θ̃) =
|ẽ1 − (x0 + v∆t)|. Here θ̃ = ϕ + ψ̃ is the angle between ẽ1 − (x0 + v∆t) and the
x-axis in the coordinate system centered at x0 + v∆t. Our goal is to find the
change in the position of horizon, i.e. d

dte1.
First, note that the curvature of the occluding surface at the point (ρ(θ), θ)

is given by

κ =
ρ2 + 2ρ2

θ − ρρθθ

(ρ2 + ρ2
θ)

3
2

. (9)

Also, since e1 − x0 is tangent to the occluder at e1, we obtain

n⊥(e1) =
e1 − x0

|e1 − x0|
n(e1) =

(
n⊥(e1)

)⊥
=

( e1 − x0

|e1 − x0|
)⊥

. (10)

Now we can plug in the above into the formula for horizon dynamics from [15]
to get

de1

dt
=

1
κ

v · n(e1)
|e1 − x0|n

⊥(e1), (11)

or, using the fact that v · n(e1) = |v| cos(ψ + π
2 ),

de1

dt
=
|v| cos (ψ + π

2 )
κρ2

(e1 − x0). (12)

Remember that in all of the above ψ = θ − ϕ = θ − tan−1 v2
v1

.
Therefore, from (8) and (12) we obtain full description of the change in the

visible portion of the occluder with respect to the observer’s motion.
The corresponding expressions can also be derived in three dimensions, see

[15].
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3 Applications of Visibility Interpolation to Nav-
igation Problems

Let us consider the application of visibility to navigation in an unknown envi-
ronment, for example exploring the environment, object finding, and pursuit-
evasion. LaValle et al have addressed these problems in [6], [13], [14], [12],
[9]. Their algorithms only work on polygonal domains or curved regions whose
boundary may be represented as a set of solutions to an implicit polynomial
equation of the form f(x1, x2) = 0 (see [9]). Our algorithms work on gen-
eral types of environments using point cloud data that is either presampled or
sampled in action by some hardware.

3.1 Problem: Seeing the Whole Environment

Here we consider the problem of exploring the unknown bounded region with
obstacles. The objective is to map the whole environment. We set the following
restrictions on the path traveled by the observer:

1. The path should be continuous and consist of discrete steps;

2. The number of steps should be finite;

3. The total distance traveled must be finite.

These restrictions ensure that the algorithm would be practical in real life ap-
plications. Consider first simple, but non-practical examples of navigation in
a bounded region with a single occlusion in shape of a circle. One strategy to
explore the environment around the occlusion would be to approach the circle’s
boundary and travel along it until we return to the same point. This strategy
does not satisfy our restrictions since it would require an infinite number of
steps to travel along the boundary. Another strategy would be to proceed to
infinity to see half a circle at once, then jump to infinity at the opposite side of
the circle to see the other half. Such a strategy does not satisfy our restrictions
either, since the path would be infinite and not continuous.

Our algorithm was inspired by LaValle et al. In this method the observer
randomly chooses a gap marked on the visibility plot and approaches it. The
visibility map is then updated and the process is repeated until the whole region
is explored. Critical events such as appearance and disappearance of gaps are
tracked by the dynamic data structure. Since the visibility map has no distance
or angular information, the algorithm is not optimal with respect to the total
distance traveled. In particular, if this algorithm is applied to cases that contain
fine polygonalization of curved objects, the computational cost of this algorithm
may become too large.

Our visibility representation includes distance and angular information, and
our algorithm is designed with the consideration of handling basic smooth ge-
ometries. In essence, the visibility of any bounding disk of a convex object
guarantees the visibility of that object. If a set of separated, non-overlapping
bounding disks exists for a collection of disjoint convex objects, we may consider
the visibility problem of each convex object independently. Furthermore, if a
non-convex object can be decomposed by the set difference of a finite number of
convex sets, then one can treat it “almost” like a convex object. We see that the
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signed curvature, a notion of local convexity, is rather essential in applying the
above arguments. We obtained formulas for the upper bounds of the number
of observing locations in these situations as functions of the sign changes in the
curvatures as well as the number of disconnected components, and would report
our finding in a forthcoming paper.
Algorithm 1

1. For the given x0 outside the occluding objects; construct the visibility
function ρ(θ);

2. Find all the edges on the (θ, ρ(θ)) map and proceed to the nearest edge;

3. Find edges;

If no edges are found, we are on the boundary of an obstacle at the horizon
point. Thus we need to “overshoot” x0 along the tangent line to see
where to proceed next. We choose the following overshooting step
size

r = λ tan
(π

3

) 1
κ

, (13)

where κ is the curvature of an edge defined by (9) and λ is a param-
eter. This way we have a minimal number of steps to travel around
the obstacle, e.g. for a circle, r = 1/2 the side of the equilateral
triangle enclosing the circle. In case κ = 0 we shall shift the position
by a small amount to see the next edge.

If the edges are found, move x0 to the nearest edge. Store the unexplored
edges in a list;

4. Finish when the change in total visible area is less then the desired toler-
ance and all the edges are are “removed” from the list. Otherwise go to 1
with the current location of x0.

Figure 6 illustrates the steps of the above algorithm with one and two circles
as obstacles. The pink arcs correspond to the portions of the circles that are
reconstructed. Figure 7 depicts final paths for different test cases. As one
can see from the examples, the algorithm handles both convex and concave
obstacles. The algorithm always converges, however it does not provide the
desired optimality with respect to the total distance traveled.

We remark that Algorithm 1 can be applied to the curved lines of sight
cases with following modifications. Since the curvature of the occluding surfaces
cannot be recovered from the visibility function ρ, the overshoot step-size must
be defined by the user in step 3. To proceed further from the edge we follow
the line of sight passing through this edge by solving

dx

dt
= ∇φ(x), x(0) = xe, (14)

where xe is the position of the edge. Consider Fig.8 for a sample step-by-step
path.
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Figure 6: Steps of the exploration algorithm with one and two circles as obstacles

Figure 7: Full paths for different obstacles

Figure 8: Full path in curved rays
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4 Conclusion

We present an essentially non-oscillatory algorithm for interpolating point cloud
visibility information in polar coordinates. This algorithm is capable of approx-
imating higher order derivatives of the surface so that curvatures can be com-
puted. We also present a new path planning algorithm using our point cloud
visibility interpolation. Our future work lies in optimizing the above algorithm.
We desire a better performance with respect to the distance traveled and/or the
number of steps.
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