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Abstract

We apply the Piecewise Constant Level Set Method (PCLSM) to a multiphase
motion problem, especially the pure mean curvature motion. We use one level
set function to represent multiple regions, and by associating an energy functional
which consists of surface tension (proportional to length), we formulate a variational
approach for the mean curvature motion problem. Some operator-splitting schemes
are used to solve the problem efficiently. Numerical experiments are supplied to
show the efficiency for motion by mean curvature for multiphase problems.

keywords: multiphase motion, level set method, piecewise constant, operator
splitting

1 Introduction

Several approaches for multiphase motion have been developed, such as front tracking
methods [4], Monte-Carlo methods, phase field methods, diffusion generated MBO-like
method and variational level set approach etc, see [38, 24, 22, 23, 18]. Usually, the model
problem involves curves meeting at a point with prescribed angles, See Fig.(1). Each
interface Γij , separates regions Ωi and Ωj and moves with a normal velocity

vij = fijκij + (ei − ej). (1.1)

where κij is the local curvature, fij is the constant surface tension of Γij , and ei corre-
sponds to the bulk energy. This model problem can be obtained by associating an energy
functional E to the motion, which involves the length of each interface and the area of
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each subregion, i.e.

E = E1 + E2

E1 =
∑

16i<j6n

fijLength(Γij) (1.2)

E2 =
∑

16i6n

eiArea(Ωi).

By minimizing this energy functional, the internal interfaces are driven to equilibrium.
Examples of such kind of motion include solid, liquid, grain or multiphase boundaries
[38].

Since complicated topological changes can occur for the model problem, front tracking
methods are generally hard to implement, especially for more than two dimensions.
Monte-Carlo methods are usually too slow to find good approximations. Phase field
methods may also have difficulties to resolve the interface layers [24].

MBO method was proposed by Merriman, Bence and Osher [18]. This method natu-
rally handles complicated topological changes with junctions. MBO method is based on
the diffusion of characteristic functions of each region, followed by a certain reassignment
step. And it has been shown that MBO is appropriate for pure mean curvature flow, in
which the bulk energies are zero and the fij are all equal to the same positive constant.
A rigorous convergence proof for two phase mean curvature motion has been given in [3].

Our work is especially inspired by [18] and [38]. In [38], a variational approach and
a practical method was proposed for treating junctions even when topological mergings
and breakings occur. Their method also limits angles to the classical condition [34]

sin θ1
f23

=
sin θ2
f31

=
sin θ3
f12

, (1.3)

at triple junction points.

Figure 1: The interfaces Γij , subjected to angles θ1,θ2,θ3

In addition to [18] and [38], the traditional level set idea of Osher and Sethian [19] has
been used for motion by mean curvature in [14, 6, 8, 26, 29, 5, 20]. For traditional level set
methods, one needs to reinitialize the level set function to be a signed distance function
during the iterations, and cautions must be taken with respect to the discretization of
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Heaviside and Dirac functions [7]. The piecewise constant level set method (PCLSM)
[13, 12, 11] is trying to use some alternatives for the traditional level set idea, and one
doesn’t need to care about these issues [13]. Moreover, the formulation is truly variational
and just one level set function is needed to identify arbitrary number of phases [35, 38].
Another advantage is that the constraint and energy functionals for our approach are all
smooth functionals which do not involve Heaviside and Dirac functions.

In this paper, we will try to apply the piecewise constant level set method [11, 13,
12] to multiple phase motion problems. The remaining of this paper is organized as
follows: In section 2, we introduce the piecewise constant level set method (PCLSM),
and formulate the mean curvature motion problem into a variational problem by PCLSM.
In section 3, two algorithms will be proposed using some operator-splitting techniques.
Section 4 are for numerical experiments.

2 The piecewise constant level set formulation

We shall use the PCLSM of [13] to solve the mean curvature motion problem. The essen-
tial idea of the PCLSM of [13] is to use a piecewise constant level set function to identify
the subdomains. Assume that we need to partition the domain Ω into subdomains Ωi,
i = 1, 2, . . . , n and the number of subdomains is a priori known. In order to identify the
subdomains, we try to identify a piecewise constant level set function φ such that

φ = i, in Ωi, i = 1, 2, . . . , n. (2.1)

Thus, for any given partition {Ωi}n
i=1 of the domain Ω, it corresponds to a unique PCLS

function φ which takes the values 1, 2, · · · , n. Associated with such a level set function
φ, the characteristic functions of the subdomains are given as

ψi =
1
αi

n∏
j=1,j 6=i

(φ− j), αi =
n∏

k=1,k 6=i

(i− k). (2.2)

If φ is given as in (2.1), then we have ψi(x) = 1 for x ∈ Ωi, and ψi(x) = 0 elsewhere. We
can use the characteristic functions to extract geometrical information for the subdomains
and the interfaces between the subdomains. For example,

Length(∂Ωi) =
∫

Ω

|∇ψi|dx, Area(Ωi) =
∫

Ω

ψidx. (2.3)

In fact, the level set function also satisfies the relation φ =
∑
iψi. Define

K(φ) = (φ− 1)(φ− 2) · · · (φ− n) =
n∏

i=1

(φ− i). (2.4)

At every point in Ω, the level set function φ should satisfy

K(φ) = 0. (2.5)

This level set idea has been used for image segmentation in [13, 30, 31] and inverse
problems involving shape identification in [32]. Fast algorithms have been also developed
for this method for image segmentation in [30, 31].
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In the following, the PCLSM will be used to solve the motion by mean curvature
problem. For simplicity, let us consider problem (1.2) with

ei = 0, fij = 1. (2.6)

We want to emphasize that there is no problem to apply PCLSM for general setting for
(1.2). Under condition (2.6), the problem (1.2) reduces to the model problem:

min
Γij

∑
16i<j6n

Length(Γij). (2.7)

There are different ways to find the curves that minimize the above energy functional.
Under the condition that Γij is the interface between Ωi and Ωj and {Ωi}n

i=1 are repre-
sented by (2.1), we see that

n∑
i=1

∫
Ω

|∇ψi|dx = 2
∑

16i<j6n

Length(Γij).

Thus, If we use our PCLSM for (2.7), then we need to find a function φ that solves the
following constrained minimization problem:

minF, F =
n∑

i=1

∫
Ω

|∇ψi|dx, subject to K(φ) = 0. (2.8)

In (2.8), we have not addressed the boundary conditions for φ, which should be necessary
when solving the problem. We can take Dirichlet condition or Neumann boundary condi-
tions. Usually, Neumann condition is supposed, just as in many other papers. However,
in this paper, we would like try Dirichlet boundary conditions, which should produce a
constrained motion. So our problem should be

minF, subject to K(φ) = 0 and φ|∂Ω = g. (2.9)

Because we have assumed that K(φ) = 0, g should also satisfy K(g) = 0, which means
that g(·) = 1 ∨ 2 ∨ . . . ∨ n. Notice that this doesn’t specialize or constrain the problem.
Once we have transformed the problem into a minimization problem under a constraint,
there are efficient methods to solve the minimization problem. Penalization methods and
operator splitting algorithms will be used in the next section to compute the solutions.

3 PCLSM for curvature motion problems

We can use the penalizing technique to deal with the constraint K(φ) = 0 of (2.9). The
penalized problem can be written as

minL, L = F +
1
2µ

∫
Ω

W (φ)dx, (3.1)
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where W (φ) = K2(φ) and µ > 0 is the penalization parameter. Gradient type methods
will be used to find the minimizers of (3.1) with respect to φ. So we need to calculate

the differential
∂F

∂φ
. According to the definition of Gateaux differential, we have

∂F

∂φ
= −

n∑
i=1

∇ ·
(
∇ψi

|∇ψi|

)
ψ′i(φ),

W ′(φ) = 2K(φ)K ′(φ).

To find a minimizer of (2.9), we need to solve

∂L

∂φ
=
∂F

∂φ
+

1
2µ
W ′(φ) = 0, (3.2)

with boundary conditions
φ|∂Ω = g. (3.3)

The above equation is nonlinear, so we would like to use a standard technique to solve it –
instead of solving (3.2) directly, we can solve the following evolution differential equation
to steady state

φt +
∂F

∂φ
+

1
2µ
W ′(φ) = 0. (3.4)

We will use some operator-splitting schemes to solve (3.4). More precisely, we solve
the following equations alternatively on t ∈ [tj , tj+1] where tj = jτ and τ is the time step
size:

φt +
∂F

∂φ
(φ) = 0, t ∈ [tj , tj+1], (3.5)

φt +
1
2µ
W ′(φ) = 0 t ∈ [tj , tj+1]. (3.6)

The first equation is trying to minimize the energy functional and the second equation
is trying to enforce that the minimizer is taking the values 1, 2, · · · , n. In the following,
we shall give some details about how to solve these two equations.

3.1 Gradient and operator splitting schemes

The first approach we have tried to solve (3.5) is the explicit gradient method. The
iteration is simply:

φk+1/2 = φk − τ
n∑

i=1

∇ ·
(
∇ψk

i

|∇ψk
i |

)
ψ′i(φ

k). (3.7)

We may do many iterations of the above updating before we solve (3.6). The above
gradient iteration is easy to implement and very stable if the time step τ is properly
chosen. However, it is normally very slow. The second approach we have tried to solve
this equation is the Additive Operator Splitting (AOS) scheme of [15, 16, 36]. The
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AOS scheme was first proposed in Lu, Neittaanmaki and Tai [15, 16]. It was discovered
independently later in [36] and used in a different context for image processing [2, 1, 37,
28]. The cost of the AOS for solving (3.5) is not much higher than the gradient iteration,
but it can use large time steps and converges to a steady state much faster.

For the AOS semi-implicit scheme, note that

∇ψi = ψ′i(φ)∇φ. (3.8)

and

∂F

∂φ
= −

n∑
i=1

∇ ·
(
∇ψi

|∇ψi|

)
ψ′i = −

n∑
i=1

∇ ·
(
ψ′i ∇φ
|ψ′i ∇φ|

)
ψ′i (3.9)

= −
n∑

i=1

∇ ·
(

ψ′i ∇φ
|ψ′i| |∇φ|

)
ψ′i (3.10)

= −
n∑

i=1

∇ ·
(
sign(ψ′i)

∇φ
|∇φ|

)
ψ′i. (3.11)

For two dimensional problems, we have

∂F

∂φ
= −

n∑
i=1

ψ′i

(
sign(ψ′i)

φx

|∇φ|

)
x

−
n∑

i=1

ψ′i

(
sign(ψ′i)

φy

|∇φ|

)
y

. (3.12)

If we apply the AOS to (3.5) and do some standard linearization, we need to solve

φ̃k+1/4 − φk

τ
−

n∑
i=1

ψ′i(φ
k)

(
sign(ψ′i(φ

k))
φ̃

k+1/4
x

|∇φk|

)
x

= 0, (3.13)

φ̃k+1/2 − φk

τ
−

n∑
i=1

ψ′i(φ
k)

(
sign(ψ′i(φ

k))
φ̃

k+1/2
y

|∇φk|

)
y

= 0. (3.14)

Then, set

φk+1/2 =
1
2
(φ̃k+1/4 + φ̃k+1/2). (3.15)

The two equations (3.13)–(3.14) can be solved efficiently on lines parallel to the x and
y-axes.

3.2 Newton scheme for the constraint equation

It is not a good strategy to solve equation (3.6) by an explicit scheme. The scheme we
have used for it is to solve φk+1 from

φk+1 − φk+1/2

τ
+

1
2µ
W ′(φk+1) = 0, (3.16)

and φk+1/2 is the solution given by (3.15) or (3.7). To solve the above equation is to find
the roots of a polynomial of order 2n − 1. There are many efficient algorithms to find
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n τ/µ ≤
2 2
3 0.67
4 0.08

. . . . . .

Table 1: The upper bounds for τ/µ to guarantee the unique solution for the equation
(3.16).

the roots for polynomials. As the solution is not unique, it is necessary to find a way to
select the desired solution. Define

G(φ) = φ+
τ

2µ
W ′(φ)− φk+1/2.

it is easy to see that

G′(φ) = 1 +
τ

µ
|K ′(φ)|2 +

τ

µ
K(φ)K ′′(φ).

By choosing τ and µ satisfying
τ

µ
min

x∈[0,n+1]
K(x)K ′′(x) + 1 > 0, (3.17)

it can be guaranteed that (3.16) has a unique (real) solution which means all the other
solutions are complex (non-real) roots. To find this unique solution, we normally use
Newton method which only takes a few (four or five) iterations to find the root. Some
simple calculation indicates that we need to use the upper bound as given in Table 1 in
order to guarantee the uniqueness of the solutions of (3.16). In what follows, we shall
denote

α =
τ

2µ
.

It is easy to see that this is a ”soft” version of the MBO projection which was used in
[18] for the constraint. Similar projection idea has been used in [10] for liquid crystal
model.

There are two parameters that we need to choose for actual computing, i.e. τ and µ.
In order to have better convergence, it is preferred to choose τ as big as possible. For
(3.7), the CFL condition normally imply that we need to choose the time step below a
(small) constant. Due to the semi-implicit nature of (3.13)–(3.14), it is also true that the
time step need to be below a constant. The penalization parameter µ needs to be chosen
very small to guarantee that the constraint K(φ) = 0 is satisfied with good accuracy.
However, in order to guarantee the uniqueness of (3.16), we need to have α = τ

2µ below
a constant.

In order to satisfy all these requirements, the following strategy has been used in our
simulations. We skip the solving of (3.16) for the first k0 iterations, and then switch it on.
We also use a fixed value for τ

2µ for solving (3.16) after it has been ”switched on”. The
theoretical values for the upper bound for α = τ

2µ is given in table 1). If the algorithm
is becoming unstable after equation (3.16) is ”switched on”, we reduce the value of τ to
get the algorithm to be stable.
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3.3 The algorithms

Integrating all the above ingredients together, we get basically two algorithms: explicit
scheme, which involves the computation of local curvature, and semi-implicit or AOS
scheme. We outline these two algorithms as follows:

Algorithm 1 (Explicit scheme) For k = 0, 1, 2, . . .

a) Solve φk+1/2 from

φk+1/2 = φk − τ
n∑

i=1

∇ ·
(
∇ψk

i

|∇ψk
i |

)
ψ′i(φ

k). (3.18)

b) Set φk+1 = φk+1/2 if k ≤ k0. Otherwise, solve φk+1 from

φk+1 + αW ′(φk+1) = φk+1/2. (3.19)

c) Check convergence, if not convergent, goto a), else, stop.

Algorithm 2 (semi-implicit AOS scheme) For k = 0, 1, 2, . . .

a) Solve

φ̃k+1/4 − φk

τ
−

n∑
i=1

ψ′i(φ
k)

(
sign(ψ′i(φ

k))
φ̃

k+1/4
x

|∇φk|

)
x

= 0, (3.20)

φ̃k+1/2 − φk

τ
−

n∑
i=1

ψ′i(φ
k)

(
sign(ψ′i(φ

k))
φ̃

k+1/2
y

|∇φk|

)
y

= 0. (3.21)

b) Set

φk+1/2 =
1
2
(φ̃k+1/4 + φ̃k+1/2).

c) Set φk+1 = φk+1/2 if k ≤ k0. Otherwise, solve φk+1 from

φk+1 + αW ′(φk+1) = φk+1/2. (3.22)

d) Check convergence, if not convergent, goto a), else, stop.
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4 Numerical Experiments

In all the experiments, we take Ω = (0, 1)× (0, 1) and use Dirichlet boundary conditions.
The domain Ω is divided into square elements with uniform mesh size h = hx = hy =
1/64. For Algorithm 1, we set τ/h2 = 5 at beginning, and set τ/h2 = 0.001 after k0

iterations. For Algorithm 2, we set τ/h2 = 50 at the beginning, and set τ/h2 = 0.1 after
k0 iterations.

Finite difference is used to approximate the differential operators. To avoid dividing
by zeros, we replaces

∇ ·
(
∇ψi

|∇ψi|

)
,

ψ′i
|ψ′i|

,
1

|∇φ|
by the following approximations with εi, i = 1, 2, 3 properly chosen:

∇ ·

(
∇ψi√

|∇ψi|2 + ε1

)
,

ψ′i
|ψi|+ ε2

,
1√

|∇φ|2 + ε3
.

In our simulations, we have taken ε1 = ε3 ≈ 10−4 or 10−5 and ε2 = 0.1. The curvature
term is approximated by the standard finite difference, see [21] and [17, p.1349]. We
have also used the same techniques to evaluate the term 1/|∇φk| for equations (3.20)
and (3.21). Due to the linearization techniques used for equations (3.20) and (3.21), they
are reduced to the solving of some three diagonal matrix equations, see [15, 16, 36]. The
cost for solving these three diagonal matrices is very low. Moreover, the equations of
(3.20) can be solved independent of each other on the mesh lines parallel to the y-axis,
and the equations of (3.21) can be solved independent of each other on the mesh lines
parallel to the x-axis, see [33, 15, 16].

4.1 Example 1: a two-phase problem

For this first example, we test on a simple problem. The boundary and initial values are
illustrated in Fig.(2). We have g(x, y)|∂Ω = 1, except g(0, [1/2, 1]) = g([0, 1/2], 1) = 2.
The initial value we have chosen for φ is φ0|Ω = 1.5 and φ0|∂Ω = g. Because we try to
minimize the length of the interface curves, the real solution should consist of straight
line segments. We have tested both Algorithm 1 and Algorithm 2 for this problem and
the computed results are displayed in Fig.(3) and Fig.(4). The results produced by both
of the algorithms are nearly the same. The computed interface is a straight line. For
Algorithm 1, it needs about 11000 iterations to get the computed solution. While for
Algorithm 2, we just need about 2200 iterations.

4.2 Example 2: a three-phase problem

In this example, we test our algorithm on the well-known triple-junction problem which
involves three phases. The boundary and initial values are illustrated in Fig.(5), i.e.
φ0|Ω = 1.0, g(0, [0, 1/2]) = g([0, 1], 0) = 1, g(0, [1/2, 1]) = g([0, 1], 1) = 3, g(1, [0, 1]) = 2.

We have tested both Algorithm 1 and Algorithm 2 for this example. See Fig.(6) and
Fig.(7) for the results. For this test problem, we know the real solution. The real triple
junction point should be at (1− 1/2

√
3, 1/2/) which is approximately (0.7118, 0.5). The
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Figure 2: Example 1, 2 phases, initial φ. Dirichlet boundary conditions

three interface curves should be straight lines and the three angles at the triple junction
point should satisfy the classical angle condition, i.e. ( 2π

3 , 2π
3 , 2π

3 ) in this case. Both
algorithms can approximate the real solution accurately, while Algorithm 1 needs about
60,000 iteration steps, and Algorithm 2 needs only about 2100 iteration steps.

4.3 Example 3: problem with multiple connected phases

In this last example, we try to use our PCLSM to compute a problem with multiple
connected phases. In all the examples we have tested, each phase only contains a simple
connected region. In this example, we shall test our method for problems that a phase
can contain multiple connected regions.

For this example, the boundary and initial values are illustrated in Fig.(8), i.e. φ0|Ω =
1.0, g(0, [0, 1/3]) = g([0, 1/3], 0) = 3, g([1/3, 2/3], 0) = g(0, [1/3, 2/3]) = 2, g([2/3, 1], 0) =
g(0, [2/3, 1]) = 1, g(1, [1/3, 2/3]) = g([1/3, 2/3], 1) = 2, g([2/3, 1], 1) = g(1, [2/3, 1]) = 3,
g([0, 1/3, 1], 0) = g(1, [1, 1/3]) = 1. This problem has three phases. We have tested
Algorithm 2 for this problem. See Fig.9 for the results. In this case, both phase 1 and
phase 3 contain two distinct regions, while phase 2 only has a simple connected region.
We see that Algorithm 2 can also compute the solution efficiently and needs only about
2500 iteration steps.

5 Conclusion

The purpose of this work is to show that the PCLSM of [13] can be used for interface
problems coming from mean curvature motion. The method is able to use just one level
set function to capture mean curvature motion as well as triple junctions. Moreover, we
could use the AOS method to get efficient algorithms. The experiments given here plus
the tests done in [13, 12, 11] give a good indication that the PCLSM can be used for a
large class of interface problems.

In this work, we have just tested the PCLSM of [13]. In fact, the same technique can
be used for the binary level set methods of [12] which extends the ideas of [27, 9] and
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(a) 300 iterations (b) 1000 iterations

(c) 5000 iterations (d) 10000 iterations

(e) 11000 iterations (f) The computed so-
lution

Figure 3: Example 1: A two-phase problem. Computed results by Algorithm 1 with
k0 = 10000 and α = 0.1.
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(a) 10 iterations (b) 200 iterations

(c) 1000 iterations (d) 2000 iterations

(e) 2200 iterations (f) The computed so-
lution

Figure 4: Example 1:A two-phase problem. Computed results by Algorithm 2 with
k0 = 2000 and α = 0.1.
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Figure 5: Example 2: 3 phases, initial φ. Dirichlet boundary conditions

the phase field model [25] . It is very easy to extend our algorithms to three and higher
dimensional problems.
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