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Abstract

In this work, we try to use the so-called Piecewise Constant Level Set Method (PCLSM) for the Mumford-Shah
segmentation model. For image segmentation, the Mumford-Shah model needs to find the regions and the constant
values inside the regions for the segmentation. In order to use PCLSM for this purpose, we need to solve a minimization
problem using the level set function and the constant values as minimization variables. In this work, we test on a model
such that we only need to minimize with respect to the level set function, i.e., we do not need to minimize with respect
to the constant values. Gradient descent method and Newton method are used to solve the Euler-Lagrange equation for
the minimization problem. Numerical experiments are given to show the efficiency and advantages of the new model
and algorithms.
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I. introduction

Level set methods, originally introduced by Osher and Sethian [13], have been developed to be one of
the most successful tools for the computation of evolving geometries, which appear in many practical
applications. They use zero level set of some functions to trace interfaces separated a domain Ω into
subdomains. For a recent survey on the level set methods see [15], [10], [14].

In [7], [6], [9] some variants of the level set methods of [13], so-called ”piecewise constant level set
method (PCLSM)”, were proposed. The method can be used for different applications. In [12], [17],
applications to inverse problems involving elliptic and reservoir equations are shown. In [7], [6], [9],
[18], the ideas have been used for image segmentation problem.

Image segmentation is one of the foundational tasks of computer vision. Its goal is to partition a
given image into regions which contain distinct objects. One of the most common forms of segmentation
are based on assumption that distinct objects in an image have different approximately constant(or
slowly varying) colors (or roughnesses in the case of monochrome imagery). In this paper, we use the
Mumford-Shah model [11] for image segmentation with PCLSM. In [2], [8], [15], the Osher-Sethian
level set idea was used to solve the Mumford-Shah model. No matter whether we use the Osher-Sethian
method or PCLSM, we need to minimize with respect to the level set functions and the constant values.
In this work, we shall propose a model such that only the level set function is the minimization variable.
The advantage of this model is that we just have one variable to minimize. The resulted algorithms
are more stable and have a slightly faster convergence rate. This model eliminates the question about
when and how often to update the constant values.

The organization of our paper is as follows. In §II, firstly, we begin with a quick examination of
what constitutes a piecewise constant level set method and the classical Mumford-Shah model. The

CIPR,Department of Mathematics, University of Bergen, Norway. Email: Tai@mi.uib.no. Web page http://www.mi.uib.no/ ˜
tai.

CIPR, Department of Mathematics, University of Bergen, Norway. E-mail: changhui.yao@cipr.uib.no



2

origin of the new idea is developed as well. In §III, gradient descent method and Newton method of
[18] are used for the new model. At the end of this section, some remarks are given about how to
obtain an initial guess for Newton method. In §IV, numerical experiments are shown to demonstrate
the efficiency of the new model and the algorithms. For every example, the initial values of level set
function and the values of some parameters are shown. The differences between one-variable model
and two-variable model are compared in this section, too. In §V, we make some conclusions on this
new model.

II. One-variable Mumford-Shah model with PCLSM

Firstly, We shall recall PCLSM of [7]. The essential idea of PCLSM of [7] is to use a piecewise
constant level set function to identify the subdomains. Assume that we need to partition the domain
Ω into subdomains Ωi, i = 1, 2, . . . , n, and the number of subdomains is a priori known. In order to
identify the subdomains, we try to identify a piecewise constant level set function φ such that

φ = i in Ωi, i = 1, 2, . . . , n. (1)

Thus, for any given partition {Ωi}n
i=1 of the domain Ω, it corresponds to a unique PCLS function

φ which takes the values 1, 2, · · · , n. Associated with such a level set function φ, the characteristic
functions of the subdomains are given as

ψi =
1

αi

n∏
j=1,j 6=i

(φ− j), αi =
n∏

k=1,k 6=i

(i− k). (2)

If φ is given as in (1), then we have ψi(x) = 1 for x ∈ Ωi, and ψi(x) = 0 elsewhere. We can use
the characteristic functions to extract geometrical information for the subdomains and the interfaces
between the subdomains. For example,

Length(∂Ωi) =

∫
Ω

|∇ψi|dx, Area(Ωi) =

∫
Ω

ψidx. (3)

Define

K(φ) = (φ− 1)(φ− 2) · · · (φ− n) =
n∏

i=1

(φ− i). (4)

At every point in Ω, the level set function φ satisfies

K(φ) = 0. (5)

This level set idea has been used for Mumford-Shah image segmentation in [7]. For a given digital image
u0 : Ω 7→ R, which may be corrupted by noise and blurred, the piecewise constant Mumford-Shah
segmentation model is to find subdomains Ωi and constant values ci by minimizing:∑

i

∫
Ωi

|ci − u0|2dx+ β Length (Γ). (6)

The curve Γ is the one that separates the domain Ω into subdomains Ωi such that Ω =
⋃
i

Ωi ∪ Γ and

Γ =
⋃
i

∂Ωi. In [2], the traditional level set idea of [13] was used to represent the curve Γ and to solve

the problem (6). In [7], [16], [18], the PCLSM were used for identifying the regions and the constant
values. The minimization problem there is:

min
c,φ

K(φ)=0

{
F (c, φ) =

1

2

∫
Ω

|u(c, φ)− u0|2dx+ β

∫
Ω

|∇φ|dx
}
,
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where

c = (c1, c2, · · · , cn), u(c, φ) =
n∑

i=1

ciψi(φ).

From our simulations, we have observed that two set of different values of (c, φ) can produce the same
u and thus may confuse the algorithm and slow down the convergence. The remedy we have used is to
update the c values less often than φ and do not update the c values too earlier in the iterations. In
this work, we shall propose another technique to tackle this problem, i.e. we shall eliminate the c as a
minimization variable. Instead, we express it as a function of the level set function φ. More precisely,
we shall solve the following minimization problem to segment an image u0:

min
φ

K(φ)=0

{
F (φ) =

1

2

∫
Ω

|u(φ)− u0|2dx+ β

∫
Ω

|∇φ|dx
}
, (7)

where

u(φ) =
n∑

i=1

ci(φ)ψi(φ), and ci(φ) =

∫
Ω
ψi(φ)u0dx∫

Ω
ψ2

i (φ)dx
, i = 1, 2, · · · , n. (8)

At convergence, we have that

ci(φ) =

∫
Ωi
u0dx

Area(Ωi)
, i = 1, 2, · · · , n,

i.e. ci is the mean value of u0 in Ωi. This value for ci is consistent with the values obtained by the
model of [2] and [7].

III. Algorithms

The model (7)-(8) is rather similar to the models of [18]. Then we shall use the same algorithms used
in [18] to solve (7)-(8). The augmented Lagrangian functional for the minimization problem (7)-(8) is

L(φ, λ) = F (φ) +

∫
Ω

λK(φ) dx+
r

2

∫
Ω

|K(φ)|2dx, (9)

where λ ∈ L2(Ω) is the multiplier and r > 0 is a penalty parameter. The first algorithm we shall
use to solve the minimization problem is the following classical gradient descent method. It shall be
emphasized that it is also possible to use some other types of gradient methods, for example, the
Barzilai and Borwein (BB) gradient methods in [1], alternate step (AS) gradient methods in [4], [3],
and monotone gradient methods in [5].

Algorithm 1: (Gradient descent method) Choose initial values for φ0 and λ0. For k = 1, 2, · · · ,
do:

1. Use (8) to update u =
n∑

i=1

ci(φ
k−1)ψi(φ

k−1).

2. Find φk from
L(φk, λk−1) = min

φ
L(φ, λk−1). (10)

3. Update the Lagrange-multiplier by

λk = λk−1 + rK(φk). (11)
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In order to get the optimal solution of (10), we can construct an artificial time variable and solve
the following equation to steady state

∂φ

∂t
+
∂L

∂φ
= 0.

It is easy to see that

∂L

∂φ
= (u− u0)u

′
(φ)− β∇ ·

( ∇φ
|∇φ|

)
+ λK

′
(φ) + rK(φ)K

′
(φ)

and the curvature term ∇ ·
(

∇φ
|∇φ|

)
is approximated by

∇ ·
( ∇φ
|∇φ|

)
≈ ∇ ·

( ∇φ√
|∇φ|2 + ε

)
.

In our numerical examples, we take ε = 10−8. Normally, we choose a fixed step size ∆t and do a fixed
number of the following iterations to solve (10) approximately

φnew = φold −∆t
∂L

∂φ
(φold, λk−1). (12)

In the simulations, the above iteration is terminated when the inner iteration number is more than nλ

or ∥∥∥∥∂L∂φ (φnew, λk−1)

∥∥∥∥
L2

≤ 1

10

∥∥∥∥∂L∂φ (φk−1, λk−1)

∥∥∥∥
L2

.

We shall compare this algorithm with a corresponding algorithm of [7]. The λ for the algorithm for
[7] is updated using the same criteria.

Theories and numerical tests on image segmentation in [7], [6], [9], [18] and on inverse problem in [12],
[17] have shown that gradient descent method is a stable but slow convergent algorithm with PCLSM.
Therefore, different approaches have been used to accelerate the convergence. Newton method has
been used in [18] to get faster convergence. We shall follow the same idea also for the minimization
problem here.

Similarly as in [18], we define

R(φ, λ) =
1

2

∫
Ω

|u(φ)− u0|2dx+

∫
Ω

λK(φ) dx. (13)

and

L0(φ, λ) = F (φ) +

∫
Ω

λK(φ) dx. (14)

It is easy to see that L0 is equal to L if we take r = 0 in (9). In addition, the functional L0 given in
(14) reduces to R if we take β = 0. Based on a small value of β, we can replace Hessian matrix(

∂2L
∂φ2

∂2L
∂φ∂λ

∂2L
∂φ∂λ

0

)
(15)

by a simplified Hessian matrix (
∂2R
∂φ2

∂2R
∂φ∂λ

∂2R
∂φ∂λ

0

)
. (16)
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By the chain rule, we have

∂2R

∂φ2
=
(
u

′
(φ)
)2

+ (u− u0)u
′′
(φ) + λK

′′
(φ),

∂2R

∂φ∂λ
=

∂2R

∂λ∂φ
= K

′
(φ),

u′ =
n∑

i=1

c′(φ)ψi(φ) + c(φ)ψ′
i(φ),

u
′′
(φ) =

n∑
i=1

(c
′′
(φ)ψi + 2c

′
(φ)ψ

′

i(φ) + ciψ
′′

i (φ)).

Then Newton method is given in the following:
Algorithm 2: (Newton method) Choose initial values φ0, λ0. For k = 1, 2, · · · , do:

1. Use (8) to update u =
n∑

i=1

ci(φ
k−1)ψi(φ

k−1).

2. Update φk, λk from (
φk

λk

)
=

(
φk−1

λk−1

)
−

(
∂2R
∂φ2

∂2R
∂φ∂λ

∂2R
∂φ∂λ

0

)−1(
∂L0

∂φ
∂L0

∂λ

)
. (17)

For the algebraic system (17), we can solve a 2× 2 system at each grid point, which means that the
cost for Algorithm 2 is nearly the same as for Algorithm 1 at each iteration. Some remarks about the
above algorithm are given in the following.

Remark 1: We have to find a relative good initial values for Newton method, which guarantees
this algorithm convergent. Different ways can be taken to get such initial values. In our examples,
we can take the data from Algorithm 1 by updating fixed iterations, which will be carried out under
condition of large noise added image u0 in (7). But for many of the test examples, the simple scaling
procedure outlined in §IV is good enough to have Algorithm 2 converge.

Remark 2: In general, we will take a small value of β. If the interfaces are oscillatory, we increase
the value of β and decrease 4t to keep the algorithms stable.

IV. numerical examples

In this section, we will demonstrate the efficiency of the new model (7) and compare it with the
algorithms given in [7]. We shall concentrate on two-phase segmentation only.

As in [18], we can use the following scaling procedure to get initial values for φ . First, we set the
phase number n = 2. Then we scale u0 to a function between 1 and 2 as in the following and take this
as the initial values for φ, i.e.

φ0(x) = 1 +
u0(x)−minx∈Ω u0

maxx∈Ω u0 −minx∈Ω u0

. (18)

For some case, we do a fixed number of iterations of Algorithm 1 using the above φ0 as the starting
value and then use the obtained image as the initial values for Algorithm 2. We consider only two-
dimensional grey scale images. To complicate the segmentation process we typically expose the original
image with Gaussian distributed noise and use the polluted image as observation data u0. We report
the signal-to-noise-ratio calculated by SNR=V1

V2
, where V1 and V2 are the variance of the data and the

variance of the noise, respectively. In the following, we shall use one-variable model to (7)-(8) and use
two-variable model to refer to Algorithm 2 of [7].
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We begin with an image of an old newspaper where only two phases are needed. One phase represents
the characters and the other phase represents the background of the newspaper. The Log10 convergence

for ‖F (φk)‖L2 and
‖K(φk)‖L2

‖K(φ0)‖L2
with gradient descent method for the one-variable model and two-variable

model are plotted in Fig.1. We use the same values for β and ∆t for both models. For this plot for
the two-variable model, the c values are updated as stated in the remarks of [7]. The plot shows that
the one-variable model converges slightly faster. The cost functional converges to the same value for
the two models. In Fig.2, we try to compare gradient descent method with Newton method. Fig.2(c)
shows the level set function φ by Newton method at 10 iterations. This segmented is the same as that
of gradient descent method at 108 iterations in Fig.2(d). In the tests for Fig.1 and Fig.2, we have used
β = 0.1, r = 107,4t = 10−8, nλ = 10. Fig.2(b) shows a part of convergent φ clearly.
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(a)The Log10-convergence of ‖F (φk)‖L2 for one-variable
model and of ‖F (c, φk)‖L2 for two-variable model.
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Fig. 1. A comparison of the Log10-convergence the one-variable model with the two-variable model by using gradient
descent method.
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(a)An old newspaper
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(b)A small partition of φ
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(d)126 gradient iterations

Fig. 2. A comparison Newton method with gradient descent method for the one-variable model. (a) An old real
newspaper. (b) A small partition of the convergent φ, it is a piecewise constant function φ = 1 ∨ 2. (c) Segmented
image using Newton method at 10 iterations, β = 0.1. (d) Segmented image using gradient descent method at 108
iterations.

The next example is a numerical test on a car plate image. We want to challenge the segmentation
by adding a large amount Gaussian distributed noise to the real image and to take the polluted image
in Fig.3(b) as the observation data. For the noise, we have SNR ≈1.7, which means the observation
image is very noisy. We want to compare our proposed algorithms with the Chan-Vese method(CVM)
[8]. The results are displayed in Fig.3(d)(e)(f). For Newton method, we have to get the initial values
by Algorithm 1 because the noise is so large that the simple scaling procedure (18) is not good enough
to make it convergent. The image in Fig.3(c), which is produced by gradient descent method at 288
iterations with β = 0.65, r = 2 × 105,4t = 8 × 10−9, nλ = 1, is obtianed. The convergence rate of
Newton method is much faster than that of gradient descent method, though gradient descent method
and Newton method need nearly the same computational costs. The image produced by gradient
descent method and Newton method is also nearly the same. The CVM needs more iterations and
computing cost, which is also the case for tests with other images.
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(a)Original observation car
plate.
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(b)Noisy image
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(c)Initial value for Newton
method
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(d)Segmented with Newton
method
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(e)Segmented with gradient
descent method
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(f)Segmented with CVM .

Fig. 3. A comparison of three algorithms for the segmentation of a car plate. (a) The original observation for a car
plate. (b) The noisy car plate with SNR ≈1.7. (c) The initial value of φ for Newton method (d) Segmented image
using Newton method. (e) Segmented image by gradient descent method. (f) Segmented image with CVM.

In the last two examples, we apply our algorithms to some real images. One is a helicopter (c.f.
Fig.4(a)) taken in a cloudy day. The results produced by the two algorithms are shown in Fig.4(b)(c).
We have used β = 0.1, r = 107,4t = 1× 10−8, nλ = 10 for the algorithms. The other image is a photo
for a field, see Fig.5(a). From the segmented image shown in Fig.5(b)(c), we can easy to identify the
boundary of the different parts of the field. The result is obtained by using gradient descent method
at 169 iterations using β = 0.1, r = 107,4t = 1 × 10−8, nλ = 10 and using Newton method at 9
iterations. This image is rather complicated. We can see that some objects only have a few pixels,
even the density values of the image are not nearly constant at each subregion. But it seems there is
no problem for our model and algorithms to get a good segmentation for this image.
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(a)A helicopter taken in a
cloudy day
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Fig. 4. (a) A helicopter taken in a cloudy day. (b) Segmented image using Newton method at 12 iterations with β = 0.1.
(c) Segmented image using gradient descent method at 192 iterations.
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(a)A Photo of a field
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Fig. 5. (a) A Photo for a field. (b) Segmented image using Newton method at 9 iterations with β = 0.1. (c) Segmented
image using gradient descent method at 169 iterations.

V. Conclusion.

We have also done many other tests for the proposed model with gradient descent method and
Newton method. Even the image is very complicated and the density values of the image are not
nearly constant inside each phase, or very noise, the proposed algorithms are able to find the phases
properly. Newton method is still very fast like that in [18]. We can use gradient descent method to
produce the initial segmentation for Newton method when the image u0 has a large amount noise
added.
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