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Summary. Level set methods have been proven to be efficient tools for tracing
interface problems. Recently, some variants of the Osher-Sethian level set methods,
which is called the Piecewise Constant Level Set Methods (PCLSM), have been
proposed for some interface problems. The methods need to minimize a smooth cost
functional under some special constraints. A fast algorithm for image segmentation
is proposed and tested. The algorithm uses an operator splitting scheme to deal with
the gradient descent equation. A special technique is used to tackle the constraint for
the PCLSM. By choosing the time step and the penalization parameter properly, the
cost functional is minimized and the constraint is fulfilled. Experiments for image
segmentation is given. The efficiency of the algorithm and the quality of the obtained
images are demonstrated.
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1 Introduction

A function u(x) defined on an open and bounded domain Ω ∈ Rd may have
different properties in distinct regions of Ω. In many applications one wants
to separate Ω into a union of these regions, i.e. Ω = ∪n

i=1Ωi. There are several
approaches to accomplishing this segmentation, one is the successful level set
method invented by Osher and Sethian [14].

In the standard level set method a distance function φ(x) is assigned to the
function u(x), and the interior and exterior of Ω are represented implicitly by
the sign of φ(x). We have that the interior of Ω is represented by the points x:
φ(x) > 0 and the exterior of Ω is represented by the points x: φ(x) < 0. The
boundary is represented as the zero level set curve Γ = {x ∈ Ω, φ(x) = 0}.

∗We acknowledge support from the Norwegian Research Council and IMS of the
National University of Singapore.
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The advantage of this representation is that rather than evolving the curve
itself, we evolve the distance function φ(x). This makes topology changes
such as merging and breaking an easy task. To divide Ω into more than two
domains, one needs to use multiple level set functions [25, 16, 22].

Recently, Lie, Lysaker and Tai [8] presented the piecewise constant level
set method (PCLSM) as an alternative approach to the multiple level set
function. This method only requires one level set function to represent mul-
tiphase segmentation. For some shape identification problems, the PCLSM
needs to minimize a smooth functional under some constraints. In [8], gradi-
ent method of Uzawa type has been used to solve the saddle point problem
coming from the Euler-Lagrange equation for the constrained minimization.
Such a method is rather stable, but often has slow convergence. In several
recent works, fast algorithms have been proposed to solve this constrained
minimization problem. In [19], the MBO projection of [12] has been used to
deal with the constraint. The convergence is fast, but the time step needs to
be chosen carefully. In [20], a quasi-Newton approach has been tested to solve
the saddle point equations. Due to the special structure of the segmentation
problem, the cost per Quasi-Newton updating is nearly the same as the gra-
dient updating, but the convergence is much faster if we have good initial
guesses. In this work, we try another technique to accelerate the convergence.
Due to the special structure of the constraint, we are able to design a special
procedure to deal with it. By choosing the penalization parameter and the
time step in a proper manner, we are able to use Newton method to enforce
the constraint in a rather cost efficient way. Numerical experiments show that
this technique has fast convergence and it also has better stability proper-
ties. For most of the experiments we have done, we can use the same set of
parameters and the algorithm is able to converge in about 40 iterations.

The PCLSM was intended as an alternative for the traditional level set
idea of [14, 3]. The ideas are also somehow related to the phase field models for
phase transition [17]. They also extend the models proposed in [18, 6]. In [5],
the layer between the constant levels are used to distinguish the phases. Here,
we use the constant levels. Recently, similar ideas have also been proposed in
[9] for some complicated inverse scattering problems.

This work is organized in the following way. In Section 2, we outline the
essential ideas of the PCLSM of [8]. In order to improve the efficiency of the
algorithms, we will use some operator splitting methods for our computation.
A general introduction about the operator splitting methods is given in Section
3. The essential ideas for our fast algorithm is presented in Section 4. Here
all the details behind the algorithm are explained. The algorithm and its
essential numerical features are exposed in Section 5. We report the numerical
experiments in Section 6. The tests show both the quality and the speed of
the proposed algorithm.
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2 Piecewise Constant Level Set Formulation

First, we give a brief outline of the PCLSM [8]. Assume that we need to find
N regions {Ωi}

N
i=1 which form a partition of Ω. In order to find the regions

we try to find a piecewise constant function which takes values

φ = i in Ωi, i = 1, 2, . . . , N. (1)

The discontinuities of φ give us the curves that separate the regions. Associ-
ated with φ we define the characteristic functions ψi for Ωi as

ψi =
1

αi

N∏

j=1
j 6=i

(φ − j) and αi =
N∏

k=1
k 6=i

(i− k). (2)

Each ψi is expressed as a product of linear factors of the form φ− j, with the
ith factor omitted. Consequently the characteristic functions ψi will have the
property

ψi(x) =

{
1 if x ∈ Ωi

0 elsewhere
, (3)

as long as (1) holds.
From the characteristic functions we can easily calculate geometric prop-

erties like length and area. The length of the boundary of Ωi is given by the
relation

|∂Ωi| =

∫

Ω

|∇ψi|dx, (4)

and the area inside Ωi is given by the relation

|Ωi| =

∫

Ω

ψidx. (5)

By linearly combining these characteristic functions we are able to build
a cartoon or a piecewise constant image,

u =

n∑

i=1

ciψi. (6)

This is a piecewise constant function and u = ci in Ωi if φ is as given in (1).
In order to guarantee that the level set function φ takes the values as in

(1) at convergence, we introduce the constraint function

K(φ) = (φ− 1)(φ− 2) · · · (φ −N) =

N∏

i=1

(φ− i). (7)
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Requiring
K(φ) = 0 (8)

at convergence ensures that φ only takes integer values, and that each point
x ∈ Ω belongs to one and only phase. This prevents vacuum and overlap
between the different phases.

Based on the above observations we propose to solve the following Mumford-
Shah functional [13] to find a segmentation of a given image u0:

min
c, φ

K(φ)=0

{

F (c, φ) =

∫

Ω

|u− u0|
2dx+ β

n∑

i=1

∫

Ω

|∇ψi|dx
}

. (9)

In the above, β is a nonnegative parameter controlling the regularizing, u is
a piecewise constant function depending on φ and c, as in (6). The first term
of (9) is a least square functional, measuring how well the piecewise constant
image u approximates u0. The second term is a regularizer measuring the
length of the edges in the image u.

A more simplified cost functional can be achieved by regularizing φ directly
in (9). The following relation

c1(N)

∫

Ω

|∇φ|dx ≤

N∑

i=1

∫

Ω

|∇ψi|dx ≤ c2(N)

∫

Ω

|∇φ|dx, (10)

where c1(N) and c2(N) only depends on N , gives the simplified minimization
problem

min
c, φ

K(φ)=0

{

F (c, φ) =

∫

Ω

|u− u0|
2dx+ β

∫

Ω

|∇φ|dx
}

. (11)

To deal with the constraint K(φ) = 0 we use a penalization method.
Defining W (φ) = |K(φ)|2 we propose the following penalization functional:

min
c, φ

{

F (c, φ) =

∫

Ω

|u− u0|
2dx+ β

∫

Ω

|∇φ|dx +
1

µ

∫

Ω

W (φ)dx
}

. (12)

To solve this minimization problem we propose to use an operator splitting
scheme combined with Newton iteration. A similar minimization problem was
solved in [8], using augmented Lagrangian Method. It has also been solved in
[19] using a MBO approach and in [20] using a quasi-Newton approach.

3 Operator Splitting Scheme

In this section we try to explain the operator splitting scheme in a general
setting. For a given function space V and an operator (linear or nonlinear)
defined in V , we often need to solve the following time dependent equation:
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∂φ

∂t
+A(φ) = f(t), t ∈ [0, T ], φ(0) = φ̂ ∈ V. (13)

If the operator A and the function f can be split in the following way:

A = A1 +A2 + · · ·Am, f = f1 + f2 + · · · fm, (14)

then splitting schemes can be used to approximate the solution of (13). Nor-
mally, the operators Ai are simpler and easier to solve. The first scheme
is called the parallel splitting scheme or additive operator splitting (AOS)

scheme. First we choose a time step τ and set φ0 = φ̂. At each time level
tj = jτ , we compute φj+ i

2m in parallel for i = 1, 2, · · · ,m from:

φj+ i

2m − φj

mτ
+Ai(φ

j+ i

2m ) = fi(tj), and then set φj+1 =
1

m

m∑

i=1

φj+ i

2m . (15)

This algorithm was first proposed in Lu, Neittaanmaki and Tai [10, 11]. It
was discovered independently later in [23] and used in a different context for
image processing [24, 2, 1].

The following sequential scheme, sometimes also called the multiplicative
operator splitting (MOS) scheme can also be used to approximate the solution
of (13):

φj+ i

m − φj+ i−1

m

τ
+Ai(φ

j+ i

m ) = fi(tj), i = 1, 2, · · · ,m. (16)

We are able to combine the AOS and MOS schemes in different ways, and
below we present a combined scheme which will be used for our simulations.

Split the operator A and the function f in the following way:

A = A1 +A2 + · · ·Ak
︸ ︷︷ ︸

+Ak+1 + · · · +Am
︸ ︷︷ ︸

, (17)

f = f1 + f2 + · · · fk
︸ ︷︷ ︸

+ fk+1 + · · · + fm
︸ ︷︷ ︸

, (18)

i.e. we have grouped A and f into two parts. We now can use the AOS scheme
on the first k terms and then the MOS scheme on the remaining m−k terms.
This gives the following algorithm:

Algorithm 1 ( A General AOS-MOS scheme)

• Use the AOS scheme on the first k terms, i.e. solve φj+ i

2m in parallel from

φj+ i

2m − φj

kτ
+Ai(φ

j+ i

2m ) = fi(tj), i = 1, 2, ..., k. (19)

• Set

φj+ k

m =
1

k

k∑

i=1

φj+ i

2m . (20)



6 Oddvar Christiansen and Xue-Cheng Tai

• Use the MOS scheme for the remaining terms, i.e. solve φj+ i

m sequentially
from

φj+ i

m − φj+ i−1

m

τ
+Ai(φ

j+ i

m ) = fi(tj), i = k + 1, k + 2, · · · ,m. (21)

4 Operator splitting and Newton methods for image

segmentation

In this section we show how the operator splitting idea can be used for the
minimization problem (12). In order to solve (12) we need to find c and φ
that satisfy

a)
∂F

∂c
= 0, b)

∂F

∂φ
= 0. (22)

As u is linear with respect to the ci values, we see that F is quadratic with
respect to ci. Thus the minimization of (12) with respect to c can be solved
exactly. We have

∂F

∂ci
=

∫

Ω

(u− u0)ψi dx, for i = 1, 2, · · ·N. (23)

Therefore, the minimizer of (12) with respect to c satisfies a linear system of
equations Ac = b:

n∑

j=1

∫

Ω

(ψiψj)cj dx =

∫

Ω

u0ψi dx, for i = 1, 2, · · ·N. (24)

This can be easily solved by forming the matrix A and the vector b and solve
the equation Ac = b by an exact solver. The size of the system is very small,
i.e. A is a N ×N matrix.

To compute ∂F
∂φ we utilize the chain rule to get

∂F

∂φ
= −β∇ ·

(
∇φ

|∇φ|

)

+ (u(φ, c) − u0)
∂u

∂φ
+

1

µ
W ′(φ). (25)

The variational formulation also impose the following boundary condition for
φ on Ω

∇φ

|∇φ|
· n = 0 on ∂Ω. (26)

Using a steepest descent method for the minimization of (12) with respect
to φ we get the following equation for the level set function φ:

φt = β∇ ·

(
∇φ

|∇φ|

)

− (u(φ, c) − u0)
∂u

∂φ
−

1

µ
W ′(φ). (27)
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This is a partial differential equation which we solve using Algorithm 1. We
split the right side of (27) into d+ 1 terms:

φt = B1(φ) +B2(φ) + · · · +Bd(φ) + C(φ), (28)

where

Bi(φ) = βDi ·

(
Diφ

|∇φ|

)

−
1

d
(u(φ, c) − u0)

∂u

∂φ
(φ, c), (29)

and

C(φ) = −
1

µ
W ′(φ), (30)

Di = ∂
∂xi

and d is the spatial dimension. Thus, we have m = d+ 1. Applying
Algorithm 1 directly on (28), it gives the following algorithm.

Algorithm 2 (Mixed AOS-MOS scheme). For n = 1, 2, ... until convergence.

• Use the AOS scheme on the first d terms

φn+ i

2m − φn

τd
= βDi ·

(
Diφ

n+ i

2m

|∇φn+ i

2m |

)

−
1

d
(u(φn+ i

2m , c) − u0)
∂u

∂φ
(φn+ i

2m , c)

(31)
i = 1, 2, ..., d.

• Set

φn+ 1

2 =
1

d

d∑

i=1

φn+ i

2m (32)

• Solve φn+1 from

φn+1 − φn+ 1

2

τ
= −

1

µ
W ′(φn+1). (33)

In what follows we will show how to efficiently solve (31) and (33). The
first of these equations, i.e. equation (31), is nonlinear and implicit. In order
to solve it, we use the semi-implicit Picard iteration

φnew
i − φn

τd
= βDi ·

(
Diφ

new
i

|∇φold
i |

)

−
1

d
(u(φold

i , c) − u0)
∂u

∂φ
(φold

i , c). (34)

For each i, we choose an initial value as φold
i and get a φnew

i which is then taken
to be φold

i and get another φnew
i . This procedure is iterated until convergence.

We then set

φn+ 1

2 =
1

d

d∑

i=1

φnew
i . (35)

We have chosen to use a semi-implicit scheme to improve the stability and
reduce the computational time.
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The reason for the dimensional splitting is that this leads to a system of
equations which can be efficiently solved using direct solvers for tri-diagonal
matrices. Rewrite (34) as

φnew
i − τβdDi ·

(
Diφ

new
i

|∇φold
i |

)

= φn − τ(u(φold
i , c) − u0)

∂u

∂φ
(φold

i , c) =: ri, (36)

and define the operator
Ai = Di · (a(x)Di), (37)

where a(x) = 1
|∇φold

i
|
. Using this we can write (34) as

(I − τβdAi)φ
new
i = ri, (38)

where I is the identity matrix. For each i, the matrix (I − τβdAi) is a tri-
diagonal matrix on the mesh lines parallel to the xi-axes. Thus the systems
(38) can be solved fast using a tri-diagonal solver.

The second equation, (33), can be efficiently solved using the Newton
iteration. Define:

G(φ) = φ+
τ

µ
W ′(φ) − φn+1/2. (39)

We see that (33) is the same as finding a root for G. This problem can be
easily solved using the Newton iteration

φnew = φold −
G(φold)

G′(φold)
. (40)

There is however one problem to take into consideration.W ′ is a polynomial of
degree 2N−1, where N is the number of phases. Thus there are 2N−1 roots. If
no restriction is placed on τ and µ we can have more than one solution for the
system and the Newton iteration can converge to any one of these solutions.
Thus to ensure uniqueness and convergence of the Newton iteration we shall
choose τ and µ so that G′ > 0. This will ensure that G is strictly increasing
and thus there is only one real root. The rest of the roots are complex. It is
easy to see that

G′(φ) = 1 +
τ

µ
|K ′(φ)|2 +

τ

µ
K(φ)K ′′(φ). (41)

Some simple calculation shows that G′ > 0 will impose the following constrain
on τ and µ
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Table 1. Upper bounds σ0 for τ

µ

N τ/µ <

2 2
3 0.71
4 0.09
· · · · · ·

The bound depends on the number of phases N . This means that for a
given µ we can easily calculate the time step τ to make G′ > 0. In the next
section we present the complete algorithm and show how to choose a proper
value for the penalization parameter µ and the initila values for the constants
c.

Remark 1. We have used AOS for the Bi operators and MOS for the C op-
erator. The reason to use AOS for Bi is to treat all the spatial variable xi

in a symmetrical way. This could avoid to turn symmetrical images to non-
symmetrical images.

5 The Algorithm

The penalization parameter µ controls the effect of the constraint K(φ) = 0.
When µ is very small the constraint has large impact on (12), evolving the
level set function quickly towards integer values. Whereas, when µ is large the
regularizing and fidelity terms are more dominant, smoothing the image under
the constraint that u is close to u0. Our idea is that we start with a large µ
ensuring that the regularizing- and fidelity terms are the dominant ones. We
then slowly reduce µ towards zero. This will gradually increase the impact
of the constraint, ensuring that the level set function φ converges towards a
piecewise constant function with φ = i in Ωi.

Numerical tests we have done show that starting with µ equal to 1000
and then setting µnew = 0.75 · µold for every iteration give good results. This
reduces µ from 1000 to ∼0.01 in 40 iterations, which is approximately the
number of iterations necessary for convergence. Once µ is fixed we determine
the value of τ according to Table 1. However, to ensure stability of the Picard
iteration (34) we must require an upper bound of τmax. In our numerical tests
we have used τmax = 0.5. The number of Picard iterations in our algorithm
is set to 1.

There is also a need for an initial approximation of the constants c. When
the image only has 2 phases the initial values for c is not important, the
algorithms converge to the same solution even if the c values are far from the
true ones. For more than 2 phases we need a good approximation for the initial
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c values, and this is achieved using a simple isodata approach [4]. During the
iterations we can update the c values using (24). However, this should not be
done too early in the process. This is because (24) will give a poor estimate
of the c values unless the level set function φ is close to piecewise constant.

This gives us the following algorithm:

Algorithm 3 (MBO-Newton method)

• Find initial c0 values and set τ = 0.5, µ = 1000.
for n = 1 : n0

– Solve

φ
n+ 1

2

i − φn

τd
= βDi ·

(
Diφ

n+ 1

2

i

|∇φn
i |

)

−
1

d
(u(φn

i , c
n)− u0)

∂u

∂φ
(φn

i , c
n). (42)

– Set

φn+ 1

2 =
1

d

d∑

i=1

φ
n+ 1

2

i . (43)

– Solve φn+1 from

φn+1 − φn+1/2 = −
τ

µ
W ′(φn+1). (44)

– update cn according to (24)
– Update µ and τ through µ = 0.75 · µ and τ = min(0.5, µσ0).
end

Above σ0 is the upper bound for τ/µ as given in Table 1 and the iteration
number n0 is chosen to be 40 for all the tests we have done. The cost for solving
(44) is very cheap. It normally only takes three or four Newton iterations of
(40) to get a rather accurate solution for it.

In the rest of this section we will try to explain how the algorithm works.
That is, we will try to illustrate how (42) and (43) smooth the level set function
φ under the restriction that u must be close to u0. Whereas, (44) evolves φ
towards integer values.

In order to show how (42) and (43) are evolving the level set function we
will run the algorithm without (44). We also keep c fixed.

To make the example and visualization as simple as possible we have cho-
sen to use a 1-dimensional signal. Thus instead of a complete image we look
at a row of an image. As the initial signal u0 and the initial level set φ0 we
take the noisy step function shown in Fig. 1a). Clearly we can see that this
function contains 4 levels or phases. Thus we want the the level set function
to converge towards a function which is close to u0, but smoother due to the
use of the total variation term. In Fig. 1b) we have shown the φ function
after convergence. From the figure we clearly see that φ has converged into a
smoothed function containing 4 different levels. It is important to notice that
these levels are not 1,2,3 and 4 since we have removed (44).
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(a) Initial u0 and φ0.
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(b) φ after convergence

Fig. 1. (42) and (43) evolves the level set φ towards a smoothed function containing
4 different levels. β is here set to 0.2.

The parameter β controls the regularization. Thus if we choose β too big
we will get a φ function that is too smooth, see Fig. 2a). On the other hand if
we choose β too small we will get a φ function that is too noisy, see Fig. 2b).
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(a) β = 5.
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(b) β = 0.05

Fig. 2. If we increase β too much we will get a φ function which is too smooth. On
the other hand if we reduce β too much we will get a φ function which is too noisy.

In order to show how (44) is evolving the level set function towards integer
values we will run the algorithm without (42) and (43). We have chosen a
linear function as shown in Fig. 3a) as the initial level set function φ0. Since
we want (44) to force the function values towards the nearest integer we want
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φ to converge into a staircase function, and as Fig. 3b) shows, this is exactly
what happens.
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0
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(a) Initial φ0
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(b) φ after convergence

Fig. 3. (44) forces the function values towards the integers and φ to converge to a
stair function.

We now run the entire algorithm, i.e. we combine (42), (43) and (44). We
want the level set function φ to converge towards φ = i in Ωi, i = 1, 2, ..., N ,
and as Fig. 4 shows, this is exactly what happens.

0 20 40 60 80 100 120 140 160 180 200
0.5

1

1.5
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2.5
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3.5

4

4.5

5

Fig. 4. When the entire algorithm is applied, the level set function φ converge
towards φ = i in Ωi, i = 1, 2, ..., N .

Remark 2. If we take u = φ, u0 = φ0 and only iterate between (42) and (43),
then this gives a fast implementation for the ROF total variation denoising
algorithms of [15].
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Remark 3. Compared with the algorithm of [19], we have replaced the MBO-
projection [12] by the solving of (44). The MBO-project is enforcing the con-
strain so ”brutally” that the final results depends on the time step size used
for (42)-(43). When it is replaced by (44), the cost for the computation is not
increased much and the constraint is also enforced properly by reducing the
penalization parameter and the time step according to Table 1.

6 Numerical experiments

In this section we validate our algorithm with numerical experiments for real
applications. We consider only two-dimensional cases and restrict ourself to
gray-scale images, but the schemes can handle any dimension and can be
extended to vector-valued images as well. Synthesized images, natural images
and an MR image are evaluated.

The algorithm is as described in section 5 and the advantage of this algo-
rithm is that the only parameter which has to be chosen is the regularizer β.
This means that for all images presented in this section we have set the initial
τ = 0.5 and the reduction factor µ = 0.75. It might be possible that other
images requires different values for τ and µ, but we have not experienced this.

All implementations are done in Matlab, and as the initial φ function we
use the input image u0, scaled between one and the number of phases:

φ0(x) = 1 +
u0(x) − min u0

maxu0 − minu0
(N − 1), (45)

where N is the number of phases. All tests are run on on a 2.8GHz Pentium
4 processor.

In the first example we illustrate a 2-phase segmentation on a real car plate.
The size of the image is 370×465 pixels, and the CPU time of the segmentation
is 26 s. To challenge the segmentation we add Gaussian distributed noise to
the real image and use the polluted image in Fig. 5a) as the input data.

To demonstrate the effect of the regularization parameter β we show a
number of segmentations with different β values. We see that for β = 0.5 we
have a very good segmentation of the noisy car plate. For smaller β values
we are not able to remove the noise, and for larger β values we regularize too
much and remove details from the image.
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(a) Original image
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(b) Image added noise (SNR ≈ 1.7)
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(c) Segmented image, β = 0.05
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(d) Segmented image, β = 0.5

50 100 150 200 250 300 350 400 450

50

100

150

200

250

300

350

(e) Segmented image, β = 1
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(f) Segmented image, β = 2

Fig. 5. The regularization parameter β controls the length of the boundary. For
β = 0.5 we have a good segmentation of the car plate. For smaller β we are not able
to remove the noise, and for larger β we regularize too much and remove details
from the image.
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In the next example we show a segmentation of the noisy star image in
Fig. 6a). The size of the image is 92 × 98 pixels, and the CPU time for the
segmentation is 2.1 s. The star image consists of four different phases, and as
Fig. 6c) shows the algorithm separates these phases very well. We have also
shown the initial and final φ function. As Fig. 6b) shows, the initial φ function
is the image scaled between one and four, i.e. the number of phases. After the
algorithm has converged the φ function only contains four levels, see Fig. 6d).
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(a) Star image added noise (SNR ≈ 15.7)
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(b) Initial level set function φ
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(c) Segmented image, β = 0.25
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(d) Converged level set function φ

Fig. 6. 4 phase segmentation of a noisy star image.

In our next example segmentation of a MR image is demonstrated. The size
of image is 296×400 pixels, and the CPU time for the segmentation is 35 s. The
image in Fig. 7 is available at http://www.bic.mni.mcgill.ca/brainweb/.
These realistic MRI data are used by the neuro imaging community to evaluate
the performance of various image analysis methods in a setting where the
truth is known. For the image used in this test the noise level is 7% and the
non-uniformity intensity level of the RF-puls is 20%.
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Fig. 7. MRI image with a change in the intensity values going from left to right
caused by the non-uniform RF-puls.

There are three tissue classes that should be identified; phase 1: cere-
brospinal fluid, phase 2: gray matter, phase 3: white matter, and in Fig. 8
we have compared the results from our algorithm with the exact phases. We
have not depicted the background phase here. We see that we have lost some
details, due to the presence of noise.
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(a) Cerebrospinal fluid
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(b) Cerebrospinal fluid (Exact)
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(f) White matter (Exact)

Fig. 8. Comparison of the exact segmentation of a MRI phantom and the results
using our algorithm (β = 0.14).

In Fig. 9 we show the results from a 4-phase segmentation of a noisy
synthetic image containing 3 objects. The size of the image is 100×100 pixels,
and the CPU time for the segmentation is 2.5 s. This is the same image as Chan
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and Vese used to examine their multiphase algorithm [3, 22]. We see that the
algorithm captures the circle and the curved object perfectly, however there
is a problem with the triangle. We have a misclassification of the boundary
of the triangle. This is probably due to the fact that we regularize directly
on the φ function in (12). The jump on the boundary of the triangle is twice
of the jump on the boundary of the other two objects, see Fig. 9 d), and
the regularization probably “punishes” this jump too hard. Thus in future
work we might have to consider to regularize directly on the characteristic
functions, in the same manner as in [8].
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(a) Noisy image containing 3 objects (SNR
≈ 6.1)
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(b) Initial level set function φ
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(c) Different phases, β = 0.12
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(d) Converged level set function φ

Fig. 9. 4-phase segmentation of a noisy synthetic image containing 3 objects.

In our final example we present a two phase segmentation of a real picture
of a plane, Fig. 10a). The size of the image is 176× 101 pixels, and the CPU
time for the segmentation is 2.6 s. As before we have added noise to challenge
the segmentation, see Fig. 10b). We show a number of segmentations with
different β values. We see that for β = 0.15 we have a very good segmentation
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of the plane. For smaller β values the edges are too noisy, and for larger β
values we regularize too much and remove details from the image.

10 20 30 40 50 60 70 80 90 100

20

40

60

80

100

120

140

160

(a) Original image
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(b) Image added noise (SNR ≈ 3.4)
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(c) Segmented image, β = 0.01
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(d) Segmented image, β = 0.15
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(e) Segmented image, β = 0.5
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(f) Segmented image, β = 1

Fig. 10. Different segmentations of a noisy plane image. For β = 0.5 we have a
good segmentation of the plane. For smaller β values the edges are too noisy, and
for larger β values we regularize too much and remove details from the image.



20 Oddvar Christiansen and Xue-Cheng Tai

7 Conclusion

Due to the special structure of the PCLSM, we propose a special method
to deal with the constraint. In order to have this method to work, we need
to choose the time step τ and the penalization parameter µ to satisfy some
inequality. By doing this, we have a very cost efficient way to enforce the
constraint. Application to image segmentation is tested in this work. The
convergence is fast. Compared with the other fast methods of [19, 20], we do
not need good initial values and the algorithm is nearly parameter ”free”. It
is easy to find values for τ and µ that are good for most of the tested images.

Applications of this idea for PCLSM to inverse problems and multiphase
motion problems have also been tested in [21, 7]. Those results show the
applicability of the PCLSM for a class of shape identification problems.
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