
A Second Order Accurate Level Set Method on Non-Graded
Adaptive Cartesian Grids

Chohong Min∗ Frédéric Gibou†

9th May 2006

Abstract

We present a level set method on non-graded adaptive Cartesian grids, i.e. grids for which the ratio between
adjacent cells is not constrained. We use quadtree and octree data structures to represent the grid and a simple
algorithm to generate a mesh with the finest resolution at the interface. In particular, we present (1) a locally third
order accurate reinitialization scheme that transforms an arbitrary level set function into a signed distance function, (2)
a second order accurate semi-Lagrangian methods to evolve the linear level set advection equation under an externally
generated velocity field, (3) a second order accurate upwind method to evolve the nonlinear level set equation under a
normal velocity as well as to extrapolate scalar quantities across an interface in the normal direction, and (4) a semi-
implicit scheme to evolve the interface under mean curvature. Combined, we obtain a level set method on adaptive
Cartesian grids with a negligible amount of mass loss. We propose numerical examples in two and three spatial
dimensions to demonstrate the accuracy of the method.

1 Introduction

Many problems in science and engineering can be described by a moving free boundary model. Examples include
free surface flows, Stefan problems and multiphase flows to cite a few. The difficulty in solving these problems stems
from the fact that: First, they involve dissimilar length scales. Second, the boundary position must be computed as
part of the solution process. Third, the interface may be expected to undergo complex topological changes, such as the
merging or the pinching of two fronts. Numerically, the interface that separates the two phases can be either explicitly
tracked or implicitly captured. Several classes of successful methods exist with their own virtues and drawbacks.

Volume of Fluid methods [3, 4, 9, 25, 42, 64] have the advantage of being volume preserving since the mass
fraction in each cell is being tracked. However, it is often difficult to extract geometrical properties such as curvatures
due to the fact that it is challenging or even impossible to reconstruct a smooth enough function from the mass fractions
alone. We note however that some recent improvement in interface reconstruction can be found in [10].

The main advantage of an explicit approach, e.g. front tracking [24, 26, 27, 60], is its accuracy. The main disad-
vantage is that additional treatments are needed for handling changes in the interface’s topology. In turn, the explicit
treatment of connectivity makes the method challenging to extend to three spatial dimensions. While researchers have
produced remarkable results for a wide variety of applications using front tracking techniques, these difficulties make
this approach not ideally suited for studying interface problems with changes in topology. Implicit representations
such as the level set method or the phase-field method represent the front as an isocontour of a continuous func-
tion. Topological changes are consequently handled in a straightforward fashion, and thus these methods are readily
implemented in both two and three spatial dimensions.

The main idea behind the phase-field method is to distinguish between phases with an order parameter (or phase-
field) that is constant within each phase but varies smoothly across an interfacial region of finite thickness. The
dynamics of the phase-field is then coupled to that of the solution in such a way that it tracks the interface motion
and approximates the sharp interface limit when the order parameter vanishes. Phase-field methods are very popular
techniques for simulating dendritic growth for example and have produced accurate quantitative results, e.g. [32, 30,
28, 39, 52]. However, these methods suffer from their own limitations: Phase-field methods have only an approximate

∗Mathematics Department, University of California, Santa Barbara, CA 93106.
†Mechanical Engineering Department & Computer Science Department, University of California, Santa Barbara, CA 93106.

1

representation of the front location and thus the discretization of the diffusion field is less accurate near the front,
resembling an enthalpy method [7]. Another consequence is the stringent time step restriction imposed by such
methods. Karma and Rappel [29] have developed a thin-interface limit of the phase-field model with a significant
improvement of the capillary length to interface thickness ratio constraint; however, the time step restriction is still on
the order of the microscopic capillary length. Another disadvantage is the potential difficulty in relating the phase-field
parameters to the physical parameters [62], although some progress is being made for some wider class of problems
[11].

The main difference between the phase-field method and the level set approach [46, 53, 44] is that the level set
method is a sharp interface model. The level set can therefore be used to exactly locate the interface in order to apply
discretizations that depend on the exact interface location. Consequently, the sharp interface equation can be solved di-
rectly with no need for asymptotic analysis, which makes the method potentially more attractive in developing general
tool box software for a wide range of applications. Another advantage is that only the standard time step restrictions
for stability and consistency are required, making the method significantly more efficient. Level set methods have been
extremely successful on uniform grids in the study of physical problems such as compressible flows, incompressible
flows, multiphase flows (see e.g. [44, 53] and the references therein), Epitaxial growth (see e.g.[5, 22, 23, 48] and the
references therein) or in image processing (see e.g. [45] and the references therein). One of the main problem of the
level set method, namely its mass loss, has been partially solved with the advent of the particle level set method of
Enright et al. [12]. Within this method, the interface is captured by the level set method and massless particles are
added in order to reduce the mass loss. The massless particles are also used in the reinitialization process for obtaining
smoother results for the reinitialized level set function. However, the use of particles adds to the CPU and the memory
requirement and cannot be applied for flows producing shocks. Rather recently, there has been a thrust in developing
level set methods on adaptive Cartesian grids. For example Losassoet al. [35] presented a particle level set based
method to simulate free surface flows on non-graded Cartesian grids. Within this method, the interface between the
liquid and the air is captured by the particle level set on a non graded octree data structure.

In this paper, we present a general particle-less level set method on non-graded Cartesian grids that produces a
negligible amount of mass loss. We apply this method to the level set evolution (1) with an externally generated
velocity field, (2) in the normal direction and (3) under mean curvature. We also present a locally third order accurate
reinitialization scheme that transforms an arbitrary function into a sign distance function as well as standard techniques
to extrapolate a scalar quantities across an interface in its normal direction.

2 The Level Set Method

The level set method, introduced by Osher and Sethian [46] describes a curve in two spatial dimensions or a surface
in three spatial dimensions by the zero-contour of a higher dimensional functionφ, called the level set function. For
example, in two spatial dimension, a curve is define by{(x, y) : φ(x, y) = 0}. Under a velocity fieldV , the interface
deforms according to the level set equation

φt + V · ∇φ = 0. (1)

To keep the values ofφ close to those of a signed distance function, i.e.|∇φ| = 1, the reinitialization equation
introduced in Sussmanet al. [59]

φτ + S(φo) (|∇φ| − 1) = 0 (2)

is traditionally iterated for a few steps in fictitious time,τ . HereS(φo) is a smoothed out sign function. The level set
function is used to compute the normal

~n = ∇φ/|∇φ|,
and the mean curvature

κ = ∇ · ~n.

We refer the interested readers to the book by Osher and Fedkiw [44] as well to the book by Sethian [53] for more
details on the level set method.

2

Figure 1: Discretization of a two dimensional domain (left) and its quadtree representation (right). The entire domain
corresponds to the root of the tree (level 0). Then each cell can be recursively subdivided further into four children. In
this example, the tree is ungraded since the difference of level between cells exceeds one.

3 Spatial Discretization and Refinement Criterion

We use a standard quadtree (resp. octree) data structure to represent the spatial discretization of the physical domain
in two (resp. three) spatial dimensions as depicted in figure 1: Initially the root of the tree is associated with the entire
domain, then we recursively split each cell into four children until the desired level of detail is achieved. This is done
similarly in three spatial dimensions, except that cells are split into eight cubes (children). We refer the reader to the
books of Samet [51, 50] for more details on quadtree/octree data structures.

By definition, the difference of level between a parent cell and its direct descendant is one. The level is then
incremented by one for each new generation of children. A tree in which the difference of level between adjacent
cells is at most one is called a graded tree. Meshes associated with graded trees are often used in the case of finite
element methods in order to produce procedures that are easier to implement. Graded Cartesian grids are also used in
the case of finite difference schemes, see for example the work of Popinet [47] for the study of incompressible flows.
Graded meshes impose that extra grid cells must be added in regions where they are not necessarily needed, consuming
some computational resources that cannot be spent elsewhere, eventually limiting the highest level of detail that can
be achieved. Moore [38] demonstrates that the cost of transforming an arbitrary quadtree into a graded quadtree
could involve 8 times as many grid nodes. Weiser [61] proposed a rough estimate for the three dimensional case and
concluded that as much as 71 times as many grid nodes could be needed for balancing octrees. These estimates clearly
represent the worse case scenarios that seldom exist in practical simulations. However, there is still a non negligible
difference between graded and non graded grids. In addition, not imposing any constraint on the difference of level
between two adjacent cells allows for easier/faster adaptive mesh generations.

In this work we choose to impose that the finest cells lie on the interface, since it is the region of interest for the
level set method. In order to generate adaptive Cartesian grids, one can use the signed distance function to the interface
along with the Whitney decomposition, as first proposed by Strain in [56]. Simply stated, one"splits any cell whose
edge length exceeds its distance to the interface". For a general functionφ : Rn → R with Lipschitz constantLip(φ),
the Whitney decomposition was extended in Min [36]: Starting from a root cell split any cellC if

min
v∈vertices(C)

|φ(v)| ≤ Lip(φ) · diag-size(C),

where diag-size(C) refers to the length of the diagonal of the current cellC andv refers to a vertex (node) of the
current cell.

4 Finite Difference Discretizations

In the case of non regular Cartesian grids, the main difficulty comes from deriving discretizations at T-junction nodes,
i.e. nodes for which there is a missing neighboring node in one of the Cartesian directions. For example figure 2 depicts

3

Figure 2: Neighboring nodes of a T-junction node,v0.

a T-junction nodev0, with three neighboring nodesv1, v2 andv3 aligned in the Cartesian directions and one ghost
neighboring nodev4 replacing the missing grid node in the positive Cartesian direction. The value of a node-sampled
functionφ : {vi} → R at the ghost nodev4 could for example be define by linear interpolation:

φG
4 =

φ5s6 + φ6s5

s5 + s6
. (3)

However, instead of using this second order accurate interpolation, one can instead use the following third order
accurate interpolation: First, note that a simple Taylor expansion demonstrates that the interpolation error in equation
3 is given by:

φG
4 =

φ5s6 + φ6s5

s5 + s6
= φ(v4) +

s5s6

2
φyy(v0) + O(4xsmallest)3, (4)

where4xsmallestis the size of the smallest grid cell with vertexv0. The termφyy(v0) can be approximated using the

standard first order accurate discretization2s2+s3

(
φ2−φ0

s2
+ φ3−φ0

s3

)
and cancelled out in equation 4 to give:

φG
4 =

φ5s6 + φ6s5

s5 + s6
− s5s6

s2 + s3

(
φ2 − φ0

s2
+

φ3 − φ0

s3

)
. (5)

We also point out that this interpolation only uses the node values of the cells adjacent tov0, which is particularly
beneficial since access to cells not immediately adjacent to the current cell is more difficult and could add on CPU
time and/or memory requirement.

In three spatial dimensions, similar interpolation procedures can be used to define the value ofφ at ghost nodes.
Referring to figure 3, a T-junction nodev0 has four regular neighboring nodes and two ghost nodes. The values of a
node-sampled functionφ : {vi} → R at the ghost nodesv4 andv5 can be defined by second order linear and bilinear
interpolations as:

φG
4 =

s7φ8 + s8φ7

s7 + s8
,

φG
5 =

s11s12φ11 + s11s9φ12 + s10s12φ9 + s10s9φ10

(s10 + s11)(s9 + s12)
.

(6)

As in the case of quadtrees, third order accurate interpolations can be derived by cancelling out the second order

4

Figure 3: Neighboring vertices of a vertex three spatial dimensions.

derivatives in the error term to arrive at:

φG
4 =

s7φ8 + s8φ7

s7 + s8
− s7s8

s3 + s6

(
φ3 − φ0

s3
+

φ6 − φ0

s6

)
,

φG
5 =

s11s12φ11 + s11s9φ12 + s10s12φ9 + s10s9φ10

(s10 + s11)(s9 + s12)

− s10s11

s3 + s6

(
φ3 − φ0

s3
+

φ6 − φ0

s6

)

− s9s12

s1 + s4

(
φ1 − φ0

s1
+

φG
4 − φ0

s4

)
.

(7)

We emphasize that figure 3 represents the general configuration of neighboring nodes in the case of an octree as
described in Minet al. [37].

The third order interpolations defined above allow us to treat T-junction nodes in a same fashion as a regular node,
up to third order accuracy. Here, we refer to a regular node as a node for which all the neighboring nodes in the
Cartesian directions exist. Therefore, we can then define finite differences forφx, φy, φz, φxx, φyy andφzz at every
nodes using standard finite difference formulas in a dimension by dimension framework. For example, refering to
figure 4, we use the standard discretization forφx andφxx, namely the central difference formulas:

D0
xφ0 =

φ2 − φ0

s2
· s1

s1 + s2
+

φ0 − φ1

s1
· s2

s1 + s2
,

D0
xxφ0 =

φ2 − φ0

s2
· 2
s1 + s2

− φ0 − φ1

s1
· 2
s1 + s2

,

(8)

the forward and backward first order accurate approximations of the first order derivatives:

D+
x φ0 =

φ2 − φ0

s2
,

D−
x φ0 =

φ0 − φ1

s1
,

(9)

5

Figure 4: One dimensional adaptive grid

and the second order accurate approximations of the first order derivatives:

D+
x φ0 =

φ2 − φ0

s2
− s2

2
minmod

(
D0

xxφ0, D
0
xxφ2

)
,

D−
x φ0 =

φ0 − φ1

s1
+

s1

2
minmod

(
D0

xxφ0, D
0
xxφ1

)
,

(10)

where we use the minmod slope limiter [54, 33] because it produces more stable results in region whereφ might
present kinks. Similarly, approximations for first and second order derivatives are obtained in they andz directions.

5 Interpolation Procedures

Some reserve must be provided to define data anywhere in a cell, for example in order to use semi-Lagrangian methods
(see section 7). As pointed out in Strain [57], the most natural choice of interpolation in quadtree (resp. octree) data
structures is the piecewise bilinear (resp. trilinear) interpolation: Consider a cellC with dimensions[0, 1]2, the bilinear
interpolation at a pointx ∈ C using the values at the nodes reads:

φ(x, y) = φ(0, 0)(1− x)(1− y)
+ φ(0, 1)(1− x)(y)
+ φ(1, 0)(x)(1− y)
+ φ(1, 1)(x)(y)

(11)

Quadratic interpolation can also easily be constructed using the data from the parent cell: Since the parent cell of any
current cell of a quadtree (resp. octree) owns2× 2 children cells (resp.2× 2× 2) and3× 3 nodes (resp.3× 3× 3),
one can defined the Hermite quadratic interpolation on the parent cell. For example in the case of a cell[−1, 1]2 in a
quadtree, we can define the Hermite interpolation as:

φ(x, y) = φ(-1, -1)
x(x− 1)

2
y(y − 1)

2

+ φ(-1, 0)
x(x− 1)

2
(y2 − 1)

+ φ(-1, 1)
x(x− 1)

2
y(y + 1)

2

+φ(0, -1)(x2 − 1)
y(y − 1)

2
+ φ(1, -1)

x(x + 1)
2

y(y − 1)
2

+φ(0, 0)(x2 − 1)(y2 − 1) + φ(1, 0)
x(x + 1)

2
(y2 − 1)

+φ(0, 1)(x2 − 1)
y(y + 1)

2
+ φ(1, 1)

x(x + 1)
2

y(y + 1)
2

.

However, this interpolation procedure is sensitive to nearby discontinuities, e.g. near kinks. We therefore prefer to
define a quadratic interpolation by correcting equation (11) using second order derivatives. For a cell[0, 1]2, we have:

φ(x, y) = φ(0, 0)(1− x)(1− y)
+ φ(0, 1)(1− x)(y)
+ φ(1, 0)(x)(1− y)
+ φ(1, 1)(x)(y) − φxx

x(1− x)
2

− φyy
y(1− y)

2
,

(12)

where we define
φxx = min

v∈vertices(C)
(|D0

xxφv|),

φyy = min
v∈vertices(C)

(|D0
yyφv|).

(13)

Since a distant function is piecewise differentiable in general, the choice of the smallest in absolute value enhances the
numerical stability of the interpolation.

6

6 Reinitialization Scheme

In principle, the level function can be chosen as any Lipschitz continuous function. However, the so-called signed
distance function is known to produce more robust numerical results, to improve mass conservation and to reduce
errors in the computations of geometrical quantities such as the interface curvatures. Sussmanet al. proposed in
[58] to evolve the following partial differential equation to steady state in order to reinitialize a level set function
φ0 : Rn → R into the signed distance functionφ:

φτ + sgn(φ0) (|∇φ| − 1) = 0, (14)

whereτ represents the fictitious time. A standard discretization for this equation in its semi-discrete form is given by:

dφ

dτ
+ sgn(φ0)

[
HG

(
D+

x φ,D−
x φ,D+

y φ,D−
y φ

)− 1
]

= 0, (15)

wheresgn(φ0) denotes the signum ofφ0 andHG is the Godunov Hamiltonian defined as:

HG(a, b, c, d) =

{√
max(|a+|2, |b−|2) + max(|c+|2, |d−|2)− 1 if sgn(φ0) ≤ 0√
max(|a−|2, |b+|2) + max(|c−|2, |d+|2)− 1 if sgn(φ0) > 0

,

with a+ = max(a, 0) anda− = min(a, 0). The one-sided derivatives,D±
x φ andD±

y φ are discretized by the second
order accurate one-sided finite differences defined in section 4. Equation (15) is evolved in time with the TVD RK-2
method given in Shu and Osher [54]: First defineφ̃n+1 andφ̃n+2 by Euler steps

φ̃n+1 − φn

4τ
+ sgn(φ0)

[
HG

(
D+

x φn, D−
x φn, D+

y φn, D−
y φn

)− 1
]

= 0,

φ̃n+2 − φ̃n+1

4τ
+ sgn(φ0)

[
HG

(
D+

x φ̃n+1, D−
x φ̃n+1, D+

y φ̃n+1, D−
y φ̃n+1

)
− 1

]
= 0,

and then defineφn+1 by averaging:

φn+1 =
φn + φ̃n+2

2
.

In order to preserve area/volume, the reinitialization procedure is required not to move the original interface defined
by φ0. In their seminal work, Russo and Smereka [49] solved this problem by simply including the initial interface
location (given byφ0) in the stencils of the one-sided derivatives. Consider the case depicted by figure 4 and suppose
thatφ0

0 · φ0
2 < 0, i.e. the interface is located between the nodesv0 andv2. The interface locationvI can be calculated

by finding the root of the quadratic interpolation ofφ0 on the intervalv0v2 with the origin at the center of the interval:

φ0(x) = c2x
2 + c1x + c2, with





c2 = 1
2minmod

[
D0

xxφ0
0, D

0
xxφ0

2

]

c1 = (φ0
2 − φ0

0)/s2

c0 = (φ0
2 + φ0

0)/2− c2s
2
2/4

.

The distancesI betweenv0 and the interface location is then defined by:

sI =
s2

2
+





−c0/c1 if |c2| < ε

(−c1 +
√

c2
1 − 4c2c0)/(2c2) if |c2| ≥ ε andφ0

0 < 0
(−c1 −

√
c2
1 − 4c2c0)/(2c2) if |c2| ≥ ε andφ0

0 > 0
.

The calculation ofD+
x φn

0 is then modified using the interface location and the fact thatφ = 0 at the interface:

D+
x φn

0 =
0− φn

0

sI
− sI

2
minmod

(
D0

xxφn
0 , D0

xxφn
2

)
.

We note that in the original work of Russo and Smereka [49], a cubic interpolation was employed to locate the
interface, but that the above quadratic interpolation with the minmod operator acting on the second order derivatives

7

proved to be more stable in the case where the level set function presents a kink nearby. We also point out that in the
original work of [49], the first order derivativeD+

x φn
0 was discretized as:

D+
x φn

0 =
0− φn

0

sI
− sI

2
minmod

(
D0

xxφn
0 , D0

xxφn
I

)
,

thus includedvI in the discretization ofD0
xxφn

I . However, we found that this choice leads to unstable results when the
interface is close to grid nodes. We thus slightly changed the discretization by only using the location of the interface
in the first term in order to maintain the location ofφ0, not in the discretization of second order derivatives. Likewise,
in the case wheresI is close to zero (henceφ0

0 is close to zero) we simply setφn
0 = 0 to guarantee stability. This only

introduces a negligible perturbation in the location of the zero level set.
The same process is then applied toD−

x φ if there is a sign change betweenφ0
0 andφ0

1. The time step restriction
for cells cut by the interface is then:

∆τ =





min(sI , s1, s2) in 1D,

min(sI , s1, s2, s3, s4)/2 in 2D,

min(sI , s1, s2, s3, s4, s5, s6)/3 in 3D.

(16)

6.1 Adaptive time stepping

We note that an adaptive time step is possible since only the steady state of (14) is sought. Since the time step
restriction is adapted for each cell, the reinitialization procedure is fast: small cells with a stringent time step restriction
are located near the interface and therefore only a few iterations are required to reach the steady state at those cells
(characteristic information flow awayfrom the interface); cells far away from the interface are large and therefore do
not require a small time step restriction. For example, consider the example depicted in figure 5, for which the level set
function is defined initially as -1 inside a square domain (not aligned with the grid cells) and +1 outside. This initial
level set function is therefore very far from the signed distance function that we seek to define. However, on a grid
where the smallest grid has sizedx = 1/2048, the reinitialization procedure takes only 35 iterations to fully converge
to the signed distance function in the entire domain. In practice, the initial level set is never that far to the signed
distance function and therefore only about 5 iterations are required regardless of the resolution of the finest level.
Figure 6 illustrates the difference in the number of iterations required between uniform time stepping and adaptive
time stepping. In the case of a uniform time step, we take4t = 4xsmallest/2, with 4xsmallestthe size of the smallest
cell.

6.2 Third order accuracy

We also computed the convergence rates of the reinitialization algorithm for the test problem proposed in [49]: Con-
sider the level set function initially defined as:

φ0(x, y) =
(
0.1 + (x− 1)2 + (y − 1)2

) (√
x2 + y2 − 1

)
,

which defines the interface as a circle with center the origin and radius1. In this case,φ0 is not a signed distance
function and its gradients vary widely. Figure 7 illustrates the gradual deformation of the cross-sections ofφ0 as it
evolves to the signed distance function. Table 1 illustrates that the method is third order accurate in theL1 andL∞

norms near the interface. In the entire domain, the method is second order accurate if we keep refining all the cells. In
the practical case where only cells near the interface are refined, the accuracy in regions far away from the interface is
meaningless. In the case where the interface presents sharp corners, the accuracy is reduced to first order in theL∞

norm.

7 Motion Under an Externally Generated Velocity Field

7.1 Second Order Accurate Semi-Lagrangian Method

In the case where the velocity field is externally generated, the level set equation (1) is linear. In this case, one can
use semi-Lagrangian methods. Semi-Lagrangian schemes are extensions of the Courant-Isaacson-Rees [8] method for

8

Figure 5: Reinitialization procedure. Left: Initial level set function (top) and its zero cross section (bottom) defining
a square domain. Right: Reinitialized level set function (top) and its zero cross section (bottom). In particular, the
difference in the zero level set between the initial and final stages is negligible. In this example, the level difference
between adjacent cells is not restricted.

hyperbolic equations and are unconditionally stable thus avoiding standard CFL condition of∆t ≈ ∆xsmallest. The
general idea behind semi-Lagrangian methods is to reconstruct the solution by integrating numerically the equation
along characteristic curves, starting from any grid pointxi and tracing back the departure pointxd in the upwind
direction. Interpolation formulas are then used to recover the value of the solution at such points. In this work, we use
a second order accurate Semi-Lagrangian method.

Consider the linear advection equation:

φt + U · ∇φ = 0, (17)

whereU is an externally generated velocity field. Thenφn+1(xn+1) = φn(xd), wherexn+1 is any grid node andxd

is the corresponding departure point from which the characteristic curve originates. In this work, we use the second
order mid-point method for locating the departure point, as in [63]:

x̂ = xn+1 − ∆t
2 · Un(xn+1),

xd = xn+1 −∆t · Un+ 1
2 (x̂),

where we define the velocity at the mid-time steptn+ 1
2 by a linear combination of the velocities at the two previous

time steps, i.e.Un+ 1
2 = 3

2Un − 1
2Un−1. Sincex̂ andxd are not on grid nodes in general, interpolation procedures

must be applied to defineUn+ 1
2 (x̂) andφn(xd). We note that it is enough to defineUn+ 1

2 (x̂) with a multilinear
interpolation (11) andφn(xd) with the quadratic interpolation described by equations (12) and (13): Since a distance
function has discontinuities in its derivative in general, the stabilized quadratic interpolation is preferred to the Hermite
quadratic interpolation.

7.2 Test: Rotation in 2D

Consider a domainΩ = [−1, 1]2 and a disk of radiusR = .15 and center initially at(0, .75), rotating under the
divergence free velocity field

u(x, y) = −y
v(x, y) = x

9

Figure 6:L1 errors of the reinitialization algorithm in the case of the adaptive time step (solid line) and the uniform
time step (dotted line).

Finest Resolution
1282 rate 2562 rate 5122

Uniform
Refinement

Near Interface
L1 4.36× 10−6 2.92 5.77× 10−7 3.02 7.12× 10−8

L∞ 2.16× 10−5 2.74 3.24× 10−6 3.26 3.38× 10−7

Whole Domain
L1 3.27× 10−4 2.14 7.42× 10−5 2.11 1.71× 10−5

L∞ 4.20× 10−2 1.56 1.43× 10−2 1.87 3.89× 10−3

Adaptive
Refinement

Near Interface
L1 4.36× 10−6 2.94 5.70× 10−7 3.00 7.14× 10−8

L∞ 2.16× 10−5 2.87 2.96× 10−6 3.09 3.48× 10−7

Whole Domain
L1 3.27× 10−4 1.06 1.57× 10−4 1.01 7.82× 10−5

L∞ 4.20× 10−2 0.00 4.20× 10−2 0.00 4.20× 10−3

Table 1: Convergence rates for the reinitialization for example 6.2. The initial grid is shown in figure 7. The condition
for a nodevi to be ’near interface’ is chosen as|φ(vi)| <

√
24xsmallest, where4xsmallest is the size of the smallest

cell. The ’whole domain’ excludes the region near the kink located at the origin, where accuracy drops to first order.

10

Figure 7: From top-left to bottom-right: Contours of the reinitialized level set function of example 6.2 after 0, 5, 10
and 20 iterations. The contours are evenly plotted from -1 to 1 with a thick line representing the zero contour.

11

Effective L∞ error rate L1error rate Loss of rate
Resolution of φ of φ volume(%)

322 7.24× 10−2 3.11× 10−2 28.51
642 1.78× 10−2 2.02 8.86× 10−3 1.81 7.21 1.98
1282 4.52× 10−3 1.97 2.13× 10−4 2.05 1.78 2.01
2562 1.13× 10−3 1.99 5.56× 10−4 1.93 0.45 1.98
5122 2.85× 10−4 2.00 1.38× 10−4 2.01 0.11 2.03
10242 7.14× 10−5 2.00 3.46× 10−5 2.00 0.03 1.87
20482 1.78× 10−5 2.00 8.64× 10−6 2.00 0.007 2.01

Table 2: Convergence rates for example 7.2

Finest Resolution
642 rate 1282 rate 2562 rate 5122

L1 error ofφ 9.58× 10−3 2.80 1.38× 10−3 2.02 3.41× 10−4 2.08 8.09× 10−5

L∞ error ofφ 1.83× 10−2 1.57 6.17× 10−3 1.08 2.91× 10−3 1.39 1.11× 10−3

Volume Loss 4.48 2.36 0.874 1.40 0.331 1.79 0.0954
Max number of nodes 1045 1.10 2243 1.10 4815 1.09 10256
Min number of nodes 439 1.07 924 0.99 1831 1.01 3679

Table 3: Convergence rates for example 7.3. In the case of the number of nodes used, the rates describe the rate of
increase in the number of nodes.

The final timet = 2π is the time when the rotation completes one revolution. In the simulation, the adaptive refinement
is used, and the time step restriction is∆t = 5∆x. Table 2 demonstrates second order accuracy for the level set as
well as for the mass conservation. We note that we only consider the grid nodes neighboring the interface in our
computation of the accuracy for the level set functionφ since only those points define the location of the interface.

7.3 Test: Vortex in 2D

In this example, we test our level set implementation on the more challenging flow proposed by Bellet al. [2]:
Consider a domainΩ = [0, 1]2 and a disk of radius.15 and center(.5, .75) as the initial zero level set contour. The
level set is then deformed under the divergence free velocity fieldU = (u, v) given by:

u(x, y) = − sin2(πx) sin(2πy)
v(x, y) = sin2(πy) sin(2πx)

The disk is deformed forward untilt = 1 and then backward to the original shape using the reverse velocity field with
a time step restriction of4t = 5 · 4xsmallest.

Table 3 demonstrate second order accuracy forL1 error ofφ and volume of loss, and linear increase in the maxi-
mum/minimum number of nodes. Note that the uniform grid of resolution5122 requires about 25 times more nodes
than the adaptive grid with the same resolution. Although second order accuracy was achieved in both the maximum
and average norms in the previous example, the convergence rate of the maximum error is oscillating between one
and two. This is due to the fact that as the interface deforms, some part of the interface are under resolved. Figure 8
illustrates this att = 1: Here, the tail of the interface is not resolved accurately. This deterioration in accuracy was
also reported in [43].

Figure 9 illustrates the evolution of the interface location initially (left), att = 6 (center) and when the interface is
fully rewinded (right). This example illustrates the ability of the present method to accurately capture the evolution of
an interface undergoing large deformations and the ability to preserve mass effectively (mass loss≈ .3%).

12

Figure 8: Contours of the zero level sets for example 7.3 with effective resolutions of642, 1282, 2562 and5122 at
t = 1 (left) andt = 2 (right). The colors red, green, blue represent the difference in the interface location between the
resolutions642 and1282, 1282 and2562, 2562 and5122, respectively.

Figure 9: Level set evolution att = 0 (left), t = 3 (center) andt = 6 (right). The effective resolution is20482 and the
mass is conserved within .3%

13

Finest Resolution
323 rate 643 rate 1283 rate 2563

L1 error ofφ 6.86× 10−2 1.88 1.87× 10−2 1.99 4.70× 10−3 1.99 1.18× 10−3

L∞ error ofφ 1.76× 10−1 2.02 4.35× 10−2 2.02 1.07× 10−2 2.02 2.65× 10−3

Volume loss(%) 23.1 2.16 5.14 2.12 1.18 2.07 0.282

Table 4: Convergence rate for a moving sphere in example 7.4.

7.4 Test: Rotation in 3D

Consider a domainΩ = [−2, 2]3 and a sphere of radiusR = .5 and center initially at(0, 1, 0), rotating under the
divergence free velocity field

u(x, y, z) = −y
v(x, y, z) = x
w(x, y, z) = 0

The simulation is run untilt = 2π, when the rotation completes one revolution. In the simulation, the adaptive
refinement is used, and the time step restriction is∆t = 6∆xsmallest. Table 4 demonstrates second order accuracy
for the level set as well as for the mass conservation. We note that we only consider the grid nodes neighboring the
interface in our computation of the accuracy for the level set functionφ. Figure 10 shows the adaptive grid for the
rotating sphere.

7.5 Enright’s Test in 3D

We consider the test proposed in Enrightet al. [12]: A sphere of center(0.35, 0.35, 0.35) and radius0.15 in the
domain of[0, 1]3 is deformed under the following divergence free velocity field:

u(x, y, z) = 2 sin2(πx) sin(2πy) sin(2πz)
v(x, y, z) = − sin2(πy) sin(2πx) sin(2πz)
w(x, y, z) = − sin2(πz) sin(2πx) sin(2πy)

forward in time and then backward to its original shape with the reversed velocity. Figure 11 illustrates the interface
motion with a time step restriction of4t = 5 · 4xsmallest. We note that, in the simulation with an effective resolution
of 5123, the number of nodes used was2596709 in maximum and672592 in minimum. The number of nodes in
the uniform grid for the same resolution would be about 50 times larger. The volume loss is 0.91% for an effective
resolution of5123 (3.49% for an effective resolution of2563).

8 Motion in the Normal Direction and Curvature Driven Flow

The equation describing an interface propagating in its normal direction and under its mean curvature is given by [46]:

φt + (α− βκ)|∇φ| = 0, (18)

whereκ is the mean curvature of the interfaceκ = ∇·(∇φ/|∇φ|). The coefficientsα andβ ≥ 0 control the magnitude
of the speed in the normal direction and the strength of the curvature dependence, respectively. The case whereβ < 0
is ill-posed and therefore we do not consider it here.

8.1 Motion in the Normal Direction

First, we discuss the case whenβ = 0. Using the second order one-sided derivatives described in section 4 and
discretizing the Hamiltonian using a Godunov scheme, we semi-discretize the equation as :

dφ

dt
+ α ·HG(φ) = 0

14

Figure 10: Evolution of the interface for example 7.4: Initial data (top-left), interface after a quarter turn (top-right),
interface after a half turn (bottom-left) and final location (bottom-right). The finest resolution is1283.

15

Figure 11: Evolution of the interface for the Enright’s test.

Finest Resolution
642 rate 1282 rate 2562 rate 5122

L1 error ofφ 1.46× 10−3 2.02 3.58× 10−4 2.00 8.56× 10−4 1.98 2.26× 10−5

L∞ error ofφ 2.77× 10−3 2.04 6.72× 10−4 1.95 1.73× 10−4 1.99 4.36× 10−5

Table 5: Convergence rate for a circle shrinking with unit normal velocity. consider a domain of[−2, 2]2 and an
interface initially described by a circle centered at the origin with radiusR = 1. The interface is evolved untilt = 0.5.

where the Godunov HamiltonianHG is defined as:

HG(φ) =





√
max(|(D+

x φ)−|2, |(D−
x φ)+|2) + max(|(D+

y φ)−|2, |(D−
y φ)+|2) if α > 0√

max(|(D+
x φ)+|2, |(D−

x φ)−|2) + max(|(D+
y φ)+|2, |(D−

y φ)−|2) otherwise

This equation is discretized in time using the second order TVD Runge-Kutta method (see [54, 33]):

φ̃n+1 − φn

4t
+ α ·HG (φn) = 0 (19)

φ̃n+2 − φ̃n

4t
+ α ·HG

(
φ̃n+1

)
= 0 (20)

φn+1 =
φn + φ̃n+2

2
(21)

Table 5 illustrates that the method described above is second order accurate in both the maximum and the average
norms for smooth data. In the case where the interface presents sharp corners, figure 12 illustrates that the method
converges to the correct viscosity solution [46].

16

Figure 12: Shrinking square in the first row, and expanding square in the second row

8.2 Adding Motion by Mean Curvature

Now we discuss the case whenβ > 0. The curvature term can be discretized explicitly or implicitly. In the case where
the curvature term is discretized explicitly, the corresponding time step restriction of∆t ≈ ∆x2 is too stringent to be
practical since it would be constrained by the size of the smallest grid cell in the grid. In [55], Smereka proposed an
implicit discretization of the curvature term in the case of uniform grids: Using the following operator splitting:

κ|∇φ| = ∆φ− ∇φ

|∇φ|∇(|∇φ|),

equation (18) is discretized as:

φn+1 − φn

4t
+ αHG(φn) = β∆φn+1 − β

∇φn

|∇φn| · ∇(|∇φn|).

In this work, we used a Backward Euler step to treat the linear term, and a Forward Euler step for the nonlinear
term. The derivatives∆ and∇ are discretized by the central finite differences described in section 4. Discretizing
implicitly the Laplacian requires a linear system that we solve using the supra convergent method presented in Min,
Gibou and Ceniceros [37]. As noted in [55], the semi-implicit discretization on the curvature term allows for a big
time step, so that the time step restriction is that of the convection part, i.e.

∆t =
∆xsmallest

α · # dimensions
, (22)

where # dimensions is the number of dimensions.
Table 6 demonstrates that the method is first order accurate in the average norm for smooth a interface. The

deterioration in the maximum norm probably comes from the Elliptic part of the solver, which propagates the errors
from the regions where the grid cells are coarse and unrefined to the regions where the grid cells are refined. Figure
13 illustrates the motion of an interface under mean curvature for the example presented in [55].

9 Adaptive Grid Generation

As the interface deforms some provisions must be given to refine the grid near the interface while coarsening in
regions farther away. The grid is constructed in such a way that the smallest grid cells lie on the interface as described

17

Finest Resolution
1282 rate 2562 rate 5122 rate 10242

L1 error ofφ 5.22× 10−3 1.00 2.60× 10−3 0.96 1.33× 10−3 0.95 6.95× 10−4

L∞ error ofφ 5.47× 10−3 0.93 2.86× 10−3 0.86 1.56× 10−3 0.81 8.91× 10−4

Table 6: Convergence rate for a circle with curvature dependent speed ofα = 1.5 andβ = 1. Initially circle is
centered at(0, 0) with radius one in a domain of[−2, 2]2. Test was run until0.5.The radiusr(t) of the circle satisfies
r′ = α − β

r with r(0) = 1. r(0.5) is approximated as1.3108122 from the ordinary differential equation within error
bound of10−7.

Figure 13: Motion with curvature flow for a barbel shape.α = 0, β = 1 in 2563 resolution. From top-left to
bottom-right, the times are0, 0.023, 0.093, 0.140, 0.304 and0.323. The CFL condition is∆t = ∆xsmallest.

in section 3. This construction depends on an input function,φ̃n+1 : Rn → R that is close to the signed distance
function at any point in space. This function can be constructed in two different ways: (1) In the case where semi-
Lagrangian methods are used, a functionφ̃n+1 can be defined as̃φn+1 = φn(xd), wherexd is found by tracing back
the characteristic curves and whereφn(xd) is interpolated from the node values ofφn as described in section 7. (2)
In the case where the velocity field is nonlinear, semi-Lagrangian methods cannot be used. In this case the level set
function is first evolved fromφn to φn+1 on the same gridGn. Thenφn+1 is reinitialized into a signed distance
function using the algorithm described in section 6. Now at every point in space, we can defineφ̃n+1 : Rn → R by
interpolation ofφn+1. Once the functioñφn+1 : Rn → R can be define anywhere in space, the new gridGn+1 is
generated by simply splitting a cell if the Lipschitz condition:

min
v∈vertices(C)

|φ(v)| ≤ Lip(φ) · diag-size(C)

is satisfied. In practice, instead of generatingGn+1 from the root cell, we start fromGn and apply the procedure
detailed in Algorithm 1, i.e. starting the recursion from the root cell ofGn+1, the cell is recursively split if the
refinement criteria is satisfied, otherwise all of its children are merged.

18

Algorithm 1 : Grid Generation

Input : Gn andφ̃n+1 : Rd → R
1. Gn+1 = Gn

2. C = the root cell ofGn+1

3. if the Lipschitz condition for̃φn+1 is satisfied atC
4. if C is a leaf cell
5. splitC
6. end if
7. for each child cellC ′ of C
8. go to3 with C = C ′

9. end for
10. else
11. mergeC
12. end if
Output : Gn+1

10 High Order Extrapolation in the Normal Direction

The ghost fluid method, introduced by Fedkiwet al. [16], is a technique for imposing boundary conditions at the
interface in a level set framework and has been successfully applied to a wide range of applications (see e.g. [17, 15,
14, 40, 41, 6, 34, 21, 20, 19, 18] and the references therein). One basic component of this method is the extrapolation
of some scalar quantities in the normal direction. In some cases (see e.g. [19]), high order extrapolations in the normal
direction are needed. This can be performed in a series of steps, as proposed in Aslam [1]. For example, suppose that
we seek to extrapolateu quadratically from the region whereφ ≤ 0 to the region whereφ > 0. We first compute
unn = ~n · ∇ (~n · ∇u) in the region whereφ ≤ 0 and extrapolate (constant extrapolation) this quantity across the
interface by solving the following partial differential equation:

∂unn

∂τ
+ H(φ, unn)(~n · ∇unn) = 0,

whereH(φ, unn) is the Heaviside function defined below andτ is the fictitious time step. Then we defineun in the
region whereφ > 0 in such a way its normal derivative isunn. This can be accomplished by solving the following
PDE:

∂un

∂τ
+ H(φ, un)(~n · ∇un − unn) = 0.

Finally we can defineu in such a way its normal derivative isun by solving:

∂u

∂τ
+ H(φ, u)(~n · ∇u− un) = 0.

Numerically the Heaviside functionH(φ, S)(vi) associated with a quantityS at the nodevi is set to zero if the nodes
involved in the computation ofS are all in the region whereφ < 0. Otherwise, it is set to 1. Therefore we define the
Heaviside functionsH(φ, u), H(φ, un) andH(φ, unn) as follows:

H(φ, u)(vi) =

{
0 if φ(vi) < 0
1 otherwise

,

H(φ, un)(vi) =

{
0 if H(φ, u)(vj) = 0 for all vj ∈ ngbd(vi)
1 otherwise

,

H(φ, unn)(vi) =

{
0 if H(φ, un)(vj) = 0 for all vj ∈ ngbd(vi)
1 otherwise

,

where ngbd(vi) denotes the set of direct neighboring nodes ofvi. The quantityun = ~n · ∇u is computed by the
central finite differences described in section 4 for all the nodes whereH(φ, un) = 0. Likewise, using the values of

19

Effective L∞ error rate L1error rate
Resolution of φ of φ

322 5.11× 10−1 1.11× 10−1

642 2.55× 10−1 1.01 3.75× 10−2 1.56
1282 1.25× 10−1 1.02 1.06× 10−2 1.82
2562 6.20× 10−2 1.01 2.89× 10−3 1.87
5122 3.14× 10−2 .97 7.59× 10−4 1.92
10242 1.59× 10−2 .98 2.01× 10−4 1.91

Table 7: Convergence rate for the constant extrapolation

Effective L∞ error rate L1error rate
Resolution of φ of φ

322 2.02× 10−1 3.52× 10−2

642 7.21× 10−2 1.48 6.09× 10−3 2.53
1282 1.78× 10−2 2.00 8.79× 10−4 2.79
2562 5.27× 10−3 1.76 1.19× 10−4 2.88
5122 1.12× 10−3 2.22 1.54× 10−5 2.94
10242 2.83× 10−4 1.99 2.04× 10−6 2.91

Table 8: Convergence rate for the linear extrapolation

unn is then computed by central differencing for all the nodes whereH(φ, unn) = 0. The three partial differential
equations above are discretized in a dimension by dimension framework using the upwind schemes and the one-sided
finite differences of section 4, i.e. the discretizations in a semi-discrete form read:

d

dτ
unn + H(φ, unn)

(
n+

x D−
x unn + n−x D+

x unn

)
= 0,

d

dτ
un + H(φ, un)

(
n+

x D−
x un + n−x D+

x un

)
= H(φ, un)unn,

and

d

dτ
u + H(φ, u)

(
n+

x D−
x u + n−x D+

x u
)

= H(φ, u)un.

These semi-discrete equations are then evolved in time using the same TVD RK-2 method of section 6. Since the
equations are evolved in fictitious time, we can take the same time step restriction as in the reinitialization procedure
of section 6.

Figure 14 illustrates the constant, linear and quadratic extrapolation obtained with the algorithm described above:
Consider a computational domainΩ = (−π, π)× (−π, π) separated into two regions:Ω− defined as the interior of a
disk with center at the origin and radius two, andΩ+ = Ω \ Ω−. The functionu to be extrapolated fromΩ− to Ω+ is
defined asu = cos(x) sin(y) for x ∈ Ω−. We have extrapolatedu in the entire region in this example for the sake of
presentation but we emphasize that in practice the extrapolation is performed only in a neighborhood of the interface.
Tables 7, 8 and 9 demonstrate the first order accuracy for the constant extrapolation, the second order accuracy for the
linear extrapolation and the third order accuracy for the quadratic extrapolation. We note that it is enough to discretize
D±

x unn andD±
x un with the first order accurate finite difference of section 4, andD±

x u with the second order accurate
finite difference in section 4 to achieve third order accuracy inu in the case of a quadratic extrapolation. The same
accuracy would be achieved in the case where the second order accurate finite differences were used forD±

x unn,
D±

x un, andD±
x un. However, using the first order accurate finite difference schemes forD±

x unn andD±
x un yields

more robust results sinceunn andun may be noisy unlessu is a very smooth function.

20

Effective L∞ error rate L1error rate
Resolution of φ of φ

322 1.62× 10−1 2.26× 10−2

642 2.31× 10−2 2.82 2.21× 10−3 3.36
1282 2.95× 10−3 2.96 1.65× 10−4 3.73
2562 3.81× 10−4 2.95 1.17× 10−5 3.81
5122 4.89× 10−5 2.96 7.82× 10−7 3.91
10242 6.19× 10−6 2.98 5.31× 10−8 3.88

Table 9: Convergence rate for the quadratic extrapolation

Figure 14: Contours of the solution after it has been extrapolated across the interface with a constant (left), linear
(center) and quadratic (right) extrapolations across an interface. The top row illustrates the extrapolation on the entire
domain and the bottom row is a zoom near the interface. The exact solution is given inside the circle centered at
the origin and with radius 2 and is extrapolated outside in the normal direction. We then plot the level curves of the
solution.

21

11 Conclusion

We have presented a level set method on non-graded adaptive Cartesian grids, i.e. grids for which the ratio between
adjacent cells is not constrained. We use quadtree and octree data structures to represent the grid and a simple algorithm
to generate a mesh with the finest resolution at the interface. We have presented (1) a locally third order accurate
reinitialization scheme that transforms an arbitrary level set function into a signed distance function, (2) a second
order accurate semi-Lagrangian methods to evolve the linear level set advection equation under an externally generated
velocity field, (3) a second order accurate upwind method to evolve the nonlinear level set equation under a normal
velocity as well as to extrapolate scalar quantities across an interface in the normal direction, and (4) a semi-implicit
scheme to evolve the interface under mean curvature. This method produces results with a negligible amount of mass
loss. We have proposed numerical examples in two and three spatial dimensions to demonstrate the accuracy of the
method.

References

[1] T. Aslam. A partial differential equation approach to multidimensional extrapolation.J. Comput. Phys., 193:349–
355, 2004.

[2] J. B. Bell, P. Colella, and H. M. Glaz. A second order projection method for the incompressible navier-stokes
equations.J. Comput. Phys, 85:257–283, 1989.

[3] D. Benson. Computational methods in lagrangian and eulerian hydrocodes.Comput. Meth. in Appl. Mech. and
Eng., 99:235–394, 1992.

[4] D. Benson. Volume of fluid interface reconstruction methods for multimaterial problems.Applied Mechanics
Reviews, 52:151–165, 2002.

[5] R. Caflisch, M. Gyure, B. Merriman, S. Osher, C. Ratsch, D. Vvedensky, and J. Zinck. Island dynamics and the
level set method for epitaxial growth.Applied Mathematics Letters, 12:13, 1999.

[6] R. Caiden, R. Fedkiw, and C. Anderson. A numerical method for two phase flow consisting of separate com-
pressible and incompressible regions.J. Comput. Phys., 166:1–27, 2001.

[7] A. Chorin. A Numerical Method for Solving Incompressible Viscous Flow Problems.J. Comput. Phys., 2:12–26,
1967.

[8] R. Courant, E. Isaacson, and M. Rees. On the solution of nonlinear hyperbolic differential equations by finite
differences.Comm. Pure Appl. Math., 5:243–255, 1952.

[9] R. DeBar. Fundamentals of the kraken code. Technical report, Lawrence Livermore National Laboratory (UCID-
17366), 1974.

[10] V. Dyadechko and M. Shashkov. Moment-of-fluid interface reconstruction. Technical report, Los Alamos Na-
tional Laboratory (LA-UR-05-7571), 2006.

[11] K. Elder, M. Grant, N. Provatas, and J. Kosterlitz. Sharp interface limits of phase-field models.SIAM J. Appl.
Math, 64:021604, 2001.

[12] D. Enright, R. Fedkiw, J. Ferziger, and I. Mitchell. A hybrid particle level set method for improved interface
capturing.J. Comput. Phys., 183:83–116, 2002.

[13] R. Fedkiw.The Ghost Fluid Method for Discontinuities and Interfaces. Godunov Methods, edited by E.F. Toro,
New York, 2001.

[14] R. Fedkiw. Coupling an Eulerian fluid calculation to a Lagrangian solid calculation with the ghost fluid method.
J. Comput. Phys., 175:200–224, 2002.

[15] R. Fedkiw, T. Aslam, B. Merriman, and S. Osher. A non-oscillatory Eulerian approach to interfaces in multima-
terial flows (the ghost fluid method).J. Comput. Phys., 152:457–492, 1999.

22

[16] R. Fedkiw, J. Stam, and H. Jensen. Visual simulation of smoke. InProc. of ACM SIGGRAPH 2001, pages 15–22,
2001.

[17] F. Gibou, L. Chen, D. Nguyen, and S. Banerjee. A level set based sharp interface method for incompressible
flows with phase change.submitted to J. Comput. Phys.

[18] F. Gibou and R. Fedkiw. A fourth order accurate discretization for the laplace and heat equations on arbitrary
domains, with applications to the stefan problem.J, Comput. Phys., 202:577–601, 2005.

[19] F. Gibou, R. Fedkiw, R. Caflisch, and S. Osher. A level set approach for the numerical simulation of dendritic
growth. J. Sci. Comput., 19:183–199, 2003.

[20] F. Gibou, R. Fedkiw, L.-T. Cheng, and M. Kang. A second–order–accurate symmetric discretization of the
poisson equation on irregular domains.J. Comput. Phys., 176:205–227, 2002.

[21] F. Gibou, C. Ratsch, and R. Caflisch. Capture numbers in rate equations and scaling laws for epitaxial growth.
Phys. Rev. B., 67:155403, 2003.

[22] F. Gibou, C. Ratsch, S. Chen, M. Gyure, and R. Caflisch. Rate equations and capture numbers with implicit
island correlations.Phys. Rev. B., 63:115401, 2001.

[23] J. Glimm, J. W. Grove, X. L. Li, and N.Zhao. Simple front tracking.Contemporary Math., 238:133–149, 1999.

[24] C. Hirt and B. Nichols. Volume of fluid (vof) method for the dynamics of free boundaries.J. Comput. Phys.,
39:201–225, 1981.

[25] D. Juric and G. Tryggvason. A front tracking method for dendritic solidification.J. Comput. Phys, 123:127–148,
1996.

[26] D. Juric and G. Tryggvason. Computations of boiling flows.Int. J. Multiphase. Flow., 24:387–410, 1998.

[27] A. Karma. Phase-field formulation for quantitative modeling of alloy solidification.Phys. Rev. Lett., 87:115701,
2001.

[28] A. Karma and W.-J Rappel. Phase-field modeling method for computationally efficient modeling of solidification
with arbitrary interface kinetics.Phys. Rev. E, 53, 1996.

[29] A. Karma and W.-J Rappel. Quantitative phase-field modeling of dendritic growth in two and three dimensions.
Phys. Rev. E, 57:4323–4349, 1997.

[30] J. S. Langer.Directions in Condensed Matter Physics. G. Grinstein and G mazenko, World Scientific Singapore,
1986.

[31] X.-D. Liu, S. Osher, and T. Chan. Weighted essentially non-oscillatory schemes.J. Comput. Phys., 126:202–212,
1996.

[32] X.D. Liu, R. Fedkiw, and M. Kang. A Boundary Condition Capturing Method for Poisson’s Equation on Irregular
Domains.J. Comput. Phys., 154:151, 2000.

[33] F. Losasso, F. Gibou, and R. Fedkiw. Simulating water and smoke with an octree data structure.ACM Trans.
Graph. (SIGGRAPH Proc.), pages 457–462, 2004.

[34] C.-H. Min. Local level set method in high dimension and codimension.J. Comput. Phys., 200:368–382, 2004.

[35] C.-H. Min, F. Gibou, and H. Ceniceros. A supra-convergent finite difference scheme for the variable coefficient
poisson equation on fully adaptive grids.CAM report 05-29, J. Comput. Phys. (In press).

[36] D. Moore. The cost of balancing generalized quadtrees. InProceedings of the third ACM symposium on Solid
modeling and applications, pages 305–312, 1995.

[37] B. Nestler, D. Danilov, and P. Galenko. Crystal growth of pure substances: Phase-field simulations in comparison
with analytical and experimental results.J. Comput. Phys., 207:221–239, 2005.

23

[38] D. Nguyen, R. Fedkiw, and M. Kang. A boundary condition capturing method for incompressible flame discon-
tinuities. J. Comput. Phys., 172:71–98, 2001.

[39] D. Nguyen, F. Gibou, and R. Fedkiw. A fully conservative ghost fluid method and stiff detonation waves. In12th
Int. Detonation Symposium, San Diego, CA, 2002.

[40] W. Noh and P. Woodward. Slic (simple line interface calculation). In5th International Conference on Numerical
Methods in Fluid Dynamics, pages 330–340, 1976.

[41] E. Olsson and G. Kreiss. A conservative level set method for two phase flow.J. Comput. Phys., 210:225–246,
2005.

[42] S. Osher and R. Fedkiw.Level Set Methods and Dynamic Implicit Surfaces. Springer-Verlag, 2002. New York,
NY.

[43] S. Osher and N. Paragios.Geometric Level Set Methods in Imaging, Vision, and Graphics. Springer-Verlag,
2003. New York, NY.

[44] S. Osher and J. Sethian. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-
Jacobi formulations.J. Comput. Phys., 79:12–49, 1988.

[45] S. Popinet. Gerris: A tree-based adaptive solver for the incompressible euler equations in complex geometries.
J. Comput. Phys., 190:572–600, 2003.

[46] C. Ratsch, M. Gyure, F. Gibou, M. Petersen, M. Kang, J. Garcia, and D. Vvedensky. Level-set method for island
dynamics in epitaxial growth.Phys. Rev. B., 65:195403, 2002.

[47] G. Russo and P. Smereka. A remark on computing distance functions.J. Comput. Phys., 163:51–67, 2000.

[48] H. Samet.The Design and Analysis of Spatial Data Structures. Addison-Wesley, New York, 1989.

[49] H. Samet.Applications of Spatial Data Structures: Computer Graphics, Image Processing and GIS. Addison-
Wesley, New York, 1990.

[50] A. Schmidt. Computation of three dimensional dendrites with finite elements.J. Comput. Phys., 125:293–312,
1996.

[51] J. A. Sethian.Level set methods and fast marching methods. Cambridge University Press, 1999. Cambridge.

[52] C.-W. Shu and S. Osher. Efficient implementation of essentially non-oscillatory shock capturing schemes.J.
Comput. Phys., 77:439–471, 1988.

[53] P. Smereka. Semi-implicit level set methods for curvature and surface diffusion motion.J. Sci. Comput., 19:439
– 456, 2003.

[54] J. Strain. Tree methods for moving interfaces.J. Comput. Phys., 151:616–648, 1999.

[55] J. Strain. A fast modular semi-lagrangian method for moving interfaces.J. Comput. Phys., 161:512–536, 2000.

[56] M. Sussman, E. Fatemi, P. Smereka, and S. Osher. An improved level set method for incompressible two-phase
flows. Computers and Fluids, 27:663–680, 1998.

[57] M. Sussman, P. Smereka, and S. Osher. A level set approach for computing solutions to incompressible two-phase
flow. J. Comput. Phys., 114:146–159, 1994.

[58] G. Tryggvason, B. Bunner, A. Esmaeeli, D. Juric, N. Al-Rawahi, W. Tauber, J. Han, S. Nas, and Y.-J. Jan. A
front-tracking method for the computations of multiphase flow.J. Comput. Phys., 169:708–759, 2001.

[59] A. Weiser. Local-Mesh, Local-Order, Adaptive Finite Element Methods with a Posteriori Error Estimators for
Elliptic Parital Differential Equations. PhD thesis, Yale University, June 1981.

[60] A. Wheeler.Hanbook of Crystal Growth. D. T. Hurle, 1993.

24

[61] D. Xiu and G. Karniadakis. A semi-lagrangian high-order method for navier-stokes equations.J. Comput. Phys,
172:658–684, 2001.

[62] D. Youngs. An interface tracking method for a 3d eulerian hydrodynamics code. Technical report, AWRE
(44/92/35), 1984.

25

