ANALYSIS OF A TWO-SCALE CAHN-HILLIARD MODEL FOR
IMAGE INPAINTING
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Abstract. Image inpainting is the process of filling in missing parts of damaged images based
on information gleaned from surrounding areas. We consider a model for inpainting binary images
using a modified Cahn-Hilliard equation. We prove for the steady state problem that the isophote
directions are matched at the boundary of inpainting regions. Our model has two scales, the diffuse
interface scale, €, on which it can accomplish topological transitions, and the feature scale of the
image. We show via simulations that a dynamic two step method involving the diffuse interface
scale allows us to connect regions across larger inpainting domains. For the model problem of stripe
inpainting, we show that this issue is related to a bifurcation structure with respect to the scale €.
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1. Introduction. Image inpainting is the process of filling in missing parts of
damaged images based on information gleaned from the surrounding areas. It is
essentially a type of interpolation. Its applications include restoration of old paintings
by museum artists [12], removing scratches from old photographs [7], altering scenes
in photographs [17], and restoration of motion pictures [18].

The pioneering work of Bertalmio et. al. [5] introduced image inpainting as a new
research area of digital image processing. Their model is based on nonlinear partial
differential equations, and is designed to imitate the techniques of museum artists
who specialize in restoration. In particular, Bertalmio et. al. elucidated the principle
that good inpainting algorithms should propagate sharp edges in surrounding areas
into the damaged parts that need to be filled in. This can be done for instance by
connecting contours of constant grayscale image intensity (called isophotes) to each
other across the inpainting region, so that gray levels at the edge of the the damaged
region get extended to the interior continuously. They also impose the direction of
isophotes as a boundary condition at the edge of the inpainting domain.

In subsequent work with Bertozzi [4], they realized that the nonlinear PDE in-
troduced in [5] has intimate connections to the two-dimensional fluid dynamics of the
Navier-Stokes equation. Indeed, it turns out that the steady state problem originally
proposed in [5] is equivalent to the inviscid Euler equations from incompressible flow,
in which the image intensity function plays the role of the stream function in the fluid
problem. This analogy also shows why diffusion is required in the original inpainting
problem. The natural boundary conditions for inpainting are to match the image in-
tensity on the boundary of the inpainting region and also the direction of the isophote
lines (77) which for the fluid problem is effectively a generalized ‘no-slip’ boundary
condition that requires a Navier-Stokes formulation, introducing a diffusion term. In
practice nonlinear diffusion (as in Perona-Malik [25], and Rudin, Osher, Fatemi [26])
works very well to avoid blurring of edges in the inpainting.
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A different approach to inpainting was proposed by Chan and Shen [9]. They
introduced the idea that well-known variational image denoising and segmentation
models can be easily adapted to the inpainting task by a simple modification. Indeed,
these models often include a fidelity term that keeps the solutions close to the given
image. By restricting the effects of the fidelity term in these models to only the
complement of the inpainting region, Chan and Shen showed that very good image
completions can be obtained. The principle behind their approach can be summarized
as follows: Variational denoising and segmentation models all have an underlying
notion of what constitutes an image. In the inpainting region, the models of Chan
and Shen reconstruct the missing image features by relying on this built in notion of
what constitutes a natural image.

The first model introduced by Chan and Shen used the total variation based image
denoising model of Rudin, Osher, and Fatemi [26] for the inpainting purpose. This
model can successfully propagate sharp edges into the damaged domain. However,
because the regularization term in this model exacts a penalty on the length of edges,
the inpainting model cannot connect contours across very large distances. Another
caveat is that this model does not keep the direction of isophotes continuous across
the boundary of the inpainting domain.

Subsequently, Kang, Chan, and Shen [8] introduced a new variational image in-
painting model that addressed the caveats of the the total variation based one. This
model is motivated by the work of Nitzberg, Mumford, and Shiota, and includes a
new regularization term that penalizes not merely the length of edges in an image,
but the integral of the square of curvature along the edge contours. This allows both
for isophotes to be connected across large distances, and their directions to be kept
continuous across the edge of the inpainting region. We also mention that Masnou
and Morel [20, 21] extended these ideas, presenting a formal variational formulation
for disocclusion and a particular practical implementation. They use geodesic curves
to join the isophotes arriving at the boundary of the inpainting region.

Following in the footsteps of Chan and Shen, Esedoglu and Shen [13] adapted the
Mumford-Shah image segmentation model to the inpainting problem. They utilized
Ambrosio and Tortorelli’s elliptic approximations [2] to the Mumford-Shah functional.
Gradient descent for these approximations leads to parabolic equations with a small
parameter € in them; they represent edges in the image by transition regions of thick-
ness €. These equations have the benefit that highest order derivatives are linear.
They can therefore be solved rather quickly. However, like the total variation im-
age denoising model, the Mumford-Shah segmentation model penalizes length of edge
contours, and therefore does not allow for the connection of isophotes across large
distances in inpainting applications.

In order to improve the utility of the Mumford-Shah model in inpainting, Esedoglu
and Shen introduced the Mumford-Shah-Euler image model that, just like the previous
work [8] of Kang, Chan, Shen, penalizes square of the curvature along an edge contour.
Following previous work by March [19], they then used a conjecture of De Giorgi
[16] to approximate the resulting variational problem by elliptic ones. The same
approximation is also used in [?] to compute piecewise constant segmentations with
depth via the model of Nitzberg, Mumford, and Shiota. Resulting gradient descent
equations are fourth order, nonlinear parabolic PDE with a small parameter in them,
and have a striking resemblance to the Cahn-Hilliard equation.

A recent paper by the authors [6] presents a new model directly based on Cahn-
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Hilliard evolution, rather than a more complex gradient flow to minimize a curvature
functional. This simpler model was shown, in numerical examples, to have many of
the desirable properties of the model introduced in [13]. In particular, both image in-
tensity and the direction of edges are continued smoothly across the inpainting region.
However the Cahn-Hilliard method was shown to be 2-5 times faster, computation-
ally, than that of [13] and an order of magnitude or more faster than other competing
PDE-based inpainting methods. In this paper, we present rigorous theory for the
existence of solutions of the evolution equation. We also prove, for the steady state
problem, that in the limit of large fidelity, isophote directions of the restored image
will match those of the given background image, provided it has sufficient regularity.
Section 2 provides a review of previous phase field models for image processing, in
which a small scale ¢ is introduced over which boundaries of objects are diffused. Sec-
tion 3 reviews the proposed model. Section 4 presents rigorous existence theory for
the time evolving problem. Section 5 proves continuity of isophotes for the case € = 1
and a background image function that is at least C2. Section 6 considers binary data
f, and shows that for sufficiently small e, the direction of edges of the restored image
u again match the direction of edges of the binary data f in the limit of large fidelity.
As in Section 5, this is accomplished by looking at the large fidelity limit. Section 7
considers a model problem of stripe inpainting. This problem is particular useful to
understand the existence of multiple stable solutions of the inpainting problem and
how they are related to each other through a bifurcation analysis. Section 8 presents
some real world computational examples with binary data. Section 9 presents a dis-
cussion with suggestions for future work. The details of the numerical scheme are
presented in an appendix.

2. Phase Field Models for Inpainting. We recall very briefly the two models
introduced in [13], and their approximations by elliptic functionals. The first one is
a very simple modification of the Mumford-Shah segmentation model, and has the
following form: For a given image f(z), solve the minimization problem

inf / |Vu|2dx+ozLength(K)+)\/ (f —u)da. (2.1)
u(z}(ECL;(Q) Q\K Q\D

Here, the unknown set K is supposed to be a union of curves and approximate the
edges of the given image f(x). The function w(z), which is also an unknown of the
problem, is required to be smooth away from the edge set K by the Dirichlet energy
that appears in the energy. D C  is the user supplied inpainting region. The last
integral in (2.1) represents the fidelity term, and forces the piecewise smooth function
u(x) to remain close in the L? sense to the given image f(z). The only difference of
(2.1) from the original Mumford-Shah functional is that the fidelity term is integrated
over \ D instead of the entire domain .

Energies of the form (2.1) are difficult to handle because part of the minimization
is to be carried out over collections of curves in the plane. Ambrosio and Tortorelli in-
troduced elliptic energies that approximate the Mumford-Shah functional in the sense
of Gamma convergence (details can be found in [10]), whose numerical treatments are
consequently much easier. Their approximation, when written for (2.1), takes the
form:

2
Q=2 i [ (fmwde (22)
4e OQ\D
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Here, the function z is introduced to keep track of the edge set. As the small parameter
¢ — 0, these energies have been rigorously proved to converge to (2.1) in the sense of
Gamma convergence. The implication is that any accumulation point of minimizers
of (2.2) has to be a minimizer of (2.1). These approximations are often called ‘diffuse
interface’ approximations because for a fixed value of €, the minimizer approximates
the sharp interface problem by one in which there is an interface of thickness of order
€. Diffuse interface methods are particular useful for problems in which topology
transitions of the interface are of interest.

Esedoglu and Shen [13] introduce a variant of energy (2.1) that incorporates
curvature of edge contours into the functional. It has the form:

MSE(u, K) = /

|Vul? dac—!—/ o+ Br*do + A (u— f)?*dex. (2.3)
O\K K

Q\D

where k is the curvature of K. Based on a conjecture of E. De Giorgi [16], and
following previous work by March in [19], they consider the following diffuse interface
approximation of (2.3):

MSE.(u,z) = /

1
2|Vul* + a <€|Vz|2 + EW(Z))
o

2
1

+ h <25Az — W’(z)) dx + )\/ (u— f)?de. (2.4)

€ 5 Q\D

Gradient descent for (2.4) with respect to the L? inner product is given by the following

system of coupled diffusion equations:
up =V - (2°Vu) + A(f — u), (2.5)

and

1
2 = (a + 2—§2W”(z) — 4@A> <2€Az — 4€W'(z)> — |Vu|?z. (2.6)
3. Proposed Model. In this paper, we consider a binary image (i.e shape)
inpainting model that is a much simplified version of equation (2.6) from the previous
section. Naturally, we believe that our model can be subsequently coupled with an
equation such as (2.5) and thus generalized to gray-scale and even color images.

The key observation leading to the model is that (2.6) resembles very much the
Cahn-Hilliard equation, for which fast solution techniques are available. It is therefore
natural to ask if the additional terms are truly necessary for the desirable properties
seen in inpainting applications of (2.6).

Let f(z) be a given binary image, and suppose that D C Q is the inpainting do-
main. We propose solving the following equation to steady state in order to construct
an inpainted version u(x) of f(x):

up = —A (sAu — iW’(u)) + M) (f — ). (3.1)

where
0 ifzeD,
A(x){xo ifz €O\ D
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and u(z,t) satisfies % = # =0 on 09.

Equation (3.1) is identical with the standard Cahn-Hilliard equation [3, 23] except
for the second term on the right hand side. This term is there to keep the solution
constructed close to the given image f(x) in the complement of the inpainting domain,
where there is image information available. We mention here that such phase field
models have been used for other applications such as shape recovery in computer
vision [11].

Equation (3.1) is not a gradient flow for an energy; however, it can be thought of
as a superposition of gradient descents for two different energies. Indeed, the Cahn-
Hilliard equation is the gradient flow with respect to the H ! inner product [30] of the
following energy, which appeared already as a part of some of the variational models
introduced in the previous sections:

E.(u) ::/QE\VuP—i—éVV(u) da. (3.2)

This is the energy of Modica-Mortola [22], which has been rigorously shown (ref) to
approximate the perimeter of sets in the sense of Gamma convergence:

Per(¥) if u(z) = 1x(x) for some X C €,

r
Ee E(u) = { 400 otherwise.

When A(z) = 0, equation (3.1) thus decreases (3.2); it can also be easily seen that in
this case the solution preserves total image intensity (i.e. fQ u(z,t) dx is constant in
t). The dynamics of (3.1) in this case has been studied extensively. For instance, it
is well-known that under (3.1) with A\(z) = 0, arbitrary initial data form interfaces
of thickness approximately € at a fast time scale; these interfaces separate regions
where the solution is approximately either 0 or 1 (location of wells for the potential
W). The fact that energy (3.2) is decreased suggests that the subsequent evolution
involves some sort of coarsening of this configuration of regions. Indeed, as ¢ — 0,
at a slower time scale the interfaces approximate the solution of the Mullins-Sekerka
problem [1, 24].

When A(z) # 0, equation (3.1) is no longer gradient descent for (3.2); the second
term in the right hand side of (3.1) is gradient descent with respect to the L? inner
product for the pointwise energy:

/Q(u — )?da. (3.3)

Our proposed model (3.1) can thus be thought of as a superposition of gradient descent
with respect to H~! inner product for (3.2), and gradient descent with respect to L?
inner-product for (3.3). However, it is not the gradient descent, either in H~! or L?
inner product, for the sum of the energies (3.2) and (3.3).

An important distinction of model (3.1) from those of Bertalmio et. al. is that no
explicit boundary conditions are imposed at the boundary 0D of the inpainting region
D. However, we will show in Section 5 that in the limit that Ay — oo, stationary
solutions of (3.1) converge to the solution of the following equation:

- A <5Au - iW’(u)) =0inz €D,
u(xz) = f(x) on z € 9D, and
Vu=VfonzedD.
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This will be proved under the condition that the given image f(x) € C?().

We therefore expect that solving equation (3.1) with a very large choice of the
constant Ao will approximate a solution of (3.4). From the inpainting application
point of view, the ability to impose boundary conditions for both the solution wu(z)
and its derivative Vu is one of the great advantages of fourth order models such as
(3.4). Indeed, this allows image information generated by the model in the inpainting
region D to match the original image data defined on €\ D not only in intensity,
but also in isophote directions. That means our model (3.1) continues edges into the
inpainting domain without introducing kinks at the boundary 9D.

4. Global existence of weak solutions of the modified Cahn-Hilliard
equation. Before discussing the steady state problem, we show that well-posedness
of the dynamic problem follows from classical methods for the case Ag = 0.

Consider the time dependent problem on a compact region Q@ C R? with an
inpainting region D C £,

Lo
up = —A(eAu — EW (u)) + Xo(f — w)Xxa\p- (4.1)
Following III, 4.2 in [31] for the case Ao = 0, we define
V={¢pc H*Q) | ?:0 on 9N}
v

We define a weak solution of the evolution equation (4.1) as one that satisfies

d 1
Do) + e, o) — (2 (w), A0) = (@ —w)v), WeV,  (42)
where (.,.) specifies the L? inner product.
We establish the following global existence and uniqueness theorem.
THEOREM 4.1. For every ug in L*(Q), and every T > 0, the initial-boundary
value problem (4.2) has a unique solution u which belongs to C([0,T]; L*(Q))NL2(0,T; V).

The proof of existence follows a similar argument as in [31] for A = 0. We require
an L? estimate that includes the additional fidelity term. In fact we show that this
gives a global in time bound for w in L? when X is sufficiently large.

LEMMA 4.2. Given a weak solution as described above, there exist constants
Ce, N\ f) >0 and (A, f,€) so that

1d

-2 2 < _ 2
2dt/9u de < C(g, N\, f)—0 u” dx, (4.3)

Q/D
for allt > 0. For A sufficiently large, 6 > 0.

This lemma establishes an a priori bound for the L? norm of the solution u; this
bound is uniform in time for A sufficiently large. We expect that it would therefore
play an important role in, for example, establishing existence of steady states for the
modified Cahn-Hilliard equation considered in this paper.

Proof: We first reference a standard interpolation inequality:

/|Vu\2dm§6/(Au)2dx+%/ u? dx (4.4)
Q Q )
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By the L' version of Poincare’s inequality, together with the observation that the
domain of integration in the second integral of equation (4.4) can be taken to be
something smaller than € (at the expense of larger constants, but no matter):

/u2 dmgC/ |V (u?)|dz + C u? dr (4.5)
Q Q O\D

By Holder’s inequality we also have that:

/\V(u2)|d:c§ [olk: (/ u2|Vu|2d9c> ga/u2|w2dx+9 (4.6)
Q Q Q 4

Putting the last three inequalities together:

/ |Vul|? de < (5/(Au)2 dx + @/UZ\VMQ dx + ¢ u? dx + < (4.7)
Q Q 4 4 Q\D da

Now computing the rate of change of the L2 norm of the solution, we get that:

1 1
Ld u? dx = —5/ (Au)? dx + ~ / uAW' (u) dx + X u(f —u)dx (4.8)
2dt Jo Q € Ja Q\D

2 gy — 1 "(w)|Vu|? dz u(f —u)dz
:—E/Q(Au) do 6/9W()V|d+)\/Q\D (f—u)dz (4.9)

where we integrated by parts on the second term in the right hand side.
Using the fact that W (&) > ~v¢2 — C for all €, for some constants v and C' in
(4.8):
1d
—— u2dx§—5/(Au)2dx—1/UZ\VU\deJrg/|Vu|2+)\/ u(f —u)de
2dt Jq Q e Jo € Ja O\D
(4.10)

We now put everything together as follows: First, use inequality (4.5) in order to
bound the last term of the inequality above as follows:

1
Ld u? do < —6/(Au)2 dx—l/u2|Vu|2dx—|—€/ |Vul|? dx
2 dt o) Q g Ja g Jo

A

A A
+ - f2dac+f/ \V(u2)|dx—f/u2dx.
2 Jonp 2 Ja 2 Ja

Now use inequality (4.6) with 6 = 7 to estimate the next to last term in the inequality
above:

1d A
—— [ w?dx < —s/(Au)2 dx—l/ uz\Vu|2dx+g/ |Vul?dz + = frdx
2 dt Q Q g Jo g Jao 2 Q\D

A1 [ o ». OX )\/ ,

Now use inequality (4.7) with 6 = &5 to estimate the [ |Vu|?dxz term in the inequality
above as follows:

1d

—— [ w?dr < —6/(Au)2dx—1/u2|Vu|2dx—|—0762/(Au)2dm+@/u2\Vu|2dx
2dt Jo Q € Ja e Ja Q

528
Cx A

C C 2 A 2 Ady / 2 2 / 2
+ + — u dr + = de + — | v*|Vul*de + — — = | u*dx.
eady €02 /Q\D 2 Ja\p / 2 Ja Vel 200 2 Jq




We now try to satisfy the following conditions with our choice of the constants d1, do, c,
and \:

Coy _ 1. ; 12
22 < g€, ie. 02 < gmE7,

1.
Ca o ; 202
2. e < 10 e a < g7,
c A 8C
3. Sae < FE 1.e. 52 > e
2\ .
4 A6 < 2, e 61 < 5.

To satisfy the first condition, take d = %52. Then, to satisfy the third, we can choose

any A > 654—30. To satisfy the second, choose a = %52. The fourth can be satisfied

by choosing §; = %ZZC. With these choices, we end up with the following inequality:

1d

R 2 < _9/ 2
5 7 Qu de < C(g, N\ f) u® dx

Q

where # > 0. For any A, Gronwall’s lemma implies an a priori bound on the L? norm
of uw on any finite time interval [0,7"). Moreover, for sufficiently large A\, we obtain a
uniform in time bound on the L? norm of u(-,t):

IM > 0 such that [|u(-, )|z < M forallt >0. O

Following the remaining arguments in [31] one can establish global existence and
uniqueness of a weak solution to the modified Cahn-Hilliard equation. We note that
this problem does not have a Lyapunov function as in the original CH model. How-
ever, we observe in our numerical simulations that the solution quickly approaches a
steady state as t increases; as we mentioned before, the existence of such are strongly
suggested by the estimate given above. Moreover, the steady state solution appears
to inherit the regularity of the original parabolic problem. In the next section we
show that existence of an H? solution of the steady state problem guarantees that
the intended boundary conditions for the inpainting problem are satisfied as A\ — oo.
We prove this result while noting that convergence of the time dependent solution to
the steady state problem remains unaddressed.

5. Fidelity and boundary conditions. The fidelity parameter A in (3.1) en-
forces the original image outside of the inpainting region. One might expect that as
A\ gets large, the existing region enforces some kind of effective boundary conditions
on the inpainting region. In this section we prove this rigorously for the steady state
problem. As we mentioned earlier, these solutions turn out to approximate a solu-
tion of (3.4). Our results establish rigorously a connection between the inpainting
technique used by Bertalmio et. al. (who prefer to impose boundary conditions at
the edge of the inpainting domain D) and that of Chan et. al. (who prefer to use a
fidelity term, similar to the second term in the right hand side of our model (3.1)). In
this section we consider the case e = 1, and smooth (grayscale) f. In the next section
we show how to extend these results to binary f and small €.

5.1. Key estimates. We require the following version of the Poincaré inequality.

LEMMA 5.1. (Poincaré inequality) Let  C RN be a bounded domain with Lips-
chitz boundary. There exists a constant C = C(2) > 0 such that if v(z) € C*(Q) with
v=(u—u)? for someu € C*Q) and u := ﬁ Joudz, then

/dexSC/ |Vo|? da.
Q Q
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Proof: Suppose not. Then there exists a sequence {u;}32, C C1(Q) such that

/’U?dl‘>j/ |Vv;|? do
Q Q

where v; = (uj — u;)? for some u; € C'(Q2), and v; # 0. By normalizing, we may
make sure that

1
/vf-dleandﬂj :z—/ujdxzoforallj.
o 2 Jao

Then, the functions v; are bounded uniformly in L?($2) and

1
/ |Vv,|? dz < ~.
Q J

By Rellich’s theorem, by passing to a subsequence if necessary, we may assume that
v; converge to some v, in the L?(£2) sense and pointwise a.e.

Let w;(z) := max®{0,u;(z)}. Then:

2
/\ij|2dx§/4(max{0,uj(x)}) \Vuj|2dx§/4u?\Vuj|2dx
Q Q Q
24/ |Vv;|? dz — 0 as j — oo.
Q

Once again by Rellich, we may assume that the sequence w; converges to some we
in L?(Q) By lower semicontinuity,

/ |Vwso|? dz < liminf/ |Vw;|? dz = 0.
) i=eo Jo

That means ws, is a constant.

The very same argument applied to w;(z) := min*{0,u;(z)} shows that up to
passing to subsequences, we may assume that w; — Ws in L?(Q) and pointwise a.e.,
where w4, is a constant.

Thus, for a.e. z € €, we have that \/w;(z) = max{0,u;(x)} converges to /e

and \/w;(xz) = —min{0,u;(x)} converges to v/Wso. Since u;(x) = max{0,u;(z)} +

min{0, u;(x)}, we have that

lim uj(z) = C 1= \/Woo — Vs for ae. z € Q.
j—oo
Moreover, since the sequence {av? + b} dominates {(u; — C)*} for some a,b € R,
and {v;} converges in L%, we get that the sequence {u;} converges to the constant
C in L*(2). But 4; = 0, so in fact we must have C' = 0. This contradicts the fact
400 (2 oy —
Jujde= [vide=1.0
If necessary, we pass to a further subsequence to ensure that v; converge to the
constant [Q|2 pointwise a.e. Then, by definition of v;, we have:

For a.e. = € Q, either u;(z) — \Qﬁ or u;(x) — —\Qﬁ.
9



But in fact, we must have the following:
Claim: Either u; — Q|7 for a.e. z € Q, or u; — —|Q7 for a.e. z € Q.

Proof of Claim: Suppose not. Then there exists a subset ¥ of 2 such that |X| > 0,
|2\ X| > 0, and

uj(z) — |Q|% for a.e. x € ¥, and u;(z) — f|Q|% for a.e. z € Q\ X.

Let n(z) := max{0,2?}, and consider the sequence w; := n(u;). Then w; — Q]2 15
in L2, and

[ Vsl o= [ )PVl de< [ avi?
Q Q Q
§/|ij|2—>Oasj—>oo.
Q
which is impossible, proving the claim. [J

Returning to the proof of the Lemma, in light of the claim above, we now assume
with no loss of generality that u; — |Q|i for a.e. € €. Since u; are dominated by
1+ v;, and since 1 +v; — 1+ [Q|2 in L2(Q), we get that u; — || in L2(Q). This
contradicts the assumption that @; = 0 for all j, proving the lemma. [J

LEMMA 5.2. Let Q C RN be a bounded domain with Lipschitz boundary. Let D
be a compactly included subdomain of 2, also with Lipschitz boundary. There exist
constants C1,Co, and C3 such that if u(x) € C1(Q2), then

4
1
urde <C; | —— udzr +C’/u2Vu2das
/, VD] o 2 Jy v

2
1
+C3 | ——= wdz /Vqux.
3<|Q\D| o\ ) oV

Proof: Define the function v to be:

) 2
v(x) = (u(m) D o u(x) dx) .

The standard Poincaré inequality implies:
/ v?dr < C v2d:v+C’/ |Vo|? da. (5.1)
Q Q\D Q
On the other hand, Lemma 5.1 implies:
/ vdr < C |Vo|? dz. (5.2)
Q\D Q\D

Combining inequalities (5.1) and (5.2) we get:

/vzdeC/ |Vo|? da.
Q Q
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Writing the last inequality in terms of u yields the conclusion of the present lemma

after a few elementary manipulations. [J
PROPOSITION 5.3. Let u be an H? weak solution of the PDE

—A(Au . W’(u)) + @) (f —u) =0,

that is
Yo e V. (5.3)

(Au, Av) — (W' (u, Av) = (Mz)(f = u),v),

where
B 0 ifzeD,

A(m){ N ifzeQ\D

with Ao > 0. Assume that f € C?*(2). Then there exists constants C; and Co

independent of Ay, depending only on f, so that

2
/ (Au) dx < C4, and
o c, (5.4)

2
/ (u — f) de < —=.
o\D Ao
Proof: First, we consider a test function v = 1 to obtain

/ udr = fdz.
Q\D Q\D

where we used the fact A =0 in D. Then, taking a test function v = (u — f), we get
0= / ~(Au— AP (Au— W) ~ Mz)(u— f)? da
@ (5.6)

— _/Q (Au)zdx— M) (f —w)?da + (1) + (I1)

Q

(5.5)

where

(I):= /QW'(u)Audx, and

(1) = /Q (A —W/(w)Af de.

We have
(I) = _/ W (u)|Vu|? dz (integrated by parts),
Q

§/—Au2|Vu|2dx+/B|Vu\2dx.
Q Q

where we used the fact that there exist positive constants A and B such that W (&) >
A€? — B for all £ € R. By (5.5), Lemma 5.2 applied to u gives:

/u2|Vu|2dsz/u4da:—C/ |Vu|?dz — C.
Q Q Q
11



Hence,
(1) < —c/ u* dr + C/ |Vul|? dz + C. (5.7)
Q Q
By Hoélder’s inequality,

/(lu‘ldmzC(/Qqum)?. (5.8)

Combining (5.7) and (5.8) we get

(I)g—C/Qu‘ldx—c</Qu2dat>2+0/Q|Vu|2+C. (5.9)

We now use the following standard interpolation inequality

2
/\Vu\degé/ (Au) dx+C’(5)/u2dx.
Q Q Q

(where 0 > 0 but arbitrarily small) along with (5.9) to obtain the following estimate:

(I)gé/ﬂ(Au)QdazC/Qu‘ldmC(/QUde)QJrC(d)/QuzderC’. (5.10)

We turn to estimating (I7). Since f € C?(Q2), and since |W’(£)| < C& + C, we get

2
(U)ga/ (au) dm+0/|u|3dx+0
Q Q

2
<5 (Au) dac+6/u4dx+C.
Q Q

(5.11)

Putting together our estimates (5.10) for (I) and (5.11) for (I7) together with (5.6),
we get

A(A“)de—’—)‘o/Q\D(f—u)gdx —(I)+ (IT)
S5/9(A“)zd”f+C(5)/Qu2dx+c

2
—(C—5)/u4dx—C</ u2dx> .
Q Q
Choosing § > 0 small enough, one gets

/Q<Au)2dx+)\0/Q\D(fu)2dx§C(5)/Qu2dxC(/Quzdx)QJrC. (5.12)

Let £ := [, u®dz. Then the right hand side of (5.12) is —C¢? + C(6)§ 4 C for some
positive constants C. This is a parabola opening downwards, and hence is bounded
from above by a constant. That proves the proposition. [
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5.2. Matching isophotes as )\y becomes large. Of interest is what happens
to the solution u(x) for the modified Cahn-Hilliard equation when A is prescribed very
large values. Will u(x) correctly match f(z) (the existing image) on the boundary of
the inpainting domain? In particular, will the isophote directions be matched? In this
section we consider a smooth function f and show that in regions where f changes
significantly, the direction of isophotes of the solution will match the direction of
isophotes of the prescribed image function. In the next section we extend this result
to a binary image with sharp edges. We first establish the following lemma showing
that an H? steady state solution is actually in C%®. This results is necessary to
establish a pointwise bound for the isophotes on the boundary.

(2

Fic. 5.1. Inpainting problem. The isophote vectors are shown.

LEMMA 5.4. Let u be an H? weak solution of the PDE
—A(Au - W’(u)) FA@)(f —u) =0,

where

[0 ifzeD,
W)—{AO ifx € Q\ D

Then u € C%*(Q).

Proof: By assumption, we have that A(z)(f —u) € L?(Q). Thus

A (Au—W’(u)) € L%(9) as well. This means that Au—W'(u) € H?(Q). Since u(x,t)
is bounded in H?(Q) by assumption, it has an a priori pointwise bound, which then
implies a pointwise bound on W' (u). Sobolev embedding implies that u € C*(€2) and

thus W'(u) € C*(2) for all 0 < o < 1. This implies that Au € C*(Q2), and thus by
elliptic regularity, u € C*(Q). O

Remark: As part of the proof, we first prove the continuity of Vu and then show that
this leads to matching of the isophote directions in regions where V f is large enough.
This is sufficient to show continuity of the direction of edges, since they necessarily
imply that Vf is large.

We now show that in regions where the image intensity changes, the isophote
direction of f matches that of w on dD. This is the main theorem for this section.

THEOREM 5.5. Consider isophote directions of f in any region where |V f| > dp.
The difference of the isophote vectors at the boundary of the inpainting region O(D),

13



between the steady state solution to the modified Cahn-Hilliard equation u(x), and the
known image f(x), can be made arbitrarily small by choosing A\ large enough.

Proof: Define g(z) = (u — f)(x). First, we would like to show that Vg(z) becomes
small pointwise on O(Q\ D) as A\g becomes large. From (5.12) we have that

/(Ag)2 dx < C4
Q

JCIRTES
Q\D Ao

The bounds from 5.13 combined with Sobolev interpolation imply that the H'=#(2\
D) norm of Vg is small as Ay — oo, for 0 < pu < % The restriction map to 0D (see
[15], page 225) implies that Vg is small in H'/27#(9D). Since L?(0D) ¢ HY/?>~*(9D)
for 0 < pu < 1/2, we have that the L? norm of Vg is small on D. Continuity of Vg
implies a pointwise bound on Vg on the boundary, in particular we have a constant
n(A) — 0 as A — oo such that |Vg||lap < 1. Now we show that this pointwise bound
for Vg implies a bound for the direction of the isophotes.

(5.13)

Let % = 7, (this is the isophote vector). We want to show that |7, — 7|
becomes small on 9(Q2\ D) as A\ takes increasingly large values. Recall that we are
only interested in those portions of d(D) where VX f > §;, with &y small. Some

straightforward algebra shows

(5.14)

Since Vg is small for large \g, we have the desired result. The case where V+f < §,
is not interesting, for in these regions the image is nearly constant and thus does not
produce any significant edges. This completes the proof of Theorem 5.5. [J

6. Matching of isophotes for binary images: continuity of the edge
direction. The previous analysis considered the modified Cahn-Hilliard equation
(3.1) with e = 1. In real applications involving binary images, we take ¢ small as it
defines a diffuse interface thickness. Our previous estimates are for smooth functions
f and in order to apply these ideas, we regularize a binary f at the same scale as
the diffuse interface thickness €. We state this problem as follows: consider a binary
image function f taking values 0 and 1. Assume a smooth boundary between regions
where f =0 and f = 1. Using a mollifier, construct f. = J.f(z). A simple way to do
this is to solve the heat equation on 2, with Neumann boundary conditions and initial
condition f, until time ¢+ = ¢2. This gives a smooth approximation of f in which the
edges of the images are smoothed over a scale of length ¢.

We now solve the inpainting problem by evolving the time dependent equation
Lo
up = —A | eAu— EW (w) | + M) (fe —w). (6.1)

where

0 ifxeD,
)‘(”T){)\o if 2 €0\ D.
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Global existence of a weak solution of the above problem follows from the argu-
ments in section 4. We now consider the steady state problem

-A <€Au - iW’(u)) + AMx)(fe —u) =0 (6.2)

where

0 ifzeD,
A(x)—{xo if x € Q\ D,

and follow the arguments of the preceding section to show that for sufficiently large
Ao, the steady state solution above has edges matching those of the original image
f. To do this, we show that for a fixed €, A can be chosen large enough so that the
isophote directions are nearly parallel on the boundary of D.

We consider the analogous estimates to (5.4) for the case € # 1. Take the inner
produce of the steady state equation with (u — f). We obtain

2 2_1 "(w)Audz u—1 "(u x
E/Q(Au) dx+/Q\D)\0(f—u) _€/QW( )Aud -l—/Q(EA SW/()AS dr. (63)

This in turn leads to the estimate

E/Q(Au>2dx+)\o/Q\D(fu)2dx —(I) + (IT)

1 2 1 1 1
< - A - 2 - -
_(e+€)6 Q( u) dx+€C(6)/Qu da:+C(6,£+E)

1 4 1 2 ?
——(C=9) | vdx—-C u“dx | .
S Q 3 Q
(6.4)
Now letting § become very small, as ¢ is fixed, we have that
2 1 2 1 1
5/ (Au) dx+/\0/ (f —u)?da < —fc(/ u2dx) +fc/ w?dz + Cle + ).
Q OQ\D € Q € Q €
(6.5)

Once again, the right hand side of the inequality is a parabola that opens downward.
Thus:

E/Q (Au)Qdaj—i—)\o /Q\D(f—u)2 dz < C(&—i—%)7 (6.6)

from which we obtain the bounds

/Q(Au>2dx < o, (6.7)

7U2I —_—.
/Q\D(f ) dr < "

This shows the full relationship between A\¢ and €. It is important to notice that the
constants C'(%) and C(e + 1) become very large as € becomes small. Thus, for small
€, Ao must be chosen very large to guarantee continuity of edges using these estimates.
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Using the results of section 5.2, we have that V(u— f.)(x) — 0 on 0D as Ay — oo.
Consider now the part of 9D where |V f.| > dg. Since the original f is binary, this
region corresponds to a narrow band around the edges of the original f. Following
the ideas in section 5.2, we see that the isophote vectors |7, — 77 | — 0 in this narrow
band which defines the diffuse interface between regions where f = 0 and f =
Putting this all together, we consider an original f taking values 0 and 1 with smooth
boundary between the two phases. Assume that € is small enough so that 7y, is almost
parallel to the edge direction of the original binary f in the region where |V f| > Jp.
The solution u of the steady state diffuse interface problem will have edges that line
up with those of f. and thus with the original binary f, provided that Ay is large
enough (depending on our choice of £). We show some examples in practice in the
following two sections.

7. Bifurcations of the Modified Cahn-Hilliard Equation. A natural ques-
tion to ask is whether the steady state solution is unique. Here we show by numerical
examples that multiple solutions exist and can be understood through a bifurcation
analysis. We conducted tests of the modified Cahn-Hilliard equation

u = A28 éwf(u)) FA(f — wXenn (7.1)

on a simple stripe geometry. Figure 7.1 shows an example where the inpainting
domain D is the grey region in frame (a). Different initial conditions for the dynamic
problem (7.1 ) yield different steady state solutions as shown in frames (b) and (c).
In both examples we take the same initial condition ug = f in Q\ D and ugo = 0 in D.
However, in the case of (b) we start with a large e = 0.8, run the solution to steady
state, and use this as a new initial condition for a smaller value of €. In the case (c)
we perform a single simulation with fixed € small (0.01), starting from ug given above.

Fic. 7.1.  (a) Grey portion denotes the inpainting region D while the black and white
portion denote that background image f. (b) steady state solution of (7.1 ) showing a com-
pleted stripe, (c)steady state solution of (7.1) showing a broken stripe. In both cases e = 0.01.
In all cases we choose a square of 128 x 128 grid points, with the inpainting region having a
gap of width 40 grid points. The grid spacing is Az = 0.01.

The bifurcation diagrams below in figure 7.2 show how the steady states, for
the modified Cahn-Hilliard equation, change in response to changes in the value of €
(reference equation 7.1). We consider the stripe problem as above, for different gap
widths of 30,45, and 80. We choose an amplitude for the bifurcation diagrams of the
value of the steady state solution at the center of the inpainting domain D. This
is a useful measure in that a completed stripe will have an amplitude close to one,
whereas a broken stripe will have an amplitude close to zero. Intermediate values are
observed for steady states in which the diffuse interface scale € is comparable to the
feature size in the problem.
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| L

(a) (b)

FiG. 7.2. Bifurcation diagrams for, (a) gap of 30, (b) gap of 45, (c) gap of 80. The y-
azxis shows the steady state height of the midpoint of the stripe, while the x-axis is the epsilon
value. The steady states are shown visually in thumbnails, with an arrow pointing to their
positions on the respective bifurcation diagrams. Only stable steady states are shown.

Note that in all figures, only stable steady states are shown as we use the time
dependent PDE to obtain the steady states. These figures suggest the presence of an
incomplete pitchfork bifurcation. A diagram for this type of bifurcation is shown in
figure 7.3 [29] in which stable branches appear as solid lines and unstable branches
appear as dotted lines. Frame (b) shows the classical complete pitchfork bifurcation.
Changes in parameters, including, but not limited to symmetry breaking, can cause a
section of the pitchfork to break off into a stable/unstable pair of solutions, as shown
in frames (a) and (c). It is interesting to compare the diagram in figure 7.3 with
the numerically obtained diagrams in figure 7.2. In frame (a) there is an unbroken
stable branch connecting the single large ¢ solution to the connected stripe solution
for small €. In contrast, in frames (b) and (c), the unbroken stable branch connects
the single large ¢ solution to the broken stripe solution for small €. In these cases
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the connected stripe solution appears as an isolated branch. We conjecture that the
isolated branch flips over to an unstable branch of steady state solutions in all three
cases. In frame (a) it is the broken stripe solution that forms an isolated branch.

\—

"umg,

(a) (b) (c)

Fic. 7.3.  Bifurcation diagrams relating to the phenomena shown in figure 7.2. (a)
An incomplete pitchfork bifurcation. (b) A symmetric pitchfork bifurcation. (c) Another
incomplete pitchfork bifurcation.

The bifurcation diagrams above suggest that different approaches will be neces-
sary to obtain the completed stripe solution, depending on the gap width. For the
small gap case, one can simply compute the steady state at large € and continuously
shrink e, following the stable branch, to the desired small €. However this approach
will clearly not work for the larger gap widths. Instead, we find that a two-scale ap-
proach empirically works well to obtain the continued stripe solution. We choose, at
the outset, a value of € on the order of the maximum gap size. For example, choosing
e = .8 as a starting value, we find a unique steady state solution for a very diffuse
scale. Instead of continuously lowering €, we abruptly change to the desired small
scale value and find empirically that the continued stripe solution emerges from the
dynamics. In summary, our algorithm for finding the completed stripe solutions is as
follows:

1. Choose an initial value of ¢ nearly equal to the numerical maximum gap
spacing (above ¢ = .8 was used). Set At = 1, with Az = Ay = .01. The
image size is taken to be 128 x 128 grid points, each of size Ax.

2. Run the modified Cahn-Hilliard equation to near steady state (300 iterations)
for this value of €.

3. At 300 iterations, multiply the near steady state solution u(z,y) by a factor
more than 1 so that max[u(z,y)] = 1.0.

4. Still at 300 iterations, switch € to a value of .01 (approximately the numerical
grid spacing value Ax).

In practice, to obtain the steady state requires less than 30 seconds on a Pentium 4
processor. Figure 7.4 (a), (b), (c), shows an example of such a calculation.

8. Numerical Examples. In a previous paper (see [6]) introducing this method,
we showed some numerical examples that illustrate the performance of a convexity
splitting scheme for this problem, as compared to other recent PDE-based inpainting
methods. Here we provide some examples illustrating the role of £ and Ag. The
modified Cahn-Hilliard equation was tested against a variety of elementary inpainting
geometries, as well as several more complex cases. Below and on the next pages, we
repeat some examples from the previous paper, and as well present a new example
showing binary inpainting of text.

8.1. Inpainting of a double stripe. Above in figure 8.1, we see the two-step
process at work to inpaint two stripes. The gray region in figure 8.1(a) denotes the
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(a)

Fic. 7.4. Disconnected stripe with a gap of 20, at (a) t=0, (b) t=299, after steady state

(b) ()

had been reached for e = .8, (c) t=500 (produced by switching to € = .01 at t = 300)

(a) (b) ()

Fic. 8.1. (a) Initial data (inpainting region in gray). (b) Intermediate state at t = 50.
(c) steady state at t = 700. (Gap distance is 30 grid points, Image domain is 128 x 128).

inpainting region. We begin running the modified Cahn-Hilliard equation with a large
value of € (= .8), and at t = 50 we come close to a steady state, shown in figure 8.1(b).
We then switch to a small value of € (= .01), using the result from figure 8.1(b) as
initial data. The final result at ¢ = 700, is shown in figure 8.1(c). In this test, At =1,
A = 50,000, C; = 300, and Cy = 150, 000.

8.2. Inpainting of a cross. In figure 8.2(a), the gray region denotes the “gap”,
or region to be inpainted. As with the stripes, the modified Cahn-Hilliard equation is
run to steady state for a large value of € (= .8), resulting in figure 8.2(b) at ¢ = 300.
This data is then used as initial data for the modified Cahn-Hilliard equation with
e (= .01) set to a small value. The final result is a completed cross at ¢ = 1000. The
parameters are At = 1, A = 100,000, Cy; = 300, and Cy = 3\.

8.3. Inpainting of a Sine Wave. Figure 8.3 shows how the modified Cahn-
Hilliard equation may be applied to the inpainting of simple road-like structures. In
figure 8.3(a), an incomplete sine wave is shown. In figure 8.3(b), the sine wave is
artificially “fattened” by expanding each white point’s area radially by a factor of 3.
This is done in order to give the modified Cahn-Hilliard equation sufficient boundary
conditions to do effective inpainting.

In figure 8.3(c), the gray area represents the inpainting region. The remaining
19



(a) (b) (c)

Fic. 8.2. (a) Initial data of cross (inpainting region in gray). (b) Intermediate state at
t = 300. (c) Steady state at t = 1000. (Image domain is 128 x 128, stripe width is 20 grid
points, initial gap distance is 50 grid points).

()

Fic. 8.3. Inpainting a sine wave. (Image domain is 128 x 128).

white and black portions of the image are thus outside the inpainting region, and
essentially held fixed in place by the fidelity term of the modified Cahn-Hilliard equa-
tion (7.1). The two step method was then used to inpaint the sine wave. Figure 8.3(d)
shows the finished result.

The initial value of ¢ was taken to be .8, and then at ¢ = 200 this was switched
to a value of ¢ = .01. The final inpainting result was taken at ¢ = 4000 (which cor-
responds to a time of 24 seconds real processing time). The parameters were set as:
At =1, Cy =300, A = 100,000, and Cy = 3A.
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Fic. 8.4. Recovering obscured text. (Image domain is 256 x 256 ).

8.4. Inpainting of obscured text. Figure 8.4 shows how the modified Cahn-
Hilliard equation can be used to recover obscured text. Figure 8.4(a) shows the text
obscured by lines. This is a common problem for Optical Character Recognition
(OCR) algorithms, with regard to text written on lined paper. Figure 8.4(b) shows
the result after processing by the modified Cahn-Hilliard equation.

The parameters were set as At = 1, A = 100,000,000, C; = 10,000, Cy = 3\,
€ = .008, and were kept constant during this particular test. the test was completed
at time ¢ = 800, which corresponds to 2 minutes of processing time.

9. Conclusions. This paper considers the method for binary inpainting recently
introduced by the authors in [6]. This work introduces a relatively simple fourth order
PDE for this task, rather than a more complex gradient flow to minimize a curvature
functional. This simpler model, based on the Cahn-Hilliard has many of the desirable
properties of earlier models, in particular the ability to match color and direction
of edges, without requiring the computational complexity of those methods. In this
manuscript we prove that for the proposed CH model, steady state solutions do indeed
inherit the observed boundary conditions in the large fidelity limit.

Empirically, we find that one can perform inpainting across larger regions by
considering a two-step method. The inpainting is done first with a larger e, which
results in topological reconnection of shapes with edges smeared by diffusion. The
second step then uses the results of the first step and continues with a much smaller
value of € in order to sharpen the edge after reconnection.

In practice such a two-stage process can result in inpainting of a stripe across a
region that is over ten times the width of the stripe, without any a priori knowledge
of the location of the stripe. This two-step method is an empirically observed phe-
nomenon which we understand more fully by considering the problem of bifurcations
due to the presence of multiple stable steady state solutions to the same inpainting
problem. Through a numerical search, we present evidence that the dynamical prob-
lem undergoes an incomplete pitchfork bifurcation, from a single stable steady state
solution at large ¢ to two co-existing stable steady states at small €, taking the form of
a broken stripe with rounded ends, and a completed stripe. One of these two solutions
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is connected to the large € by a continuous branch in the bifurcation diagram. For
large gap widths, it is the broken stripe, thereby requiring a somewhat more complex
process to find the basin of attraction of the completed stripe. Fortunately this is not
so difficult using the two-step process described above.

We complete the paper by showing some computational examples; the numerical
scheme is presented in the appendix. This scheme was shown in [6] to outperform
in speed other variationally derived inpainting methods by a significant amount (typ-
ically an order of magnitude or more). Thus it would be interesting to consider
methods related to this one for more complex inpainting problems such as greyscale,
color, and nonlocal filling-in.

Finally we mention that while this manuscript focuses on PDE-based methods
for filling in, there are many other approaches in the literature. Perhaps the closest
to what is considered here are those based on spline continuation of the edges [27, 28].
This approach is very fast for simple regions and the complexity of the algorithm
depends on the number of edges involved in the inpainting problem. In contrast, our
PDE-based method is O(NlogN), regardless of the complexity of the image, where
N = n x n is the number of pixels in a square region surrounding the inpainting
domain. The log correction is due to the use of the FFT for solving an implicit
equation.

Appendix A. Numerical Method.

Here we demonstrate how to implement Cahn-Hilliard inpainting using a specific
fast solver known as convezity splitting [14, 32]. However, other fast solvers might
be used with good performance. Convexity splitting involves dividing up the energy
functional for the equation into two parts — a convex energy plus a concave energy.
The part of the Euler-Lagrange equation derived from convex portion is then treated
implicitly in the numerical scheme, while the portion derived from the concave part
is treated explicitly.

Under the right conditions, convexity splitting for gradient flow-derived equations
can allow for an unconditionally gradient stable time-discretization scheme, which
means arbitrarily large time steps can be taken. Vollmayr-Lee and Rutenberg [32]
have more recently refined the conditions under which stability is applicable.

The new modified Cahn-Hilliard equation is not strictly a gradient flow. The
original Cahn-Hilliard equation (equation (7.1) with Ao = 0) is indeed a gradient flow
using an H~! norm for the energy

1
B = / € |Vul? + 2w () dz, (A1)
o 2 €

while the fidelity term in equation (7.1) can be derived from a gradient flow under an
L? norm for the energy

Ey = Xo /Q\D(f—u)zd:?. (A.2)

But in total, the modified Cahn-Hilliard equation is neither a gradient flow in H~!
nor L?. However, the idea of convexity splitting, one for the Cahn-Hilliard energy in
equation (A.1) and one for the energy Fs in equation (A.2), can still be applied to
this problem with good results.
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For example, one can split F; as

E1 = E11 — E12 (A3)
where
EH::l/ vl + L dz (A4)
0 2 2
and
1
Q g 2

A possible splitting for Fs is

E2 = E21 — E22 (A6)
where
E21 = / %|u|2 d¥ (A?)
a\p 2
and
2 02 2 7o
E22 = —Ao(f—u) +7|u| dZ. (AS)
Q\D

For the splittings discussed above, the resulting time-stepping scheme is:

unJrl _ ,un

N S V-1 (BY = Bfy) — Via(By — Exy) (A.9)

where V-1 and V2 represent gradient descent with respect to the H~! inner prod-
uct, and L? inner product, respectively. This translates to a numerical scheme of the
form

u"tH(E) — u(T)

5 + eA%y"THZ) — CL AU TH(E) + Cou™ T ()

= ACTW/ (" (@) + XD (@) (@)
— C1 AU (F) + Cou™(2). (A.10)

The constants C; and C5 are positive, and need to be chosen large enough so that
the energies Fq1, E12, Fo1, and Eoy are convex. 7 should be comparable to %, while
C5 should be comparable to Ag. Numerical tests have shown that with these choices
the scheme (A.10) becomes unconditionally stable. Equation (A.10) is then solved for
u" (), given u™(F), by way of a two-dimensional Fast-Fourier-Transform method.
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