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ABSTRACT OF THE DISSERTATION

Multilevel Optimization for VLSI Circuit
Placement

by

Nang Keung Sze
Doctor of Philosophy in Mathematics
University of California, Los Angeles, 2006
Professor Tony Chan, Co-chair

Professor Jason Cong, Co-chair

Circuit placement — spatially arranging the components of an electronic circuit in
a non-overlapping configuration on a chip — is a crucial step in today’s VLSI phys-
ical design flow. Placement determines the basic structure of the interconnect,
and interconnect delay is the bottleneck of nanoscale VLSI-system performance.
Placement is challenging not only because of the enormous number of objects to
be placed, but also because of many complex constraints related to non-overlap,

signal timing, wireability, temperature, manufacturability, and noise.

A high quality placement tool - mPL6 — has been developed and analyzed in
this thesis. It is a highly scalable non-convex nonlinear programming algorithm.
It makes use of accurate and smooth approximations of a bounding-box wire-
length objective function and generalized bin-based density constraints. These
incorporate complicated pairwise cells non-overlapping constraints and are evalu-
ated globally and scalably by fast numerical methods for a Poisson-based partial
differential equation (PDE). The nonlinear optimization engine is embedded in a

multilevel framework which enables scalability and better global optimization.

xvi



Experiments show that mPL6 is a fast placement algorithm producing the
shortest wirelength among the state-of-the-art academic placers. It is a stable
and robust algorithm that has consistent good performances on wide variety of
publicly available benchmarks. The runtime of mPL6 on designs with problem
size up to 2 millions is less than 9 hours on a Linux, 1.8GHz AMD Opteron

machine.
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CHAPTER 1

Introduction

1.1 Motivation

Integrated Circuit (IC) technology plays an important role in the revolution of
computing and communication. ICs are used in computers for microprocessor,
memory, interface chips etc. Nowadays, ICs are mainly composed of very large-
scale integration (VLSI) chips. Figure 1.1 shows the procedures for manufacturing
VLSI chips. The circuit placement problem, that we consider in this thesis, is a

key step in physical design cycle in manufacturing VLSI chip (cf. Figure 1.2).

Gordon Moore’s famous observation that the number of transistors per in-
tegrated circuit doubles every two years has held true for the last four decades.
The impact of this explosive increase has already transformed practically to all
areas of society, making possible all the recent revolutions in information tech-
nology. Continuation of the trend can reasonably be expected to lead to similar
breakthroughs. By the year of 2010, the minimum feature size of a transistor be

expected to shrink to as low as 25nm [itr].

It is possible, however, that the exponential rate of progress may cease very
soon, for two reasons. The first is the enormous cost of building fabrication
plants. According to the addendum to Moore’s law known as Rock’s law, the
cost of capital equipment to build semiconductors doubles every four years. If

current trends continue, the cost of a fab will exceed $10 billion by 2007 and may
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Figure 1.1: Design cycle for VLSI chip

reach $18 billion by 2010 [ICk01]. Such cost increases may not be sustainable
[ICk02]. Second, thermal noise analysis suggests that transistors densities will
reach fundamental physical limits before 2015, and possibly as early as 2008
[Kis02]. As the final economic and physical barriers to continued increases in
CMOS circuit densities begin to take shape, automated design plays an ever more
important role in determining system performance. The placement problem is
the step that defines the interconnects, which dominate the system performance.

Hence, it is a critical step in determining the circuit performance.

However, circuit placement is a NP hard problem which involves placing huge
amount of objects (up to several millions) on a given region subject to many
constraints (eg. non-overlapping constraint) to optimize the performance of the

circuit. It has hampered researchers for over 30 years. Recently, [CCX03, CKS03|
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Figure 1.2: Physical design procedure

shows that the quality of the current state-of-the-art placement algorithms (plac-
ers) is still 50% to 150% from optimal. It leaves a large gap for further improve-

ment.

Due to the complexity of the placement problem and the necessity of fast
production time to market, it is undoubted that one has to use approxima-
tion/heuristic algorithm to solve the large-scale problem within a reasonable time.
Several heuristic techniques for placement have been studied. In this thesis, a
stable and robust placement algorithm is presented. The proposed algorithm
reduces the optimality gap to around 20%. It has produced the best average

quality over the state-of-the-art academic placers.



1.2 Organization of the Thesis

The organization of the thesis is as follows.

Chapter 2 is the preliminaries. It gives the notations and definitions used in
the thesis, a brief description of the circuit that is considered in the thesis, and the
introduction to the circuit placement problem addressed in this thesis. Chapter
3 reviews commonly used placement algorithm techniques. Chapter 4 presents
a multilevel optimization framework for circuit placement problem. Chapter 5
discusses a robust and stable placement algorithm we have developed. It is the
main contribution of the thesis. Experimental results are given in Chapter 6.

Finally, conclusions and future work are presented in Chapter 7.



CHAPTER 2

Preliminaries

2.1 Notations and Definitions

Definition 2.1.1 Given a real-valued m x n matriz A with a;; as its 1j-th entry,

the transport of A, denoted as AT, is an n x m matriz defined as

a1l G211 - Gm
AT =
A1pn G2n - Gmp
Definition 2.1.2 Given a real-valued n x 1 vector T = (x1,%3,...,2,)", the

L,-norm of ¥, denoted as ||Z||,, is defined as
7]l = (X |=if?)>-

Definition 2.1.3 A[n| is denoted for a real n x n square matriz A with each

ij—th entry denoted by Aln];;.

Definition 2.1.4 The ij-th entry, C|nl;;, of a discrete cosine matriz C[n] is
defined by

Claly = |/ FE cos((=0=1),

where 1 <i,7 <n,d;; =1ifi =1 and §;; = 0 otherwise.




Definition 2.1.5 The tensor product of two matrices, A[m] and Bn] with a;;

and b;; as the ij-th entry respectively, is defined as

a1 B[n] a12B[n] -+ aimBn]
Alm] ® B[n] =
a1 B[n] ameB[n] -+ ammBIn]

which s an mn X mn matrix.

Definition 2.1.6 Any local optimal solutions of a real-valued constrained or un-
constrained optimization problem, that give the best objective value (smallest value
for minimization problem and largest value for mazimization problem), are con-

stdered global optimal solutions.

Next, we recall some definitions and theorems from [AB84] for our analysis.

Definition 2.1.7 An n X n matriz A is diagonally dominant if

n
| > _ 12.#.‘04‘”, 1=1,2,...,n,
J=LJF1

where a;; is the ij-th entry of A. For any matrix A such that a; # 0,7 =
1,2,...,n—1, let

n(i) =max{j : (i<j<n)N(ay;#0)},i=12,...,n—1.
That is, a; ) is the last nonzero entry in the ith row.

Definition 2.1.8 An n x n matriz A is an M matriz if
(i) a;; > 0,i=1,2,...,n — L;a,, > 0.

(it) a;j < 0,4, =1,2,...,n,1 % j.

(iii) n(i) > i,i=1,2,...,n— 1.



Lemma 2.1.1 Let A be a symmetric diagonally dominant M matriz and at least

one row sum s positive, then A is non-singular and hence positive definite.

Proof. Followed from the Theorem 1.17 in [AB84]. 0

Definition 2.1.9 A graph G = (V, E) contains a set of vertices V = {v1, v, ..., v,}
and a set of edges E = {ey, ey, ...,en}. Fach edge is a subset of V containing 2
vertices. G is a weighted graph if each edge e has a weight w(e) > 0.

Definition 2.1.10 A hypergraph H = (V, E) is a generalization of graph. It is
a graph except each edge e € E 1is a subset of V that can contain more than 2
vertices and is called hyperedge. H is a weighted hypergraph if each edge e has a
weight w(e) > 0.

Definition 2.1.11 Given a hypergraph H = (V, E), vertices v; € V and v; € V
are connected if there is an hyperedge e € E' such that v; € e and v; € e. A path
P ={e;,¢€iy, .-, } in H is an ordered subset of E such that e;; # ey if j # 1
and e;; Ne;, ., # 0, for any 1 < j <k —1. A Hypergraph is connected if for any

two vertices, there is a path of hyperedges containing the two vertices.

Using the above definitions and lemma, it is easy to prove the following the-

oremn:

Theorem 2.1.1 Given a connected hypergraph H = (V, E), suppose each vertex
v; 18 associated a variable weight x; and at least one of the vertices has a fized
given weight, then the Jacobian of the quadratic function

o(@) =) D wijlzi— ;) (2.1)

eck 111',11]'66



where q(Z) is a function of the variable weights and each w;; > 0 is a given con-

stant, is a positive definite matriz.

Proof. By direct computation of J,, the Jacobian of q(Z), one can show that

Jq satisfies the conditions of Lemma 2.1.1 and hence is positive definite. 0

2.2 Circuit Description

A brief description of circuits is presented in this section. For simplicity, many

engineering details and functionality of a circuit are skipped here.

One of the circuit types addressed in this thesis is the standard cell circuit.
Figure 2.1 shows a standard cell circuit. All cells are of rectangular shape. They
have the same height but can have different widths. A placement region is given
and standard cell row locations are defined. For a legal placement solution, all
cells have to be placed on the rows without overlapping with each other. Cells
on the boundary of the placement region are called terminal pads or pads. Their
locations are given and fixed. Cells are connected by wires, characterized as
nets or interconnects. Each net connects a set of cells through the pins on the
cells. Figure 2.2 shows a 2-pin net e; connecting cells v; and vy, and a 3-pin net
connecting cells vy, va,v3. For a net e, |e| denotes the net degree or the number
of pins connected by e. For a cell v, |v| denotes the cell degree or the number of

pins on the cell. For example, in Figure 2.2, |e;| = 3, |v1| = 2.

Another circuit type considered in the thesis is the mixed-size circuit. It is
similar to standard cell circuit except a small portion of the cells, named macros,
can have different height and their area can be more than 1000X larger than

the standard cell area. Some of the macros location may be given and fixed.
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Figure 2.1: Simplified standard cell circuit

Figure 2.2: Illustration of the connections between cells vy, vo, v3, v4 by nets ey, es.
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Figure 2.3: Layout of a mixed-size testcase — adaptec2 from ISPD’05 Placement
Contest benchmark [NAV05]. Only pads (located on the boundary) and fixed

macros are drawn.

Again, all the cell types are of rectangular shape. Figure 2.3 shows a layout of a
mixed-size testcase (standard cells not drawn), adaptec2 from ISPD’05 Placement
Contest benchmark [NAV05]. All the macros locations are given and fixed inside
the placement region. Again, for a legal solution, overlapping between any cells

is not allowed.

Given a circuit, the total placeable area is the area of the region where cells can
be placed. The whitespace of a given circuit is the total placeable area subtracted
by the total movable cells area. The utilization of a circuit is the total movable
cells area divided by the total placeable area. For a real design circuit, there

are enough whitespace so that cells can be placed within the placement region

10



without overlapping. Note that it is more challenging to find a legal placement

of the cells if there is small amount of whitespace.

2.3 Circuit Placement Problem Formulation

Circuit placement problem can be characterized as a hypergraph optimization.
Let H = (V, E) be the hypergraph. Let V = {v,vq,...,05,UN11,-..,UN+P}
represents the set of cells and E = {ej,eq,...,6,} represents the set of nets.
Net with degree k is called k—pin net. The set {vyy1,...,vy:p} represents pads
(fixed terminals) and each e; is a subset of V' that gives the connection among

the cells. Figure 2.1 shows the simple characteristics of a standard cell circuit.

Let (xk, yx) be the center coordinate of the cell vx. The pin-to-pin half perime-

ter wirelength (HPWL) of a net e, given by

lle) = max |(zi+p5,)— (2 +p5)+ max |(yi+py)—(y;+py)l (2.2)

;v €e,i<] v;,0;€€,4<]
where (p; ,p;.) is the relative pin position on cell v; connecting by net e, The
total HPWL %l(e) is the wirelength used to measure the performance of the
placement algesrithms. Through out the thesis, we use HPWL or WL to denote

the half-perimeter wirelength of a net or a circuit. For simplicity, many placement

algorithms consider the center-to-center HPWL

Wﬁ%qm—%H%ﬁgqm—wL (2.3)

for each net e which is easier to minimize as there are significantly fewer variables.

Our objective is to place the cells subject to some constraints such as cells

non-overlapping such that the total wirelength - I(e) is minimized. Currently,
eckE

we consider standard cell and mixed-size placement problem. The cells non-

overlapping constraint for the placement problem is to place all the movable cells

11



° . | o »
X
. IE\‘ 1 .
Placement “ b
Region R ‘
Good placement Bad placement

Figure 2.4: Good and bad placement layouts

on the given rows without overlapping with each other (see Figure 2.1). Figure
2.4 shows the importance of decent placement. A bad placement can degrade the
performance of the circuit a lot. The congestion of the wires may also make the

circuit design impossible to be manufactured.

Typically, placement problem is divided into two stages: global placement and
detailed placement. For global placement, one can place the cells on the place-
ment region without too much overlapping between cells. The global placement
solution is then legalized by discrete scheme [LK03, CX06]. The wirelength is fur-
ther reduced by local cell swapping where each move does not create overlapping.

In this thesis, we mainly focus on global placement algorithm.

12



CHAPTER 3

Review of Placement Algorithm Techniques

Automatic circuit placement has received renewed interest recently given the
rapid increase of circuit complexity, increase of interconnect delay, and potential
sub-optimality of existing placement algorithms [CCX03, CKS03]. As integrated
circuit technology further scales, the design sizes are getting larger. Recently,
[Con01] shows the importance of building a good physical hierarchy from a flat-
tened or nearly flattened logical netlist for performance optimization. Therefore,
large-scale placement on a nearly flattened netlist is needed for physical hierarchy
generation to achieve the best performance. This is even more critical for deep
sub-micron or nanometer designs as the interconnect has become the performance
bottleneck. Many placement algorithms minimize the approximated wirelength
objective and reduce overlapping between cells alternatively. In the following, we

discuss several techniques for handling wirelength and overlapping constraint.

Typical techniques used in the current state-of-the-art placement tools consist
of min-cut partitioning [CKM00a, YMO01], simulated annealing [WYS00, CCY03],
analytical methods with exact HPWL minimization [HL99], quadratic wirelength
minimization [KSJ91, CCKO00], linear wirelength minimization [SDJ91, CCK03b]
and log-sum-exponential wirelength minimization [Na01l, KW04, CCS05b]. The
first two techniques always produce a global placement with not much cell over-
lapping. On the other hand, analytical techniques for minimizing some uncon-

strained smoothed wirelength objectives usually introduces a lot of cell overlap-
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ping or area congestion during the global placement. Hence, area congestion
removal techniques such as slot assignment [CCKO00, CCKO03b], recursive bisec-
tion/quadrisection partition [Vyg97], ripple-move [HL00, CCKO03b], cell shifting
[VC04] and grid warping [XMF04] have been introduced. Algorithms [CCS05b,
KW04, EJ98] are also proposed to minimize the wirelength objective and area
congestion simultaneously. Usually, those placement techniques are embedded in
hierarchical /multilevel framework to speed up the placement process [CCS05b,
KW04, CKM00b, WYS00, YM01, CCK00, CCK03b, CCX03]. Multilevel frame-

work is discussed in more detail in Chapter 4.

In the following section, different wirelength minimization and overlapping

removal techniques are discussed.

3.1 Wirelength Handling

Since (2.3) is not differentiable and the constraints are highly non-convex, the
minimizer is hard to locate. Therefore, many direct or indirect approximations

of (2.3), that can be minimized efficiently, have been studied.

Typical indirect minimization of (2.3) is used in min-cut partitioning based
placers [CKMO00a, YMO1]. Since the cut size is related to net length, the smaller
the cut size implies the smaller the HPWL. Using the cut size driven based recur-
sive partitioning gives a fast way to minimize the HPWL and remove overlapping.
However, minimizing the cut size during partitioning is not always minimizing

the HPWL effectively.

An unconstrained minimization of the exact HPWL (2.3) can be formulated

14



as a linear programming [HL99]:

min Yeep(re — 1) + (r¢ — 1)

st. IF <z, <rZ Y <y, <rY Vv, €e,Ve € E,

(3.1)

where [7 and 77 are the leftmost and rightmost ends of net e respectively, {¥ and
r¥ are the lowest and uppermost ends of net e respectively. It can minimize the
HPWL directly. However, it is too costly to solve, not scalable, and difficult to

incorporate with overlapping constraint.

Using continuous differentiable functions to approximate (2.3) is necessary
for analytical placers [KSJ91, SDJ91, EJ98, CCK00, KM00, KW04, VKV04,
CCS05b] since typical mathematical programming requires the smoothness of

the objective function.

Many studies [KSJ91, SDJ91, EJ98, CCK00, VKV04] use quadratic function
approximation:

02wl Y lw— il (3.2)

e€E v;,v;Ce,i<] ;5 €e,0<]
The advantage of using the quadratic wirelength objective is that its uncon-
strained minimizer can be obtained by solving a positive definite linear system
of equations (cf. Theorem 2.1.1). However, it over-penalizes the long nets which
gives a bad half-perimeter wirelength placement solution which has illustrated in
[KSJ91, MAN94, KMO00]. To avoid over-penalizing the long nets, better approx-
imation of (3.2) is proposed in [KSJ91] by using linearized quadratic wirelength:
20 2 lmi—zl+ X lw—uil) (3-3)

e€E v;,v;€e,i<] v;,0; €e,i<]
It certainly reduces the effects of over-penalizing the long nets. Typical Weiszfeld
iteration [Eck75] is used to solve it but requires more computations than mini-

mizing (3.2).
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A more accurate approximation of (3.2) by L,-norm [KMO00] is given by
1 1
D0 X @i—w))r+( Y (Wi—y))P). (3.4)
ecE  w;,vj€ei<l] vi,v;€€,1<J
Since Ly-norm tends to maximum norm when p tends to infinity, the larger p

implies more accurate approximation of (2.3). However, the non-smoothness of

the function at the zero point may cause difficulties during minimization.

Another accurate approximation of the half-perimeter wirelength [Ber82, Na01,

KW04, CCS05b] is given by

n X (log ¥ exp(xx/n) +log ¥ exp(—xx/n)
eck v €e vp€e

(3.5)
+log ¥ exp(yx/n) + logkaEe exp(—yx/n)),

v €e

where the smaller 7, the more accurate the approximation. It is a smooth convex
function. Also, the number of terms in (3.5) is much fewer than those in (3.4)

which makes it easier to minimize. However, it costs more to minimize (3.5) than

(3.2).

3.2 Overlapping Handling

A direct consideration of cells overlapping is by posing pairwise non-overlapping
constraint [CCKO00]. For simplicity, each cell v; is considered a disk with ra-
dius r; = v/h;w;/m. Then for each pair of cells v; and v;, the non-overlapping

constraint is given by
(@i — 25)* + (yi — y;)? > (ri +15)%. (3.6)

However, the quadratic number of constraints is not scalable and this approach

is used to solve small enough problems in [CCK00, CCKO03b].

Another direct way to remove overlapping between cells is to pose a uniform

bin grids on the placement region where the number of bins is equal or larger
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than the number of cells. A weighted bipartite graph between cells and bins
is constructed, using the distance between the cell and the bin as the weight.
A minimum weighted matching is computed so that cells are assigned to their
target bins to minimize the total displacement of the cells. The process is called
slot assignment which is used in [CCK00, CCKO03b]. To make the slot assignment
more scalable, a two-way recursive partitioning of the region and cells is done until
the subregion slot assignment problem is small enough. However, it is effective
to remove overlapping only when all cells are near uniform size. Also cells are

moved more than necessary if the bin size is much larger than the cell area.

A recursive four-way partitioning of the cells by minimizing the total displace-
ment of the cells, proposed in [Vyg97, BS05], can be considered a generalization

of the slot assignment. It can handle cell with different sizes and is very scalable.

To avoid direct handling the quadratic number of pairwise non-overlapping
constraints, many studies use indirect measurement of the cells overlapping. A
bin grid structure is posed on the placement region (cf. Figure 5.1). The capacity
of the bin is the bin area. The density of a bin is the sum of all the cells area
overlapping with the bin. Once the density of a bin exceeding the bin capacity,
it is considered overflow. If the bin area is small enough and no overflow bins
exists, the placement is expected with little overlapping between cells. It is more
efficient to use the bin overflow to approximate the cells overlapping since one
can use linear number of bins in terms of number of cells, which is much fewer

than the number of pairwise non-overlapping constraints.

There are several effective algorithms proposed to reduce the density of an
overflow bin or to even the density in each bin. For example, in ripple-move
algorithm [HL99], to reduce overflow in a bin, a nearby underflow bin is chosen. A

directed acyclic graph is built using the overflow bin as source and the underflow
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Figure 3.1: Ripple-move area-congestion control.

bin as sink. There are only edges between adjacent bins directed towards the
sink. Each edge uses the most wirelength reduction to move a cell to its adjacent
bin as the weight. A longest monotone path is computed (cf. Figure 3.1). Cells
are moved to their adjacent bin along the longest path. Since each moved cell
is perturbed by a bin size, this gives an effect of ripple move and avoids large
increase in wirelength. Also, using the reduction of wirelength as the weight
helps reduce the wirelength or avoid too much wirelength increase. However, this

approach is effective only when all cells are nearly uniform size.

Other effective and more general algorithms to reduce overflow are cell shifting
[VC04], grid warping [XMF04], diffusion based placement migration [RPA05],
and force-directed method [EJ98, VKV04, CCS05b]. The main goals of these
techniques consist of keeping the relative ordering and minimum displacement of

the cells.

The placement algorithm proposed in this thesis is based on a force-directed

method to reduce overflow. More details are given in Chapter 5.
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CHAPTER 4

Multilevel Algorithm for Placement

In this chapter, multilevel framework for placement is discussed. Placement al-
gorithms [CCKO00, CCKO03b]| utilizes the multilevel framework are presented at

the end of the chapter.

4.1 Multilevel Framework

Multigrid and algebraic multigrid have been successfully applied to solve par-
tial differential equations and linear system of equations respectively [Bra0l,
BMHO00, TOS00, Bra86, RS87]. It is highly effective and scalable. Similar ideas
have brought to solve large-scale optimization problems [BR02]. Many studies
[AHK97, KAK97, CCK00, CCK03b, CCY03, CCK03a| show that multilevel al-
gorithm is a promising technique to handle large-scale optimization problems
in VLSI domain. It is not only used for speed-up, but also for better global

optimization.

Figure 4.1 shows an example of a V-cycle optimization in multilevel framework
for placement which is effectively used in [CCK00, CCK03b, VK05, CCS05b]. The
main idea in multilevel algorithm is to build a sequence of coarser level or sim-
plified problems to approximate the original problem (the finest level problem).
Each coarse problem is an approximated and simplified problem of the finer level

problem such that a good solution obtained from optimizing the coarse prob-
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Figure 4.1: Multilevel optimization V-cycle

lem serves a good starting point for optimizing the next finer level problem. The
main components are coarsening (clustering) — to build the coarse level problems,
interpolation — to transfer solutions between levels, relaxation — to optimize the
problem or improve a given solution, and multilevel flow — an order of sequence
to optimize from the coarsest level problem to the finest level problem. Each

component is discussed in the following sections.

4.1.1 Coarsening

The purpose of coarsening or clustering is to build a hierarchy for the multilevel
paradigm. Due to the physical meaning of the placement problem, a natural
way to reduce the problem size is by grouping a subset of cells (cluster) until
the number of clusters is small enough. After clustering the cells, it becomes the
placement of the clusters only and the nets connecting cells within the cluster

are discarded. This indeed gives a coarse or simplified problem of the original
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problem.

To assure that the clustered netlist is a good approximation of the original
netlist, the way to cluster the cells plays an important step in building the coarse
level problems. There are many studies on clustering scheme [KAK97, CL04,
HMO04, AKNO5]. In general, clustering scheme can be divided into two steps.
The first step is to define the affinity between two connected cells, the larger
the affinity the higher the chance to cluster the cells. The next step is to decide
the sequence to pick a cell and cluster it with one of its neighbors that sharing
the largest affinity. The coarsen hypergraph is then constructed as follows. An
affinity graph is constructed by joining each vertex to exactly one of its neighbors
for which it has maximal affinity. Each group of joined vertices is called a cluster
and become the coarser level vertex. The cluster size equals the sum of the size of
the grouped cells. Hyperedges are defined on the clusters in the obvious way: each
hyperedge on the finer level becomes a hyperedge (the set of clusters containing
those vertices) at the coarser level, with the singleton hyperedge simply ignored.

We hence get a smaller hypergraph at the coarser level.

A clustering scheme for hypergraph coarsening, called First Choice, is pro-
posed in [KAK97]. It first transforms the hypergraph into a clique model weighted
graph (see Figure 4.2). Given a hypergraph H = (V| E), the weight or affinity
between any two vertices v and w in the clique model weighted graph is defined

as
1

Tow = Y =0 (4.1)

ecE|v,wee

It traverses the list of vertices in a random order. Each traversed vertex is then
clustered with its neighbor with the largest affinity (4.1). The clustering algo-

rithm stops when the number of clusters has reached the target.

From the equation (4.1), the larger the affinity implies the higher the connec-

21



Transform the
hypergraph to
clique model
graph using the
weight 1/(lel-1)

Figure 4.2: Transformation from hypergraph to clique model weighted graph.

tivity between the cells. Also, the smaller the net degree |e| contributes the more
affinity between the cells. The intuition for it to be a good clustering scheme
for placement problem is that cells with high affinity should stay close together
in a good placement solution. In the following sections, two clustering schemes,

modified First Choice and Best Choice, for placement problem are presented.

4.1.1.1 Modified First Choice Clustering

For placement problem, the affinity between vertex or cell v and w is defined as

1
w = (le] — 1)area(e)’

ecE|v,wee

(4.2)

where area(e) denotes the sum of the areas of the cells in e. The additional
term area(e) is an indirect way to control the cluster size. Unlike the affinity
defined in (4.1) which is mainly proposed for hypergraph partitioning problem,
the modified affinity (4.2) is to target the placement problem. By controlling the
cluster size, the coarsen hypergraph has less variations in the clusters size. Instead
of traversing the cells in a random sequence, the cells are traversed in ascending

order of the cell area (with preference to smaller cell degree to break tie). This
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ordering gives a more balance in clusters area. If a good initial placement is
provided, the geometric information of the cells can be incorporated into the

affinity between cells:

1
Tyw = Z (le] — 1)area(e)dist(v, w)’

ecE|v,wee

(4.3)

where dist(v,w) is the Euclidean distance between v and w. That is, closer

neighbor contributes more to the affinity.

4.1.1.2 Best Choice Clustering

Another more sophisticated clustering scheme is Best Choice proposed in [AKNO05].

The affinity between any two cells v and w used in the Best Choice is defined as

1

= 2 (le]) (area(v) + area(w))’

e€E|v,wee

(4.4)

va

where area(v) and area(w) denote the area of the cell v and cell w respectively.
In addition to the indirect control of the cluster size, it poses a hard bound for
the cluster size. when the formed cluster area larger than the predefined upper

bound for the cluster size, the merged clusters are restored.

It first computes the affinity or score (4.4) for each cell. The one with largest
score is chosen to cluster. Hence it gives a more globally optimal sequence for the
clustering process if (4.4) is a good affinity. Once a cluster is formed, it updates
the netlist immediately. That is, the coarsen hypergraph is updated immediately
after clustering. And the updated hypergraph is used to compute the score for
the new clusters. However, the immediate updating of the hypergraph after
clustering is time consuming, a lazy update is proposed to reduce the runtime.
Instead of updating the hypergraph immediately, it updates the hypergraph only

when the one with maximal score is required an update. Since the changes to the
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netlist after clustering only affect the neighboring cells, the score for those cells

can be updated when they are chosen.

Similar to the modified affinity (4.3), if a good initial placement is provided,the
geometric information of the cells can be incorporated into the affinity between

cells:
1

= 2 () area(o) + areaw))dist(o, w)

e€E|v,wee

(4.5)

where dist(v,w) is the Euclidean distance between v and w. That is, closer

neighbors contribute more to the affinity.

4.1.2 Relaxation

Relaxation is referred to the optimization process for a given problem. In mul-
tilevel framework, the ideal complexity for relaxation at each level should be
linear time in terms of the number of variables at that level so that the overall

complexity for a V-cycle (cf. Figure 4.1) optimization is of linear complexity.

At the coarsest level where the problem size is small enough, the relaxation
should be good enough to find a good solution or nearly optimal solution. At
the other levels, an initial solution is given or transfered from the coarser level
and serves as a starting point for the relaxation scheme. The initial solution is

iteratively improved by the relaxation scheme.

4.1.3 Interpolation

Interpolation is used to transfer solutions from level to level. For example, given
a placement solution at the coarse level, we use it to compute the placement

solution at the finer level via interpolation.

A simple interpolation scheme, called constant interpolation, is to simply
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assign the cluster’s location to its sub-clusters. This interpolation gives an im-
mediate solution for the finer level problem. However, for placement problem,
this means putting all the sub-clusters on top of each other. It creates significant
overlapping between cells which may not serve as a good initial solution for some

particular placement techniques.

A more sophisticated interpolation scheme, called weighted or AMG-based
interpolation, is proposed in [CCKO03b]. It creates less cells overlapping comparing
to the constant interpolation. A graph model of connectivity (cf. Figure 4.2) is
employed to define the interpolation: the weight of edge e;; is

wle;) = > ﬂ; (4.6)

{e€E |i,jee} e\ B 1)

For efficiency, only weights above a certain threshold (currently 1/4) are used.
Finer level vertices v; within each cluster with the highest vertex degree (using
cell area to break tie) are designated as “C-points” and are given the positions
of their parent clusters. “C-point” locations are fixed during interpolation. The
remaining points are designated as “F-points” and are placed at the weighted
average of the positions of the C-points to which they are connected. Once an
F-point has been placed, it can be treated like a C-point and used to influence
the positioning of other F-points to which it has connections (cf. Figure 4.3.
Moreover, since the process depends on the vertex order, iterations are used
to allow all interconnected nodes to influence each others’ positions. For this

purpose, the nodes are ordered by decreasing connectivity w(v;) = ¥; w(e;;),

following (4.6).

If an initial solution is given for the original problem, it needs to be transfered
to the coarse levels so that it can be utilized and further improved through the
coarse levels optimization. The interpolation of a solution to coarser level is

relatively simple — the coarser level vertex or cluster position is determined by
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the average positions of its sub-clusters.

4.1.4 Multilevel Flow

Multilevel flow is the sequence of coarse levels relaxation. Figure 4.4 shows three
different sequences of coarse levels relaxation. The standard multilevel flow is
the V-cycle optimization. In a V-cycle, coarse level problems are constructed
recursively until the problem size is small enough for the relaxation to find a
good solution. Then the solution at the coarsest level is interpolated and relaxed
subsequently up to the finest level (the original problem). A more extensive coarse
levels relaxation sequence is called F-cycle. For each coarse level problem, a V-
cycle optimization flow is used to optimize the problem. It gives more extensive
relaxations at coarse levels at the expenses of runtime. A back-tracking V-cycle

(Figure 4.4) is a trade-off of speed and quality between V-cycle and F-cycle.

The multilevel flow can be repeated to further improve the quality of the
solution. The solution from the previous multilevel flow can be incorporated into

the clustering scheme affinity (4.3) and (4.5) to speed up the convergence.
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Figure 4.4: Iterated multilevel flow alternatives

4.2 Multilevel Placement Algorithm — mPL

In this section, an effective multilevel algorithm utilizes the multilevel frame-
work is discussed. A multilevel placement algorithm, called mPL, is developed in
[CCKOO0]. Tt is based on the multilevel paradigm discussed in the previous section.
It makes use of edge-separability clustering scheme [CL00]. At the coarsest level,
the relaxation is a customized interior-point method which is used to solve a non-
linear programming formulation — minimization of the quadratic wirelength (3.2)
subject to pairwise non-overlapping constraints (3.6). Slot assignment followed
by GOTO based discrete single cell optimization [CCKO00] is used for relaxation

at each level. It uses one V-cycle with constant interpolation.

An enhanced version of mPL, called mPL2, is proposed in [CCK03b]. The
first version of mPL, is called mPL1 for clarity in subsequent discussions. mPL2

makes use of modified First Choice as the clustering scheme and AMG-based
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weighted interpolation discussed in the previous sections. In addition to the
optimization algorithms proposed in [CCKO0], it incorporates a more effective
relaxation scheme, called quadratic relaxation on noncontiguous subsets (QRS)

discussed in the following.

At each level of the interpolation phase, sweeps of unconstrained quadratic
relaxations on small, noncontiguous movable subsets of cells are applied. Let M
denote a designated set of movable cells. We denote the set of nets containing
at least one movable cell by Ej; and the set of fixed cells in Ey; by F. That
is, F' = Ueep,, € \ M. For each movable set M, we minimize the total weighted

quadratic-star wirelength of F,;.

For each net e € E, let |e| denote the number of cells in net e, (z;,y;) the

center of cell v;, and let

1 1

S - y)

|€‘ vi€e ‘6‘ v; €€

(e =

By weighted quadratic-star wirelength, we mean

0 — 1 (Iz - xe)z (yz - ye)2
PP 2® — 2P| +| OO

ec&y vi€e Yi " — Ye

where the fixed-constant displacement weights

1/ \xz(-k) —z®| and 1/ |y§k) — y{¥)| are used at each iteration after the first, as in
Gordian-L [SDJ91], in order to help the objective gradually approximate a linear-
star wirelength as closely as possible in a smooth way. In the very first iteration,
the weights are not used, and the objective is simply quadratic star wirelength.

Currently we employ just five such iterations for each movable subset.

The movable subsets are obtained as segments of length 3 along a DF'S vertex
traversal of the netlist. The traversal begins with a vertex v such that the sum

of the wirelength of the nets containing v is maximal. Although larger movable
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subsets may produce lower wirelengths at the given level, they do not appear to

be cost-effective within the multilevel framework.

Because there are typically many fixed cells in F;;, the movable cells tend
to remain separated and not move unreasonably far. However, some increase
in overlap may be incurred, as there is currently no area-congestion modeling
included in the subproblem objective. Following Mongrel [HLO0O], the movable
cells are, therefore, not all moved to their relaxed locations right away. Instead,
they are moved one at a time, and after each such move, the bin-based area
density constraint(s) for the destination bin(s) are examined (a cell may be too
large to fit in a single destination bin). If any such bin-density constraint is
violated, its bin’s area is reduced by cell-by-cell “ripple-move” propagation along
monotone paths from overfull bins to underfull bins until feasibility is restored

(Figure 3.1).

Currently, quadratic relaxation in mPL2 amounts simply to three cell dis-
placements, each possibly followed by ripple-move corrections to area-congestion.
Following each such subset relaxation, the net wirelength change is checked. If
the relaxation increases the wirelength, its steps are reversed, and relaxation on
the next movable subset in the DFS sequence of subsets proceeds. This mono-
tone-nonincreasing-wirelength strategy was observed to produce better results in
our multilevel implementation than the alternative FM-like hill-climbing strategy
used in Mongrel [HLOO]. In that approach, all relaxations are initially accepted,
but at the end of the entire sweep, the configuration following the one that pro-

duced the least wirelength is restored.

For multilevel flow, instead of using one V-cycle optimization in mPL1, mPL2
uses two V-cycles. The placement from first V-cycle is used to guide the clustering

scheme (4.3) in the second V-cycle.
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Note that mPL1 and mPL2 can only handle circuit with uniform cell size
because the relaxation scheme used only can handle uniform cell size placement.
To handle the non-uniform standard cell size circuit (cells with same height but
different width), large cells are broken into smaller cells so that the cell size
variations is reduced. Artificial net with large net weight is used to connect the
broken pieces of cells so that they stay close together during the optimization

steps. The newer version is called mPL3.

An enhanced version of mPL3, called mPL4, uses more extensive multilevel
flow. Two back-tracking V-cycles is used. Also, it incorporates a more effective

detailed placement [LKO03].

In the following chapter, a new powerful relaxation is presented. It is able
to handle the non-uniform size standard cell placement and mixed-size place-
ment. Enhanced versions of mPL are presented by incorporating the powerful

optimization algorithm.
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CHAPTER 5

Generalized Force-directed Algorithm

In this chapter, an effective constrained minimization formulation, an approxi-
mation of the placement problem, is proposed. It makes use of smooth accurate
approximation to wirelength objective and smooth approximation of pairwise
cells non-overlapping constraints. A nonlinear programming algorithm, named
GFD algorithm, is presented to solve the problem. It is based on a well-known
mathematical programming, Uzawa algorithm [AHU58|, which is developed to

solve constrained optimization problems.

Since one needs to solve the placement problem with up to millions of cells in
fast runtime (close to linear complexity), several heuristic techniques are incorpo-
rated to sped up the convergence. The approximation algorithm for solving the
constrained minimization problem can be considered a generalization of the force-
directed method proposed in [EJ98|. These important techniques, contributed to
the success of the GFD algorithm, are discussed in this chapter. Also, the GFD
algorithm is embedded in multilevel framework for better scalability and better

global optimization.

5.1 Constrained Minimization Problem Formulation

In this section we present a constrained minimization formulation to approximate

the placement problem. We discuss smooth approximations to the wirelength
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objective (2.3) and smooth approximation to the pairwise cells non-overlapping

constraint of the placement problem.

5.1.1 Smooth Wirelength Approximation

Since (2.3) is not differentiable and the constraints are highly non-convex, the
minimizer is hard to locate. Therefore, using continuous differentiable functions
to approximate (2.3) is necessary. Many studies, for example [KSJ91, EJ98,
CCKO00], use a quadratic function approximation given in (3.2). The advantage
of using the quadratic wirelength objective is that its unconstrained minimizer can
be obtained by solving a positive definite linear system of equations (cf. Theorem
2.1.1). However, it over-penalizes the long nets which gives a bad half-perimeter

wirelength placement solution.

In this paper we use the following better half-perimeter wirelength approxi-
mation objective (3.5) proposed in [Na01] and recently used in [KW04, CCS05b],
where the smaller 7, the more accurate the approximation. However, 1 can not
be chosen too small due to machine precision and numerical stability. In experi-
ments, we scale the placement problem so that all the cell locations are between

0 and 1. 7 is then set to 0.01.

We have also proposed and studied another accurate approximation to (2.3)

using L,-norm:

=

S ) — (X o)+ () — (X 4?)77) (5.1)

ecE up€e vp€Ee vpEe vpEe
since the first term and the second term tend to max{z;} and min{z;} respec-
tively as p tends to infinity. We set p = 32 in experiments so that 2P and z# can
be computed efficiently. Numerical results verifying the effectiveness of different

objectives are given in Table 6.8. We remark that a slightly different approxima-
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Figure 5.1: Illustration of fractional cell area in a 3x4 bins region.

tion using L,-norm is proposed in [KMOO] (cf. (3.4)).

5.1.2 Smooth Constraints Approximation

Since the pairwise cells non-overlapping constraints are highly non-convex and
difficult to satisfy during the global placement, we relax the constraints by using

the bin density constraints discussed in the following.

Based on the placement region R, we divide the region into m X n uniform non-
overlapping sub-regions (bins) B;;,1 <i < m,1 < j < n such that U, ;B;; = R.
Let h; and hy be the bin width and bin height respectively. Define D;; to be the

average density in the bin B;; which is given by

Dy;(Z,7) = Z ai;j (vk)/ (hahy), (5.2)

where a;;(vi) is the fractional area of cell vy, lying inside bin B;; (see Figure 5.1).
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We consider the constrained minimization problem:

min W(Z,y
(Z,79) (53
st. Diyy=K, 1<i<m,1<j5<n

where D;; is the average density in B;; defined through (5.2) and K (< 1) is the
total cells area divided by the area of the placement region R. In the following
discussions, we assume that K = 1, that is, total cells area equals the area of the

placement region.

Note that in general we can have different density target K;;(< K) for each
bin B;; to reflect uneven density requirement due to pre-placed blocks etc.. The
uneven density requirements problem can be solved through the even density case
if dummy fixed density F;; is pre-occupied in each bin B;; so that K;; + Fj; = K.

This can be proved in the following theorem.

Theorem 5.1.1 A global optimal solution of the following constrained minimiza-
tion problem
min W (Z, )

s.t. Dij:Kija 1§1Sma1S]§n

(5.4)

can be obtained from a global optimal of (5.3).

Proof. Let F;; be the amount of fized density added to each bin B;; such that
F,; + Ki; = K. Then a global optimal solution of (5.3) is satisfying the con-
straints in (5.4). It is also the global optimal solution for (5.4) because any so-
lution satisfying the constraints in (5.4) with smaller objective value contradicts

the optimality of the solution we obtained in (5.3). O

The current problem is to find a placement that minimizes the wirelength

W (Z, ) such that cells are evenly distributed over the region. However, it is
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difficult to solve the above problem since the density function is not differentiable.
To make the problem easier to solve, we use the inverse Laplace transformation
[Eva02] to smooth the density function. The smoothing operator A ld(z,y) is

defined by solving the following Helmholtz equation:

AY(z,y) — ep(z,y) =d(z,y), (z,y) €ER

‘Z—’f =0, (z,y)€0R

(5.5)

where € > 0, v is the outer unit normal, OR is the boundary of R, d(z,y) is the

continuous density function and A is a differential operator given by
=_—+ - (5.6)

The inverse operator A 'd(z,y) is well defined, as (5.5) has a unique solution
for any € > 0 [Eva02]. Since the solution of (5.5) gains two more derivatives
[Eva02] than d(z,y), ¢ is a smoothed version of the density function. On the
other words, the solution must be smooth enough to satisfy (5.5) as it needs to

be differentiated twice.

We use the finite difference method [MM94] to discretize the problem (5.5)
using the bin grids we defined above. The Neumann boundary condition is used
in the discretization scheme. Let 1); ; be the value of 1 at the center of the bin

B;j. The approximation equations of (5.5) are given by

Yiv1,5 =20 i+Pi-15 + Yig41—2s,5+¢i5-1
h2 h2

: (5.7)
where
Yoj=1v1; V1<j<n
Vmt1,j = Um,j J (5.8)

Yio=vin V1<i<m

wi,nql—l = wi,n V1 <1< m,
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and D;; is the average density in B;;. Let L.mn] be the matrix corresponding
to the above linear system. Then U = (¢11, ¥, - . ., ¥mn)T can be computed by

solving the following linear system
L[mn]¥ = D, (5.9)

where D = (D1, D1s, . .., Dimy)T. Note that the problem (5.9) can be solved in
O(mnlogmn) by fast discrete cosine transform [CCNO0O]. The matrix L.[mn] can

be diagonalized by discrete cosine matrix (2.1.4), that is,
Le[mn] = (C[m] ® C[n])" A[mn](C[m] ® C[n)), (5.10)

where C[n]) is the n x n discrete cosine matrix (2.1.4) and A[mmn] is a diagonal
matrix with diagonal entries being the eigenvalues of L.[mn]. The eigenvalues of
Lmn] can be computed analytically (see Appendix A).

Since (C(m) ® C[n])™" = (C[m] ® C[n])" and the multiplication (C[m] ®
C[n])D or (C[m]®C[n])TD can be computed in O(mnlogmn) time [SB93, FFT],

the solution of (5.9) is given by
¥ = (C[m] ® C[n))TA  [mn](C[m] ® C[n])D, (5.11)

which can be computed in O(mnlogmn) time.
Now we can reformulate the problem (5.3) as
min W (Z,9)

’ (5.12)

where U = L.[mn] D and K.I = LJmn] 'K1 = —K/el is a constant vector
where T = (1,...,1)T. We have smooth objective function and constraints which
enable (5.12) ready to be solved by standard mathematical programming. In the

following section, we discuss how to solve the above problem (5.12).
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5.2 Problem Solver

In this section, a generalization of the force-directed method [EJ98], called GFD

algorithm, is presented to solve (5.12).

5.2.1 GFD Algorithm

There are many nonlinear programming techniques to solve (5.12). We use the
Uzawa algorithm [AHU58] to solve (5.12). The advantage is that it does not
require a Hessian inversion to find a minimizer satisfying the KKT condition
[Ber82]. Another reason is that the iterative scheme can be viewed as a gen-
eralization of the force-directed method [EJ98]. An analysis of applying Uzawa
algorithm to solve linear constrained quadratic programming problem is given in

Appendix B.

By applying the Uzawa algorithm to solve (5.12), we get the following iterative

scheme:

VW(fk"H, g]'k—i'l) + Z /\fjij =0
0] (5.13)
NG = M+ (i — Ko)

where \* is the Lagrange multiplier at k—th iteration, « is a parameter to control
the rate of convergence, and #* and ¢* are the cells center locations at the k—th

iteration.

The gradient of 1);; with respect to the center location of cell v, is approxi-
mated by the forward difference scheme [MM94]

Vot = % and Vi = % (5.14)
T Y

if the center location of cell v is inside B;; and zero otherwise. Note that us-
ing backward difference scheme or central difference scheme [MM94] instead of

forward difference scheme (5.14) gives similar results.
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In each step of the iterative scheme (5.13), we have to solve a nonlinear
equation which can be solved by the time marching scheme [ROF92, AE04]. The
solution of the nonlinear equation is a steady solution of the following ordinary

differential equation (ODE):

02(t)
0, — —
L | = —(VW(E(), A Vibi;

a%(t) (VW (Z(t), ¥(t)) + % Jvdfj) (5.15)

—

(Z(0),7(0)) is a given initial placement,

where (Z(t), 7(t)) denotes the placement at time ¢. It can be considered a gradient
descent scheme for the Lagrangian function
L(Z(t), §(t), A) = W(&(), §(t) + D_ Xij (i — Ko) (5.16)
1]

dL(F(t), §(), X) _ _||6L(a:~'(t),g'(t),i>
dt ot

|3 < 0. (5.17)

One can think of it as minimizing the wirelength objective and constraints penalty
simultaneously at each iteration. We solve the above ODE by the explicit Euler

method [MM94] which gives the following iterative scheme:

:Z"lH'l flc
= — (VW (&, §%) + 3 \ij Vi (T, 7))
gk+1 gk ,J (518)

(7%, ¢°) is a given initial placement,

where (7, 7*) are the locations of cells at k — th step and 7 is the time step. The
time step 7 has to be smaller enough to guarantee convergence. Analytical upper
bound for 7 is depended on the Hessian of the Lagrangian function (5.16) that
is hard to be determined. In practical, an initial value of 7 is determined. It is
reduced by a constant ratio and the previous solution is restored if the iterative

scheme (5.18) does not converge.
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The algorithm we used to solve (5.12) is given in Table 5.1. It is called GFD
(Generalized Force-directed) algorithm. The algorithm takes in the number of
outer iterations and the stopping criterion for inner iteration. « is a parameter
to speed up the convergence. p is the increasing rate for a. k is the percentage
of the number of non-zero density bins for the stopping criterion. N is the set
of movable cells, and P is the set of pads and fixed cells. Since one can only get
a local minimizer by solving (5.13), the initial solution is important. The outer
iterations can be considered a continuation method where the solution at each

outer iteration is used as an initial solution for the next iteration.

We use uniform bin grids, and the number of bins is roughly equal to the
number of cells. Since the global placement produced by the GFD algorithm
contains cell overlapping, a discrete algorithm is used to legalize the solution.
We use a simple effective greedy algorithm [LK03, CX06] to place the cells in
standard rows without overlapping. Local greedy cell swapping, where each move

does not create overlapping, is then applied to reduce wirelength.

5.2.2 Comparisons with APlace and Kraftwerk

In this section, we compare GFD algorithm with other famous analytical placers

APlace [KWO04] and Kraftwerk [EJ98].

APlace [KWO04] is an analytical placer based on [Na01]. The problem formu-
lation considered in [KWO04] is the same as (5.3). It uses a bell shape function
[Na01] to smooth the density constraint locally. In our case, however, the inverse
Laplace transformation (5.5) smoothes the density function globally. APlace uses
a penalty method utilizing nonlinear conjugate gradient algorithm to solve the

smoothed version of (5.3).

Kraftwerk is an analytical placement algorithm utilizing the force-directed
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GFD (outer_iters, stop_percent)
if initial placement not given
use the unconstrained minimizer of the quadratic
wirelength objective as an initial solution.
endif
compute nnb = number of non-zero density bins.
set P = the set of pads and fixed cells.
set M = the set of movable cells.
set inner_iters = |M|.
set u = 1.5. (Experiments show that it is a good
trade-off between runtime and wirelength)

for i = 1 to outer_iters

_ /max{ P .1}
set a = hah, log [M] -
— mind 100
Kk = min{ =" stop_percent}.
A=0.

for j =1 to inner_iters
if nnb not increased
o= po.
endif
X=X—a(¥-K,).
solve the ODE (5.15) by explicit Euler method (5.18).
compute nnb.
if more than k% non-zero density bins
break.
endif
endfor
call detailed placement.

endfor

Table 5.1: GFD algorithm.
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method proposed in [EJ98]. In [EJ98], it derives that the divergence of the forces
f(:c, y) = (f1, f2)T is proportional to the density; that is,

0fi | 0fs
_— _— . -]-
9 + o c-d(z,y), (5.19)

where ¢ is a constant. Also, there exists a scalar function ¢(z,y) satisfying

-

Vo(z,y) = f(z,y)- (5.20)

Combining (5.19) and (5.20) gives the following equation

Agp(x,y) =c-d(x,y) (5.21)

with boundary conditions that the magnitude of the forces V¢(z,y) is zero at
infinity.

Comparing (5.5) with (5.21), the main difference is the boundary condition
if we choose small €. The boundary condition in our formulation (5.5) tells that
the forces pointing outside the boundary are zero, which makes more sense than
assuming the forces being zero at infinity as in [EJ98] since we want to place the

cells inside a finite region.

Moreover, the force-directed method in [EJ98] can be considered a special
case of (5.13). It uses the quadratic wirelength objective (3.2) for W(Z, ) and

iteratively solves

C 0 1 . Pz e i 0 (5.22)
0 C )\ By Iy
until all cells are well distributed over the chip region. C, p, and p, are derived
from VW (Z, 7). The 74 is a scalar to control the movement of cells in each iter-
ation. The horizontal force f_zf and the vertical force f—;“ acting on the cells are

given by 3 (Va, bijy - - s Van@ij)' and 3(Vy, dij, - - ., Vyudij)T respectively com-

puted based on the placement solution at the k—th iteration. Clearly, this is a
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particular case of (5.13) by setting )\fj = 7%. One can expect the above fixed point
iteration requiring a small enough 7, for convergence. But we know M is the La-
grange multiplier for (5.12) which has to be large enough to get a well-distributed
placement. Also, the A is a vector in (5.13) and has each of its component act-
ing as a scaling factor for the forces induced in the corresponding bins. These
show that our new algorithm is more general and robust, and, overcomes the

shortcoming of ad hoc force scaling selection used in [EJ98].

5.3 Analysis and Enhancements of the GFD Algorithm

In this section, analysis and enhancements of the GFD algorithm are presented.
Due to the high complexity of the placement problem: up to millions of cells
to be placed subject to pairwise cells non-overlapping constraints, heuristic ap-
proximations or approaches are necessary in building a highly scalable placement
algorithm. Several important heuristic enhancement techniques to the GFD al-
gorithm are discussed in the following, which makes the GFD algorithm much

more robust and stable.

5.3.1 Multilevel Implementation

It is undoubted that the constrained minimization problem (5.12) has a lot of
local minimas. For a good local optimal solution to be found by the nonlinear
programming GFD algorithm, a good initial solution is necessary. The multilevel
optimization framework, presented in Chapter 4, not only provides a scalable
framework but also is able to provide such a good initial placement for the GFD

algorithm.

By recursive coarsening of the problem such that the coarsest level problem is
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smaller enough for the GFD algorithm to find a good solution, the coarsest level
good placement solution is then recursively interpolated and iteratively improved
to finer levels. For a good multilevel framework, one should be able to obtain
a good approximation solution for the original problem through coarse levels
refinement. It then provides a good starting point for the GFD algorithm at

solving the original problem.

In our multilevel framework, the cluster ratio ranges from 0.1 to 0.4, where
cluster ratio is the number of clusters created at the current level divided by the
number cells at the finer level. The coarsest level problem size is less than around

1% of the original problem size or 500, depending which one is smaller.

Figure 5.2 shows an example of multilevel optimization framework making use
of the GFD algorithm. It is a two V-cycle placement and each V-cycle consists
of three levels. Level 3 in the figure represents the original problem and Level
1 represents the coarsest level problem. In practice, the relaxation at the finest
level in the first V-cycle is skipped to reduce the computations, which is found
to be a good trade-off between quality and speed. A more detailed algorithm is
shown in Table 5.2. It is named mPL5.

A fast mode of mPL5, named mPL5-fast, is obtained by:

e set the stop_percent = 95;
e increase « in the GFD algorithm whether nnb is increased or not;
e reduce the number of bins to half of the default;

e reduce the amount of cell swapping in the detailed placement.
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use modified FC (cf. (4.2)) to coarsen the hypergraph,
with cluster ratio 0.4, until the number of cells reaches target.
set nl = number of levels.
set stop_percent = 97
% suppose level nl is the finest level corresponding
% to the original hypergraph.
fori=1tonl -1

set distri_percent = min(50 + 50 = i/nl,90).

call GFD(1, distri_percent) for level i.

interpolate placement from level 4 to level i + 1.
endfor
% start the second V-cycle.
use modified geometric based FC (cf. (4.3))
to coarsen the hypergraph until the number of
cells reaches target.
placement from first V-cycle is interpolated to coarse
levels during the coarsening.
set nl = number of levels.
fori=1tonl -1

set distri_percent = min(50 + 50 = i/nl,90).

call GFD(1, distri_percent) for level i.

interpolate placement from level 4 to level i + 1.
endfor
call GFD(1, stop_percent) for level nl.

call detailed placement.

Table 5.2: mPL5 algorithm.
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@ Level at which GFD is applied
C Coasening
I Interpolation

Figure 5.2: Two V-cycle multilevel framework makes use of GFD algorithm.

5.3.2 Effects of Density Smoothing

Density based constraint is used to approximate the pairwise cells non-overlapping
constraint which significantly reduces the O(n?) complexity due to the pairwise
cells non-overlapping constraints. It is because one can use O(n) number of bin

based density constraints which makes the algorithm more scalable.

However, density function is not differentiable which makes the problem (5.3)
difficult to be solved by standard mathematical programming. Smooth approx-
imation (5.5) of the density function is necessary. The € in (5.5) plays an im-
portant role in the smoothing process. It not only makes the smoothing process
well defined but also controls the smoothness of the smoothed density function.
In figure 5.3, it shows the density function of an one dimension placement and
the smoothed density functions under ¢ = 10,1,0.1. We see that the smaller
the € the more global smoothing or smoother of the density function. In ex-

periments, we observe that the larger the e the slower the convergence of the
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Figure 5.3: Smoothness of the density function under different epsilon (¢) = 10,
1, 0.1.

GFD algorithm. The reason is that the larger the e the less smoothness of the
density function causes forces acting on cells smaller and more local, leading to
slowly cells spreading. Hence, the choice of smaller € gives faster convergence,
however, at the expense of worse wirelength quality. It certainly provides the
freedom for the trade-off between speed and quality of the placement algorithm.

In experiments, € = 1 is found to be a good trade-off.

5.3.3 Forces Weighting

The gradients of the constraints with respect to cell center locations are approx-
imated by (5.14) which not only speeds up the computations but also leads to
faster convergence of the algorithm. The approximations (5.14) are viewed as cells

spreading forces in [EJ98]. Recently, a more stable implementation [VKV04] of
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[EJ98] shows that weighting of the forces acting on cell by the corresponding cell
area gives more stable spreading of the cells. The intuition is that each unit area
of the cell should be getting the forces. Similar ideas are tried in our approxima-
tions (5.14). A more general form to approximate the gradient of the constraint

with respect to cell vy is given by

Vo i = wi,j+1h_ Yiyj «w(area(vy)) and V1 = 71&”1’7"1_ Vi * w(area(vg))

’ ’ (5.23)
if the center of cell vy, is inside B;; and zero otherwise, where w(z) is a monotone
increasing function and area(vy) denotes the area of cell vz. In experiments,
w(z) = cx®® is used. The weighted approximation (5.23) significantly improves
the quality of placement, especially for the circuits with huge variations in cell
area. Also, the scaler ¢(> 0) in w(z) provides the freedom for trade-off between

speed and quality since the larger the ¢, the faster the convergence or spreading

of cells.

5.3.4 Gradual Legalization and Fixing of Large Cells

The weighting of forces (cf. (5.23)) does improve the placement quality, however,
it may cause instability for the spreading of large cells when most of the cells
are well spread over the placement region. It is because (5.23) shows that larger
cells have larger scaler for the forces acting on them which may cause large
perturbations of the large cells. It is a good idea to fix the large cells when they
are well placed. By fixing the large cells, it means that those large cells are first
legalized [CX06] (no overlapping between those large cells) then their positions

are fixed during the consequent placement.

In the multilevel framework, the placement solutions at coarse levels provide

good intermediate steps for fixing the relatively large cells. Note that similar ideas
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Figure 5.4: Global placement is shown in the left figure and the placement after

legalization of macros is shown in the right figure.

of fixing the large cells during coarse level placement has been used in [CCY03].
Fixing large cells during coarse level not only makes the GFD algorithm more
stable but also accelerates the convergence as it creates more connections to fixed

cells.

Moreover, earlier legalization of the large cells also helps for detailed place-
ment [CCS05a]. In Figure 5.4, the left placement plot shows the global placement
without fixing the large cells during the placement. The small amount of over-
lapping between large cells, that is allowed for a global placement, could create
troubles for detailed placement. The right-hand side placement plot in Figure
5.4 shows that huge perturbations of the larges cells are produced after legaliza-
tion which then causes huge perturbations during legalization of standard cells.
Those huge perturbations created after legalization have no doubt significantly

increased wirelength of the placement.

In experiments, macros with area 100X larger than the average cell area are

fixed before GFD algorithm is applied during intermediate coarse levels (except
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Figure 5.5: Global placement with macros legalized and fixed after coarse levels

placement.

the coarsest level). Hence, all relatively large macros are fixed right before the
placement of the finest level that gives the room for standard cells to be placed

adaptly to the fixed cells.

5.3.5 Wirelength Weighting

Proper weighting for spreading forces is seen to be crucial. However, it may
create significant degradation of placement quality in some cases. From the GFD
algorithm (cf. Table 5.1) and the iterative scheme (5.18), the scaling factor « for
the forces 3 A;;V4);; is kept increasing when cells are not spreading. The 7 in the
iterative scziieme (5.18) is kept decreasing when the scheme does not converge. In
the case when 7 is too small and force scaler « is too large, the term VW (7%, %)

in (5.18), which corresponding to the wirelength objective, is diminishing. This

causes the degradation of the placement quality. Hence weighting for the term
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in (5.18) is necessary which gives the following iterative scheme:

z*, )

Fht1 ok - N

( o o |TrEeTE s
(7%, ¢4°) is a given initial placement,

where 5(> 0) is kept increasing at the outer iterations of the GFD algorithm

(cf. Table 5.3). Experiments show that the wirelength weighting has significant

improved the placement wirelength in many testcases, though at the expense

of longer runtime. It is because the weighting of the wirelength causes more

attractions between cells, hence causes slow down of cell spreading.

5.3.6 Pin-to-Pin Half-perimeter Wirelength Minimization

The half-perimeter wirelength in (2.3) is measured in terms of center locations
of the cells. That is, assuming all the pins belonging to a cell are located on
the center of the cell. In real situation, pins of a cell are usually located on
the boundary of the cell (cf. Figure 2.2). Therefore, the center-to-center half-
perimeter wirelength (2.3) may not a good approximation of the pin-to-pin wire-
length (2.2). Since each net connects a set of unique pins, it is more costly to
minimize (2.2). However, if (2.2) is approximated by log-sum-exp function (3.5),
the complexity of minimizing center-to-center half-perimeter wirelength is the
same as minimizing pin-to-pin half-perimeter wirelength. Thank to the equality
exp(z; + py.) = exp(p,) exp(w;), exp(p;,) is a constant that can be computed

before the optimization steps. Similarly thing is done for y—direction.

5.3.7 Whitespace Handling by Filler Cells

In the formulation (5.3), we have assumed the placement region has zero whites-

pace, that is, K = 1. In practical, there is usually 10-40% whitespace which is
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Figure 5.6: A small example of circuit with low utilization.

reserved for post placement purpose. Also, cells can not be packed too closely.
Sufficient space around cells for putting the wires is necessary for a circuit to
function properly. However, when K is significantly less than one, it would cause

trouble in the GFD algorithm.

Figure 5.6 shows a placement problem with total cells area much less than the
placement region. One can easily see that the density equality cannot be satisfied
because the cells cannot be broken into pieces. Due to the forces driven by density
constraint, cells are spread to occupy the whole placement region which causing
over separations between cells and hence the degradation of the wirelength. Fig-
ure 5.7 shows the global placement on a testcase with 60% whitespace. We can
see that the cells are placed evenly through out the region which maybe over

spread.

One simple fix is to shrink the placement region, from either directions of the

o1



Figure 5.7: Global placement on a testcase (#cells = 12506) with utilization =
0.4. The half-perimeter wirelength is 2.2024 x 10°.

chip boundary, so that the utilization ratio is close to one. Figure 5.8 shows the
global placement of the same testcase as used in Figure 5.7. During the placement,
placement region is shrunken by same amount from both left and right boundary
such that the utilization is one during the placement. It significantly improves
the wirelength, near 13%. However, it is easy to see that shrinking the region or
trim away the excess whitespace has certainly limited the solution space. Also,
there are several other directions to shrink the region. Picking the best from the
placement solutions produced by different ways of region shrinking is not cost

effective.

A reasonable way to handle the whitespace is to reformulate (5.3) as an in-

equality constrained minimization problem:
min W (Z, 3)

st. Dyy<=1, 1<i:<m,1<j<n.

(5.25)

However, the Uzawa algorithm [AHUS58]| is developed for solving equality con-
strained optimization problem. The GFD algorithm (cf. Table 5.1), based on

the Uzawa algorithm, cannot be applied to solve (5.25). Whitespace handling by

52



Figure 5.8: Global placement on a testcase (#cells = 12506) with utilization =
0.4, with placement region shrunken from left and right boundary such that
the utilization = 1 during the placement. The half-perimeter wirelength is

1.9250 x 108.

adding extra dummy cells or filler cells to the netlist is proposed in [AMV03] for
min-cut based placement algorithms. The idea gives a way to transform (5.25)
into an equality constrained minimization problem. A set of artificial cells, named
dummy /filler cell, with total area summed up to the total amount of whitespace
is added to the netlist. Hence, the utilization is one and the problem becomes
an equality constrained minimization problem which is ready to be solved by the

GFD algorithm.

Since there are no nets connecting dummy cells, their movements are driven
by density only (cf. (5.18)). Initial placement of dummy cells are based on the
density distribution of the initial placement of the cells from the original netlist.
Recursively four way partition hierarchical distribution of the dummy cells is
used. Number of dummy cells assigned to each partition are proportional to the
whitespace available for the region. The idea is to place dummy cells to low

density regions initially. In addition to using forces to drive the dummy cells, re-
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Figure 5.9: Global placement on a testcase (#cells = 12506) with utilization =
0.4, with dummy cells added such that the utilization = 1 during the placement.
The half-perimeter wirelength is 1.7203 x 10°.

distribution of dummy cells is carried out during intermediate stage of placement.
This is to avoid dummy cells occupying the regions where the cells can move in
to get a better placement wirelength. Figure 5.9 shows the global placement by
using dummy cells to handle whitespace. It significantly improves the wirelength

by 12% over the method of region shrinking.

5.3.8 Stopping Criterion of GFD

The stopping criterion in the GFD algorithm (cf. Table 5.1), measured in terms
of the percentage of the number of non-zero density bins, is not robust enough to
guarantee a decent global placement, especially in the case where there are many
large cells. Since each large cell automatically covers a significant number of bins,
the overlapping between small cells can be a lot even when each bin has non-zero
density. Also, it is not able to achieve the stopping criterion if the circuit has

low utilization (see Figure 5.6). A better stopping criterion is proposed in this
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section.

The new stopping criterion for a global placement is measured in terms of
the average bin overflow. The amount of overflow for a bin is the amount of bin

density exceeding the bin capacity. The average overflow for a set of cells V. is
defined as

OVL(V,) = > max(D(V,);; — 1,0)hyh,/area(V,), (5.26)

i=1j=1

where D(V;);; is the density of ij-th bin and the density function is measured
in terms of the area of the cells in V,, area(V,) is the total area of the cells in
V.. Under sufficiently small size of bins and small overflow, the global placement
is guaranteed little overlapping between cells and can be legalized without much

increase in wirelength.

5.3.9 Minimum Perturbation Formulation

It is expected that the GFD algorithm is in slow convergence when the cells are
well distributed. Slow reduction of overflow (cf. (5.26)) happens during the last
few steps of the GF'D algorithm. It is because the forces acting on cells diminish
when the density at each bin becomes more even. To sped up the convergence

and to reduce computations, (5.12) is reformulated as

min ¥ {(z: —27)* + (v — )%}
viEM (5.27)
st. =K, 1<i<m,1<j<n,
where M is the set of movable cells and (x?,y?) is the initial center location of
cell v;. It is to minimize the displacement from a given placement subject to
the density constraint. The objective in (5.27) is easier and faster to minimize

comparing to (3.5). It is cost effective to switch to solve (5.27) when slow con-

vergence happens in the GFD algorithm. The GFD algorithm can be terminated
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earlier and the placement solution is a good starting point for (5.27). It also
gives a more smooth transaction from global placement to detailed placement.

Experiments show that it is a good trade-off between quality and speed.

5.3.10 Enhanced GFD Algorithm

In this section, an enhanced GFD algorithm, combined the enhancement tech-
niques in the previous sections, is presented. Table 5.3 shows the new GFD

algorithm combined the enhancement techniques, named EGFD.

In Table 5.3, P is the set of pads, F' is the set of fixed cells, M is the set of
movable cells not including dummy cells, and H is the set of dummy cells added
to the netlist (cf. Section 5.3.7). In EGFD, it takes in a percentage of overflow
(cf. (5.26)) as stopping criterion. The algorithm terminates when both overflow
of movable cells and overflow of total cells (excluding pads and dummy cells) less

than a target overflow.

Similar to the GFD algorithm (Table 5.1), it uses the unconstrained minimizer
of the quadratic wirelength (3.2) as the starting point if an initial placement is
not given. In EGFD, the scaling factor « for forces is guided by the overflow of
the movable cells instead of the number of non-zero density bins used in GFD.
Also, there is a scaling factor § for the wirelength term in the iterative scheme
(5.24). In addition, dummy cells are added to the netlist and the distribution of
dummy cells is done at every 3% reduction of the overflow of the movable cells. Tt

proceeds to solve (5.27) when the overflow is 5% away from the stop_percent_ovl.

A multilevel framework utilizes the EGFD algorithm is done in a similar way
as shown in Table 5.2. The multilevel algorithm using EGFD as relaxation is
named mPL6. The mPL6 algorithm is shown in Table 5.4. It uses Best Choice

clustering scheme [AKNO5] with cluster ratio 0.25. Since Best Choice is a better
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clustering scheme, usually one V-cycle with cluster ratio 0.25 is enough to get a
decent placement. mPL6 uses one V-cycle instead of two V-cycles used in mPL5.
Also, relatively large macros are fixed after the coarse levels placement. Experi-

mental results of different versions of mPL are given in the following chapter.

5.4 Our Contributions

The novel analytical placement algorithm, EGFD, is based on a mathematically
sound foundation for supporting the density constraint, and can be viewed as
a generalization of the force-directed method in [EJ98]. In [EJ98], it uses a
quadratic wirelength objective and adds forces on cells based on area density of
the placement. Adding forces on cells is equivalent to modifying the right-hand
size of the linear system arising from the quadratic wirelength minimization.
Hence each iteration can be solved easily. However, it suffers from the inaccurate
approximation by quadratic wirelength objective as illustrated in [KM00, KSJ91,
MANO94| and the ad hoc scaling of the spreading forces for supporting the density

constraint.

The new contributions and enhancements presented in this thesis are as fol-

lows:

e We develop a new analytical placement algorithm using a density con-
strained minimization formulation which can be viewed as a generalization of

the force-directed method in [EJ98].

e We analyze and identify the advantages of our new algorithm over the force-

directed method in [EJ98|.
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EGFD(stop_percent_ovl)

set P = the set of pads.

set F' = the set of fixed cells inside the placement region.
set M = the set of movable cells.

set H = the set of dummy cells added to the netlist.

set n = 100.
set u = 1.5.

_ /max{|P|+|F|,1}
set o = “hahyTog M|
set § = 1.

set k = stop_percent_ovl/100.
set A = 0.
if initial placement not given

use the unconstrained minimizer of the quadratic

wirelength objective as an initial solution.
endif
Hierarchical distribution of dummy cells.
set old_std_ovl = curr_std_ovl = OVL(M).
for j =1 to | M|

A=dA—a® — K.).

solve the iterative scheme (5.24).

set old_std_ovl = curr_std_ovl.

set curr_std_ovl = OVL(M).

if curr_ovl < k and OVL(M U F) < k

break.
endif
if curr_std_ovl > old_std_ovl
a = po.

endif

B=p+n.

redistribution of dummy cells for every 3% reduction of OVL(

endfor

M).

Table 5.3: Enhanced GFD algorithm.
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use Best Choice (cf. (4.4)) to coarsen the hypergraph,
with cluster ratio 0.25, until the number of cells reaches target
set nl = number of levels created.
set stop_percent_ovl = 15
% suppose level nl is the finest level corresponding
% to the original hypergraph.
fori=1tonl—1
call EGFD(stop_percent_ovl + 5) for level i.
interpolate placement from level i to level ¢ + 1.
legalize and fix macros with area > 4X the average area at level 4.
endfor
call EGFD(stop_percent_ovl + 5) for level nl.
call EGFD(stop_percent_ovl) by minimizing (5.27) for level nl.

call detailed placement.

Table 5.4: mPL6 algorithm.

e We successfully incorporate the generalized force-directed algorithm into a
multilevel framework which significantly improves the wirelength and speed. We
use the multilevel framework proposed in mPL [CCKO03b]. The new algorithm is
named mPL5 (cf. Table 5.2).

e We carefully analyze and enhance our placement algorithm and propose
several important enhancement techniques which make our placement algorithm

mPL6 (cf. Table 5.4) much more stable and robust (cf. Chapter 6).
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CHAPTER 6

Experimental Results

In this chapter, experimental results of different versions (2-6) of mPL (can be
downloaded at [UCL]) are presented and discussed. Comparisons with other
state-of-the-art placers are given. Comparisons are based on half-perimeter wire-
length (HPWL or WL) of legal placement solution (unless specified in the context)
and runtime (time) of the algorithm. GP HPWL is stand for the half-perimeter

wirelength of the global placement solution.

Stable and good performances on wide varieties of circuits are necessary for
good heuristic algorithms. Six set of benchmarks, from synthetic circuit design
to real industrial circuit design, are used to evaluate the performances of our
proposed placement algorithms. The statistics of the circuit testcases are given

in the following section.

6.1 Circuit Benchmark Statistics

In this section, six sets of benchmark: ICCADO00, ISPD04, ICCADO04, FARADY,
ISPDO05, and PEKO are presented. A table summarizing the circuit statistics of
each benchmark is given. In each table, we show the circuit name, the number of
pads (#Pads), the number of standard cells (#Std. cell), the number of macros
(#Macro), the number of fixed macros (#Fixed macro), the number of nets

(#Net), and the percentage of whitespace (%WS).
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Circuit | #Pad | #Std. cell | #Macro | #Fixed macro | #Net | %WS
ibm04 287 27335 0 0 31970 5
ibm07 287 45789 0 0 48117

ibm09 285 53271 0 0 60902 5
ibm10 744 68869 0 0 75196 5
ibm14 517 147358 0 0 152772 5
ibm16 504 183281 0 0 190048 5
ibm17 743 185054 0 0 189581 5
ibm18 272 210664 0 0 201920 5

Table 6.1: ICCADO00 Benchmark Statistics.

ICCADOO is a set of standard cell circuit with uniform cell size. The netlist is
the same as the ISPD98 benchmark released in [Alp98]. The cells size are modified
to uniform size. The circuit statistics are shown in Table 6.1. Total number of
cells ranges from 20k to 210k. Each testcase has around 5% whitespace. The
benchmark can be downloaded at [UCL].

ISPDO04 is a set of standard cell circuit. The circuit statistics are shown in
Table 6.2. The set of benchmark is the same as that used in [VC04], and is
provided by the authors of FastPlacel.0 [VCO04]. It is originally derived from
the ISPD02 suite [AM02] downloaded from [ISPa]. The macros are modified to
be standard cells in a way that the height of macro blocks is brought down to
the standard cell height and the width of macro blocks, if exceeding 4X average
width, is changed to a value of 4X average width. Each testcase has around
10% whitespace. Total number of cells ranges from 10K to 210K. The ISPD04
benchmark can be downloaded at [ISPb].

ICCADO4 is a set of mixed-size benchmark where each testcase may have
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Circuit | #Pad | #Std. cell | #Macro | #Fixed macro | #Net | %WS
ibm01 | 246 12506 0 0 14111 10
ibm02 | 259 19342 0 0 19584 10
ibm03 | 283 22853 0 0 27401 10
ibm04 | 287 27220 0 0 31970 10
ibm05 | 1201 28146 0 0 28446 10
ibm06 | 166 32332 0 0 34826 10
ibm07 | 287 45639 0 0 48117 10
ibm08 | 286 51023 0 0 50513 10
ibm09 | 285 53110 0 0 60902 10
ibm10 | 744 68685 0 0 75196 10
ibml1l | 406 70152 0 0 81454 10
ibml12 | 637 70439 0 0 77240 10
ibm13 | 490 83709 0 0 99666 10
ibm14 | 517 147088 0 0 152772 10
ibml15 | 383 161187 0 0 186608 10
ibm16 | 504 182980 0 0 190048 10
ibm17 | 743 184752 0 0 189581 10
ibm18 | 272 210341 0 0 201920 | 10

Table 6.2: ISPD04 Benchmark Statistics.
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both standard cells and macros. The benchmark is used in [ACJ04] and can be
downloaded at [ICC]. The netlist connectivity is similar to ISPD04. The circuit
statistics are given in Table 6.3. Each testcase has around 20% whitespace. Total

number of cells ranges from 10K to 210K.

FARADY is also a set of mixed-size benchmark where each testcase may
have both standard cells and macros. The benchmark is used in [ACJ04] and
can be downloaded at [ICC]. The netlist connectivity is derived from industrial
designs. Testcase statistics are shown in Table 6.4. Whitespace percentage for
each testcase ranges from 5% to 10%. Total number of cells ranges from 10K to

210K.

ISPDO05 is a set of mixed-size benchmark where each testcase may have both
standard cells and macros. The majority of the macros in this benchmark are
fixed. The benchmark is used in ISPD’05 Placement Contest [NAV05] and can
be downloaded at [ISPc]. Testcase statistics are shown in Table 6.5. The netlist
connectivity is derived from industrial designs. Whitespace percentage for each
testcase ranges from 14% to 46%. Total number of cells ranges from 210K to

2200K.

PEKO, stand for placement examples of known optimal, is developed in UCLA
VLSICAD [UCL]. It is a set of synthetic benchmark designed to evaluate the
optimality gap of a placement algorithm. The set of PEKO benchmark used in
this thesis is a set of standard cell circuit with connections to pads, classified as
suitelll in [UCL]. Testcase statistics are similar to Table 6.6 since the netlist
is derived from ISPD02. The netlist connectivity is derived such that each net
is constructed locally optimal which also implies global optimal [CCX03]. Each
testcase has around 15% whitespace. Total number of cells ranges from 10K to

210K.
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Circuit | #Pad | #Std. cell | #Macro | #Fixed macro | #Net | %WS
ibm01 | 246 12260 246 0 14111 20
ibm02 | 259 19071 271 0 19584 20
ibm03 | 283 22563 290 0 27401 20
ibm04 | 287 26925 295 0 31970 20
ibm05 | 1201 28146 0 0 28446 20
ibm06 | 166 32154 178 0 34826 20
ibm07 | 287 45348 291 0 48117 20
ibm08 | 286 50722 301 0 50513 20
ibm09 | 285 52857 253 0 60902 20
ibm10 | 744 67899 786 0 75196 20
ibml1l | 406 69779 373 0 81454 20
ibml12 | 637 69788 651 0 77240 20
ibm13 | 490 83285 424 0 99666 20
ibm14 | 517 146474 614 0 152772 | 20
ibml15 | 383 160794 393 0 186608 | 20
ibm16 | 504 182522 458 0 190048 | 20
ibm17 | 743 183992 760 0 189581 | 20
ibm18 | 272 210056 285 0 201920 | 20

Table 6.3: ICCADO04 Benchmark Statistics.
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Circuit | #Pad | #Std. cell | #Macro | #Fixed macro | #Net | %WS
DMA 945 11734 0 0 12613
DSP1 842 26299 2 0 28400
DSP2 842 26279 2 0 28384
RISC1 625 32615 7 0 33762
RISC2 625 32615 7 0 33762
Table 6.4: FARADY Benchmark Statistics.

Circuit | #Pad | #Std. cell | #Macro | #Fixed macro | #Net | %WS
adaptecl | 480 210904 63 63 221142 24
adaptec2 | 407 254457 159 159 266009 21
adaptec3 0 451023 723 723 466758 25
adaptec4 0 494812 1329 1329 515951 37
bigbluel | 528 277604 32 32 284479 46
bigblue2 0 534878 23084 23084 577235 38
bigblue3 0 1093130 3778 1293 1123170 | 14
bigblue4 0 2169279 8170 8170 2229886 35

Table 6.5: ISPD05 Benchmark Statistics.
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Circuit | #Pad | #Std. cell | #Macro | #Fixed macro | #Net | %WS
Peko01 | 246 12506 0 0 14111 16
Peko02 | 259 19342 0 0 19584 16
Peko03 | 283 22853 0 0 27401 16
Peko04 | 287 27220 0 0 31970 15
Peko05 | 426 28146 0 0 28446 15
Peko06 | 166 32332 0 0 34826 15
Peko07 | 287 45639 0 0 48117 15
Peko08 | 286 51023 0 0 50513 15
Peko09 | 285 53110 0 0 60902 15
Pekol0 | 566 68685 0 0 75196 15
Pekoll | 406 70152 0 0 81454 15
Pekol2 | 637 70439 0 0 77240 15
Pekol3 | 490 83709 0 0 99666 15
Pekol4 | 517 147088 0 0 152772 15
Pekol5 | 383 161187 0 0 186608 15
Pekol6 | 504 182980 0 0 190048 15
Pekol7 | 743 184752 0 0 189581 15
Pekol8 | 272 210341 0 0 201920 | 15

Table 6.6: PEKO Benchmark Statistics.
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All experiments on benchmarks ICCADO00, ISPD04, ICCADO04, FARADY,
and PEKO are run on a Linux, 2.4GHz, Intel 32-bit machine. Experiments on
ISPD05 benchmark are run on a Linux, 1.8GHz, AMD Opteron 64-bit machine.

6.2 Introduction to State-of-the-art Placement Algorithms

In this section, a brief description of several state-of-the-art placement algorithms,
with the executable of the algorithm available for conducting experiments, are
presented.

APlace [KW04, KRWO05] is a high quality analytical placer that solves the
nonlinear programming formulation (5.3) by penalty method utilizing nonlinear
conjugate gradient algorithm. It uses log-sum-exp (3.5) function to approximate
the HPWL and a bell-shape function to smooth the density function locally.

Capo [ACJ04, RPN06] and FengShui [YM01, AOMO05] are well-established
min-cut partition based placers.

Dragon [WYSO00] is top-down hierarchical approach based on min-cut parti-

tioning and simulated annealing placer.

FastPlace [VCO04] is an ultra fast analytical placer that minimizes weighted

quadratic wirelength with cell shifting techniques to remove area congestion.

6.3 Performances of Our Multilevel Placement Algorithms

In this section, we evaluate the performances of different versions of our multilevel
placement algorithm — mPL. More detailed performances on GFD algorithm — a

powerful optimization framework for placement, are evaluated.

In Table 6.7, we run the GFD algorithm (cf. Table 5.1) with different number
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Level 1 Level 2 Level 3 Level 4 Level 5 After detailed placement
WL =1.21E+06 WL = 1.35E+06 WL = 1.40E+06 WL =1.44E+06 WL = 1.49E+06 WL = 1.63E+06
Runtime = 2.41s Runtime = 3.15s Runtime = 4.03s Runtime = 9.49s Runtime = 33.63s Runtime = 14.17s

Figure 6.1: Placement solutions at each level in the second V-cycle of mPL5 for

ibm01 of ISPD04 benchmark.

of outer_iters shown in the parenthesis. It also shows comparisons with mPL5,
the multilevel GFD (cf. Table 5.2). The wirelength and runtime are relative to
GFD(10), the GFD algorithm with 10 outer iterations. The stop_percent in the
GFD algorithm is set to 97 in the comparisons. We can see the wirelength is
getting shorter as we increase the number of outer iterations. We remark that
keeping increase of the number of outer iterations, though increasing the runtime,
does not further significantly reduce the wirelength. However, the multilevel GFD
(mPL5 given in Table 6.7) significantly outperforms the GFD both in quality and
runtime. This shows that our multilevel algorithm is a very effective technique
that gives better scalability and better global optimization. Figure 6.1 shows the
placement solutions of mPL5 at each level in the second V-cycle. We can see that

cells are distributed more evenly from level to level.

In Table 6.8, we compare the performances of different objectives: log-sum-
exp (3.5), Lp-norm (5.1) and quadratic (3.2) under the mPL5 platform. It shows
that the global placement wirelength by Lp-norm is 3% longer than log-sum-exp
and with a 67% longer runtime. The runtime for quadratic is around 20% shorter
than log-sum-exp, but its wirelength is 61% longer. This demonstrates that the

LogsumExp gives the best approximation to (2.3).

In Table 6.9 and Table 6.10, we compare mPL5 with Capo09.0, Dragon3.01,

FastPlacel.0, and FengShui5.0. All the placers are run in default mode. Ta-
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GFD(20) GFD(30) mPL5
Circuit | Rel. WL, Rel. time | Rel. WL, Rel. time | Rel. WL, Rel. time
ibm01 0.96 , 1.34 0.93, 1.75 0.87 , 0.58
ibm02 0.84,1.31 0.82 , 1.66 0.78 , 0.67
ibm03 0.97, 1.39 0.95,1.84 0.94 , 0.56
ibm04 0.93 , 1.38 0.90, 1.74 0.76 , 0.63
ibm05 0.93 , 1.13 0.83,1.14 0.63 , 0.57
ibm06 0.96 , 1.47 0.90 , 1.70 0.76 , 0.58
ibm07 0.95, 1.52 0.92,2.20 0.77 ,0.43
ibm08 0.96 , 1.37 0.93,1.78 0.86 , 0.45
ibm09 0.94 ,1.48 0.93,1.91 0.83,0.44
ibm10 0.89, 1.35 0.86 , 1.73 0.77 , 0.41
ibm11 0.92,1.23 0.89, 1.73 0.77 , 0.39
ibm12 0.95, 1.41 0.90 , 1.75 0.87 , 0.47
ibm13 0.95, 1.45 0.92,1.92 0.80 , 0.41
ibm14 0.94 , 1.47 0.93,1.94 0.77 ,0.34
ibm15 0.96 , 1.47 094,194 0.80 , 0.33
ibm16 0.96 , 1.39 0.93,1.73 0.78 ,0.34
ibm17 0.95, 1.37 0.91,1.81 0.71 , 0.37
ibm18 0.93 , 1.33 0.89, 1.72 0.69 , 0.34
average 0.94, 1.38 0.90 , 1.78 0.79 , 0.46

Table 6.7: Relative wirelength (Rel. WL) and relative runtime (Rel. time) of
GFD(20), GFD(30) and mPL5 with respect to GFD(10) on ISPD04 benchmark.
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log-sum-exp Lp-norm quadratic
Circuit | WL, runtime(s) | Rel. WL, Rel. runtime | Rel. WL, Rel. runtime
ibm0O1 1.57E406 , 45 1.05, 1.71 1.73 , 0.81
ibm02 | 3.51E-+06 , 66 1.02 , 1.80 1.84 , 1.65
ibm03 4.83E4+06 , 66 0.99 , 1.82 1.63 , 0.64
ibm04 | 5.90E+406 , 117 0.98 , 1.47 1.48 , 0.47
ibm05 | 9.85E+406 , 94 1.06 , 1.74 1.49 ,1.17
ibm06 | 4.73E406 , 161 1.03 , 1.36 1.82, 0.50
ibm07 | 8.14E+406 , 209 1.04 , 1.62 1.50 , 0.67
ibm08 | 9.49E+406 , 321 1.01, 1.45 1.79 , 0.72
ibm09 | 9.25E+406 , 313 1.05, 1.53 1.65 , 0.53
ibm10 | 1.74E+07 , 302 1.03 , 2.07 1.47 ,0.72
ibm11 1.39E+07 , 379 1.04 , 1.62 1.54 , 0.52
ibm12 | 2.31E+07 , 367 1.02, 1.68 1.34 , 0.67
ibm13 | 1.67E+407 , 404 1.03 , 1.72 1.69 , 0.63
ibm14 | 3.25E+407 , 1164 1.03 , 1.46 1.60 , 0.71
ibm15 | 3.92E+07 , 1250 1.04 ,1.84 1.61 , 0.80
ibm16 | 4.32E+07 , 1387 1.04 , 1.63 1.66 , 0.79
ibm17 | 6.27TE+07 , 1347 1.03 , 1.73 1.42 , 0.85
ibm18 | 4.18E+07 , 1502 1.07, 1.78 1.77 , 0.97
average 1.00 , 1.00 1.03 , 1.67 1.61 , 0.77

Table 6.8: Comparisons of half perimeter wirelength (WL) and runtime of global
placement under different objectives on ISPD04 benchmark. Wirelength and
runtime using Lp-norm (p = 32) and quadratic are divided by those of using

log-sum-exp respectively.
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mPL5 Capo09.0 | Dragon3.01 | FastPlacel.0 | FengShui5.0 | mPL5-fast
Circuit HPWL | Rel. WL | Rel. WL Rel. WL Rel. WL Rel. WL
ibm01 | 1.67E+406 1.08 1.02 1.09 1.08 1.09
ibm02 | 3.62E+06 1.09 1.02 1.06 1.02 1.02
ibm03 | 4.57E+406 1.10 1.05 1.12 1.03 1.05
ibm04 | 5.75E+406 1.06 1.00 1.04 1.05 1.04
ibm05 | 9.92E+4-06 1.02 0.98 1.05 1.00 1.05
ibm06 | 5.10E+06 1.11 0.98 1.04 1.02 1.03
ibm07 | 8.23E+06 1.11 1.04 1.08 1.09 1.09
ibm08 | 9.38E4-06 1.05 0.96 1.02 n/a 1.05
ibm09 | 9.33E+406 1.08 1.07 1.12 1.06 1.07
ibm10 | 1.73E407 1.10 1.04 1.07 1.07 1.11
ibm11 | 1.40E407 1.09 1.03 1.09 1.04 1.06
ibm12 | 2.23E407 1.11 1.03 1.08 1.07 1.06
ibm13 | 1.66E+407 1.10 1.05 1.11 1.09 1.07
ibml14 | 3.16E+07 1.10 1.05 1.11 1.04 1.08
ibm15 | 3.85E+07 1.09 1.04 1.13 1.07 1.07
ibm16 | 4.30E407 1.10 1.05 1.07 1.09 1.08
ibm17 | 6.13E407 1.09 1.08 1.08 1.08 1.09
ibm18 | 4.10E407 1.09 1.02 1.10 1.04 1.07
average 1.00 1.09 1.03 1.08 1.06 1.07

Table 6.9: Comparisons of HPWL between mPL5, mPL5-fast, Capo 9.0, Dragon
3.01, FastPlace 1.0 and FengShui 5.0 on ISPD04 benchmark. Rel. WL is stand for
the relative wirelength with respect to mPL5 HPWL. Program failure is denoted
by n/a.
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mPL5 Capo09.0 | Dragon3.01 | FastPlacel.0 | FengShui5.0 | mPL5-fast
Circuit | Time (s) | Rel. time | Rel. time Rel. time Rel. time Rel. time
ibm01 64 1.90 16.81 0.10 2.06 0.23
ibm02 126 1.82 7.34 0.13 1.93 0.26
ibm03 113 2.56 8.04 0.13 2.39 0.28
ibm04 151 2.47 10.95 0.13 2.16 0.35
ibm05 158 2.52 17.36 0.14 2.29 0.30
ibm06 200 2.01 10.44 0.12 2.12 0.28
ibm07 259 2.45 9.61 0.19 2.32 0.30
ibm08 389 1.73 15.47 0.14 n/a 0.38
ibm0Q9 342 2.30 16.26 0.17 1.72 0.28
ibm10 450 2.42 10.96 0.20 1.56 0.30
ibm11 437 2.70 7.81 0.19 2.31 0.30
ibm12 482 2.48 11.15 0.20 2.03 0.36
ibm13 596 2.32 7.73 0.20 1.80 0.28
ibm14 1064 2.49 10.65 0.21 1.20 0.33
ibm15 1379 2.41 11.14 0.23 2.15 0.30
ibm16 1577 2.29 11.09 0.23 2.18 0.30
ibm17 1705 2.32 22.22 0.23 2.17 0.30
ibm18 1904 2.00 17.84 0.25 2.07 0.29
average 1.00 2.29 12.38 0.18 2.03 0.30

Table 6.10: Comparisons of runtime between mPL5, mPL5-fast, Capo 9.0,
Dragon 3.01, FastPlace 1.0 and FengShui 5.0. Rel. time is stand for relative

runtime with respect to mPL5 runtime. Program failure is denoted by n/a.
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Figure 6.2: Wirelength and runtime comparisons on FastPlacel.0 IBM circuits.
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Figure 6.3: Scalability plot of FastPlacel.0 and mPL5-fast on ISPD04 benchmark.
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ble 6.9 shows that overall mPL5 produces the shortest wirelength. Compared
to Capo9.0, mPL5 has 8% shorter wirelength and is 2X faster. Compared to
Dragon3.01, mPL5 produces 3% shorter wirelength and is 12X faster. Compared
to FastPlacel.0, it outperforms the wirelength by 8% but is 6X slower. Com-
pared to FengShui5.0, mPL5 has 5% shorter wirelength and is 2X faster. The
fast mode of mPL5, mPL5-fast (cf. Section 5.3.1), can produce 1% shorter wire-
length than FastPlacel.0 and is only 2X slower in average. A scalability plot of
FastPlacel.0 and mPL5-fast is shown in Figure 6.3. It shows that mPL5-fast is
more scalable and it is expected that mPL5-fast will be faster than FastPlacel.0
on design with millions of cells. Figure 6.2 shows the average performance of each
placer. The wirelength and runtime shown are divided by mPL5’s wirelength and
runtime respectively. We remark that Dragon’s fixed-die mode (routability con-
gestion driven) results, longer runtime and wirelength than the results of the
default mode (wirelength driven), are used for comparisons in [VC04]. We com-
pare mPL5 with Dragon’s wirelength driven mode in this thesis. Also, the new
binary of FastPlacel.0 (used for comparisons in this thesis) produces 5% shorter

wirelength than the results published in [VC04] with similar runtime.

We also run mPL5 on PEKO [CCX03| which is a set of synthetic benchmarks
used to evaluate how far placement tools are from optimal. In [CCXO03], it shows
that the quality of the current state-of-the-art placers is 50% to 150% from op-
timal. The results of mPL5 on PEKO suitelll, circuits with pad connections, as
well as other placers’ results are shown in Figure 6.4. mPL5 can produce place-
ment solution that is very close to the optimal — only around 25% away, which

again is the best among the compared placers.

Next, we compare the performances between different versions (2 — 6) of

mPL. A brief description of mPL2, mPL3, and mPL4 can be found in Section

74



2.80 -
2.60 -
2.40 -
2.20 -
2.00 -
1.80 -
1.60 -
1.40 -

1.20 - KKK KK

1 -00 T T T T T T T T T T T T T T T T
12506 27220 45639 68685 83709 182980

#Cells
—e— Capo9.0 —=— Dragon3.01 —a— Fengshui5.0
—x— FastPlace1.0 —x— mPL5 —e— mPL5-fast

Quality ratic

Figure 6.4: Quality ratio on PEKO suitelll.

4.2. mPL6 (cf. Table 5.4) is built on top of mPL5 by incorporating the enhanced
GFD algorithm (cf. Table 5.3).

Table 6.11 and Table 6.12 show the comparisons of placement HPWL and
runtime between mPL2, mPL3, mPL4, mPL5, and mPL6 on ICCADOO bench-
mark. Note that mPL2 is developed to address uniform size cell circuit. We
see that mPL2 and mPL3 has similar HPWL but mPL3 is slightly faster. It is
because mPL3 has better handling of non-uniform cell size placement at coarse
levels. Also, mPL3 incorporates speed-up technique in ripple-move area conges-
tion remover. mPL4 is using similar techniques as mPL3 except it is using a
more expensive but more effective multilevel flow — back-tracking V-cycles (cf.
Figure 4.4). Comparing with mPL2, mPL4 has 5% shorter HPWL and only has
around 16% longer runtime. mPL5, using the GFD algorithm as the relaxation,
significantly outperforms mPL2. Comparing with mPL2, mPL5 has 10% shorter
HPWL and is near 2X faster. mPL6 has similar HPWL as mPL5 but has much
longer runtime. The increase in runtime is due to more even distribution of place-

ment at coarse levels (cf. Figure 6.5) and the wirelength weighting scheme (cf.
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Level 1 Level 2 Level 3 Level 4 After detailed placement
WL = 1.57E+06 WL = 1.61E+06 WL = 1.58E+06 WL = 1.62E+06 WL = 1.62E+06
Runtime = 10.35s Runtime = 13.48s Runtime = 22.19s Runtime = 55.66s Runtime = 26.66s

Figure 6.5: Placement solutions at each level in the first V-cycle of mPL6 for
ibm01 of ISPD04 benchmark.

(5.24)).

In Table 6.13 and Table 6.14, we compare the placement HPWL and runtime
on ISPD04 benchmark between mPL3, mPL4, mPL5, and mPL6. This bench-
mark has non-uniform cell size and mPL2 is not able to handle it. Comparing
to mPL3, mPL4 has 8% shorter HPWL and is near 2X faster. This shows that
mPL4 can handle the non-uniform standard cell size placement better. While
mPL5 and mPL6 has similar performances as on ICCADOO benchmark. Their
performances are stable regarding the standard cell size. Comparing to mPL4,
mPL5 has 5% shorter HPWL and is around 2X faster. Similar comparisons
between mPL4 and mPL5 are observed on ICCADOO benchmark.

Table 6.11 shows the quality of ratio of mPL2, mPL3, mPL4, mPL5, and
mPL6 on PEKO benchmark. The average optimality gap for each version of
mPL ranges from 24% to 43%. It consistently reflects the relative performance

of each placer on the real design.

So far we see that mPL5 and mPL6 have similar placement HPWL and mPL5
is much faster on the ICCADO00 and ISPD04 benchmarks. They have consistently
better performance than mPL2, mPL3, and mPL4. In the following, we compare

mPL5 and mPL6 on more different and complex circuit designs. For more spe-
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mPL2 mPL3 mPTL4 mPL5 mPL6
Circuit | HPWL | Rel. WL | Rel. WL | Rel. WL | Rel. WL
ibm04 | 6.70E+06 1.02 0.96 0.93 0.95
ibm07 | 1.04E+07 1.03 0.97 0.91 0.91
ibm09 | 1.19E+07 0.96 0.93 0.88 0.87
ibm10 | 1.88E+07 0.98 0.96 0.93 0.94
ibm14 | 4.08E407 0.98 0.93 0.88 0.88
ibm16 | 5.48E407 0.94 0.92 0.89 0.86
ibm17 | 6.88E407 1.01 0.96 0.90 0.89
ibm18 | 5.20E+07 1.04 0.97 0.91 0.89
average 1.00 1.00 0.95 0.90 0.90

Table 6.11: Comparisons of placement HPWL between mPL2, mPL3, mPL4,
mPL5, and mPL6 on ICCADOO benchmark. Rel. WL is stand for relative HPWL
with respect to mPL2 HPWL.
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mPL2 mPL3 mPL4 mPL5 mPL6
Circuit | Time (s) | Rel. time | Rel. time | Rel. time | Rel. time
ibm04 474 0.91 1.31 0.64 1.61
ibm07 795 0.85 1.34 0.75 1.69
ibm09 954 0.83 1.38 0.85 2.44
ibm10 1808 0.70 1.11 0.56 1.59
ibm14 3652 0.74 1.06 0.58 1.30
ibm16 5557 0.72 1.09 0.57 1.12
ibm17 7165 0.73 1.04 0.48 1.06
ibm18 7953 0.70 0.94 0.44 1.34
average 1.00 0.77 1.16 0.61 1.52

Table 6.12: Comparisons of placement runtime (s) between mPL2, mPL3, mPL4,
mPL5, and mPL6 on ICCADOO benchmark. Rel. time is stand for relative

runtime with respect to mPL2 runtime.
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mPL3 mPL4 mPL5 mPL6
Circuit | HPWL | Rel. WL | Rel. WL | Rel. WL
ibm01 | 1.88E+406 0.94 0.88 0.86
ibm02 | 3.77E406 1.00 0.96 0.95
ibm03 | 5.45E4-06 0.93 0.84 0.87
ibm04 | 6.34E4-06 0.96 0.90 0.92
ibm05 | 1.06E407 0.98 0.94 0.88
ibm06 | 5.88E4-06 0.90 0.87 0.83
ibm07 | 9.62E4-06 0.89 0.85 0.84
ibm08 | 9.77E+406 0.96 0.95 0.91
ibm09 | 1.10E407 0.88 0.84 0.83
ibm10 | 1.98E+407 0.94 0.88 0.88
ibml11l | 1.67TE+407 0.89 0.84 0.83
ibm12 | 2.51E407 0.94 0.89 0.87
ibm13 | 2.04E407 0.88 0.81 0.82
ibm14 | 3.74E407 0.90 0.84 0.85
ibm15 | 4.57TE407 0.90 0.85 0.83
ibm16 | 5.10E4-07 0.88 0.85 0.84
ibm17 | 7.07E407 0.93 0.87 0.84
ibm18 | 4.86E+407 0.89 0.85 0.84
average 1.00 0.92 0.87 0.86

Table 6.13: Comparisons of placement HPWL between mPL3, mPL4, mPL5, and
mPL6 on ISPD04 benchmark. Rel. WL is stand for relative HPWL with respect
to mPL3 HPWL.
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mPL3 mPL4 mPL5 mPL6
Circuit | Time | Rel. time | Rel. time | Rel. time
ibm01 211 0.71 0.30 0.67
ibm02 456 0.97 0.28 0.54
ibm03 501 0.60 0.22 0.53
ibm04 565 0.61 0.26 0.64
ibm05 876 0.80 0.18 0.51
ibm06 756 0.60 0.26 0.63
ibm07 | 1000 0.60 0.26 0.65
ibm08 | 1578 0.68 0.24 0.48
ibm09 | 1243 0.59 0.30 0.63
ibm10 | 2017 0.63 0.22 0.57
ibml1l | 1568 0.58 0.28 0.65
ibm12 | 2124 0.67 0.24 0.59
ibm13 | 2281 0.56 0.25 0.55
ibml14 | 3776 0.64 0.29 0.68
ibm15 | 5289 0.63 0.26 0.60
ibml16 | 5891 0.64 0.26 0.56
ibm17 | 7022 0.67 0.24 0.57
ibm18 | 7127 0.68 0.26 0.51
average | 1.00 0.66 0.26 0.59

Table 6.14: Comparisons of placement runtime between mPL3, mPL4, mPL5,
and mPL6 on ISPD04 benchmark. Rel. time is stand for relative runtime with

respect to mPL3 runtime.
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mPL2 | mPL3 | mPL4 | mPL5 | mPL6
Circuit | QoR | QoR | QoR | QoR | QoR
Peko01 | 1.37 1.39 1.25 1.24 1.24
Peko02 | 1.35 1.38 1.25 1.27 1.24
Peko03 | 1.40 1.42 1.27 1.29 1.24
Peko04 | 1.34 1.39 1.28 1.24 1.24
Peko05 | 1.45 1.50 1.26 1.27 1.22
Peko06 | 1.39 1.39 1.29 1.25 1.23
Peko07 | 1.39 1.41 1.26 1.26 1.24
Peko08 | 1.38 1.38 1.27 1.25 1.24
Peko09 | 1.40 1.45 1.25 1.23 1.24
Pekol0 | 1.47 1.55 1.27 1.26 1.25
Pekoll | 1.38 1.40 1.27 1.24 1.25
Pekol2 | 1.39 1.41 1.27 1.26 1.25
Pekol3d | 1.38 1.42 1.27 1.25 1.26
Pekol4 | 1.48 1.50 1.30 1.31 1.24
Pekolbs | 1.38 1.40 1.28 1.22 1.24
Pekol6 | 1.41 1.44 1.28 1.23 1.24
Pekol7 | 1.40 1.42 1.28 1.23 1.24
Pekol8 | 1.57 1.43 1.28 1.23 1.23
average | 1.41 1.43 1.27 1.25 1.24

Table 6.15: Comparisons of placement QoR (= placement

HPWL/Optimal

HPWL) between mPL2, mPL3, mPL4, mPL5, and mPL6 on PEKO benchmark.
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cific comparisons, we only compare the global placement wirelength and runtime
of mPL5 and mPL6. This comparison can exclude the impact of the detailed

placement.

Table 6.16 shows that mPL5 has 5% shorter global placement HPWL and is
around 2X faster than mPL6 on ISPD04 benchmark. The shorter global HPWL
of mPL5 is due to the more even distribution for the global placement in mPL6.
mPL6 has a more accurate overflow measurement of the global placement. Com-
paring Figure 6.1 and Figure 6.5, we see that mPL6 achieves more even distri-
bution of the placement solution at each coarse level. This gives more smooth
transaction from global placement to detailed placement. We have seen in Table

6.13 that mPL5 and mPL6 has similar HPWL after detailed placement.

Table 6.17 shows the comparisons of global placement HPWL and runtime
on ICCADO04 benchmark between mPL5 and mPL6. This benchmark is more
difficult to place since there are large movable macros. In average, mPL6 has
around 5% shorter global HPWL and slightly faster than mPL5. In some test-
cases, mPL6 is more than 2X faster. The main reason is that mPL6 fixes the
large macros during the placement that not only causes more stable convergence

but also accelerates the convergence due to more connections to fixed cells.

In Table 6.18, we compare mPL5 and mPL6 on FARADY benchmark. It is
a more challenging mixed-size benchmark. The netlist is more ill-conditioned in
the way that many connections to the terminal pads clustered at a particular
boundary. We see that mPL6 outperforms mPL5 significantly, around 40%, in
terms of the global HPWL. And mPL6 is slightly faster and more stable. This
is mainly not only due to fixing the large macros during placement but also the

weighting scheme for the wirelength.

In Table 6.19, we compare mPL5 and mPL6 on ISPD05 benchmark where
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mPL6 mPL5
Circuit | GP HPWL | GP runtime (s) | rel. GP HPWL | rel. GP time
ibm01 | 1.62E406 113 0.95 0.43
ibm02 | 3.62E4-06 191 0.93 0.51
ibm03 | 4.80E+06 214 0.89 0.42
ibm04 | 5.94E4-06 305 0.92 0.40
ibm05 | 9.41E406 363 1.02 0.30
ibm06 | 4.90E406 397 0.99 0.41
ibm07 | 8.22E4-06 543 0.97 0.39
ibm0O8 | 9.38E4-06 632 1.00 0.48
ibm09 | 9.44E4-06 635 0.93 0.50
ibm10 | 1.79E+07 867 0.93 0.40
ibml1l | 1.42E407 825 0.93 0.45
ibml12 | 2.25E407 933 0.96 0.42
ibm13 | 1.72E407 1014 0.92 0.46
ibml14 | 3.31E+4+07 1999 0.95 0.45
ibml15 | 3.95E+07 2478 0.97 0.46
ibml16 | 4.48E+07 2647 0.96 0.45
ibml17 | 6.16E407 2919 1.00 0.44
ibm18 | 4.29E407 2929 0.95 0.50
average 1.00 1.00 0.95 0.44

Table 6.16: Comparisons between global placements of mPL5 and mPL6 on
ISPD04 benchmark. Rel. GP HPWL is stand for relative GP HPWL with
respect to mPL6 GP HPWL. Rel. GP time is stand for relative GP runtime with

respect to mPL6 GP runtime.
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mPL6 mPL5
Circuit | GP HPWL | GP runtime (s) | rel. GP HPWL | rel. GP time
ibm01 | 2.11E406 164 1.01 0.54
ibm02 | 4.83E406 241 0.99 1.13
ibm03 | 6.54E4-06 261 1.12 1.24
ibm04 | 7.38E4-06 288 1.07 0.95
ibm05 | 9.43E406 330 1.04 0.32
ibm06 | 5.72E406 366 1.11 1.53
ibm07 | 9.96E4-06 500 1.03 1.49
ibm08 | 1.23E407 749 1.05 1.74
ibm09 | 1.24E4-07 799 1.14 1.95
ibm10 | 2.80E+07 1001 1.05 1.75
ibml1l | 1.80E+407 998 1.05 1.16
ibm12 | 3.25E+407 1116 1.15 1.47
ibm13 | 2.29E4-07 1246 1.00 1.21
ibml14 | 3.71E+4+07 1881 1.00 1.03
ibmls | 4.73E407 2375 1.17 2.58
ibml6 | 5.79E+07 3205 1.02 2.13
ibml17 | 6.73E4+07 2802 1.05 0.79
ibml18 | 4.42E407 2840 1.03 0.84
average 1.00 1.00 1.06 1.33

Table 6.17: Comparisons between global placements of mPL5 and mPL6 on
ICCADO4 benchmark. Rel. GP HPWL is stand for relative GP HPWL with
respect to mPL6 GP HPWL. Rel. GP time is stand for relative GP runtime with

respect to mPL6 GP runtime.
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mPL6 mPL5
Circuit | GP HPWL | GP runtime (s) | rel. GP HPWL | rel. GP time
DMA 4.11E408 71 1.36 1.00
DSP1 | 8.67TE+08 153 1.68 1.19
DSP2 8.56E4-08 160 1.55 1.00
RISC1 1.35E4+09 223 1.72 1.59
RISC2 | 1.30E+09 219 1.70 2.10
average 1.00 1.00 1.60 1.38

Table 6.18: Comparisons between global placements of mPL5 and mPL6 on
FARADY benchmark. Rel. GP HPWL is stand for relative GP HPWL with
respect to mPL6 GP HPWL. Rel. GP time is stand for relative GP runtime with

respect to mPL6 GP runtime.

many macros are fixed throughout the placement region (cf. Figure 2.3). The
netlist is considered well-conditioned as there are lots of connections to the fixed
cells that are evenly distributed over the placement region. However, there are
more whitespace which causes over-spreading of the cells in mPL5. We see that
mPL6 has around 19% shorter global HPWL than mPL5. Also, mPL6 is slightly
faster. We remark that by using cluster ratio of 0.1 (cf. Table 5.4), mPL6 can
produce similar results for ISPD05 benchmark with around 30% runtime speed-

up, due to the sufficient connections to fixed cells.

Next, we compare the HPWL of mPL5 and mPL6 after detailed placement.
We see that the quality gap of HPWL after detailed placement between mPL5
and mPL6 is smaller. This is because the local cells swapping in the detailed
placement can further reduce the HPWL and correct the mistakes made in the

global placement. We also compare to APlace version 2 and Capo version 10.
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mPL6 mPL5
Circuit | GP HPWL | GP runtime (s) | rel. GP HPWL | rel. GP time
adaptecl | 8.00E+07 2107 1.14 2.14
adaptec2 | 9.36E407 2203 1.20 2.23
adaptec3 | 2.15E+08 7745 1.25 0.69
adaptecd | 1.97E+08 7246 1.20 0.67
bigbluel | 1.02E+08 2694 1.16 0.93
bigblue2 | 1.56E+408 7355 1.35 0.59
bigblue3 | 3.59E408 9990 1.33 2.93
bigblue4 | 8.79E-+08 22827 1.17 1.25
average 1.00 1.00 1.23 1.43

Table 6.19: Comparisons between global placements of mPL5 and mPL6 on
ISPD05 benchmark. Rel. GP HPWL is stand for relative GP HPWL with
respect to mPL6 GP HPWL. Rel. GP time is stand for relative GP runtime with

respect to mPL6 GP runtime.
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We remark that APlace2 is a high quality analytical placer which is the winner
in the ISPD’05 Placement Contest. Capol0 is a well-established and open source

min-cut based placer. It’s runtime is known to be scalable.

From Table 6.20, we see that mPL6, APlace2 and mPL5 have similar HPWL.
mPL6 has around 8% shorter HPWL than Capol0. Table 6.21 shows that mPL6
is around 2X faster than APlacel0, 2X slower than mPL5, and 60% faster than
Capol0.

Table 6.22 gives the comparisons of HPWL between mPL6, APlace2, Capol0,
and mPL5 on ICCADO4. mPL6 and APlace has similar quality of HPWL. mPL6
has around 10% and 2% shorter HPWL than Capol0 and mPL5 respectively.
The runtime comparisons in Table 6.23 show that mPL6 is the fastest placer
in average. It is around 2.5X faster than APlace2, 2X faster than Capol0, and
slightly faster than mPL5.

In Table 6.24 and Table 6.25, we compare the performances of mPL6, APlace2,
Capol10, and mPL5 on ISPD05 benchmark that is used in ISPD’05 placement
contest. Comparing with APlace2, mPL6 has around 5% shorter HPWL and is
near 4X faster. Comparing with Capol0, mPL6 has around 9% shorter HPWL
and is near 3X faster. Comparing with mPL5, mPL6 has around 17% shorter
HPWL and is slightly faster. We can see that mPL6 is more scalable and is able

to place a 2.2 millions cells design within 9 hours.
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mPL6 APlace2 | Capol0 mPL5
Circuit | HPWL | Rel. WL | Rel. WL | Rel. WL
ibm01 | 1.62E+06 1.00 1.12 1.02
ibm02 | 3.59E+06 0.97 1.06 1.01
ibm03 | 4.73E+406 0.95 1.03 0.97
ibm04 | 5.80E+06 0.97 1.02 0.99
ibm05 | 9.32E4-06 1.02 1.07 1.06
ibm06 | 4.85E+406 0.99 1.09 1.05
ibm07 | 8.07E+406 0.98 1.10 1.02
ibm08 | 8.88E+06 1.05 1.10 1.05
ibm09 | 9.21E4-06 0.97 1.14 1.01
ibm10 | 1.75E407 0.97 1.07 0.99
ibml1l | 1.38E+07 0.97 1.09 1.01
ibml12 | 2.17E+07 0.99 1.12 1.02
ibm13 | 1.67E407 1.00 1.11 0.99
ibm14 | 3.17E+407 0.97 1.07 0.99
ibm15 | 3.79E+07 1.02 1.08 1.02
ibm16 | 4.26E407 0.97 1.09 1.01
ibml7 | 5.92E+07 1.00 1.14 1.03
ibm18 | 4.07E407 0.96 1.10 1.01
average 1.00 0.99 1.09 1.01

Table 6.20: Comparisons of HPWL between APlace2, Capol0, mPL5, and mPL6
on ISPD04 benchmark. Rel. WL is stand for relative HPWL with respect to
mPL6 HPWL.
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mPL6 APlace2 Capol0 mPL5
Circuit | Time (s) | Rel. time | Rel. time | Rel. time
ibm01 141 1.75 1.35 0.45
ibm02 247 1.96 1.49 0.51
ibm03 264 2.69 1.58 0.42
ibm04 364 2.57 1.49 0.41
ibm05 445 2.22 1.48 0.36
ibm06 478 1.93 1.23 0.41
ibm07 652 2.51 1.57 0.40
ibm08 765 1.82 1.64 0.49
ibm09 780 2.28 1.53 0.48
ibm10 1155 2.25 1.59 0.39
ibm11 1025 2.74 1.68 0.44
ibm12 1248 2.19 1.72 0.40
ibm13 1266 2.79 1.61 0.45
ibm14 2550 2.20 1.69 0.42
ibm15 3193 2.56 1.65 0.43
ibm16 3276 2.24 1.98 0.47
ibm17 3973 2.36 1.89 0.43
ibm18 3654 2.79 1.69 0.51
average 1.00 2.32 1.60 0.44

Table 6.21: Comparisons of runtime between APlace2, Capol0, mPL5, and mPL6
on ISPD04 benchmark. Rel. time is stand for relative runtime with respect to

mPL6 runtime.
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mPL6 APlace2 | Capol0 mPL5
Circuit | HPWL | Rel. WL | Rel. WL | Rel. WL
ibm01 | 2.24E+06 0.95 1.11 0.96
ibm02 | 4.80E+06 0.97 1.06 0.97
ibm03 | 6.71E+06 1.00 1.11 1.01
ibm04 | 7.31E+06 1.04 1.20 1.05
ibm05 | 9.37E4-06 1.04 1.10 1.08
ibm06 | 5.73E406 1.05 1.17 1.05
ibm07 | 9.82E406 1.02 1.18 1.01
ibm08 | 1.19E407 1.05 1.14 1.03
ibm09 | 1.24E407 0.98 1.19 1.02
ibm10 | 2.78E407 1.04 1.19 1.06
ibml11 | 1.77E407 1.05 1.20 1.01
ibml12 | 3.19E+07 1.05 1.18 1.08
ibm13 | 2.25E407 1.01 1.22 1.00
ibm14 | 3.57E+407 1.01 1.09 0.98
ibm15 | 4.71E407 0.99 1.15 1.03
ibm16 | 5.56E+07 0.98 1.13 0.98
ibml7 | 6.47E+07 1.01 1.12 1.03
ibm18 | 4.21E407 1.00 1.10 1.03
average 1.00 1.01 1.15 1.02

Table 6.22: Comparisons of HPWL between APlace2, Capol0, mPL5, and mPL6
on ICCADO4 benchmark. Rel. WL is stand for relative HPWL with respect to
mPL6 HPWL.
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mPL6 APlace2 Capol0 mPL5
Circuit | Time (s) | Rel. time | Rel. time | Rel. time
ibm01 200 1.96 1.51 0.57
ibm02 315 2.92 1.77 1.03
ibm03 317 3.37 2.71 1.14
ibm04 374 2.76 2.7 0.86
ibm05 408 2.05 1.70 0.43
ibm06 450 2.32 2.22 1.37
ibm07 648 2.24 2.24 1.28
ibm08 933 1.78 1.94 1.54
ibm09 997 1.95 1.76 1.69
ibm10 1287 2.35 2.33 1.53
ibm11 1263 3.85 2.01 1.02
ibm12 1424 3.00 2.56 1.34
ibm13 1597 3.14 2.24 1.04
ibm14 2550 2.26 2.18 0.89
ibm15 3001 2.10 2.40 2.18
ibm16 3901 1.87 2.12 1.88
ibm17 3659 2.10 2.32 0.81
ibm18 3777 3.28 1.80 0.79
average 1.00 2.50 2.14 1.19

Table 6.23: Comparisons of runtime between APlace2, Capol0, mPL5, and mPL6
on ICCADO4 benchmark. Rel. time is stand for relative runtime with respect to

mPL6 runtime.
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mPL6 APlace2 | Capol0 mPL5
Circuit HPWL | Rel. WL | Rel. WL | Rel. WL
adaptecl | 7.79E407 1.01 1.14 1.12
adaptec2 | 9.20E4-07 1.04 1.12 1.14
adaptec3 | 2.14E4-08 1.02 1.09 1.24
adaptecd | 1.94E408 1.08 1.06 1.18
bigbluel | 9.68E+407 1.03 1.12 1.16
bigblue2 | 1.52E408 1.01 1.05 1.32
bigblue3 | 3.44E+08 1.20 1.17 1.26
bigblue4 | 8.29E+08 1.05 1.16 1.15
average 1.00 1.05 1.11 1.20

Table 6.24: Comparisons of HPWL between APlace2, Capol0, mPL5, and mPL6
on ISPD05 benchmark. Rel. WL is stand for relative HPWL with respect to

mPL6 HPWL.
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mPL6 APlace2 | Capol0 mPL5
Circuit | Time (s) | Rel. time | Rel. time | Rel. time
adaptecl 2894 3.02 2.20 1.83
adaptec2 2995 4.22 2.60 1.90
adaptec3 9353 3.27 1.94 0.75
adaptec4 8812 3.90 2.19 0.73
bigbluel 3636 3.16 2.58 0.95
bigblue2 | 10207 2.67 2.19 0.70
bigblue3 | 13564 3.90 5.04 2.42
bigblue4 | 30540 5.26 4.37 1.19
average 1.00 3.67 2.89 1.31

Table 6.25: Comparisons of runtime between APlace2, Capol0, mPL5, and mPL6
on ISPD05 benchmark. Rel. time is stand for relative runtime with respect to

mPL6 runtime.
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CHAPTER 7

Conclusions and Future Work

To conclude, we have developed a multilevel generalized force-directed placement
algorithm, mPL5. With important enhancement techniques, mPL5 is advanced
to mPL6 which is a more stable and robust placement algorithm. It significantly
improves the older versions (2-5) of mPL. Experiments show that mPL6 is a fast
placement algorithm producing the shortest wirelength among the state-of-the-
art academic placers. It is a stable and robust algorithm that has consistent good
performances on wide varieties of publicly available benchmarks. We remark that
the GFD algorithm presented in the paper is not limited to wirelength driven
placement. It is a general algorithm that can be extended to handle different
objectives and density constraints. In the future, we will extend mPL6 to handle

more complex constraints such as routability, thermal, and timing.
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APPENDIX A

Fast Discrete Cosine Transform for Solving

Helmholtz Equation

In this appendix, a fast discrete cosine transform solver for the discretized Helmholtz

equation (5.7) is presented.

The matrix Lmn] arising from the linear system (5.7) can be written as
[CCNOO]
L[mn] = Ilm] ® T[n]/hi + T[m] ® I[n]/h} — eI[mn], (A1)

where I[n] is an n X n identity matrix and 7'[n] is an n x n matrix defined as

T[n] can be diagonalized by the discrete cosine matrix C[n] (cf. 2.1.4), that is,
T[n] = C[n]"A[n|C[n] where A[n] is a diagonal matrix with eigenvalues of T'[n]
as the diagonal entries. Also, it is easy to verify that C[n]" = C[n]™'. Therefore,
we have T[n]C[n]7 = C[n]"A[n]. That means

-—1DCn—1)m
2n

2 —néj (cos((j _nl)ﬂ-),COS(:}(j 2—n1)7r

)7,
(A.3)

¢ = ), .-, cos(

95



the j-th column of C[n]”, is an eigenvector of T'[n] with A[n];; as the correspond-
ing eigenvalue. Due to the sparsity of the matrix T'[n], one can verify that the

eigenvalues of T[n] satisfy

— 1
Aln)j; = —4sin2((] 5 )ﬂ), j=1,2,...,n. (A.4)
Since we have

(Clm]@Cn])(Im]®@T[n])(C[m]&C[n])" = (Clm|I[m]Clm]")&(C[nT[n]Cn]"),
(A.5)

Lmn] (cf. A.1) can be diagonalized as follows
(CIm]® Cln]) L mn](C[m] @ Cn])" = I[m]® Aln]+ Alm] ® I[n] — I[mn]. (A.6)

Hence the eigenvalues of L. mn] are given by

4
—— sin’(

hy

(1—1)m 4
2m

Y—e, 1<i<m,1<j<n. (A7)

Since the matrix-vector multiplication C[m] ® C[n]Z can be computed in
O(mnlogmn) [SB93], the solution of the linear system (5.9) given in (5.11) can

be computed in O(mnlogmn).
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APPENDIX B

Uzawa Algorithm

Uzawa algorithm [AHU58] is an iterative scheme developed to solve constrained
optimization problems. In this appendix, analysis of Uzawa algorithm on solving

a linear constrained quadratic programming problem is presented.

Given the linear constrained quadratic programming formulation:

min  7TAZ — b7
(B.1)
s.t. Bi =¢,
where A is a given real-valued n x n symmetric positive definite matrix, B is

a given real-valued m x n full rank matrix, b and @ are given real-valued n x 1

vectors, the optimality condition for & satisfies [Ber82]

A BT x b
L= , (B.2)
B 0 A ¢
where X is the Lagrange multipliers. Instead of solving the above (n+m) x (n+m)
linear system directly, Uzawa algorithm solves the following iterative scheme:
AZF = —BTXF 4]

, B.3
Ne+l — Yk + a(Bg-;‘k—i—l — 9 (B-3)

where (> 0) is a parameter to control the convergence, X0 = 0 and #° can be any
given vector. By substituting the first equation for %! into the second equation

of (B.3), it gives

X+l = (I — aBAT'BT)Xk + a(BA™'Y — &). (B.4)
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One can see that ¥ converges to a limit, say *, if & < yax(BA™'BT) [GV96]
where 0. (BA™' BT) is the maximum eigenvalue of the symmetric positive def-
inite matrix BA™'BT. Then # converges to #*(= —A~(BTX* + b)). One can
easily verify that the solution (Z*, X*)T satisfies the optimality condition (B.2).
Hence the Uzawa algorithm (B.3) converges to the optimal solution of (B.1) if «

is chosen properly.
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