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Abstract of the Dissertation

Iterative Regularization and Nonlinear Inverse

Scale Space Methods in Image Restoration

by

Jinjun Xu

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2006

Professor Stanley J. Osher, Chair

Total variation regularization is a popular and important technique for image

restoration. In this dissertation, first we develop a new iterative regularization

procedure for inverse problems based on the use of generalized Bregman dis-

tances, with particular focus on the problems arising in total variation based

image restoration. We obtain rigorous convergence results and effective stopping

criterion for the general procedure. Specifically, when a discrepancy principle

is used as the stopping criterion, the error measured by the Bregman distance

between the reconstruction and the noise-free image decreases until termination,

The numerical results for denoising appear to give significant improvement over

standard models.

Then we generalize this discrete iterative regularization procedure to a time-

continuous inverse scale space formulation, which arises as reinterpreting the scale

parameter in the iterative regularization procedure as a time-step and letting it

go to zero. Similar properties as for iterative regularization procedure hold for

the inverse flow. For one-dimensional signal processing, the inverse flow can be

computed directly through an integro-differential equation, yielding high qual-

xvii



ity restoration. In higher spatial dimensions, a relaxation technique has been

introduced to solve the inverse flow.

Finally, the iterative regularization and inverse scale space techniques are

successfully generalized from total variation based image restoration to wavelet

based image restoration.

xviii



CHAPTER 1

Introduction

Due to its increasing applications, digital image processing has become a more and

more important and active research field in the past decade. For a recent review

of image denoising algorithms please refer to [CS05, BCM05, TO05, CEP05c].

1.1 Images

Mathematically an image can be represented as a function f : Ω → RN , where Ω

is a bounded subset of Rd. If d = 1, f is a one-dimensional (1D) signal; if d = 2,

f is a two-dimensional (2D) image. For simplicity, we use the word “image” for

all dimensions unless otherwise specified. The integer N is the number of the

color channels of the images. In general, N = 1 means f is a grey level image,

N = 3 means f is a color image (with RGB color values). In the scope of this

dissertation we will focus on the analysis of grey level images, i.e., N = 1, f is a

scalar value function.

Given an original image g, which we refer to as a true image or a clean image,

its corrupted version f can be generally categorized as two main types: noisy

image f = g + n and blurry/noisy image f = Ag + n. Here n is noise which

is usually random and highly oscillatory data (cf. [Mey01]). A is an integral

operator, which in most case is a convolution kernel. We will mainly focus on the

restoration of noisy images.
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In the discrete case, f is an array (1D) or a matrix (2D) defined on a grid. In

numerical experiments, the grid size can be set as h or simply h = 1 by rescaling

the parameters (e.g., λ and t in the time-dependent Euler-Lagrange equation of

the ROF model). In all the numerical results presented in this dissertation, we

use h = 1 if not otherwise specified.

One important measurement characterizing the quality of images is the signal-

to-noise-ratio (SNR). It has many different definition in the literatures. Given a

clean image g and a noisy image f , one popular definition of SNR which is used

in this dissertation is

SNR(f) = 20 log10

( ‖g − ḡ‖L2

‖n− n̄‖L2

)
, (1.1)

where n = f − g is the noise, ḡ and n̄ are the average of the values g and n

respectively. ‖ · ‖L2 is the regular L2 norm. In discrete case, if g is a M × N

matrix, then ḡ =
P

i,j gi,j

M×N
, ‖g‖L2 =

√P
i,j |gi,j |2
M×N

.

1.2 Total Variation Based Image Restoration

Given a noisy image f , we want to obtain a decomposition:

f = u + v,

where u recovers the true image and v is the residual which is expected to be

noise.

This is an inverse problem and it has a very long history (cf., e.g., [Mey01,

CS05]). One of the most successful and popular techniques for approximating

the solution of this problem is due to Rudin-Osher-Fatemi (cf. [ROF92] and also

2



their related work [OR90, RO94]), and is defined as follows:

u = arg min
u∈BV (Ω)

{
|u|BV + λ‖f − u‖2

L2

}
(1.2)

for some scale parameter λ > 0, where BV (Ω) denotes the space of functions with

bounded variation on Ω and | · |BV denotes the BV seminorm, formally given by

|u|BV =

∫

Ω

|∇u| dxdy, (1.3)

which is also referred to as the total variation (TV) of u. This variational problem

is called the ROF model. It has been used and analyzed by several authors in

several different contexts (cf. [AV94, CL97, CK97, CKP99, MO00, Nik00, Rin00,

Vog02, SC03, HM04]). Also, in [CL97] and subsequently in [Nik00, Nik97, Nik04,

Rin00, CEP05a, CEP05b] the “staircasing” effect of this model was analyzed. No

completely satisfying remedy has yet been found, e.g. see the results in Figures

2.2 (the part x ∈ [0, 120]) in Chapter 2. In spite of this phenomenon, the ROF

model is still quite popular. (In the one-dimensional case, (1.3) becomes |u|BV =
∫

I
|ux| dx where Ω = I ⊂ R. For simplicity, in the following of this dissertation

we will drop dx and dxdy, i.e.,
∫

Ω
≡ ∫

Ω
dx for Ω ⊂ R and

∫
Ω
≡ ∫

Ω
dxdy for

Ω ⊂ R2, etc., unless otherwise specified.)

The use of the BV seminorm is essential since it allows us to recover images

with edges. It is well-known that this would be impossible if the first term

in (1.2) were replaced by Jp(u) :=
∫

Ω
|∇u|p for any p > 1, which might seem

more attractive at a first glance due to differentiability and strict convexity. The

main reason for this effect is that for p > 1 the derivative of Jp corresponds

to a nondegenerate elliptic differential operator of second order and thus has

a smoothing effect in the optimality condition, whereas for total variation the

3



operator is degenerate and only affects the level lines of the image.

The ideal result of the minimization procedure (1.2) would be to decompose

f into the true signal u and the additive noise v. In practice, this is not fully

attainable. We must expect to find some signal in v, and some smoothing of

textures in u. The concept “texture” is imprecise so far and the decomposition

depends on the scale parameter λ. Large λ corresponds to very little noise re-

moval, and hence u is close to f . Small λ yields a blurry, oversmoothed u. These

statements can be quantified, as discussed below.

In his book [Mey01], Meyer did some very interesting analysis on the ROF

model. He began by characterizing textures which he defines as “highly oscillatory

patterns in image processing” as elements of the dual space of BV (Ω). This can

be motivated by using the rigorous definition of the BV seminorm

∫

Ω

|∇u| = |u|BV = sup
|~ξ|∞≤1, ~ξ∈C1

c (Ω)2

∫

Ω

u(∇ · ~ξ). (1.4)

Here: ~ξ = (ξ1, ξ2), |~ξ| =
√

ξ2
1 + ξ2

2 . Defining the space G as the distributional

closure of the set

{
w = ∇ · ~ξ = ∂xξ1 + ∂yξ2

∣∣∣∣ ~ξ ∈ C1
c (Ω)2

}
,

equipped with the norm ‖w‖∗ = inf
~ξ

sup
x,y
|~ξ(x, y)|, Meyer showed that elements of

this dual space G can be regarded as textures. He also showed that the space G

arises implicitly in the ROF model as follows: For f = u + v, with u defined by
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(1.2), we have

‖f‖∗ <
1

2λ
=⇒ u = 0, v = f, (1.5)

‖f‖∗ ≥ 1

2λ
=⇒ ‖v‖∗ =

1

2λ
,

∫

Ω

uv = |u|BV ‖v‖∗. (1.6)

The Euler-Lagrange equation arising in the ROF minimization (1.2) is:

− 1

2λ
∇ · ∇u

|∇u| = f − u = v. (1.7)

Of course the expression on the left in (1.7) needs to be defined when |∇u| = 0.

This is easily done – see [Mey01].

We see that the term v, which was usually thrown away and which represents

noise, is an element of G with ∗−norm ≤ 1
2λ

. This expression is (formally) − 1
2λ

times the curvature of the level contour of u(x, y) at each point. Moreover, by

(1.6), it does have ∗−norm 1
2λ

if ‖f‖∗ ≥ 1
2λ

, as was shown in [Mey01].

The following interesting example of the effect of ROF minimization was ana-

lyzed in [Mey01, page 36]: Let f(x, y) = αχR(x, y) : R2 7→ R where χR(x, y) ≡ 1

if
√

x2 + y2 ≤ R, χR(x, y) ≡ 0 otherwise. Meyer showed (a) ‖f‖∗ = (αR)
2

and (b)

the f = u + v decomposition is as follows: If αλR ≥ 1, then

u =

(
α− 1

λR

)
χR, v =

1

λR
χR.

Notice that v is independent of α, which is quite surprising. If αλR ≤ 1, then

u = 0, v = f . Clearly the ROF u + v decomposition is defective in this case.

The function v is certainly not noise.
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Meyer then suggested a modified variational problem:

u = arg min
u∈BV (Ω)

{
|u|BV + λ‖f − u‖∗

}
. (1.8)

Here we can think of a decomposition, f = u + v where u is a cartoon, or

primal sketch, and v is texture plus noise. This model is difficult to minimize

using the usual Euler-Lagrange equation approach due to the nonsmoothness of

both terms involved in the functional. However, it can be solved effectively as

the minimization of a smooth function subject to constraints, for example, as a

second-order cone program [GY04].

Vese and Osher [VO03] approximated Meyer’s model by

(u, ~ζ) = argmin
(u,~ζ)

{
|u|BV + λ‖f − u−∇ · ~ζ‖2

L2 + µ

(∫

Ω

|~ζ|p
) 1

p

}
, (1.9)

with p ≥ 1 and λ, µ > 0. As λ, p → ∞ (1.9) approaches Meyer’s model. We

call the variational problem (1.9) the Vese-Osher model or the VO model. The

results displayed in [VO03] were quite good, especially in separating texture from

cartoon. Analytical results were also obtained in [VO03] (following Meyer’s ap-

proach in [Mey01]):

f = u + v + w, with v = ∇ · ~ζ

If u = 0, then ‖f −∇ · ~ζ‖∗ ≤ 1

2λ
; (1.10)

If ~ζ = 0, then ‖∇(u− f)‖q ≤ µ

2λ
, where q =

p

p− 1
; (1.11)

Both u = 0, ~ζ = 0, ⇐⇒ ‖f‖∗ ≤ 1

2λ
, ‖∇f‖q ≤ µ

2λ
. (1.12)

Yet another approximation to (1.9) was later constructed by Osher, Solé and
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Vese [OSV03]

u = arg min
u∈BV (Ω)

{
|u|BV + λ‖∇∆−1(f − u)‖2

L2

}
, (1.13)

see [OSV03] for details. We call this variational problem the Osher-Solé-Vese

model or the OSV model. The (L2)2 fitting term used in the ROF model is

replaced by an (H−1)2 fitting term. This is also an f = u + v model. Compared

to the BV +(L2)2 decomposition of the ROF model, we call this decomposition

as BV +(H−1)2. The resulting Euler-Lagrange equation is equivalent to:

1

2λ
∆

(
∇ · ∇u

|∇u|
)

= f − u = v

which is easy to solve, e.g. by using gradient descent method [OSV03]. This time

v is 1
2λ

times the Laplacian of the curvature of the level contours of u, the cartoon

version of f .

Following [OSV03], we can easily show for this model that

‖∆−1f‖∗ ≤ 1

2λ
⇐⇒ u = 0, v = f ; (1.14)

‖∆−1f‖∗ >
1

2λ
⇐⇒ ‖∆−1v‖∗ =

1

2λ
,

∫

Ω

(−∆−1v)u = |u|BV ‖∆−1v‖∗.(1.15)

It has been found experimentally by looking at the error term v found for

optimal choice of parameters that this model does a somewhat better job at de-

noising images than the ROF model (although there is more computational effort

involved), but does not do as well in separating cartoon from texture as the Vese-

Osher model [VO03]. See also [AC05] for an explanation of this phenomenon.

Additional work on a cartoon/texture decomposition was done, e.g., in [CE05,

YGO05] using BV +L1 decomposition, in [LV05a] using BV +BMO decomposi-

tion, in [LV05b] using BV +H−s(s > 0) decomposition, in [AAB05] using duality,
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in [SED05] using a combination of sparse representations and TV regularization,

and in [KO05] using a saddle point formulation which is based on (1.8). One of

the many reasons to separate cartoon from texture is to improve image inpaint-

ing algorithms. See [BVS03] for a successful approach to this and [BSC00] for a

pioneering paper on this subject.

Using duality, Chambolle [Cha04] constructed an algorithm solving for v di-

rectly in a way that simplifies the calculations needed to solve (1.2), (1.9) and

(1.13). Duality was also used in [CGM00, Car02] to solve (1.2). This will be

discussed in Chapter 2.

We note that for each choice of the scale parameter λ there is a σ such that

problem (1.2) is equivalent to the constrained minimization problem

u = arg min
u∈BV (Ω)

{
|u|BV s.t. ‖f − u‖2

L2 = σ2

}
. (1.16)

Often one has a reasonable estimate of σ, whereas it is difficult to know how

to choose λ in (1.2), which corresponds to the Lagrange multiplier for the noise

constraint in (1.16). The original ROF paper [ROF92] used a projected gradient

method to solve (1.16), in which λ is dynamically updated so that the constraint

‖f − u‖2
L2 = σ2 is kept throughout the evolution of the pseudo time-dependent

Euler-Lagrange equation. However, in most models developed after the ROF

model, which include the Vese-Osher model and the Osher-Solé-Vese model dis-

cussed above, λ is a fixed value constant. The scale-dependent property of ROF

model was analyzed, e.g., in [SC03]. In this dissertation λ is also set as a fixed

constant, which is independent of the spatial variable x and the time variable t.

We will see that the results using the new procedures described in the Chapter

2 and Chapter 3 are invariably much better than the constrained denoising of

ROF. The error is much smaller and the edges are sharper with the new models.
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For example, a numerical experiment of such comparison is presented in Figure

2.2 in Chapter 2.

1.3 Contributions and Organizations of This Dissertation

As discussed above, for a (denoising) decomposition f = u + v from the ROF

model and many other variational methods, one will find some signal in the

removed residual part v, and some smoothing of textures in u. This problem

is referred to as the signal loss defect or contrast degradation (cf., e.g., [SC03]).

The main work of this dissertation is to develop some techniques to solve this

problem. Besides image restoration, these techniques can be generalized to many

other inverse problems.

In Chapter 2 we design an iterative regularization procedure to improve ROF

restoration and its generalizations. Instead of stopping after recovering the min-

imizer u in (1.2), we call this solution u1 and use it to compute u2, u3, etc. This

is done using the Bregman distance [Bre67] which will be defined in the context

in Section 2.3.1. If we call Dp(u, v) the Bregman distance between u and v asso-

ciated to the functional J and its subgradient p ∈ ∂J(v), the algorithm designed

to improve (1.2) is:

uk = arg min
u∈BV (Ω)

{
Dpk−1(u, uk−1) + λ‖f − u‖2

L2

}
, (1.17)

pk−1 ∈ ∂J(uk−1) is unique or otherwise uniquely selected by our algorithm. The

sequence {uk} is shown monotonically converges to f , the noisy image. However

as k increases, for λ sufficiently small the values uk also monotonically get closer
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to the true noise free image g, in the sense of the Bregman distance, until:

‖uk̄ − f‖L2 < τ‖g − f‖L2 ,

for any τ > 1. The ideal situation is to take λ small and k̄ large so that k̄λ

converges to a critical time t̄ at which the estimate above is satisfied. These

results are generalized and made precise in Section 2.3.

Iterative procedures involving Bregman distance have been used before in

signal processing algorithms , e.g. in [Cet89, Cet91]. There, and in all the other

applications that we are aware of, the goal was to accelerate the computation

of the solution to a fixed problem, e.g. to solve the ROF minimization equation

(1.2). The approach probably closest to the iterative method is the one in [Cet89],

where each iteration step consists in computing

uk = argmin
u

Dpk−1(u, uk−1) subject to ‖Ku− f‖L2 ≤ ε

for some ε > 0. The difference however, is that for increasing iteration, the

residual ‖Ku − f‖L2 will, in general, not decrease further during the iteration

and hence, the iteration procedure rather yields a smoothing of the solution than

a closer approximation of the data f . Here the apparently novel idea is to replace

the variational problem (1.2) by a sequence (1.17) so as to obtain an improved

restoration, or indeed improved solution to a wide class of inverse problems.

Another new aspect of the approach is that an iteration with a Bregman distance

(in the generalized sense) is used, which is corresponding to a nondifferentiable

functional, the total variation.

We note that previously in [SG01, TNV04] the authors constructed a sequence

of approximations {uk} using ROF with a quite different approach, used more to
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decompose images than to restore them. This will be commented on in Section

2.3.5.

We will also show how the iterative regularization procedure can be used

for other image restoration tasks, e.g. restoring blurry and noisy images, thus

improving the results of [RO94]. The decomposition in this case becomes

f = Au + v

where A is a given compact operator, often a convolution using, e.g. a Gaus-

sian kernel. If A is not known, this becomes a blind deconvolution problem.

See [CW98] for an interesting approach to blind deconvolution, also minimizing

functionals involving the BV seminorm. In [HMO05] He, Marquina and Osher

generalized the iterative regularization idea to blind deconvolution and obtained

impressive results.

The iterative regularization procedure yields a sequence of convex variational

problems, evolving towards the noisy image. In Chapter 3, by reinterpreting the

scale parameter λ as a pseudo time-step ∆t tending to zero, while the number of

iteration steps tends to infinity, we develop an inverse scale space flow. We obtain

similar properties for this new flow as for the iterative regularization procedure.

Specifically, when a discrepancy principle is used as the stopping criterion, the

error between the reconstruction and the noise-free image decreases until termi-

nation, even if only the noisy image is available and a bound on the variance of

the noise is known.

The inverse flow is computed directly for one-dimensional signals, yielding

high quality restorations. In higher spatial dimensions, we introduce a relaxation

technique using two evolution equations, which we call the relaxed inverse scale
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space flow. These equations allow fast, accurate, efficient and straightforward

implementation. We investigate the properties of these new types of flows and

show their excellent denoising capabilities, wherein noise can be well removed

with minimal loss of contrast of larger objects.

Another important technique for image restoration is wavelet shrinkage (cf.,

e.g.,[Don95, DJ94, DJ95]). The relation between the total variation regularization

and wavelet shrinkage techniques has been studied by several authors, e.g., in

[CDL98, SWB04, SED05, DT05]. In the last part of this dissertation we extend

the iterative regularization and inverse scale space methods to wavelet-based

image restoration and obtain promising results. This is in Chapter 4.

The rest of this dissertation is organized as follows. Chapter 2 introduces the

iterative regularization method which has been presented in part in [OBG05].

Chapter 3 presents the inverse scale space flow, along with its relaxation version

– relaxed inverse scale space flow which has been presented in part in [BOX05,

BGO06]. Both chapters focus on the variational based image restoration. In

Chapter 4 we extend these two methods to wavelet based denoising which has

been presented in part in [XO06].
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CHAPTER 2

Iterative Regularization Method

2.1 Introduction

In this chapter an iterative regularization procedure for inverse problems based

on the use of Bregman distances [Bre67] is introduced, with particular focus on

problems arising in image processing. The idea is motivated by the problem of

restoring noisy and blurry images via variational methods, by using total variation

regularization. Rigorous convergence results and effective stopping criterion for

the general procedure are obtained. The numerical results for denoising appear

to give significant improvement over standard models and preliminary results for

deblurring/denoising are very encouraging.

2.2 Using Geometry and Iterative Regularization

The work in this chapter has several immediate antecedents. In [TWB03] Tas-

dizen, Whitaker, Burchard and Osher processed deformable surfaces via the level

set method [OS88]. The idea used was to

(a) first process the unit normals to a given initial surface;

(b) deform the surface so as to simultaneously process it and fit it to the pre-

viously computed surface.
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The results were visually very pleasing, but no detailed theoretical analysis

has been obtained yet.

In [LOT04] Lysaker, Osher and Tai borrowed the basic idea discussed above

and applied it to images as follows: (for implementation details and formal anal-

ysis, see [LOT04]).

• Step 1: Given a noisy f , smooth the unit normal vectors ~n0 = ∇f
|∇f | by using

a one-harmonic map as in [VO02]

~n1 = argmin
|~n|=1

{∫

Ω

|∇~n|+ µ

∫

Ω

|~n− ~n0|2
}

, (2.1)

where the scale parameter µ > 0.

• Step 2: Replace the ROF minimization (1.2) by

u2 = arg min
u∈BV (Ω)

{∫

Ω

(|∇u| − ~n1 · ∇u) + λ

∫

Ω

(f − u)2

}
.

This minimization procedure attempts to match normals as well as grey level

values.

Unlike all the other methods discussed in this dissertation, the minimization

problem in step 1 is not convex and it does not produce an image u1 satisfying

~n1 = ∇u1

|∇u1| . Because of this nonconvexity, we decided here to compute ~n1 by using

ROF itself:

• Step 1: First solve the ROF model to obtain

u1 = arg min
u∈BV (Ω)

{∫

Ω

|∇u|+ λ

∫

Ω

(f − u)2

}
.

Then define ~n1 = ∇u1

|∇u1| .
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• Step 2: Perform a correction step to obtain

u2 = arg min
u∈BV (Ω)

{∫

Ω

(|∇u| − ~n1 · ∇u) + λ

∫

Ω

(f − u)2

}
.

Then we make the following obvious, but crucial, observation:

−
∫

Ω

~n1 · ∇u =

∫

Ω

u∇ · ~n1 =

∫

Ω

u

(
∇ · ∇u1

|∇u1|
)

.

But, from the Euler-Lagrange equations for ROF, we have:

∇ · ∇u1

|∇u1| = −2λ(f − u1) = −2λv1

(recall f = u1 + v1), and hence −
∫

Ω

~n1 · ∇u = −
∫

Ω

2λuv1.

We can thus rewrite Step 2 as

u2 = arg min
u∈BV (Ω)

{∫

Ω

|∇u|+ λ

∫

Ω

[(f − u)2 − 2uv1]

}

= arg min
u∈BV (Ω)

{∫

Ω

|∇u|+ λ

∫

Ω

(f + v1 − u)2 − λ

∫

Ω

(v2
1 + 2v1f)

}
.

Since the last integral above is independent of u, we have

u2 = arg min
u∈BV (Ω)

{∫

Ω

|∇u|+ λ

∫

Ω

(f + v1 − u)2

}
.

Remarkably, we are led to the concept that v1, the “noise” computed by the

ROF procedure should be added back to f , the original noisy image, and the sum

then processed by the ROF minimization procedure.
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2.2.1 Iterative Regularization: Total Variation Denoising

Clearly the above regularization process can be repeated. Moreover, the first step

can be put into this iterative framework by choosing initial values u0 = 0 and

v0 = 0. We shall give precise reasons why this is a good procedure, using the

concept of Bregman distance [Bre67, CT93] from convex programming, in the

next section. Specifically, we are proposing the following iterative regularization

procedure:

Algorithm 2.1 (Iterative Regularization on ROF Denoising).

• Initialize v0 = 0;

• For k=0, 1, 2, · · · : compute uk+1 as a minimizer of the modified ROF model

with new image f + vk, i.e.,

uk+1 = arg min
u∈BV (Ω)

{
|u|BV + λ‖f + vk − u‖2

L2

}
(2.2)

and update

vk+1 = vk + f − uk+1. (2.3)

We certainly need a stopping criterion, which gives some information for which

k we would obtain an approximation as close as possible to the true noise-free

image g. In the next section we shall show that the discrepancy principle is a

reasonable stopping rule; it consists in stopping the iterative procedure the first

time the residual ‖uk − f‖L2 is of the same size as the noise level σ. We will

prove that some distance measure between the iterate uk and the true image

g decreases monotonically until the stopping index k̄ is reached and that the

regularization procedure enjoys the usual semiconvergence properties of iterative

regularization methods; i.e., the reconstructed image uk̄ obtained at the stopping
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index converges to the true noise-free image as the noise level tends to zero

(in a stronger topology than the one of L2(Ω)). Note that if we do not stop the

iteration properly, the iterates would just converge to the noisy image f in L2(Ω),

and the total variation of the iterates could become unbounded, which is clearly

undesirable.

These facts indicate that, for denoising f , a good strategy is to proceed it-

eratively until the result gets noisier, say, until uk+1 is more noisy than uk. Of

course, if we happen to have a good estimate of σ, we can use the discrepancy

principle.

It is interesting to further understand how the iterative procedure (2.2), (2.3)

works. If we consider why u2 might contain more signal than u1 we have

u2 = f + v1 − v2 = u1 + 2v1 − v2.

This implies that for u2 to be less noisy than u1, we need 2v1 − v2 to have more

signal than noise. This is indeed the case if the stopping index is greater than

one.

It is also clear that the results depend on λ. If λ is very large, we may

approximate the noisy image too much, and the stopping index may be satisfied

already after the first step. In such a case we may expect a bad reconstruction.

If λ is small we oversmooth initially and can make sure that the stopping index is

not satisfied after one step. The numerical results at the end of this chapter will

confirm that the images uk, k = 1, 2, · · · , become less blurry and noisy until the

stopping index is reached. Later they eventually become noisy, converging to the

original noisy image f . In the numerical experiments we also found out that if λ

is sufficiently small, a further decrease does not have a large impact on the final
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reconstruction. Roughly speaking, by dividing λ by two, the number of iterations

needed until the stopping index is reached doubles, and the final reconstruction

is almost the same. This fact induces the conjecture that there exists a limiting

flow of images on which this iterative procedure can be interpreted as an implicit

time discretization with time step λ. If this is the case, then the dependence of

the results on λ is somehow one-sided, i.e., only too large large values of λ will

create bad reconstructions. This is true. In Chapter 3, λ will be interpreted as

timestep and the discrete iterative regularization procedure will be developed to

a continuous inverse scale flow.

Example. It is instructive to see what this procedure does to the the specific

clean image mentioned in Section 1.2:

f = αχR =





α, if
√

x2 + y2 ≤ R;

0, if
√

x2 + y2 > R.

(2.4)

If αλR ≥ 1, Meyer’s result [Mey01] gives us

f = u1 + v1 = (α− 1

λR
)χR +

1

λR
χR.

Then

f + v1 =

(
α +

1

λR

)
χR = αχR +

1

λR
χR = u2 + v2.

This follows because we merely replace α by α + 1
λR

in the equation above. So

u2 = f , as do all the uk, k ≥ 2. The objection that ROF degrades clean images

by shrinking extrema is no longer valid. Figure 2.1 illustrates this result.
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Figure 2.1: (Example) ROF with a two-step iterative regularization
on a characteristic function. ROF degrades clean image, and this
is resolved by the iterative regularization.

If αλR < 1, we have

f = u1 + v1 = 0 + αχR,

f + v1 = 2αχR.

Let n be the smallest integer for which nαλR ≥ 1. We have un−1 = 0, vn−1 =

(n − 1)αχR. But un =
(
nα− 1

λR

)
χR, vn = 1

λR
χR. Finally, un+1 = f , as do all

uk for k ≥ n + 1. This illustrates the strongly nonlinear nature of this iterative

procedure. We go from a sequence of “restored” images, all of which are totally

black, to the true result in two steps.

The above results also apply to the radially symmetric piecewise constant

image f in (2.4) if radially symmetric noise that is not too large is added to

it. This follows from an analysis of the ROF model by Strong and Chan [SC03].

Strong and Chan present numerical results that show that their analytical results

predict quite well the actual performance of ROF even on digital images with no
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radial symmetry.

Chambolle [Cha04] has shown that the problem dual to the TV regularization

(restoration) problem (1.2) is:

v = argmin
p∈K

{
‖p− f‖2

L2

}
, (2.5)

where

K := cl

{
1

2λ
∇ · ~ξ

∣∣∣∣ ~ξ ∈ C1
c (Ω,R2), |~ξ(x)| ≤ 1,∀x ∈ Ω

}
, (2.6)

with closure taken in the space G, i.e., v is a projection of f onto the convex set

K. A simple alternative proof of this in the finite dimensional case can be found

in [GY04]. This minimization problem determines the “noise” v in f , whereas

the minimization problem (1.2) determines the “signal” u = f −v in f . The dual

version of the iterative regularization procedure (2.2) and (2.3) becomes:

Algorithm 2.2 (Dual Form of Iterative Regularized ROF Denoising).

• Initialize: v0 = 0;

• For k=0,1,2,· · · : compute vk+1 as the minimizer of the modified dual prob-

lem, i.e.,

vk+1 = argmin
p∈K

{
‖p− (f + vk)‖2

L2

}
. (2.7)

Note that

uk+1 = (f + vk)− vk+1. (2.8)

Although this procedure will not be used in this dissertation, it is included

here for its simplicity and elegance.

Note that had the dual iterates vk and the update (2.3) for them not been

introduced, the expression (2.2) for uk+1, in terms of only the primal iterates uk,
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would have had the much more complicated form

uk+1 = arg min
u∈BV (Ω)

{
|u|BV + λ

∥∥∥∥(k + 1)f −
k∑

j=0

uj − u

∥∥∥∥
2

L2

}
, for k = 0, 1, · · · . (2.9)

where u0 = 0.

2.2.2 Iterative Regularization: General Case

The above regularization procedure can be generalized to other inverse problems

and other regularization models, as to be outlined in the following and detailed

in the succeeding chapters. Specifically Algorithm 2.1 can be generalized to

regularization models of the form

min
u

{
J(u) + H(u, f)

}
, (2.10)

where J is a convex nonnegative regularization functional (for total variation

regularization we have J(u) =
∫

Ω
|∇u|) and the fitting functional H is convex

nonnegative with respect to u for fixed f . As usual for convex functionals (cf.

[ET99]) we shall denote the subdifferential of J at a point u by

∂J(u) :=

{
p ∈ BV (Ω)∗

∣∣∣∣ J(v) ≥ J(u) + 〈p, v − u〉, ∀ v ∈ BV (Ω)

}
. (2.11)

After initializing u0 = 0 and p0 = 0 ∈ ∂J(u0), the iterative procedure is given

by the sequence of variational problems

uk = argmin
u

{
J(u)− 〈u, pk−1〉+ H(u, f)

}
(2.12)

for k = 1, 2, · · · , where 〈·, ·〉 denotes the standard duality product and pk−1 is a

21



subgradient of J at uk−1.

As particular examples we may consider the following:

• the Vese-Osher model (1.9), which also minimizes over ~ζ at each step. The

kth step yields the decomposition f + wk = uk+1 + ∇ · ~ζk+1 + wk+1, with

w0 = 0, via the minimization problem (1.9), with f replaced by f + wk for

k ≥ 0.

• The Osher-Solé-Vese model (1.13), where we merely decompose f = u1 +v1

and iterate via f + vk = uk+1 + vk+1 for k ≥ 1.

In principle, the iteration procedure can be written down for arbitrary func-

tionals H and J , but the well-definedness of the algorithm is not obvious since

one needs the existence of uk as the minimizer of a variational problem and the

existence of an associated subgradient pk for the next step. This will introduce

some conditions on J and H that will be discussed in further detail below.

2.3 Analysis of the Iterative Regularization Procedure

In the following a detailed analysis will be provided for the most important case

of functionals which are interested in this dissertation, namely

J(u) := |u|BV (2.13)

and

H(u, f) := λ‖f −Ku‖2
L2 , (2.14)

with K : L2(Ω) → H being a bounded linear operator whose kernel does not

include the space of continuous functions, and H being some Hilbert space. In
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this case it is easy to see that N(u) := J(u) +
√

H(u, 0) is an equivalent norm

on BV (Ω). The case of more general J and H will be discussed in Section 2.3.4.

For quadratic H we can use Fréchet-derivatives instead of subgradients, they are

given by

∂uH(·, f) = 2λK∗(Ku− f),

where K∗ denotes the adjoint of K.

Note that due to the definition of H(·, f) on the larger space L2(Ω), its gra-

dients can be considered as elements of this space, too, while the gradients of

J are in the larger space BV (Ω)∗, in general. This will have some interesting

implications on the regularity of subgradients of J(uk) we obtain through the it-

erative minimization procedure. Moreover, note that we can extend J to a convex

functional on L2(Ω) by setting J(u) = ∞ for u ∈ L2(Ω)\BV (Ω). The identity

∂u(J + H(·, f)) = ∂J + ∂uH(·, f)

holds (in BV (Ω)∗) for any f ∈ L2(Ω). A detail proof of this assertion is referred

to [ET99, Proposition 5.6].

The general iterative regularization procedure can be formulated as follows:

Algorithm 2.3 (General Iterative Regularization). Let u0 = 0, p0 = 0, and for

k = 1, 2, · · · ,

• Compute uk as a minimizer of the convex functional

Qk(u) := J(u)− J(uk−1)− 〈pk−1, u− uk−1〉+ H(u, f), (2.15)

where 〈·, ·〉 denotes the usual duality product.

• Compute pk = pk−1 − ∂uH(uk, f) ∈ ∂J(uk).
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Note that in principle one could also start with different initial values that

satisfy p0 ∈ ∂J(u0). Since for u0 6= 0 an analytic expression for the subgradient

is not known, one would have to solve another complicated optimization problem

to determine p0, which seems to be not desirable from a practical standpoint.

2.3.1 Iterative Regularization and Bregman Distances

Before considering the well-definedness of the above Algorithm 2.3, the connection

to Bregman distances will be established first. For p(v) ∈ ∂J(v), we define the

(nonnegative) quantity

Dp(v)(u, v) ≡ D
p(v)
J (u, v) ≡ J(u)− J(v)− 〈p(v), u− v〉, (2.16)

which is known as a generalized Bregman distance associated with J(·) (cf.

[Bre67, CT93, Kiw97] for an extension to nonsmooth functions). For simplic-

ity, we will drop the dependence on J(·) from the notation D
p(v)
J (u, v) in the

following. Moreover, if not otherwise specified, Dp
J(u, v) ≡ D

p(v)
J (u, v).

For a continuously differentiable functional there is a unique element in the

subdifferential and consequently a unique Bregman distance. In this case the

distance is just the difference at the point u between J(·) and the first-order

Taylor series approximation to J(·) at v. Moreover, if J(u) is strictly convex,

Dp(u, v) is also strictly convex in u for each v, and as a consequence Dp(u, v) = 0

if and only if u = v.

Even for a continuously differentiable and strictly convex functional, the quan-

tity Dp(u, v) is not a distance in the usual (metric) sense, since in general,

Dp(v)(u, v) 6= Dp(u)(v, u) and the triangle inequality does not hold. However,

it is a measure of closeness in the sense that Dp(u, v) ≥ 0 and Dp(u, v) = 0 if
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u = v (if and only if for strictly convex functionals). For the case of a nonsmooth

and not strictly convex functional like the total variation, it is not clear if one can

introduce a Bregman distance for arbitrary u and v, since ∂J(v) might be empty

or multivalued. However, one can consider a multivalued version of the Bregman

distance in this case, i.e., as the set including all Dp(u, v) for all p ∈ ∂J(v). As we

shall prove below, this issue is not important for our purpose, since the iterative

regularization algorithm automatically selects a unique subgradient.

Here we give some examples of Bregman distance:

• J(u) = 1
2
‖u‖2

L2 = 1
2

∫
Ω
|u|2, then p = ∂J(v) = v,

Dp(u, v) =
1

2

∫

Ω

|u|2 − 1

2

∫

Ω

|v|2 − 〈u− v, v〉

=
1

2

∫

Ω

|u− v|2 = J(u− v) = J(v − u)

= Dp(u)(v, u).

• J(u) = 1
2
‖∇u‖2

L2 = 1
2

∫
Ω
|∇u|2, assuming u, v satisfy Neumann boundary

conditions on boundaries, then p = ∂J(v) = −∆v,

Dp(u, v) =
1

2

∫

Ω

|∇u|2 − 1

2

∫

Ω

|∇v|2 − 〈u− v,−∆v〉

=
1

2

∫

Ω

|∇u|2 − 1

2

∫

Ω

|∇v|2 − 〈∇u−∇v,∇v〉

=
1

2

∫

Ω

|∇u−∇v|2 = J(u− v) = J(v − u)

= Dp(u)(v, u).

• Total variation J(u) = |u|BV =
∫

Ω
|∇u|, assuming u, v satisfy Neumann
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boundary conditions on boundaries, then p = ∂J(v) = −∇ · ∇u
|∇u| ,

Dp(u, v) =

∫

Ω

|∇u| −
∫

Ω

|∇v| −
〈

u− v,−∇ · ∇u

|∇u|
〉

=

∫

Ω

|∇u| −
∫

Ω

|∇v| −
〈
∇u−∇v,

∇v

|∇v|
〉

=

〈
∇u,

∇u

|∇u| −
∇v

|∇v|
〉

.

Note that in this case Dp(v)(u, v)≡/Dp(u)(v, u). In Section 3.2.2 we will revisit

this Bregman distance and show that if Dp(u, v) = 0 for J(u) = |u|BV , then

u and v are the same up to a contrast change.

Remark. It is worthy to point out here that for total variation based image

restoration, J(u) = |u|BV , the Bregman distance Dp(u, v) defined above

characterizes the distance between the two normal vectors ∇u
|∇u| and ∇v

|∇v| .

Thus in the iterative regularization procedures, we are not only smoothing

the grey levels of the image, but also fitting the normal vectors of restored

images to a “smooth” one. In this sense we are able to expect refined and

better results in the iterates than the original models.

As we shall see below, we shall obtain convergence of the reconstructions

in the weak-∗ topology of BV (Ω) (and by compact embedding also in L2(Ω)),

which is the same kind of convergence one obtains for the reconstructions of the

ROF model (cf. [AV94]). From this viewpoint one may consider the Bregman

distance only as an auxiliary term used in the convergence analysis. However,

monotone decrease of some Bregman distances between the true image and the

computed reconstruction will also be obtained. This may be interpreted as an

additional indicator of the quality of the reconstruction, though the meaning of

the Bregman distance associated with the total variation is difficult to interpret.
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However, at least for some cases the convergence of Bregman distances can be

used to interpret the convergence speed of discontinuities (cf. [BO04]).

2.3.2 Well-Definedness of the Iterates

In the following it will be shown that the iterative procedure in Algorithm 2.3 is

well-defined, i.e., that Qk has a minimizer uk and that one may find a suitable

subgradient pk. The latter will be obtained from the optimality condition for

the minimization of Qk, which yields an interesting decomposition of f involving

“noise” at levels k and k − 1 and signal at each level k:

Proposition 2.3.1. Assume that J and H are given by (2.13) and (2.14), re-

spectively, and let u0 = 0 and p0 := 0 ∈ ∂J(u0). Then, for each k ∈ N there

exists a minimizer uk of Qk and there exists a subgradient pk ∈ ∂J(uk) and

qk = ∂uH(uk, f) = 2λK∗(uk − f) such that

pk + qk = pk−1. (2.17)

If, in addition, K has no nullspace, then the minimizer uk is unique.

Proof. We prove the above result by induction. For k = 1, we have Q1(u) =

J(u)+H(u, f) and the existence of minimizers as well as the optimality condition

p1 + q1 = p0 = 0 is well-known [AV94]. Moreover, with r1 := 2λ(f −Ku1) ∈ H
we have p1 = K∗r1.

Now we proceed from k−1 to k, and assume that pk−1 = K∗rk−1 for rk−1 ∈ H.

Under the above assumptions, the functional

Qk : u 7→ J(u)− J(uk−1)− 〈pk−1, u− uk−1〉+ H(u, f)
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is weak-* lower semicontinuous (due to convexity and local boundedness, cf.

[ET99]) and it is bounded below by H(u, f) due to the properties of subgra-

dients. Moreover, we can estimate

Qk(u) = J(u)− J(uk−1)− 〈rk−1, f −Kuk−1〉+

λ‖Ku− f − 1

2λ
rk−1‖2

L2 − 1

4λ
‖rk−1‖2

L2

≥ J(u)− J(uk−1)− 〈rk−1, f −Kuk−1〉 − 1

4λ
‖rk−1‖2

L2 .

Since only the first term on the right-hand side of this inequality is not constant,

boundedness of Qk(u) implies boundedness of J(u) and consequently bounded-

ness of N(u). This shows that the level sets of Qk are bounded in the norm of

BV (Ω), and therefore they are weak-* compact. Hence, there exists a minimizer

of Qk due to the fundamental theorem of optimization. Moreover, if K has no

nullspace, the strict convexity of H(·, f) and convexity of the other terms implies

the strict convexity of Qk, and therefore the minimizer is unique. Since

∂(−〈pk−1, ·〉) = {−pk−1},

the optimality conditions for this problem imply

pk−1 ∈ ∂J(uk) + ∂uH(uk, f),

which yields the existence of pk ∈ ∂J(uk) and qk = ∂uH(uk, f) = 2λK∗(Kuk−f)

satisfying (2.17). With rk := rk−1 − 2λ(Kuk − f) ∈ L2(Ω) and pk := K∗rk we

obtain (2.17).
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Note that as a result of (2.17) we obtain that

pk = −
k∑

j=1

qj = 2λ
k∑

j=1

K∗(f −Kuj),

i.e., the subgradient pk is equal to the adjoint applied the sum of residuals f−Kuj.

Moreover, the iterative algorithm 2.3 constructs a sequence of minimizers uk such

that there exists pk ∈ L2(Ω) ∩ ∂J(uk) (for smoothing K we even has pk in the

image of K∗), which can be thought of as a regularity property of uk, respective

of its level sets. This corresponds to results of Meyer [Mey01] for the ROF-model

showing that the indicator function of a ball may be a solution, but not the

indicator function of a square. In the same way we could show that the indicator

function of a square (or more generally a function whose level sets are squares)

cannot arise as an iterate in the regularization procedure. However, the method

may still converge to such solutions as k →∞.

We again consider some special cases:

• Denoising: If

H(u, f) = λ‖f − u‖L2 = λ

∫

Ω

(f − u)2, (2.18)

i.e., K is the identity, we have ∂uH(u, f) = 2λ(u− f) and hence,

pk + 2λ(uk − f) = pk−1, k = 1, 2, · · · , p0 = 0.

If we set pk ≡ 2λvk, we obtain the usual decomposition (2.3):

f + vk−1 = uk + vk.
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• Deblurring: If

H(u, f) = λ

∫

Ω

(Au− f)2 (2.19)

for A : L2(Ω) → L2(Ω) being a compact linear operator (typically a con-

volution operator), we have ∂Hu(u, f) = 2λ(A∗(Au − f)), where A∗ is the

L2-adjoint operator of A, and hence,

pk + 2λA∗(Auk − f) = pk−1.

Notice that since p0 = 0 = A∗0 we may conclude inductively that pk ∈
R(A∗), and hence there exist vk with pk = 2λA∗vk. Hence, we can alterna-

tively write an update formula for vk given by

f + vk−1 = Auk + vk.

Finally one can see that the Osher-Sole-Vese model (1.13) can also be in-

terpreted as deblurring, with the compact operator A = ∇∆−1 and trans-

formed output f̃ = Af .

• Binary Denoising: Another interesting example uses

H(u, f) = λ

∫

Ω

|f − u| (2.20)

(cf. [CE05]), which is not everywhere differentiable. In this case the sub-

gradient of H with respect to u at uk consists of all functions q ∈ L∞(Ω)

such that

q(x) ∈ λsign[uk(x)− f(x)] a.e.x ∈ Ω
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with the generalized sign function

sign[t] =





{1} if t > 0,

{−1} if t < 0,

[−1, 1] if t = 0.

Setting pk = λvk we have the decomposition

vk ∈ {vk−1}+sign[f−uk] =





{vk−1(x) + 1} a.e. where f(x) > uk(x),

{vk−1(x)− 1} a.e. where f(x) < uk(x),

{vk−1(x)}+ [−1, 1] a.e. where f(x) = uk(x).

This is of interest in the study of binary (black and white) images [CE05],

where the noise structure is also binary, which is well reflected by the fact

that the noise is changed by a unit amount if f(x) 6= uk(x).

In this dissertation we will mainly focus on the denoising case. For the gen-

eralizations on the other two cases, one can refer to the work of He et. al. in

[HMO05] (for blind deconvolution) and [HBO05].

2.3.3 Convergence Analysis

Now some convergence properties of the iterative regularization process will be

studied. The analysis below is motivated by that of Hanke [Han97] who analyzed

Levenberg-Marquardt methods for ill-posed problems (also related to nonstation-

ary iterative Tikhonov regularization, cf. [HG98, GS00] and inverse scale space

methods cf. [SG01]), which turns out to be a special case of the iterative regular-

ization strategy when using a quadratic regularization functional J(u) = ‖u‖L2

for some Hilbert space norm.
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First, two important monotonicity properties of the residual and of the Breg-

man distance are shown below:

Proposition 2.3.2. Under the above assumptions, the sequence H(uk, f) ob-

tained from the iterates of Algorithm 2.3 is monotonically non-increasing, we

even have

H(uk, f) ≤ H(uk, f) + Dpk−1(uk, uk−1) ≤ H(uk−1, f). (2.21)

Moreover, let u be such that J(u) < ∞, then we have

Dpk(u, uk) + Dpk−1(uk, uk−1) + H(uk, f) ≤ H(u, f) + Dpk−1(u, uk−1). (2.22)

Proof. From the definition of subgradient and because uk minimizes Qk(u) we

have

H(uk, f) ≤ H(uk, f) + J(uk)− J(uk−1)− < uk − uk−1, pk−1 >

= Qk(uk) ≤ Qk(uk−1) = H(uk−1, f),

which implies (2.21).

Next we use the following interesting identity for Bregman distances, which
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seems to have first been pointed out in [CT93]:

Dpk(u, uk)−Dpk−1(u, uk−1) + Dpk−1(uk, uk−1)

= J(u)− J(uk)+ < uk − u, pk >

−J(u) + J(uk−1)− < uk−1 − u, pk−1 >

+J(uk)− J(uk−1)+ < uk−1 − uk, pk−1 >

= < uk − u, pk − pk−1 > .

Replacing pk − pk−1 by −qk using equation (2.17) and using the fact that qk is a

subgradient of H(·, f) at uk, we obtain

Dpk(u, uk)−Dpk−1(u, uk−1) + Dpk−1(uk, uk−1) = 〈qk, u− uk〉

≤ H(u, f)−H(uk, f),

which is equivalent to (2.22).

If there exists a minimizer ũ of H(·, f) with J(ũ) < ∞, then we obtain in

particular from the choice u = ũ in (2.22),

Dpk(ũ, uk) ≤ Dpk(ũ, uk) + Dpk−1(uk, uk−1)

≤ Dpk(ũ, uk) + Dpk−1(uk, uk−1) + H(uk, f)−H(ũ, f)

≤ Dpk−1(ũ, uk−1). (2.23)

This result allows us to conclude a general convergence theorem:

Theorem 2.3.3 (Exact Data). Assume that there exists a minimizer ũ ∈ BV (Ω)
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of H(·, f) such that J(ũ) < ∞. Then

H(uk, f) ≤ H(ũ, f) +
J(ũ)

k
(2.24)

and in particular uk is a minimizing sequence.

Moreover, uk has a weak-* convergent subsequence in BV (Ω), and the limit of

each weak-* convergent subsequence is a solution of Ku = f . If ũ is the unique

solution of Ku = f , then uk → ũ in the weak-* topology in BV (Ω).

Proof. We now sum (2.22) arriving at

Dpk(ũ, uk) +
k∑

ν=1

[Dpν−1(uν , uν−1) + H(uν , f)−H(ũ, f)] ≤ D0(ũ, u0) = J(ũ).

(2.25)

From Dpν−1(uν , uν−1) ≥ 0 and the monotonicity of H(uν , f) due to (2.21), we

further conclude

Dpk(ũ, uk) + k [H(uk, f)−H(ũ, f)] ≤ J(ũ),

and the nonnegativity of the first term implies (2.24).

For f = Kũ, (2.24) implies (together with the monotonicity of ‖Kuk − f‖2
L2)

kλ‖Kuk − f‖2
L2 ≤ λ

k∑
ν=1

‖Kuν − f‖2
L2 ≤ J(ũ).
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From (2.24) and (2.17) we obtain

J(ũ) ≥
k∑

ν=1

Dpν−1(uν , uν−1) = J(uk)−
k∑

ν=1

〈pν−1, uν − uν−1〉

= J(uk)− J(u0)− 〈pk−1, uk − ũ〉+
k−1∑
ν=1

〈pν − pν−1, uν − ũ〉

= J(uk)−
k−1∑
ν=1

〈qν , uk − ũ〉 −
k−1∑
ν=1

〈qν , uν − ũ〉.

Since qν = 2λK∗(Kuν − f) in this case, we may further estimate

J(ũ) ≥ J(uk)− 2λ
k−1∑
ν=1

〈Kuν − f, Kuk − f〉 − 2λ
k−1∑
ν=1

‖Kuν − f‖2

≥ J(uk)− kλ‖Kuk − f‖2 − 3λ
k−1∑
ν=1

‖Kuν − f‖2

≥ J(uk)− 4J(ũ).

Thus, J(uk) ≤ 5J(ũ), and by equivalence of norms we obtain that

|uk|BV ≤ C(J(uk) + ‖Kuk‖),

whose right-hand side is uniformly bounded. The further assertions then follow

by standard weak-* convergence techniques.

The above result is a typical convergence result for exact data. In the special

case of denoising it would mean that f = ũ is of bounded variation, i.e., it does

not include any noise that is not of bounded variation. For the specific models

of denoising and deblurring considered above, this yields a rate of convergence:

Corollary 2.3.4. Under the assumptions of Theorem 2.3.3, the following results
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hold:

• For denoising, i.e., for H given by (2.18), we have

‖f − uk‖L2 ≤
√

J(f)

λk
= O (

k−1/2
)

(2.26)

if J(f) < ∞.

• For deblurring, i.e., for H given by (2.19), we have

‖f − Auk‖L2 ≤
√

J(ũ)

λk
= O (

k−1/2
)

(2.27)

if f = Aũ and J(ũ) < ∞.

• For binary denoising, i.e., for H given by (2.20), we have

‖f − uk‖L1 ≤ J(f)

λk
= O (

k−1
)

(2.28)

if J(f) < ∞.

Next, we consider the noisy case; i.e., we suppose that g is the true noise-free

image and that ũ is a minimizer of H(·, g) with H(ũ, g) = 0, which satisfies

H(ũ, f) ≤ δ. (2.29)

The positive number δ can be considered as the noise level (or rather as an

estimate for the noise level, which is easier to obtain in practice). For example,

in ROF model, H(ũ, f) = λ‖u− f‖2
L2 and then δ = λσ2, where σ = ‖u− f‖L2 is

the one defined in (1.16). The meaning of δ will be specified for the special cases

below.
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In medical imaging, for example, one often has a very good estimate of the

noise induced by the imaging apparatus obtained by imaging known objects

(phantoms). In general, a procedure having been found satisfactory to estimate δ

is to restrict the image to a square region which is “quiet” and contains no edges

and compute the standard deviation of this restriction of the image.

Theorem 2.3.5 (Noisy Data). Let ũ, f and g be such that ũ is a minimizer

of H(·, g) and such that (2.29) holds. Then, as long as H(uk, f) > δ (i.e., the

residual lies above the noise level), the Bregman distance between uk and ũ is

decreasing, more precisely,

Dpk(ũ, uk) ≤ Dpk(ũ, uk) + Dpk−1(uk, uk−1) < Dpk−1(ũ, uk−1).

Proof. From (2.22) we obtain by inserting (2.29)

Dpk(ũ, uk) + Dpk−1(uk, uk−1) + H(uk, f) ≤ δ + Dpk−1(ũ, uk−1).

Thus, due to the non-negativity of Dp(·, ·), for H(uk, f) > δ we may conclude

the decrease of Dpk(ũ, uk).

Note that, due to Theorem 2.3.5, we can obtain that if g is the noise-free

image and ũ is the true solution, iterations actually approach the true solution

until the residual in the iteration drops below the noise level.

The result of Theorem 2.3.5 yields a natural stopping rule, the so-called gener-

alized discrepancy principle (cf. [EHN96]), which consists in stopping the iteration

at the index k̄ = k̄(δ, f) given by

k̄ = max{ k ∈ N | H(uk, f) ≥ τδ }, (2.30)
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where τ > 1. Note that due to the monotone decrease of H(uk, f), which is

guaranteed by (2.21), the stopping index k̄ is well-defined. We also mention that

the choice τ = 1 that would seem obvious with respect to the noise estimate is too

severe in order to guarantee the boundedness of J(uk̄) and the semiconvergence

of the regularization method as we shall see below, but this statement is also true

for other iterative regularization methods (cf. [EHN96]).

If we sum the inequality in the proof of Theorem 2.3.5, we obtain

kH(uk, f) ≤ Dpk(ũ, uk) +
k∑

ν=1

H(uν , f) ≤ δk + J(ũ),

i.e.,

H(uk, f) ≤ δ +
J(ũ)

k
.

As a consequence, k̄(δ) is finite for τ > 1 and, since H(uk̄(δ)+1, f) ≤ τδ we have

δ(k̄(δ) + 1) ≤ J(ũ)

τ − 1
. (2.31)

Theorem 2.3.6 (Semi-Convergence for Noisy Data). Let the assumptions of

Theorem 2.3.5 be satisfied and let the stopping index k̄ be chosen according to

(2.30). Moreover, let Kũ = f . Then, J(uk̄(δ)) is uniformly bounded in δ and

hence, as δ → 0 there exists a weak-* convergent subsequence (uk̄(δ`)) in BV (Ω). If

the set {k̄(δ)}δ∈R+ is unbounded, the limit of each weak-* convergent subsequence

is a solution of Ku = g.

Proof. By analogous reasoning, as in the proof of Theorem 2.3.3, we can derive

an estimate of the form

J(uk) ≤ C(J(ũ) + kδ)
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for k ≤ k̄(δ) and some positive constant C. From (2.31) we further obtain

J(uk̄(δ)) ≤
τC

τ − 1
,

and hence, J(uk̄(δ)) is bounded. The existence of converging subsequences then

follows from standard weak-* convergence techniques. In order to show that a

weak-* limit u satisfies Ku = g, we use again the estimate

H(uk̄(δ), f) ≤ δ +
J(ũ)

k∗(δ)

derived above. If k̄(δ`) →∞ for some subsequence δ`, then clearly H(uk̄(δ), f) → 0

and from the lower semicontinuity of H in this case we obtain H(u, g) = 0 for

the limit, i.e., Ku = g for the special H we consider.

We again consider this relation for the special cases:

• Denoising: for H given by (2.18) we obviously have ũ = g and hence, (2.29)

becomes

H(g, f) = λ

∫

Ω

(f − g)2 ≤ δ.

Thus, σ =
√

δ
λ

is an estimate for the variance of the noise, which can be

obtained from statistical tests in typical applications. The stopping rule

consists in terminating the iteration when the residual ‖u − f‖L2 drops

below this variance estimate σ. For k ≤ k̄ we actually have the stronger

estimate

Dpk(g, uk) + Dpk−1(uk, uk−1) + λ

(
1− 1

τ

)
‖uk − f‖2

L2 ≤ Dpk−1(g, uk−1).

• Deblurring: for H given by (2.19) we have Aũ = g and hence, (2.29) is
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again

H(ũ, f) = λ

∫

Ω

(f − g)2 ≤ δ,

and σ =
√

δ
λ

is an estimate for the variance of the noise in the output

image. For k ≤ k̄ we have

Dpk(ũ, uk) + Dpk−1(uk, uk−1) + λ

(
1− 1

τ

)
‖Auk − f‖2

L2 ≤ Dpk−1(ũ, uk−1).

Note that in the particular case of the Osher, Solé, Vese model [OSV03]

in equation (1.13) we have A = ∇∆−1 and f = ∇∆−1f0, where f0 is the

actual noisy image we obtain, and therefore the noise estimate is

λ‖∇∆−1(f0 − ũ)‖2
L2 ≤ δ,

i.e., an estimate of the variance of the noise in the H−1-norm is needed.

• Binary Denoising: for H given by (2.20) we again have ũ = g and hence, if

we square (2.29) then

H(g, f)2 = λ2

(∫

Ω

|f − g|
)2

≤ δ2.

Because (
∫

Ω
|f − g|)2 ≤ (

∫
Ω

12)(
∫

Ω
|f − g|2), if we assume Ω is bounded

and
∫

Ω
1 = 1, then in this case σ = δ

λ
is a (rough) estimate for the variance

of the noise, the stopping rule is the same as for denoising, we stop when

the residual drops below the variance estimate. In this case we obtain for

k ≤ k̄

Dpk(g, uk) + Dpk−1(uk, uk−1) + λ

(
1− 1

τ

)
‖uk − f‖L2 ≤ Dpk−1(g, uk−1).
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2.3.4 Further Generalizations

In the following some possible generalizations of the above procedure with re-

spect to the fitting functional H, the regularization functional J and additional

constraints will be discussed.

We start with different regularization functionals J . The above analysis is not

restricted to the space BV (Ω) and J being the BV seminorm. One can easily

generalize the results to other locally bounded, convex, and nonnegative regu-

larization functionals J defined on a Banach space U ⊂ L2(Ω). The conditions

needed on J are that:

• The level sets { u ∈ U | J(u) ≤ M } are compact in L2(Ω) (or any stronger

topology than the one of L2(Ω)) for all M ∈ R and nonempty for M >

M0 > 0.

• J can be extended to a weakly lower semicontinuous functional from L2(Ω)

to R ∪ {+∞}.

Under these conditions, then by similar reasoning as above, there exists a

minimizer of the functional Qk, which is the minimal property we need for the

well-definedness of the iterative procedure. If in addition J + H(·, f) is strictly

convex, then this minimizer is unique and we obtain a unique iterate uk. From

standard optimality theory for convex problems (cf. [ET99]), we may also con-

clude the decomposition (2.17) and the regularity pk ∈ L2(Ω) ⊂ U∗. The conver-

gence analysis with the same stopping rule can be carried out as above, with the

modification that the weak-* topology in BV has to be replaced by the topology

in which the level sets of J are compact.

Possible generalizations of the regularization functional include:

41



• Anisotropic Total Variation: In order to obtain different minimizers like

indicator functions of squares as minimizers, one can use anisotropic regu-

larization functionals of the form

J(u) =

∫

Ω

G(∇u)

with G : R2 → R+ being a continuous one-homogeneous function (cf.

[EO04]). An example of particular interest is G(∇u) = |ux| + |uy|. Of

course, we can also use functions, which are not one-homogeneous like

G(∇u) = ‖∇u‖2
L2 , thus including standard Tikhonov-type regularization

techniques.

• Approximations of Total Variation: In several instances one rather mini-

mizes the smooth approximation

Jε(u) =

∫

Ω

√
|∇u|2 + ε2,

for some small constant ε > 0 (cf. e.g. [DS96]). Such an approximation

simplifies numerical computations due to the differentiability of Jε and may

help to avoid the staircasing effect in some cases. The analysis can be

carried out in the same way as above, and due to the strict convexity of Jε

for ε > 0 one even obtains that the Bregman distance is a strict distance.

In the numerical experiments of this chapter this regularized Jε is used,

instead of using J(u) = |u|BV .

• Bounded variation norms: Instead of taking the seminorm in BV (Ω), one

might also use a full norm for the regularization, i.e.,

J(u) = |u|BV + ρ‖u‖2
L2 (2.32)
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for constant ρ > 0. In this case, the Bregman distance Dp(u, v) is bounded

below by ρ‖u−v‖2
L2 , and hence convergence of the Bregman distance implies

L2-convergence, which is interesting in particular for deblurring and for

more general fitting functionals as outlined below.

• Derivatives of bounded variation: another obvious generalization considered

by several authors (cf. [CMM00, HS06]) is to use the bounded variation of

∇u, i.e.,

J(u) =

∫

Ω

|D2u|,

where D2u denotes the Hessian of u, or even more general functionals of

the form

J(u) =

∫

Ω

ϕ(u,∇u,D2u),

with convex ϕ : R × R2 × R2×2 → R+. The analysis can be carried out

in the Banach space U = BV 2(Ω) of functions with second order bounded

variation.

• Maximum-Entropy Regularization: A classical regularization functional in

the reconstruction of probability distributions is the entropy (cf. [Egg93,

EL93])

J(u) = − Entropy(u) =

∫

Ω

(u ln u− u).

In this case the Bregman distance is the so-called Kullback-Leibler diver-

gence

Dp(u, v) =

∫

Ω

(
u ln

u

v
− u + v

)
,

which is well-known in information theory and statistics. The analysis can

be carried out in spaces of Radon measures.

• Finite-dimensional approximations: by analogous reasoning one can con-
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sider the discrete version of all the models introduced above and obtains

the same type of convergence results.

For generalizations with respect to the fitting functional, the situation is more

delicate. In general, even under rather strong assumptions on H, the compact-

ness of level sets of the functional Qk is not guaranteed, so that the iterates in

Algorithm 2.3 are possibly not well-defined. Moreover, we do not know any ar-

gument showing that the total variation of uk remains bounded (even for exact

data), so that the convergence analysis cannot be carried out as above.

Finally, generalizations to additional constraints would be of interest in prac-

tice. The iterative procedure then consists in minimizing Qk subject to the ad-

ditional constraints. This is of importance e.g. for nonnegativity constraints or

for for multiplicative noise, where one wants to choose

H(u, f) =

∫

Ω

(
f

u

)2

subject to the constraint (cf. [RLO03])

C(u) = −1 +

∫

Ω

f

u
= 0.

If the constraint set is not empty, the analysis of well-definedness of the iterates

is of similar difficulty as in the unconstrained case, but the convergence analysis

cannot be carried over easily to additional constraints, in particular the update

formula (2.17) must involve additional terms corresponding to Lagrange multipli-

ers of the constraints. Since preliminary numerical experiments demonstrate the

success of the iterative regularization procedure also for multiplicative denoising,

such an analysis seems to be an important task for future research.
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2.3.5 Related Work

In interesting earlier work, [TNV04], the authors propose an iterative procedure

also based on the ROF model. They also generate a sequence uk which converges

to the given image f . It is interesting to compare the two approaches.

To recall: the approach described in Algorithm 2.3 is to compute uk as a

minimizer of the convex functional

Qk(u) = λ

∫

Ω

(u− f)2 + J(u)− J(uk−1)− 〈pk−1, u− uk−1〉

for k = 1, 2, · · · , with u0 = 0, p0 = 0 and compute pk ∈ {pk−1 − 2λ(uk − f)} ∩
∂J(uk).

The Tadmor-Nezzar-Vese (TNV) approach is (in our language): set u0 = 0

and compute uk as a minimizer of the convex functional

Q̃k(u) = λ2k−1

∫

Ω

(u− f)2 + J(u− uk−1)

for k = 1, 2, · · · .

For J(u) homogeneous of degree one, as in the ROF model, this can be rewrit-

ten as: minimize

˜̃Qk(u) = λ

∫

Ω

(u− f)2 + J

(
u− uk−1

2k−1

)
.

Thus we see the differences: (1) The TNV algorithm uses a hierarchical de-

composition where the difference in total variation between u and the previous

iterate is computed. (2) A dyadic sequence of scales, λ2k−1, is used to obtain

convergence.
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The differences in performance can also be seen. If we define f = αxR for

αλR ≥ 1 as in (2.4), the new algorithm recovers uk ≡ f for all k ≥ 2. The TNV

algorithm finds

uk =

(
α− 1

λ2k−1R

)
χR, k = 1, 2, · · ·

Also, the new algorithm has a denoising aspect to it. Theorem 2.3.5 indicates

that the iterative refinement sequence uk has the property that Bregman distance

between uk and ũ, the true restored solution, decreases until the discrepancy

principle is satisfied. There is no such result in [TNV04]. Finally, we mention

that a similar approach as in [TNV04], but without proofs, can also found in the

earlier paper [SG01].

2.4 Numerical Examples

In this section some numerical results using the iterative regularization procedure

will be presented. These examples concentrate on total variation denoising (and

thus use Algorithm 2.1. Some of the results were previously presented in [OBG05].

Some notation and formula used here are: g is a clean signal (one-dimensional,

1D) or image (two-dimensional, 2D) and it is supposed to be unknown, the given

noisy data is f = g + n (noisy) or f = Ag + n (blurry and noisy), where n ∼
N (0, σ2) is Gaussian noise, σ = ‖n‖L2 is the variance of noise and it can also

be considered as the noise level. The grid size is h = 1. The decomposition

in the restored results is f = u + v (denoising) or f = Au + v (deblurring and

denoising), where u is the restored image and v is considered as a residual. Note

that the knowledge of the noise level is useful in the experiments only as a stopping

criterion via the discrepancy principle. The results are otherwise independent of
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the noise level. Variational methods applied to image processing often use noise

estimates as constraints.

All solutions to the variational problem (1.2) were obtained using gradient

descent in a standard fashion, see e.g. [ROF92]. This amounts to solving a

parabolic equation to steady state with normal derivative zero imposed at the

boundaries. The only nontrivial difficulty comes when |∇u| ≈ 0. This is fixed,

as is usual, by perturbing J(u) =
∫

Ω
|∇u| to Jε(u) =

∫
Ω

√
|∇u|2 + ε2, where ε

is a small positive number, e.g. [DS96]. Without confusion, the subindex ε will

be dropt from Jε in the left of this section. In the examples below a very small

value ε = 10−6 is used1. The initial guess for first step was the noisy data f . For

succeeding iterates in the Bregman procedure (2.2) and (2.3), f will be replaced

by f +vk−1 and the ROF procedure (1.2) will be proceeded again, with the initial

guess replaced by f + vk−1 or the previous iterate uk−1.

The stopping rule for determining the “optimal” uk̄ among the iterates {uk}
is described in Section 2.3.3, and can be simply restated as follows:

k̄ = min
k
{‖uk − f‖L2 ≤ σ} for denoising; (2.33)

k̄ = min
k
{‖Auk − f‖L2 ≤ σ} for deblurring and denoising. (2.34)

The first comparison is taken between the results of the iterative procedure

and the constrained denoising used in the original ROF paper [ROF92].

Example 1 (1D signal): In the first example a one-dimensional noisy signal

is considered. Figure 2.2a displays the original signal g. Figure 2.2b displays the

noisy signal f = g + n, where the variance of noise is σ‖n‖L2 = 9.45. Figure

2.2c shows the restored u obtained using ROF with the constraint ‖u− f‖L2 = σ

1Note that in [OBG05] we set Jε(u) =
∫
Ω

√
|∇u|2 + ε so the ε there is 10−12.
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(a) original g (b) f : noisy f . σ = 9.45
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(c) u: constrained ROF. ‖f − u‖L2 = σ (d) iterated ROF. λ = 0.005, optimal u2
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(e) iterated ROF. λ = 0.001, optimal u5 (f) iterated ROF. λ = 0.0005, optimal u9
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Figure 2.2: (1D signal) Denoising comparison: constrained ROF vs. ROF with
iterative regularization.
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[ROF92]. One could see the typical loss of accuracy in regions where there are

narrow peaks and valleys. In Figures 2.2d, 2.2e and 2.2f, the optimal results

uk̄ of the iterative regularization procedure with λ = 0.005, 0.001, and 0.0005

are presented respectively. All three results are more accurate than the result

obtained with the one-step ROF minimization subject to a constraint on the L2

norm of the removed noise, especially near local minima and maxima of f . The

results also confirm numerically the assertion that using a smaller λ (i.e., initially

over-smoothing) requires more regularization steps to get the optimal restoration.

Therefore k̄ = k̄(λ, σ) does not only depend on the noise level σ, but also on the

choice of λ.

Example 2 (1D signal): Another one-dimensional signal is considered.

The first experiment is due to the “restoration” of a clean signal. From Meyer’s

analysis (1.5) and (1.6), no matter how large λ is, the residual v = f − u of the

original ROF procedure is either f or satisfies ‖v‖∗ = 1
2λ

. In another word, it

will not be zero and thus we can not completely recover u = f for clean signal or

image by one-step ROF procedure. In Figure 2.3a a result u1 with λ = 0.005 is

shown, which corresponds to the one-step ROF restoration. Figure 2.3b shows a

second step result from the iterative regularization procedure. The improvement

is obvious. Next, for the noisy signal (SNR = 13.5) in Figure 2.3c containing

Gaussian noise whose σ = 10, the iterative regularization results u1, u2, u3 are

displayed in Figures 2.3d, 2.3e, 2.3f respectively. λ = 0.001. From u1 (SNR =

10.4) to u2 (SNR = 22.9), the results improved considerably. Succeeding uk

become noisy again for k ≥ 3 (SNR = 22.7). One could conclude that k̄ = 2 for

this example.

Example 3 (Fingerprint): From now on some two-dimensional images will

be tested. The first one is a noisy fingerprint image f as shown in Figure 2.4b,
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(a) clean: original g vs. u1 (b) clean: g vs. u2
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(c) original g vs. noisy f , σ = 10 (d) g vs. u1
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Figure 2.3: (1D signal) ROF with iterative regularization on 1D signal (noise-free
& noisy) .
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which is corrupted by the original clean image g in Figure 2.4a with a Gaussian

noise n shown in Figure 2.4c, σ = ‖n‖L2 = 10.

(a) original g (b) noisy f (c) noise n + 128

(d) u: ROF (e) v + 128 : v = f − u (f) u− g + 128

Figure 2.4: (Fingerprint) ROF restoration. Gaussian noise, σ = ‖f−g‖L2 = 10.0.
λ = 0.085, ‖f−u‖L2 = 10.2, visible signal can be found in the residual v = f−u.

First, the ROF model (1.2) is applied with λ = 0.085. This produced a

restored image u with ‖f − u‖L2 = 10.2 ≈ σ. Some visible signal can be found

in the removed noise component v = f − u. This is a common problem for the

ROF model. The “signal loss” can also be observed by checking the error u− g.

Figure 2.4d-e show the results u, f − u + 128 and u − g + 128. The shift by

adding 128 is used to make the small values of n, f − u and u− g more visible.

This technique will also be applied to the visualization of all noise n and residual

v or vk shown in this dissertation if not specifically specified. Next, ROF with

iterative regularization is applied to denoise f . λ = 0.013. Notice that this time
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(a) u1 (b) u2 (c) u3

u1 u2 u3

(d) f − u1 + 128 (e) f − u2 + 128 (f) f − u3 + 128

f−u1+128 f−u2+128 f−u3+128

(g) u4 (h) u5 (i) u6

u4 u5 u6

(j) f − u4 + 128 (k) f − u5 + 128 (l) ‖f − uk‖L2 vs. k

f−u4+128 f−u5+128 2 4 6 8 10
0

10

20
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||f−u

k
||
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σ=||f−g||
2

Figure 2.5: (Fingerprint) ROF with iterative regularization. Noisy image data
from Figure 2.4b. λ = 0.013. Optimal restoration obtained when ‖f − uk‖L2

drops below σ at k̄ = 4. Noise returns in succeeding u5, u6, ....
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the value of λ is much smaller than the one used for ROF. As indicated before

this small λ will over-smooth u1. But uk improves steadily as k increases, with u4

in Figure 2.5g giving the best restoration. Figure 2.5j shows the residual f − u4,

which contains only very little visible signal. Figure 2.5l is a plot of ‖f−uk‖L2 as

a function of the iterate k. It shows that ‖f−uk‖L2 decreases monotonically with

k, first dropping below σ at the optimal iterate k̄ = 4, hence validating Theorem

2.3.5.

This example also shows visually why the iterative regularization procedure

can be considered as a multiscale restoration: the largest scale (carton and shape)

is restored first in the first step u1, and the finer scales are restored in the suc-

ceeding iterations, with bigger k uk restores finer scales.

(a) original g (b) noisy f (c) noise n + 128

g f f−g+128

Figure 2.6: (Synthetic shape image) From left to right: original image g; noisy
image f ; Gaussian noise n = f − g, n + 128, σ = 40.

Example 4 (Synthetic shape image): In this example, a synthetic image

containing various shapes and patterns is used to test the iterative regularization

procedure. Figure 2.6 shows the original image g, noisy image f and the Gaussian

noise n = f − g (in the plot n + 128 is used, as was explained before). σ = 40,

SNR(f) = 6.5. Figure 2.7 shows a sequence of results uk and f−uk +128, which

comes from the iterative regularized ROF procedure with λ = 0.002. As can be
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(a) u1 (b) u2 (c) u3

u1 u2 u3

(d) f − u1 + 128 (e) f − u2 + 128 (f) f − u3 + 128

f−u1+128 f−u2+128 f−u3+128

(g) u4 (h) u5 (i) u6

u4 u5 u6

(j) f − u4 + 128 (k) f − u5 + 128 (l) f − u6 + 128

f−u4+128 f−u5+128 f−u6+128

Figure 2.7: (Synthetic shape image) ROF with iterative regularization. Data from
Figure 2.6, σ = 40, λ = 0.002. Optimal restoration obtained when ‖f − uk‖L2

drops below σ at k̄ = 5. SNR(u4) = 11.7, SNR(u5) = 12.5, SNR(u6) = 12.2.

54



(a) ‖f − uk‖2 vs. k (b) ‖uk − g‖2 vs. k (c) Dpk(g, uk)
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Figure 2.8: (Synthetic shape image) From left to right: ‖f−uk‖2 vs. k; ‖uk−g‖2

vs. k; Bregman distance Dpk(g, uk). Data uk from Figure 2.7.

seen from the figure the restored results uk improve until the 5th step, at which

point the inequality ‖f − u5‖L2 < σ first becomes satisfied. Then the succeeding

uk(k ≥ 6) become noisier, again validating Theorem 2.3.5. Figure 2.8 shows

some quantities related with these results: ‖f −uk‖L2 vs. k, the error ‖uk− g‖L2

vs. k and the Bregman distance Dpk(g, uk). One could see that: ‖f − uk‖L2 is

monotonically decreasing w.r.t. k; ‖g − uk‖L2 also attains its minimum at the

optimal point k̄ (This is not generally true for all of the numerical examples here.

Often the smallest true L2 error occurs for one or two more more regularization

iterations); Dpk(u, uk) is decreasing for k ≤ k̄, as predicted by Theorem 2.3.5. It

is interesting that this quantity sometimes continues to decrease well after noise

has returned to the iterate uk, see Figure 2.8c.

Next, to illustrate the relationship between λ and the optimal step k̄(λ, σ),

another two different λ values are used to denoise the same noisy image in Figure

2.6b. Figure 2.9 displays the results for λ = 0.004. The restoration u3 is the

best, k̄(0.004) = 3. Figure 2.10 presents the results for λ = 0.006 and shows that

u2 is the best, k̄(0.006) = 2. Moreover, as previously stated k̄(0.002) = 5. This

verifies that k̄(λ) monotonically decreases as λ increases, or equivalently, as the
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(a) u1 (b) u2 (c) u3

u1 u2 u3

(d) u4 (e) f − u1 + 128 (f) f − u2 + 128

u4 f−u1+128 f−u2+128

(g) ‖f − uk‖2 vs. k (h) ‖uk − g‖2 vs. i (c) Dpk(g, uk)

2 4 6 8 10
0

20

40

60

80
||f − u

k
||

2

σ=||f−g||
2

2 4 6 8 10
10

20

30

40

50

60
||u

k
 − g||

2

2 4 6 8 10
0

2

4

6

8

10
D(u,u

k
)

Figure 2.9: (Synthetic shape image) ROF with iterative regularization. Data
from Figure 2.6. λ = 0.004. Optimal restoration obtained when ‖f − uk‖L2

drops below σ at k̄ = 3. SNR(u1) = 3.9, SNR(u2) = 10.8, SNR(u3) = 12.6,
SNR(u4) = 11.2.
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(a) u1 (b) u2 (c) u3

u1 u2 u3

(d) f − u1 + 128 (e) f − u2 + 128 (f) f − u3 + 128

f−u1+128 f−u2+128 f−u3+128

(g) ‖f − uk‖2 vs. k (h) ‖uk − g‖2 vs. i (c) Dpk(g, uk)

2 4 6 8 10
0

10

20

30

40

50

60
||f − u

k
||

2

σ=||f−g||
2

2 4 6 8 10
10

20

30

40

50
||u

k
 − g||

2

2 4 6 8 10
1

2

3

4

5
D(u,u

k
)

Figure 2.10: (Synthetic shape image) ROF with iterative regularization. Data
from Figure 2.6. λ = 0.006. Optimal restoration obtained when ‖f−uk‖L2 drops
below σ at k̄ = 2. SNR(u1) = 5.8, SNR(u2) = 12.6, SNR(u3) = 10.9.
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amount of initial over-smoothing decreases.

Example 5 (Textured image): In this example denoising a textured image

is considered. The noisy data is the one same as in Lysaker-Osher-Tai [LOT04],

σ = 17.2, SNR = 9.4. As can be seen in Figure 2.11, for λ = 0.02, the results

improved considerably from u1 to u2, and got noisy again from u3. u2 gave the

best restoration in this example.

Example 6 (Satellite): This example denoises a satellite image. The data

is shown in the first row of Figure 2.12. σ = 40, SNR = 5.1. For λ = 0.0055, u2

yields the best restoration, with almost all signal restored and very little visible

signal in the residual. In u3 and succeeding uk, k > 3, some noise comes back.

This is displayed in Figure 2.12.

Example 7 (Satellite deblurring): As mentioned before, the iterative

procedure can be generalized to many cases such as deblurring. In [HMO05] He,

Marquina and Osher developed the Bregman based iterative blind deconvolution.

Thanks to their generous help one deblurring+denosing example is presented in

here: a clean satellite image g is blurred by a Gaussian kernel (A ∗ g) and added

with Gaussian noise, f = A ∗ g + n, σ = 10, and then proceeded with iterative

regularized blind deconvolution. Figure 2.13 shows the data and results. λ = 0.1.

With iterative regularization, u2 recovers more signal than u1, especially small

details. The restored image u2 has the least noise, but u3 appears to be sharper.

Succeeding iterations (k ≥ 4) become noisier. For more details about the iterative

regularized blind deconvolution, please refer to [HMO05].
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(a) original g (b) noisy f (c) noise n + 128

g f f−g+128

(d) u1 (e) u2 (f) u3

u1 u2 u3

(g) f − u1 + 128 (h) f − u2 + 128 (i) f − u3 + 128

f−u1+128 f−u2+128 f−u3+128

Figure 2.11: (Textured image) ROF with iterative regularization. Data from
[LOT04]. λ = 0.02. Optimal restoration obtained at u2. SNR(u1) = 5.9,
SNR(u2) = 10.7, SNR(u3) = 10.4.
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(a) original g (b) noisy f (c) noise n + 128

g f−+128 f−g+128

(d) u1 (e) u2 (f) u3

u1 u2 u3

(g) f − u1 + 128 (h) f − u2 + 128 (i) f − u3 + 128

f−u1+128 f−u2+128 f−u3+128

Figure 2.12: (Satellite image) ROF with iterative regularization. λ = 0.0055.
Optimal restoration obtained at u2. SNR(u1) = 12.6, SNR(u2) = 15.1,
SNR(u3) = 10.5.
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(a) original g (b) blurred: A*g (c) blurred & noisy f

g A*g f

(d) u1 (e) u2 (f) u3

u1 u2 u3

(g) u4 (h) f −A ∗ u1 + 128 (i) f −A ∗ u2 + 128

u4 f−A*u1+128 f−A*u2+128

Figure 2.13: (Satellite image, deblurring+denoising) ROF with iterative regular-
ization. λ = 0.1.
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2.5 Discussion and Conclusion

In this chapter we introduced a new iterative regularization procedure for inverse

problems based on the use of generalized Bregman distances, with particular fo-

cus on problems arising in total variation based image restoration. We obtained

rigorous convergence analysis and effective stopping criterion. The numerical

results for denoising appear to give significant improvement over standard mod-

els. The iterative regularization procedure can be generalized to many types of

variational models and inverse problems.

One important parameter of the iterative regularization procedure is the scale

parameter λ. This was briefly discussed in Section 2.2.1. As we have seen in

the numerical experiments, smaller λ corresponds to more iterations to reach the

stopping point and the optimal results seem to be better than that of using larger

λ and fewer iterations. But its corresponding computation cost is more expensive.

In next chapter we will reinterpret λ as a pseudo time-step which tends to zero

and generalize the iterations to a time-continuous inverse scale space flow. In

most cases, for example, the relaxed inverse scale space of ROF model has about

the same computational complexity as using standard gradient descent methods

to solve the original ROF (1.2). We will detail these in Chapter 3.
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CHAPTER 3

Nonlinear Inverse Scale Space Methods

3.1 Introduction

In this chapter we generalize the iterative regularization method (IRM) described

in previous chapter to a time-continuous inverse scale space (ISS) formulation.

Since the noise in images is usually expected to be a small scale feature,

particular attention has been paid to methods separating scales, in particular

those smoothing small scale features faster than large scale ones, so-called scale

space methods.

Scale space methods are obtained for example by nonlinear diffusion filters

[PM90] of the form
∂u

∂t
= div(γ(|∇u|2)∇u), (3.1)

in Ω×R+ with u(x, 0) = f(x), where f : Ω → R denotes the given image intensity

(Ω being a bounded open subset in R2) and u : Ω×R+ → R the flow of smoothed

images. The diffusion coefficient involves a positive and monotone function γ. For

such methods it can be shown that small scales are smoothed faster than large

ones, so if the method is stopped at a suitable final time, we may expect that

noise is smoothed while large-scale features are preserved to some extent. For

some examples of linear and nonlinear scale-spaces see [Wit83, PM90, ALM92,

Wei99, KMS00, GSZ04] and the references therein. Diffusion filters can be related
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to regularization theory (cf. [SW00]) with certain regularization functionals, but

theoretical foundations of choosing optimal stopping times are still missing (see

[MN03, GSZ05] for two recent studies concerning the stopping time problem).

Inverse scale space methods have been introduced in [SG01], which are based

on a different paradigm. Instead of starting with the noisy image and gradually

smoothing it, inverse scale space methods start with the image u(x, 0) = 0 and

approach the noisy image f (which will be normalized to have mean zero) as time

increases, with large scales converging faster than small ones. Thus, if the method

is stopped at a suitable time, large scale features may already be incorporated

into the reconstruction, while small scale features (including the “noise”) are still

missing. The inverse scale space method can also be related to regularization

theory, in particular iterated Tikhonov regularization (cf. [GS00, SG01]) with

the same regularization functionals as for diffusion filters. The construction of

inverse scale space methods in [SG01] worked well for quadratic regularization

functionals, which led to an interesting, but linear evolution equation, but did

not yield convincing results for other important functionals, in particular for the

total variation. In this chapter we present a different version of constructing

inverse scale space (ISS) methods as the limit of an iterative regularization pro-

cedure described in previous chapter and demonstrate its applicability to image

restoration. With the new approach we are able to easily implement nonlinear

inverse scale space methods for the total variation functional, and, in contrast

to diffusion filters, a rigorously justified and simple stopping criterion will be

obtained for the methods.
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3.2 Inverse Scale Space Methods

In the following we generalize the concept of inverse scale space theory introduced

in [GS00, SG01] in the context of Tikhonov regularization for the case

J(u) =
1

2

∫

Ω

|∇u|2. (3.2)

We shall derive general inverse scale space methods as a limit of the iterative

regularization procedure for λ → 0, with particular emphasis on the functional

J(u) =

∫

Ω

√
|∇u|2 + ε2, (3.3)

ε > 0 is a small constant.

Instead of (1.2), we replace the scale parameter λ by λ
2

and rewrite the ROF

minimization as

u = arg min
u∈BV (Ω)

{
|u|BV +

λ

2
‖f − u‖2

L2

}
. (3.4)

Note that λ is a notation for a constant parameter. This change will facilitate

the discussion in this chapter and will be used from now on.

Now we recall from previous chapter that for a special λ > 0 the iterative

refinement procedure for ROF constructs sequences uk of primal and pk of dual

variables such that u0 = p0 = 0,

uk = arg min
u∈BV (Ω)

{
Dpk−1(u, uk−1) +

λ

2
‖f − u‖2

L2

}
,

pk ∈ ∂J(uk).

66



From the Euler-Lagrange equation

pk − pk−1 + λ(uk − f) = 0

we are led to the dual iteration

pk − pk−1

λ
= f − uk, k = 1, 2, · · ·

for the updates. We now reinterpret λ = ∆t as a time step and the difference

quotient on the left-hand side as an approximation of a time derivative. Setting

tk = k∆t, p(tk) = pk, and u(tk) = uk, we have pk−1 = p(tk−1) = p(tk −∆t) and

thus
p(tk)− p(tk −∆t)

∆t
= f − u(tk).

For ∆t ↓ 0 (dropping the subindex k) we arrive at the differential equation

∂p

∂t
(t) = f − u(t), p(t) ∈ ∂J(u(t)), (3.5)

with initial values given by u(0) = p(0) = 0.

In order to obtain well-posedness also if J is only the total variation seminorm

(or any other functional vanishing on constant functions), we shall always assume

in the following that the image f is scaled such that
∫

Ω
f = 0. At this point we

mention that all the inverse scale space methods and arguments discussed below

can be generalized in a straightforward way for
∫

Ω
f 6= 0, with the only difference

that the initial value has to be chosen as the constant u = 1
|Ω|

∫
Ω

f .

If the flow u(t) according to (3.5) exists and is well behaved, it is an inverse

scale space method in the sense of [GS00]. This means that the flow starts

at u(0) = 0 and incorporates finer and finer scales (with the concept of scale
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depending on the functional J) finally converging again to the image f as t →∞,

i.e. lim
t→∞

u(t) = f . Through (3.5) the image u(t) flows from the smoothest possible

image (u(0) = 0) to the noisy image f . Our goal is to use the flow to denoise

the image, and therefore we shall use a finite stopping time for the flow. As we

shall see below, we can use a simple stopping criterion related to the fitting term

‖u(t)− f‖L2 only.

The inverse scale space (ISS) approach should give more accurate results than

the iterative regularization method (IRM) because we can compute the stopping

time more accurately in the ISS approach due to the continuous evolution. This

is borne out to some degree by our results in Section 3.6, but the differences

are small. (Of course both methods are significantly better than solving the

standard variational problem (3.4), even with the best choice of the parameter

λ). We mention that with careful choice of parameter, the IRM corresponds to

an implicit Euler discretization of the ISS so that similarities are not surprising.

However, under such conditions the IRM requires many solutions of (3.4), with

a modified f , which creates quite a high computational effort. The ISS approach

gives a chance to create a much faster algorithm, which is true in particular after

a relaxation we shall introduce below. The complexity can be reduced to that

of using a simple forward Euler time integration of two evolution equations, and

their structure is such that there is no severe time step restriction for stability.

Of course, using the relaxation we only solve a (reliable) approximation to ISS

instead the true evolution equation, which slightly reduces the accuracy but in a

controllable way (via a relaxation parameter). From these reasons and from the

detailed elaborations below it seems clear that the ISS can yield some superior

properties compared to IRM, and due to its scale space interpretation it is more

appealing for a wide community in image processing.
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3.2.1 Behaviour for Quadratic Regularization

We start by briefly reviewing the results obtained in [GS00] for the quadratic

regularization (3.2). In this case we obtain from the variation of the functional

J the boundary value problem

−∆u = p in Ω,

∂u

∂n
= 0 on ∂Ω,

∫

Ω

u = 0 =

∫

Ω

f.

Given p with
∫

Ω
p = 0, there exists a unique solution u.

A simple manipulation (and the fact that ∂f
∂t

= 0) leads us to the equation

∂

∂t
(u− f) = ∆−1(u− f) = −A(u− f),

with the notation A := −(∆)−1. Thus, the function w = u−f satisfies an integro-

differential equation (the integral kernel corresponds to the Green’s function of

−∆), whose solution is given by

u(t)− f = w(t) = e−tAw(0) = −e−tAf.

It is well-known that A is a positive definite operator and thus, e−tAf decays to

zero. As a consequence, the difference u(t) − f = −e−tAf decays exponentially

as t →∞. Also, as a consequence of the results of the following section, for any

function g for which ‖∇g‖L2 < ∞ and
∫

Ω
g = 0, then the error ‖∇(u(t)− g)‖L2

decreases as long as ‖u(t)−f‖L2 > ‖g−f‖L2 . This indicates that the inverse scale

space procedure is a good alternative to the classical Wiener filter or diffusion

69



filtering via the heat equation

∂tu(t) = ∆u(t), u(0) = f.

3.2.2 General Convex Regularization

We consider the case of general convex functionals J : U → R on a Banach space

U (the digital image in Rd is then interpreted as the discretization on a grid).

If J is continuously differentiable, we can compute the implicitly defined primal

variable u = u(p) as the solution of J ′(u(p)) = p. Note that if J is smooth and

strictly convex, the Hessian H = J ′′ is positive definite, and hence, the existence

of a solution is guaranteed under a standard condition like J(0) = 0 by the inverse

function theorem.

A possibility to invert the equation for u is the use of the dual functional (or

convex conjugate, cf. [ET99]), defined by

J∗(p) := sup
u

{
〈u, p〉 − J(u)

}
. (3.6)

Then one can easily show that p ∈ ∂uJ(u) is equivalent to u ∈ ∂pJ
∗(p) and we

obtain an explicit relation for u(p) provided we can compute the dual functional

J∗.

Under the above conditions, we can obtain some important estimates for the

inverse scale space flow (3.5) associated to J . We start by computing the time-

derivative of the fitting functional and the (partial) time derivative of u:

1

2

d

dt
‖u(t)− f‖2

L2 = 〈u(t)− f, ∂tu(t)〉

∂tu(t) =
d

dt
(∂pJ

∗(p(t))) = H∗(p(t))∂tp(t) = −H∗(p(t))(u(t)− f),
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where we used the notation H∗ = ∂2
ppJ

∗ for the Hessian of the dual functional. If

J∗ is strictly convex, then there exists a constant a > 0 such that

〈ϕ,H∗(q)ϕ〉 ≥ a‖ϕ‖2
L2

for all ϕ, q ∈ U∗. Hence, combining the above estimates we deduce

1

2

d

dt
‖u− f‖2

L2 = −〈u(t)− f, H∗(p(t))(u(t)− f)〉 ≤ −a‖u− f‖2
L2

and using Gronwall’s inequality we have

‖u(t)− f‖L2 ≤ e−a(t−s)‖u(s)− f‖L2 ≤ e−at‖f‖L2

if t > s. Thus, as t →∞ we obtain convergence u(t) → f with exponential decay

of the error in the L2-norm.

Note that for the above L2-estimates, we do not need severe assumptions on

f , so that the estimate holds for a clean image as well as for a noisy version used

in the algorithm. If we assume that f is a clean image and J(f) < ∞, then we

can also obtain a decay estimate on the error in the Bregman distance via

d

dt
Dp(f, u(t)) =

d

dt

[
J(f)− J(u(t))− 〈f − u(t), p(t)〉]

= −〈f − u(t), ∂tp(t)〉 = −‖u(t)− f‖2
L2 .

We can also have the following convergence of p(t) to q ∈ ∂J(f) if we assume

the stronger condition q ∈ L2 (a so-called source condition, cf. [BO04]). From
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(3.5) we proceed formally to

1

2

d

dt
‖p(t)− q‖2

L2 = 〈∂tp(t), p(t)− q〉 = 〈f − u, p(t)− q〉

= −Dp(f, u)−Dq(u, f).

So for strictly convex smooth J and for J(f) < ∞ we have that the subgradient

of u(t) monotonically goes to the subgradient of f in L2. Also, there are subse-

quences in t going to infinity for which both Dp(f, u(t)) and Dq(u(t), f) converge

to zero. Moreover, we can integrate the last inequality from time zero to t, which

gives

1

2

(‖p(t)− q‖2
L2 − ‖p(0)− q‖2

L2

)
+

∫ t

0

[ Dp(f, u(s)) + Dq(u(s), f) ] ds = 0.

Since p(0) = 0, ‖p(t)−q‖2
L2 and Dq(u(s), f) are nonnegative, and Dp(u(s))(f, u(s)) ≥

Dp(u(t))(f, u(t)) for s ≤ t, we obtain

Dp(f, u(t)) ≤ ‖q‖2
L2

2t
.

All results so far give information about the convergence of u to the clean

image f (with a finite value J(f)) only. In a more practical situation, f is the

noisy version of an image g to be restored, and we might even have J(f) = ∞,

while J(g) < ∞. In this case we can state the following proposition:

Proposition 3.2.1. For the above conditions, the Bregman distance Dp(g, u(t))

is decreasing with time at least as long as ‖f −u(t)‖L2 > σ, where ‖f −g‖L2 ≤ σ.
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Proof. As in the case of the clean image we directly compute

d

dt
Dp(g, u) = 〈−∂tp(t), g − u(t)〉 = −〈f − u(t), g − u(t)〉

= −‖f − u(t)‖2
L2 − 〈f − u(t), g − f〉

≤ −‖f − u(t)‖2
L2

2
+
‖f − g‖2

L2

2
.

The last term on the right-hand side is negative if ‖f − u(t)‖L2 > ‖f − g‖L2 .

This means that u(t) approaches any “noise free” image g in the sense of

Bregman distance, as long as the residual (the L2 difference between u(t) and

f) is larger than the difference between the noisy image f and g. The left-hand

side, namely the residual ‖f − u(t)‖L2 can be monitored during the iteration,

it only involves the known noisy image f and the computed restoration u(t).

The right-hand side is not known for the “real” image g to be restored, since g

itself is unknown. However, in typical imaging situations, an estimate for the

noise variance is known, which yields a bound of the form ‖f − g‖L2 ≤ σ. The

above estimate guarantees that the distance Dp(g, u) is decreasing at least as

long as ‖f − u(t)‖L2 > σ, and one could terminate the inverse scale space flow

for the minimal k̄ such that ‖f − u(k̄)‖L2 = σ. This stopping criterion is well-

known in the theory of iterative regularization of inverse problems as the so-called

discrepancy principle (cf. [EHN96, Pla96] for a detailed discussion). This is a

key justification for our denoising approach.

We emphasize this result because the Bregman distance is stronger than L2

for the regularization we are considering here, which is significant for denoising.

For example, if J(u) = 1
2

∫
Ω

u2 = 1
2
‖u‖2

L2 then the inverse scale space equation is

∂tu = f − u, u(0) = 0,

73



and D(g, u) = 1
2
‖g − u‖2

L2 . Clearly, for any L2 function g, we have

d

dt
‖g − u‖2

L2 ≤ 1

2

(‖f − u‖2
L2 − ‖f − g‖2

L2

)
,

and ‖g − u‖L2 decreases until ‖f − u(t)‖L2 < ‖f − g‖L2 . This does not imply

any sort of regularization or denoising! If, on the other hand, J(u) = 1
2

∫
Ω
|∇u|2,

then we have

d

dt
‖∇(g − u)‖2

L2 ≤ 1

2

(‖f − u‖2
L2 − ‖f − g‖2

L2

)
,

and we do have a regularization effect for
∫

Ω
|∇g|2 < ∞.

For the total variation functional

J(u) =

∫

Ω

|∇u|,

then, formally,

Dp(g, u) =

∫

Ω

(
|∇g| − ∇g · ∇u

|∇u|
)

=

〈
∇g,

∇g

|∇g| −
∇u

|∇u|
〉

(ignoring the case of |∇u| = 0) and this diminishes as the normal to the level

curves {u = c} line up with those of {g = c}. Although Dp(g, u) can vanish

for g not identical to u, it is fairly easy to show that Dp(g, u) = 0 implies that

g = R(u), R being a non-decreasing function. This means that g and u are the

same up to a contrast change. For a discussion of this kind of morphological

equivalence, see [AGL93]. The proof can be outlined as follows: Dp(g, u) = 0

implies ∇g = |∇g| ∇u
|∇u| . When taking the curl of this equation, the resulting linear

partial differential equation for u has the general solution u = F (|∇g|/|∇u|),
which means that |∇g| = |∇u|r(u) for some nonnegative function r. The solution
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to this eikonal equation is g = R(u), where R′ = r.

3.2.3 Conservation and Scaling Properties

So far we have mainly used dissipation properties to analyze the convergence

behaviour of the inverse scale space approach. Some interesting insights can also

be gained by investigating conserved quantities and scaling properties of the flow.

A natural quantity to be conserved in image processing is the mean value of

the image. Here we assume that
∫

Ω
f = 0, and of course a natural regularization

functional for denoising should satisfy the invariance

J(v) = J(v + c), ∀ v ∈ U , c ∈ R.

Then, for v = u + 1 the subgradient p satisfies

∫

Ω

p = 〈p, 1〉 = 〈p, v − u〉 ≤ J(v)− J(u) = J(u + 1)− J(u) = 0.

Similarly for v = u− 1 we have
∫

Ω
p ≥ 0. Consequently

0 =
d

dt

∫

Ω

p =

∫

Ω

∂tp =

∫

Ω

(f − u) = −
∫

Ω

u,

i.e., u has mean zero.

Another interesting property concerns the scaling of solutions. We consider

the case f̃ = αf for some α ∈ R, and ũ (with subgradient p̃) denotes the solution

of (3.5) with f replaced by f̃ . Then, depending on the scaling properties of the

regularization functional J , we obtain interesting rescalings of the flow.

Proposition 3.2.2. Under the above conditions and notations, there is the fol-

lowing connections between u, p and ũ, p̃:
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• If J is quadratic (such as (3.2)), i.e., J(αv) = α2J(v) for all v ∈ U , then

ũ = αu, p̃ = αp.

• If J is positively one-homogeneous (such as the total variation), i.e., J(αv) =

αJ(v) for all v ∈ U , then ũ(t) = αu(α−1t), p̃(t) = p(α−1t).

• If J is the regularized total variation, i.e. J(v) =
∫

Ω

√
|∇u|2 + ε2, then

ũ(t) = αu(α−1t), p̃(t) = p(α−1t) for ε̃ = αε.

Proof. For all cases we have

∂tp̃ = f̃ − ũ = α(f − α−1ũ), p̃ ∈ ∂J(ũ).

In the quadratic case we have ∂J(ũ) = α∂J(α−1ũ) and hence

∂t(α
−1p̃) = f − (α−1ũ), α−1p̃ ∈ ∂J(α−1ũ).

This means α−1ũ is a solution of (3.5) with subgradient α−1p̃, and by uniqueness

ũ = αu, p̃ = αp.

If J is a positively homogeneous of degree one functional like the total varia-

tion, then ∂J(αu) = ∂J(u). Hence, with the notation as above, we obtain (with

time variable t̃)

α−1∂t̃p̃ = f − (α−1ũ), p̃ ∈ ∂J(α−1ũ).

After an additional time rescaling t = αt̃ we obtain again that α−1ũ(t) is a

solution of (3.5) with subgradient p̃(t). Again, by uniqueness, we obtain that

for a solution u of (3.5) with image f , the rescaling αu(α−1t) is a solution with

image f̃ = αf .
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In the case of the regularized total variation the proof is analogous, noticing

that ∫

Ω

√
|∇ũ|2 + ε̃2 =

∫

Ω

α
√
|∇u|2 + ε2.

Proposition 3.2.2 yields a certain scaling invariance of the algorithm, in any

case the inverse scale space evolution with some image f can be obtained from

the evolution with rescaled image. In the case of regularized total variation it

confirms the rather obvious fact that the regularization parameter ε should be

scaled with the image.

3.2.4 Comparison to ROF Scale Space

In contrast to the evolution (3.5) generating u(t) we would like to show why

a different obvious inverse scale space, namely the one generated by varying

the penalty parameter in (3.4), is a less appealing alternative. Note that the

improvement seen with respect to (3.4) seen in numerical experiments is one of

the major motivations for investigating (3.5). Let us consider the inverse scale

space defined by w(t) which satisfies:

w(t) = arg min
u∈BV (Ω)

{
J(u) +

t

2
‖u− f‖2

L2

}
, t ≥ 0.

For the sake of simplicity we assume that J is twice differentiable. Clearly w(0) =

0, w(∞) = f if we have the usual hypotheses on J(u) and H(u, f) and consider

the familiar class of examples. The Euler-Lagrange equation is

p(t) + t(w(t)− f) = 0, p(t) = J ′(w(t)).
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Differentiating in time yields

∂tp(t) + t∂tw(t) = f − w(t). w(0) = 0, p(0) = 0. (3.7)

We claim that this evolution equation is not as useful as our inverse scale space

equation (3.5) (which it resembles). To show this, we first examine the conver-

gence to f :

d

dt

1

2
‖w − f‖2

L2 = 〈∂tw, w − f〉 = −〈(J ′′(w) + t)−1(w − f), w − f〉.

This means that ‖w − f‖L2 decays to zero, but only at a slow algebraic rate 1
t
,

not exponentially. A more serious drawback comes from the relation

d

dt
Dp(w)(g, w) = −〈g − w, f − w〉+ 〈g − w, t∂tw〉,

and an analogous reasoning as in Proposition 3.2.1 is not apparent due to the

second term. In fact, for the quadratic case (3.2) we have

d

dt
‖∇(w − g)‖2

L2 = −〈w − g, w − f 〉+ t〈w − g, (−∆ + tI)−1(w − f) 〉

= −〈w − g,−∆(−∆ + tI)−1(w − f) 〉,

= −〈w − f, [I − (I − t−1∆)−1](w − f) 〉

and the discrepancy principle based on the L2 distances of f − g and w(t) − g

fails. For the ROF scale space the natural norms would be the ones generated

by I − (I − t−1∆)−1, which is on the other hand not the right one to control the

image noise. In particular for low-frequency components of w − g and large t,

the evolution is very slow, and this is the reason why the reconstruction obtained
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from (3.4) can lose a lot of the image variation if λ < ∞ (cf. [Mey01]).

3.3 Inverse Scale Space for Signals

In the following we discuss the numerical solution of (3.5) in spatial dimension

one. Ω = I ⊂ R. We recall here that p(t) ∈ ∂J(u(t)) and u(t) ∈ ∂J∗(p(t)).

We consider again the regularized total variation J(u) =
∫

I

√
u2

x + ε2 dx, which

yields

∂J(u(t)) = −
(

ux(t)√
ux(t)2 + ε2

)

x

= p(t). (3.8)

Note that since ∂J(u + c) = ∂J(u), the solution of (3.8) is not unique if we

take the standard assumption that u satisfies homogeneous Neumann boundary

condition. In this case, the solvability condition is
∫

I
p(x, t) dx = 0 for all t and

the conservation of mean value discussed above provides an additional property

implying uniqueness, namely
∫

I
u dx ≡ ∫

I
f dx = 0.

For a fixed time t, we have to solve

−
(

ux√
u2

x + ε2

)

x

= p in I = (a, b),

∫ b

a

u dx = 0, (3.9)

If we denote q :=
ux√

u2
x + ε2

, then

q(x, t) = −
∫ x

a

p(s, t) ds =

∫ b

x

p(s, t) ds (3.10)

and hence, ux = ε
q√

1− q2
. Therefore,

u(x, t) = ε

∫ x

a

q(y, t)√
1− q2(y, t)

dy + C (3.11)
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where C is a constant chosen to normalize
∫ b

a
u(x) dx = 0. We mention that

the same formula for u can be obtained by duality arguments, since J∗ can be

explicitly calculated in spatial dimension one.

Thus, the inverse scale space flow can be computed by two simple integrations.

If we compute first the value of p by explicit time discretization in ∂tp = f − u,

then we can directly integrate to obtain the value of u at the new time step.

3.4 Relaxed Inverse Scale Space Flow

In order to implement the process in any dimension we resort to a new kind of

approximation. First, we would like write the general expressions of the discrete

Bregman procedure and the direct inverse scale space having any convex smooth

fidelity terms H(u, f).

3.4.1 General fidelity term H(u, f)

We rewrite the general form of a convex variational problem (2.10) as

min
u

{
J(u) + λH(u, f)

}
, (3.12)

where H(u, f) is usually a fidelity to a known image (or signal) f , (in the L2 case

studied before H(u, f) = 1
2
‖f − u‖2

L2). Note that the only difference between

(2.10) and (3.12) is that we extract the constant parameter λ out of H(u, f).

This will facilitate our discussion in this chapter. We assume for simplicity that

f is normalized beforehand to have a zero mean:
∫

Ω
f = 0. We also assume

p(0) = 0 ∈ ∂J(0).
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The general form of the series of iterative refined variational minimizations is

uk = argmin
u

{
Dpk−1(u, uk−1) + λH(u, f)

}
(3.13)

where u0 = 0 and p0 = 0. Expanding D(·, ·) according to (2.16) and omitting

constant parts which are not relevant to the minimization yields

uk = argmin
u

{
J(u)− 〈u, p(uk−1)〉+ λH(u, f)

}
. (3.14)

The Euler-Lagrange equation of (3.14) is

p(uk)− p(uk−1) + λ∂uH(uk, f) = 0.

We use ∂uH to denote that the variation is taken with respect to u. Assigning

p(uk) = p(u(t)), one can view the iterations in the limit λ → 0 as a continuous

process

∂tp = −∂uH(u(t), f), p ∈ ∂J(u) (3.15)

with the initial conditions u|t=0 = 0, p|t=0 = 0.

Contrary to standard scale-spaces, where the flow begins with an input image

f and simplifies over time towards zero, this flow begins with u = 0 and converges

to f over time. The flow is such that large scale features appear much faster

than fine scale ones. Therefore this was termed nonlinear inverse scale space.

The process coincides with the linear inverse scale space of [SG01] (for the case

J(u) =
∫

Ω
|∇u|2), which was formulated without explicit relations to Bregman

iterations.
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3.4.2 Relaxed Inverse scale space Method

The concise formulation of (3.15) is not straightforward to compute, as the rela-

tions between p and u are quite complicated in nonlinear cases. Here we present a

relaxed version which aims at having a flow with qualitatively similar properties

to that of (3.15) by using standard variational formulations, which are simple to

compute.

Let us revisit the series of Bregman iterations stated in equation (3.14). Us-

ing the update formula for the decomposed“noise” vk = pk

λ
and the first order

optimality conditions, we deduce

vk = vk−1 − ∂uH(uk, f), k ≥ 1, v0 = 0

and hence,

vk = −
k∑

j=1

∂uH(uj, f), k ≥ 1.

The iteration can then be rewritten via the sequence of equivalent variational

problems

uk = argmin
u

{
J(u) + λH(u, f) + λ

k−1∑
j=0

〈u, ∂uH(uj, f)〉
}

. (3.16)

or, coupled for uk and vk

uk = argmin
u

{
J(u) + λ(H(u, f)− 〈u, vk−1〉)

}
,

vk = vk−1 − ∂uH(uk, f),

(3.17)

where u0 = 0, v0 = 0, k = 0, 1, 2, · · · .

The standard way to solve these iterations for uk and vk (by an explicit
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scheme) is first to evolve a steepest descent flow for uk, having a fixed vk, based

on the Euler-Lagrange equations:

∂u

∂t
= −p + λ(−∂uH(u, f) + vk), p ∈ ∂J(u), u|t=0 = uk−1, (3.18)

where uk = u(t →∞). Note that we assume some regularity in the sequence uk

(such that ‖uk − uk−1‖L2 ≤ const) and therefore a good starting point for the

time marching is uk−1. After converging to a minimizer uk it is easy to compute

∂uH(uk, f) and update vk+1. Then k is incremented by one and the process

resumes, such that in each iteration (3.18) is evolved. Although in practice a

finite stopping time is used, this process is computationally quite intensive.

Our observation is that the update for vk+1 in (3.17) can be viewed as an

iterative descent in vk for minimizing H(uk, f). This is an indirect minimization,

which affects uk by its coupling with vk. Let us write the solution for vk+1 in the

following (more complicated) manner:

∂τv = −∂uH(uk, f), v|τ=0 = vk, (3.19)

where vk+1 = v(τ = 1). This extends the definition of the sequence vk to a

continuous formulation. (Note that for a fixed uk and a unit stopping time

the result is a simple linear interpolation between vk and vk+1). In the case of

Bregman iterations, these flows are evolved iteratively, where in each time either

uk or vk are being fixed while the dual variable is evolved.

We propose to approximate the sequences uk, vk as two continuous flows

u(t), v(t) by evolving both descent flows, similar to (3.18) and (3.19), simul-

taneously. Let us define the relation between the two time variables as τ = αt,

and let v(t) = v(τ/α). Replacing vk in (3.18) by v(t) and uk in (3.19) by u(t)
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yields the relaxed inverse-scale space (RISS) flow:

∂tu = −p + λ(−∂uH(u, f) + v),

∂tv = −α∂uH(u, f),

(3.20)

with p ∈ ∂J(u) and initial conditions u|t=0 = v|t=0 = 0.

3.4.2.1 Second order in time formulation

If J and H are smooth, the above flow can also be written as a single equation in

u with second order derivative in the time domain. This can be done by taking

the time derivative of the first equation in (3.20) and substituting for vt by using

the second equation, yielding the following evolution:

∂2
ttu = −∂tp(u)− λ(∂t(∂uH(u, f))− α∂uH(u, f)), (3.21)

with initial conditions u|t=0 = 0, ut|t=0 = −λ∂uH(0, f), which can be written also

as

∂2
ttu = −(J ′′(u) + λ∂2

uuH(u, f))∂tu− λα∂uH(u, f). (3.22)

3.4.2.2 Relation to the direct flow

In order to understand the relation to the original inverse scale space formulation

(3.15), we consider the special case H(u, f) = 1
2
‖u− f‖2

L2 , rescale time to t̂ = t
αλ

and define w(t̂) = λv(αλt̂). In this way we obtain

αλ∂t̂u = −p + λ(f − u) + w,

∂t̂w = f − u.

(3.23)
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If λ is very small (and α not too large) then the leading order term in the first

equation is p = w, and hence the behaviour is close to the inverse scale space

flow on this time scale.

One can observe the strong similarity of the flows numerically in the one-

dimensional example presented in Section 3.6 (Figures 3.10 and 3.12).

3.4.3 Examples

Below are some examples of processes that can be evolved using different J(u)

and H(u, f):

• Linear model: J = 1
2

∫
Ω
|∇u|2, H(u, f) = 1

2
‖u− f‖2

L2 :

ut = ∆u + λ(f − u + v),

vt = α(f − u).

(3.24)

• ROF model: J =
∫

Ω
|∇u|, H(u, f) = 1

2
‖u− f‖2

L2 :

ut = ∇ · ∇u

|∇u| + λ(f − u + v),

vt = α(f − u).

(3.25)

• TV -L1 model (cf. [CE05]): J =
∫

Ω
|∇u|, H(u, f) = ‖u− f‖L1 :

ut = ∇ · ∇u

|∇u| + λ(sign(f − u) + v),

vt = αsign(f − u).

(3.26)

Remark. Note that the L1 distance function H is not strictly convex or

smooth here and sign is just the notation for an element in the subgradient

85



of H. One way to solve this problem numerically is by using approximation

H ≈
√
|u− f |2 + ε2, 0 < ε ¿ 1 and then ∂uH(u, f) = u−f√

|u−f |2+ε2
, which is

well-defined and unique for all u.

• Deconvolution by ROF: J =
∫

Ω
|∇u|, H = 1

2
‖f − Ku‖2

L2 , where K :

L2(Ω) → H is a real blurring kernel (see Section 2.3):

ut = ∇ · ∇u

|∇u| + λ (K∗(f −Ku) + v) ,

vt = αK∗(f −Ku),

(3.27)

where K∗ denotes the adjoint of K.

3.5 Properties of the Relaxed Method

3.5.1 Linear Model

The linear case is naturally the easiest to analyze. We can write a closed form

solution in the frequency domain and see how the relaxed flow approximates the

direct flow.

It is easy to see that the steady state of these equations (ut = 0, vt = 0) is:

u = f , v = q
λ
. It remains to analyze the behaviour of the flow for suitable f , and

to show that the solutions converge to this steady state, which we will do in the

linear case below. A general convergence proof by Lie and Nordbotten [LN05],

which can apply for general convex J and L2 squared fidelity term, is discussed

in the next section.

We examine the second order in time formulation (3.22). In the linear case

the subgradient is unique and given by p = −∆u, and ∂uH(u, f) = u − f . The
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flow can be written as:

∂ttu + (−∆ + λ)∂tu + λαu = λαf, (3.28)

where u|t=0 = 0, ut|t=0 = λf .

We rewrite the flow in the frequency domain (with variable ξ), which is ob-

tained by taking the Fourier transform. The characteristic equation is r2 + (λ +

|ξ|2)r + αλ = 0, with the solutions

r± =
−(λ + |ξ|2)±

√
(λ + |ξ|2)2 − 4αλ

2
. (3.29)

Using the Taylor approximation
√

1 + x ≈ 1 + x
2
, x ¿ 1, one can approximate

(for frequencies for which |ξ|4 À αλ)

r± ≈
−(λ + |ξ|2)(1± (1− 2αλ

(λ+|ξ|2)2
))

2
, (3.30)

obtaining two roots with different characteristic behavior: r+ ≈ −(λ+|ξ|2), r− ≈
−αλ

λ+|ξ|2 . The Fourier transform of the solution is

U(ξ) = (c+er+t + c−er−t + 1)F (ξ) (3.31)

where c+ =
λ + r−
r+ − r−

, c− =
λ + r+

r− − r+

.

We observe that the first part, containing r+, corresponds to a Gaussian con-

volution, which decays rapidly with time. The second part, containing r−, corre-

sponds to the inverse scale space solution (with time rescaling by λα) which we

actually want to solve. Our numerical results indicate that this kind of behavior

extends to the nonlinear process.
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From (3.29) we see that for both parts to have decaying exponential solutions

(real valued r±) we should require α ≤ λ
4
. In the numerical experiments below

we set α = λ
4
.

3.5.2 ROF Model

The ROF model is a natural choice for image regularization since the solution of

the flow results in sharp and clean approximations of the input image f without

introducing noise (or fine-scale textures in the case of decomposition) up to a

very large time.

3.5.2.1 Convergence to Steady-State

In order to analyze the convergence behaviour we define the following energy

function

e(t) =
1

2λ
‖u− f‖2

L2 +
1

2α
‖v − q

λ
‖2

L2 , (3.32)

where q ∈ ∂J(f) is assumed to be an element of L2 (this is again a source-

condition on the data). Under this assumption, the following convergence prop-

erty was elegantly proved by Lie and Nordbotten [LN05]:

Proposition 3.5.1. Let u(0), v(0) be an initial value such that e(0) < ∞, and

let u(t), v(t) be the solution of (3.25) with λ > 0, α > 0. Then, the energy e(t)

decreases monotonically. Moreover, there exists at least a subsequence tk → ∞
such that

‖f − u(tk)‖L2 → 0, Dp(u)(f, u(tk)) → 0, Dq(u(tk), f) → 0. (3.33)

Proof. We just compute the time derivative of the energy and insert the evolution

88



law to obtain

de(t)

dt
=

1

λ
〈u− f, ut〉+

1

α
〈v − q

λ
, vt〉

=
1

λ
〈u− f,−p(u) + λ(f − u + v)〉+

1

α
〈v − q

λ
, α(f − u)〉

= −‖f − u‖2
L2 − 1

λ
〈f − u, q − p(u)〉

= −‖f − u‖2
L2 − 1

λ
(Dp(u)(f, u) + Dq(u, f))

≤ 0,

which implies the monotone decrease. Moreover, by integrating the last inequality

with respect to time from 0 to t we have

∫ t

0

(
‖f − u(s)‖2

L2 +
1

λ
(Dp(u)(f, u(s)) + Dq(u(s), f))

)
ds ≤ e(0).

From the uniform bound for the integral we deduce the existence of a subsequence

tk →∞ such that

‖f − u(tk)‖2
L2 +

1

λ
(Dp(u)(f, u(tk)) + Dq(u(tk), f)) → 0,

and since the latter is the sum of three positive sequences, each of them converges

to zero.

Note that we slightly changed the original proof from [LN05] by using the

sum of two Bregman distances (just prior to the final inequality), and it is clear

that the result holds for any convex functional J . By this proposition it is clear

that {u = f, v = q
λ
} is the only steady-state solution of (3.25).
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3.5.2.2 Initial conditions

We also note that the flow can be extended to arbitrary initial conditions, and we

expect a similar behaviour for large time. Therefore, we would like to illustrate

two examples of the flow when u(0) is non-zero. In Figure 3.1 we present instances

of the flow from three very different initial conditions u(0), with v(0) = 0. In

the top row we use the standard initial condition of the inverse scale space flow

u(0) = 0 (the mean value of the original image is subtracted beforehand and

added back after for visualization). The two other initial conditions are white

Gaussian noise (with zero mean) in the second row and u = f in the bottom row.

All three flows converge to the input f . It appears that after some time (see third

column t = 80) the evolution is fairly similar regardless of the initial condition.

In Figure 3.2 the L2 distance to the steady states of u and v and the joint energy

e (Eq. (3.32)) are plotted as a function of time for all three cases of the above

initial conditions. Note that e(t) is monotone in all three cases. Naturally, for

the case u(0) = f we have that ‖u− f‖2
L2 is not monotone.

Due to the multiscale interpretation of the flow we will however use zero initial

value in most computational examples, and in particular in the case of noise it is

much more reasonable to start with zero than with the noisy image.

3.5.2.3 The parameters α and λ

We have seen above that α corresponds to a time rescaling only, and both the

relation to the original model and the convergence proof hold for any positive

α. This allows more freedom in selecting the parameters but raises the issue of

what values of α are preferred. The linear analysis shows that we have complex

modes for α > λ
4

which causes oscillations in the convergence. A similar phe-

nomenon occurs for the TV -L2 case in the analysis of the disk evolution (see
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t = 0 t = 20 t = 80 t = 200 t = 1000

Figure 3.1: Evolution of u towards a clean image f with different initial con-
ditions. Top u(0) = 0, second row u(0) = n (white Gaussian noise), bottom:
u(0) = f . [v(0) = 0, λ = 0.02, α = λ/4].

Section 3.5.2.5), where we have the same bound on α for monotone convergence.

We show in Figure 3.3 numerically that the value of α has a similar effect also

when a much more complicated image is evolved, such as the Cameraman image.

In Figure 3.4 a somewhat extreme example is shown where α = 16λ (that is, 64

times larger than the upper bound). Though eventually the flow converges (as

seen in the corresponding plot in Figure 3.3), it is highly non-monotone. It is

worth mentioning that even in this regime of α the oscillations are in the contrast

of the entire image and the details within the image do not become oscillatory.

Note that the convergence to steady state is proved to be monotone only for

u and v jointly. From our experiments, it appears that the distance ‖u− f‖2
L2 is

decreasing monotonically in most cases for zero initial conditions and α ≤ λ
4
. We

have been able to produce rare synthetic cases where ‖u− f‖2
L2 is not monotone.

This happens for very large features when λ is very large. However, from the
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‖u(t)− f‖2L2 ‖v(t)− q
λ‖2L2 e(t)
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Figure 3.2: Distance from steady state as a function of time: u (left), v (middle)
and the joint energy e (right) for different initial conditions. Top u(0) = 0, second
row u(0) = n (white Gaussian noise), bottom: u(0) = f .

relation to the inverse scale space flow above, a smaller choice of λ seems more

reasonable anyway.

The parameter λ has a similar role as in the standard variational minimization

in the sense that its value should be lower for noisier images or when larger

features are considered textures in decomposition. In Figures 3.5 and 3.6 we

show the denoising flow (u and the residual f − u, respectively) with various

values of λ. When λ is too high (e.g. top row) small features, and consequently

noise, get in too early. Very low values of λ, such as in the bottom row (λ = 0.005)

produce very good results, though medium values can suffice for a good balance

between performance and short evolution time.
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f||
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α=λ
α=4λ
α=16λ

Figure 3.3: ‖u − f‖2
2 as a function of time for different values of α:

α ∈ { 1
16

, 1
4
, 1, 4, 16}λ. [Cameraman image, u(0) = v(0) = 0, λ = 0.02].

t = 10 t = 20 t = 40 t = 80

Figure 3.4: Example of an evolution with large α. u(t) (top) and f−u(t) (bottom)
at times: 10, 20, 40, 80, for α = 16λ. [u(0) = v(0) = 0, λ = 0.02].
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Clean image g Noisy image f

λ ‖u− f‖22 = 10σ2 5σ2 2σ2 σ2

0.1

0.05

0.02

0.005

Figure 3.5: Denoising with different values of λ. Top row: original image (left)
and noisy image (right). Second to fifth rows: u for the following values of λ:
0.1, 0.05, 0.02, 0.005, respectively. Each column, from left to right, depicts the
following L2 norm of the residual part ‖u− f‖2

L2 : 10σ2, 5σ2, 2σ2, σ2, respectively.
[u(0) = v(0) = 0, α = λ/4, σ = 20].
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f − g

λ ‖u− f‖22 = 10σ2 5σ2 2σ2 σ2

0.1

0.05

0.02

0.005

Figure 3.6: Denoising with different values of λ. Top row: f − g, an instance of
white Gaussian noise (σ = 20) which was added to the clean image. Second to
fifth rows: f − u for the following values of λ: 0.1, 0.05, 0.02, 0.005, respectively.
Each column, from left to right, depicts the following L2 norm of the residual
part ‖u− f‖2

L2 : 10σ2, 5σ2, 2σ2, σ2, respectively.
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3.5.2.4 Complexity

The relaxed inverse scale space flow, in most cases, has about the same complexity

as the standard gradient descent to steady state approach of ROF. The rate of

the flow depends on λ and α and the evolution time monotonically increases with

the values of these parameters decreasing. For most applications, however, the

implementation is efficient enough and much faster than an equivalent series of

Bregman iterations. For the linear case of the direct inverse scale space flow,

as shown in [SG01], we obtain a step size of order one yielding stability, i.e., no

severe restriction on large time steps.

3.5.2.5 Disk example

Analyzing the evolution of a disk image can be very illuminating, since the char-

acteristic function f of a disk is a basic shape with respect to the BV semi-norm

(e.g. satisfies the source condition q ∈ ∂J(f) ∩ L2) and in some cases allows a

direct computation of a solution (cf. e.g. [Mey01] for the ROF model). As we

shall see also for inverse scale space methods in the following, this example can

provide insight into the multiscale properties of the flow, at least for piecewise

constant images with smooth discontinuity sets.

Here we will analyze both the direct and the relaxed flows (which are based

on the ROF energy).

For the sake of simplicity we shall restrict our attention to the case of Ω ⊂ R2

being the ball of radius R0 . We start with the indicator function of height h and

rescale it to a function of mean zero in order to apply the above analysis, i.e., we
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assume

f(x) =





h

(
1− R2

R2
0

)
if |x| < R,

−h
R2

R2
0

otherwise

(3.34)

for h ∈ R and R ∈ (0, R0). For convenience we denote c0 = 1− R2

R2
0

and without

loss of generality we assume that h > 0.

Let us start with a simple property of subgradients of the total variation

functional at f :

Proposition 3.5.2. Let J : BV (Ω) → R be the total variation seminorm and let

f be defined via (3.34). Then the function p defined via

p(x) =





2

R
if |x| < R,

− 2R

c0R2
0

otherwise

(3.35)

satisfies p ∈ ∂J(f).

Proof. It is straightforward to compute

∫

Ω

p = 0,

∫

Ω

pf = J(f) = 2πRh.

Now let q be the unique solution with mean zero of the problem

−∆q = p in Ω,

∂nq = 0, on ∂Ω.
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By a simple computation in polar coordinates it is straightforward to see that

∇q = qr

(
x√

x2 + y2
,

y√
x2 + y2

)
,

with the scalar function

qr(x) =





√
x2 + y2

R
if |x| < R,

− R

c0r

(
1− r2

R2
0

)
otherwise.

One observes that ‖∇q‖∞ ≤ ‖qr‖∞ ≤ 1 and hence, by the definition of the total

variation functional

∫

Ω

p(u− f) =

∫

Ω

∇ · (−∇q)u− J(f)

≤ sup
~ζ,‖~ζ‖∞≤1

∫

Ω

∇ · ~ζ u− J(f) = J(u)− J(f),

which implies that p is indeed a subgradient.

This result shows that the subgradient has the same structure as f , namely p

a piecewise constant function with discontinuity at the circle with radius R and

p has mean zero. This motivates to look for solutions of the form

(u(x, t), p(x, t), v(x, t)) =





c0(u1(t), p1(t), v1(t)) if |x| < R,

(c0 − 1)(u1(t), p1(t), v1(t)) otherwise.

We start with the original inverse scale space method, where the above Ansatz
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yields the ODE

dp1

dt
(t) = h− u1(t), p1(0) = u1(0) = 0.

By the same technique as in the proof of Proposition 3.5.2 it is easy to see that

for |p1| ≤ 2
Rc0

, p ∈ ∂J(0). Thus, in the initial phase of the evolution, where p1

is still small we will always have u ≡ 0 and p ∈ ∂J(0) = ∂J(u). We denote this

time interval by (0, t1) and look for a solution with u ≡ 0 for t < t1. This means

that
dp1

dt
(t) = h ⇒ p1(t) = th.

Since by the above argument we need |p1(t)| ≤ 2
Rc0

for t ≤ t1, this yields

t1 =
2

Rc0h
, (3.36)

and by a simple integration

p1(t1) = t1h =
2

Rc0

.

From Proposition 3.5.2 we obtain that p(t1) ∈ ∂J(f) and hence, we can continue

the solution via p1(t) = p1(t1) and u1(t) = h (and thus u(·, t) = f) for t > t1,

which is clearly a solution since

dp1

dt
(t) = f − u1(t) = 0, p(t) ∈ ∂J(f) = ∂J(u(·, t)).

Hence, we have found a solution for the original flow in this way, and in particular
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the reconstructed image satisfies

u(·, t) =





0 t < t1,

f t > t1.

(3.37)

This means that after an initial time interval of length t1, where the image remains

zero and just the dual variable p grows, the reconstruction suddenly jumps to the

correct image f and remains constant afterwards. The length of the time interval

t1 needed to obtain the correct image also gives an indication of the multiscale

properties of the model. Note that the scale of the image can be characterized

by the product of radius and height, i.e., by Rh. Our analysis shows that t1

is inversely proportional to Rh (note that c0 is of order 1 if R0 is sufficiently

large) and hence, larger scales appear faster than smaller ones. This property

can be seen as the fundamental reason why the inverse scale space method is a

good denoising technique, since it first reconstructs the large scale features and

only later the very small scale ones (which are usually caused by noise). An

appropriate stopping rule as the one proposed above will ensure that the flow is

stopped before too small scales enter.

It is rather straightforward to extend the above reasoning to the relaxed in-

verse scale space method. If we look for an initial time period (t < t1) where

u ≡ 0, then we are led to the ODE (with the above notation):

dv1

dt
= αh, p1 = λ(h + v1), p1(0) = v1(0) = 0.

Hence, v1(t) = αht and p1(t) = λh(1+αt). We know that p ∈ ∂J(0) if |p1| ≤ 2
Rc0

,
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which means that we obtain

t1 =





2−Rc0hλ

αλRhc0

λ ≤ 2

Rhc0

,

0 otherwise.

(3.38)

Note that as λ → 0, we obtain the same value for αλt1 as for the critical time

t1 in the original flow, Eq. (3.36) (the additional factor αλ corresponds again to

the time rescaling discussed before). In the second phase (t > t1) we know that

p1 = 2
Rc0

and therefore we can write the evolution as the coupled system

dr

dt
(t) = q(t)− λr(t),

dq

dt
(t) = −αλr(t) (3.39)

with r(t) := u1(t) − h and q(t) := λv1(t) − 2
Rc0

. The eigenvalues of this linear

dynamical system are given by

e± = −λ

2
± 1

2

√
λ(λ− 4α).

Similar to the linear analysis, in order to have solutions with real roots we require

λ ≥ 4α.

In the case of unbounded domain R0 →∞ and having α = λ
4
, the solution of

the disk problem for the relaxed flow is

u(x, t) =





0, 0 ≤ t ≤ t1

(−(λh
2

(t− t1) + h)e−(t−t1)λ/2 + h
)
f(x), t1 < t < ∞

(3.40)

with t1 as defined in (3.38). We will use this simple equation as a reference in

the following numerical experiment.
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3.5.2.6 Disk Numerical Experiment

Below we display the results of a numerical experiment of an evolution of a

disk. The disk radius is R = 10 and its height is h = 1. The evolution is for

t ∈ [0, 125]. For simplicity, in order not to implement a circular domain, we take a

large rectangular Ω and use the model for R0 →∞, c0 → 1. For λ = 0.12, α = λ
4

the disk should start to appear at t1 = 22.2. In Figure 3.7 the original disk f and

u(t) at some time along the evolution (t = 50) are shown. In the image of u we

also super-imposed a cross-section at the center of the disk and the center point

of the disk, for which the values are plotted (Figure 3.8). In Figure 3.8, left, the

values of a cross-section of the disk are plotted for 40 equally spaced time points.

On the right of Figure 3.8 the theoretical model of equation (3.40) (dashed, red)

is compared to the simulation at the central point of the disk u(xp, yp, t) (solid,

blue). In our case the mean value is not zero (here the domain is 100 × 100

pixels and therefore the mean value is approximately π
100

). Therefore the initial

condition u(x, y, 0) (plotted in dashed line near 0) is different than Eq. (3.40).

Apart from that, the evolution is quite faithful to the model.

3.5.2.7 The Initial Phase for General Images

In the following we are going to extend the results for the disk to general images,

at least the behaviour in the initial stage. We assume that f ∈ L2 is a function

with mean zero. Following Meyer [Mey01] the ∗-norm (the dual of the BV

seminorm) is defined as

‖w‖∗ = inf
~ξ:∇·~ξ=w

sup
x,y
|~ξ|

Then we can use a characterization of subgradients obtained in [Mey01] namely

that p ∈ ∂J(0) if and only if ‖p‖∗ ≤ 1. Thus, we immediately obtain the following
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f u(t = 50)

Figure 3.7: Disk evolution: f (left) and u (right). The brighter line and point in
u show which values of u are plotted in Figure 3.8.
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Figure 3.8: Disk evolution. Left: plots of a cross-section of u at equally spaced
time points. Dashed - cross-section of f . Right: comparison between the simula-
tion (solid, blue) and the theoretical model (dashed, red).
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generalization of the behaviour in the initial phase

Theorem 3.5.3. Let f 6= 0 be as above and let t1 = 1
‖f‖∗ . Then the solution

(u, p) of (3.5) satisfies

u(·, t) ≡ 0, p(·, t) = tf, for t < t1.

Moreover, t1 is maximal with this property, i.e., u(·, t) is not identically 0 for

t > t1.

Proof. For t < t1 we obtain that p(·, t) ∈ ∂J(0) from the above reasoning and one

easily checks that (u, p) defined as above is a solution of (3.5). Now assume that

t1 is not maximal, i.e., u ≡ 0 in the time interval (0, t2) for t2 > t1. Then from

(3.5) we obtain p = tf , but p(·, t) /∈ J(0) for t > t1 a contradiction. Hence, u is

not identically 0 at least in the time interval (t1, t1 + ε) for some ε > 0. Since we

know that the residual ‖f − u(t)‖L2 is non-increasing in time (see Section 3.2.2),

we deduce

‖f − u(t)‖L2 ≤ ‖f − u(s)‖L2 < ‖f − 0‖L2

for t > s and s ∈ (t1, t1 + ε). Hence, u 6= 0 for all t > t1.

Note that all computations of the subgradients in the disk example were

implicitly computing the ∗-norm of the functions f and 0, so this generalization

is not completely surprising.

We can also give a multiscale interpretation of Theorem 3.5.3. We can have f

scaled such that ‖f‖L2 = 1. These properties can always be achieved by rescaling

for f different from a constant (and if f is constant the inverse scale space method

and its relaxed version are both stationary at the correct image anyway). We

can write then t1 as the ratio t1 =
‖f‖L2

‖f‖∗ which actually can be considered as a
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definition of scale.

Since the L2-norm is stronger than the ∗-norm, it will be large for high fre-

quency (small scale) features and small for low frequency (large scale) ones. This

again explains to some point why large scale features are incorporated earlier

than small scale ones. We also mention that by a standard inequality for dual

norms (cf. [Mey01, p.32] or [AE84]) we have for “clean images” f ∈ BV (Ω)

t1 =
‖f‖L2

‖f‖∗ ≤ J(u)

‖f‖L2

,

which yields a similar interpretation of scales in terms of the ratio of total vari-

ation and the L2-norm, e.g., in the disk example above one obtains equality in

these ratios as R0 →∞ .

In the following proposition we state the analogue property which holds for

the relaxed flow:

Proposition 3.5.4. Let f 6= 0,
∫

Ω
f = 0, λ‖f‖∗ ≤ 1 and let t1 = 1−λ‖f‖∗

αλ‖f‖∗ . Then

each solution (u, v) of (3.25) satisfies

u(·, t) ≡ 0, v(·, t) = αtf, for t < t1.

Proof. Let us define the following energy

E(t) := J(u) +
λ

2
‖f + v − u‖2

L2 .

Then the flow of u in (3.25) can be viewed at each time point as a steepest descent

of this energy.

Using the decomposition result of [Mey01, p. 32] and the condition λ‖f‖∗ ≤ 1

we can verify that the initial condition u(0) = 0, v(0) = 0 at time t = 0 is a
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stationary point, where the energy E(0) = J(0) + λ
2
‖f‖2

L2 is minimal. Therefore

∂tu|t=0 = 0 and consequently u|t=0+ = 0. By a similar argument u will stay zero

as long as λ‖f +v‖∗ ≤ 1. Solving for v we have a simple ODE d
dt

v = αf , yielding

v(t) = αft for t ∈ (0, t1). This evolution is valid until at some time t1 we have

λ‖f + v(t1)‖∗ = 1.

As f 6= 0, ‖f + v‖∗ = (1 + αt)‖f‖∗ is increasing with time and this equality will

be reached in a finite time.

Note that as in the disk example, we can obtain the time of appearance t1 of

the direct solution (stated in Theorem 3.5.3) by multiplying the expression for t1

of the relaxed flow by αλ and letting λ → 0.

3.6 Numerical Examples

In this section we present some numerical examples. Some of the results were pre-

viously presented in [BOX05, BGO06]. We show an example of a one-dimensional

(1D) problem solved by the direct inverse scale space flow (DISS, Section 3.3)

and by the relaxed inverse scale space flow (RISS, Section 3.4, Eq. (3.25)) in

order to test and compare their behaviors. The 1D example reveals a striking

resemblance of the direct and relaxed processes, which well justifies our interpre-

tation of the relaxed flow as a good approximation of the direct flow. Motivated

by the agreement between the one-dimensional results, we proceed by processing

images using the relaxed flow.

We focus on denoising by ROF-based flows. A single example of image de-

composition by the TV -L1-based inverse scale space flow (Eq. (3.26)) is also
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given. Further generalizations and experiments with other J and H functionals

are currently studied and will appear in the future work.
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Figure 3.9: 1D signal denoising. From left to right: clean signal g, noisy signal f
(SNR = 12.5); Gaussian noise n, σ = ‖n‖L2 = 10.
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Figure 3.10: 1D signal denoising. From left to right: restored signal u from
ROF, the direct inverse flow (DISS) and the relaxed inverse flow (RISS). SNR:
ROF(u)=17.73, DISS(u)=21.94, RISS(u)=21.95.

Example 1 (1D signal): We first consider a 1D denoising problem. Figure

3.9 shows the clean signal g, the noisy signal f and the Gaussian noise n (σ =

‖n‖L2 = 10 ≈ 25%‖g‖L2). Figure 3.10 shows the solutions u obtained by ROF,

the direct inverse flow (DISS) and the relaxed inverse flow (RISS). Figure 3.12

shows a comparison between these solutions at a region [180,220]. The typical

signal loss can be observed in the result of ROF, and, as expected, the loss is

much smaller for the inverse scale space flows. The signal-to-noise-ratio (SNR)

of the inverse flow results (21.94 and 21.95) are also much higher than that of

ROF (17.7). This supports our theoretical arguments (see Proposition 3.2.1 and
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the following discussion) that the TV-based inverse scale space flow yields better

restorations than the original ROF model.
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Figure 3.11: 1D signal denoising. Comparisons between the evolu-
tions of DISS and RISS flows at different time points δt, 5δt and 10δt
(δt1 = 2× 10−4 = 2× 105∆t1 for DISS and δt2 = 105 = 2× 105∆t2 for RISS).
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Figure 3.12: 1D signal denoising. Comparison between the solutions u from ROF,
DISS flow and RISS flow (part, at [180, 220]).

In Figure 3.11 we show a comparison between the evolutions of DISS and RISS

flows at three different time points. We can see that they agree to each other

very well. In Figure 3.12 one part ([180,220]) of the three solutions are plotted on

the same grid, where the direct and relaxed solutions virtually coincide although

the flows’ equations and their implementations are very different. Both SNR

results are also almost identical. This validates our view of the relaxed flow as

a faithful representation of the direct one. We choose ε = h = 1 for all three
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experiments, which is a relatively large value, due to the sensitivity of DISS to

numerical errors for small ε. Moreover, we used λ = 0.01 for ROF, ∆t1 = 10−9

for DISS, λ = 10−4, ∆t2 = 0.5 for RISS. The difference of ∆t in the two inverse

flow experiments are only due to the different scaling.

Figure 3.13: Synthetic shape image. From left to right: original image g; noisy
image f (SNR = 7.4); Gaussian noise n (σ = 40).

Example 2 (Synthetic shape image): We now turn to the denoising of 2D

images. In this example we consider an image with different scales and shapes and

corrupted by Gaussian noise, which is shown in Figure 3.13. SNR(f) = 7.4, σ =

‖f − g‖L2 = 40. Figure 3.14 shows the results obtained by ROF, iterated TV

refinement (Bregman ROF, Algorithm 2.1 in Chapter 2) and relaxed inverse TV

flow, column-by-column respectively. The restoration result u, the corresponding

residual part w = f − u and an enlargement of part of w are displayed for each

method (again, to enhance the visibility, we shift w by adding 128 and then plot

its image). One observes that for the ROF model visible components of the clean

signal are contained in w (e.g. the small blocks and grids) whereas almost no

trace of the signal is visible in the other two models. In this example RISS gave

the best SNR result: SNR(u) = 9.9, 11.8, 12.5 for ROF, iterated refinements

and RISS flow respectively.
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Figure 3.14: Synthetic shape image. Denoising results. From top to bottom:
denoised u, residual w = f − u and part of w from ROF, Bregman ROF
and RISS flow (column-by-column). SNR : ROF(u)=9.9, Bregman(u)=11.8,
RISS(u)=12.5.
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Natural images are being processed in the following examples.

Example 3 (Cameraman):. In Figure 3.15 we compare the denoising of

the Cameraman image by ROF and RISS. RISS retains great contrast, which is

most visible in the residual part f − u (bottom row), where the coat, tripod and

camera details are much less degraded. Both methods have the same L2 norm

residual ‖f − u‖L2 = σ. SNR results, ROF: 15.76, RISS: 16.42.

Example 4 (Sailboat): In Figures 3.16 and 3.17 another comparison is

made between ROF and RISS. Here it is very clear that thin lines, which get

eroded by ROF, are better preserved by our method (e.g. the poles and the

number on the sail). Again, in both methods we have ‖f − u‖L2 = σ. SNR

results, ROF: 11.43, RISS: 11.98.

In Figure 3.18 some more information of the evolution of Examples 3 and 4

is given. Three performance criterion which measure the closeness of u to the

clean image g are shown as a function of the evolution time t. In the first row

SNR is plotted (which is based on the L2 distance between g and u), the second

row depicts the L1 distance, ‖g − u‖L1 , and the third row depicts the Bregman

distance D(g, u). From the value of SNR and the Bregman distance we can see

that u(t) is approaching g. In the fourth row the L2 convergence of u to the

noisy image f is plotted as a function of time. One can observe that ‖f − u‖L2

is monotonically decreasing in time and it is straightforward to select a stopping

time based on the discrepancy principle.

Example 5 (TV +L1 Decomposition, Barbara): In Figure 3.19 we

present one example of image decomposition using the TV -L1 inverse scale space

flow. Eq. (3.26) is evolved in order to separate a clean image f into its geomet-

rical part u and its textural part w = f − u. The stopping time in this case was

chosen manually. We note that qualitatively similar results were obtained within

111



g f

uROF uRISS

f − uROF f − uRISS

Figure 3.15: Cameraman image (σ = 20, SNR=9.89). Top row: clean image g
(left), noisy image f (right). Second row: denoised image u by ROF, SNR=15.76
(left) and by RISS flow (Eq. (3.25)), SNR=16.42 (right). Bottom row: corre-
sponding residual parts w = f − u. [λ = 0.01].
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g f

Figure 3.16: Sailboat image (σ = 20, SNR=4.40). Clean image g (left), noisy
image f (right).
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uROF uRISS

f − uROF f − uRISS

Figure 3.17: Sailboat image (cont’). Top row: denoised image u by ROF,
SNR=11.43 (left) and by RISS flow (Eq. (3.25)), SNR=11.98 (right). Bottom
row: corresponding residual parts f − u. [λ = 0.01].

114



Cameraman Sailboat

SNR
0 20 40 60 80 100 120

0

5

10

15

t

S
N

R
(u

)

SNR(f)

0 20 40 60 80 100 120
−2

0

2

4

6

8

10

12

t

S
N

R
(u

)

SNR(f)

‖u− g‖L1

0 50 100 150
0

20

40

60

80

100

120

t

||u
−

g|
| L1

0 20 40 60 80 100 120
5

10

15

20

25

t

||u
−

g|
| L1

D(g, u)
0 20 40 60 80 100 120

2

3

4

5

6

7

8

9
x 10

5

t

D
(g

,u
)

0 20 40 60 80 100 120
3

4

5

6

7

8

9
x 10

5

t

D
(g

,u
)

‖u− f‖L2

0 20 40 60 80 100 120
10

20

30

40

50

60

70

t

||u
−

f||
L2

0 20 40 60 80 100 120
15

20

25

30

35

40

t

||u
−

f||
L2

Figure 3.18: Performance and convergence plots as a function of time. From
top: SNR(u), ‖u− g‖L1 , D(g, u), ‖u− f‖L2 . Left – Cameraman image, right –
Sailboat image.
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Figure 3.19: Decomposition of part of Barbara using TV -L1 inverse scale space
flow (Eq. (3.26)). Top: original. Bottom: geometric part u (left) and textural
part f − u (right). [λ = 0.02].
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quite a large evolution duration, therefore it seems that the process is not sensi-

tive to a very specific choice of the stopping time in order to obtain meaningful

decomposition results. Further study of this evolution and comparison to other

decomposition methods will be studied in the future.

3.7 Discussion and Conclusion

Two new types of nonlinear processes (inverse scale space flow and relaxed in-

verse scale space flow) are presented in this chapter for image simplification and

regularization. Both extend the Bregman iterations procedure introduced in pre-

vious chapter to a continuous formulation, creating stable flows going from a zero

signal to the input image.

Two basic characteristics distinguish these flows from the various variations of

forward linear and nonlinear scale spaces (e.g. [ALM92, GSZ04, KMS00, PM90,

Wei99, Wit83]): First, the flows advance in the inverse direction from the most

simplified image (zero or mean value) to the most detailed image (input image).

This allows fast denoising of large objects, which appear very early in the evo-

lution. Second, the flows are based on both energy terms - the regularization

term J(u) and the fidelity term H(u, f). This is different from forward scale

space methods which, at least in some cases, can be viewed as steepest descent

flows of the regularization term J(u). Thus it is possible to construct new PDE-

based evolutions for problems which until now were solved primarily in the vari-

ational setting. For example, one may evolve a deconvolution scale space (with

H = 1
2
‖f −Ku‖2

L2) or to have a flow based on the L1 fidelity term for removal

of impulsive noise or for structure-texture decomposition [Nik04, CE05, YGO05].

Other types of fidelity terms may be considered in the future, for instance ones

based on the ∗-norm [AAB05, Mey01, VO03], H−1 norm [OSV03] or on Gabor
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functions [AGC06]. A scale space, as opposed to the variational setting, naturally

introduces a continuous set of solutions. Whereas for denoising usually a single

solution is selected, for decomposition or segmentation purposes several solutions

may be preferred, understood as a multiscale representation of the input image.

The proposed direct inverse scale space flow is based on evolving in time the

subgradient of the regularized image u. Various theoretical properties are shown

concerning the convergence of the flow to the input f . Moreover, the monotonic

approach of u to the clean image g (in the Bregman distance sense) is proved as

long as the L2 norm of the residual is larger than that of the noise. This well

justifies theoretically the use of a discrepancy principle as a stopping criterion.

To the best of our knowledge, no similar property is available in any forward

scale space evolution. We have presented a way to compute the direct flow in one

dimension.

The relaxed inverse scale space flow can be viewed as either two coupled equa-

tions which are first order in time or as a single second order in time PDE. Its

implementation is very standard and can be achieved by applying the ordinary

numerical techniques used in variational minimizations. Although further theo-

retical study is needed we have shown the similarity of the relaxed flow to the

direct flow for small λ (after time rescaling). Numerical solutions in one dimen-

sion (in which both flows could be computed and compared) indicate a very high

degree of similarity of the flows. Convergence of the relaxed flow to the input

image f was proved by Lie and Nordbotten [LN05]. The flow produces excel-

lent denoising results and retains very good contrast of larger objects (in some

cases contrast may be even slightly enhanced). Open questions concerning the

relaxed flow include whether in some sense u approaches the clean image g (as

shown for the direct flow) and whether ‖f − u(t)‖L2 is monotonically decreasing.
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The numerical indications are promising. The inverse scale space flow can be

generalized to many types of variational models and inverse problems, e.g., see a

recent paper [BFO06] by Burger et. al.. In next chapter we will generalize both

ideas of iterative regularization and inverse scale space to wavelet-based image

restoration.
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CHAPTER 4

Iterative Regularization and Inverse Scale Space

Applied to Wavelet Based Image Denoising

In this chapter we generalize the iterative regularization procedure and inverse

scale space to wavelet based image denoising.

4.1 Introduction

Given an orthonormal wavelet basis {ψj(x)}, j = (j1, j2, j3), which is generated by

{ψ(j3)(x)}2d−1
j3=1 as ψj(x) = 2j1ψ(j3)(2j1x− j2), j1 ∈ Z, j2 ∈ Zd, x ∈ Rd, the wavelet

transform of an image f can be represented as (cf., e.g., [Dau92, Mey92, CDV93]):

f =
∑

j

f̃jψj =
∑

j

〈f, ψj〉ψj,

where 〈·, ·〉 is the L2 inner product. We denote f̃ = {f̃j}.

In general, wavelet shrinkage attempts to denoise images via the following

three steps (cf., e.g., [DJ94, Don95]):

(1) Analysis. Transform the noisy image f to the wavelet coefficients f̃ = {f̃j};

(2) Shrinkage. Apply a shrinkage operator D with a threshold parameter τ

related to the noise level to the wavelet coefficient f̃ : ũ := Dτ (f̃);
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(3) Synthesis. Reconstruct the denoised solution u from the shrunken wavelet

coefficients:

u =
∑

j

ũjψj =
∑

j

Dτ (f̃j)ψj .

Remark. In the literature (cf., e.g., [SWB04]) the wavelet basis is di-

vided into two parts: lowpass scaling function(s) ϕ(x) and bandpass wavelet

function(s) ψ(x). Correspondingly the wavelet coefficients are divided into

two parts: scaling coefficients (or “approximation coefficients”) and detail

coefficients. Then in the shrinkage step above one can choose to apply the

shrinkage operator on all wavelet coefficients or only on the detail ones. In

our discussion in this chapter we will consider shrinkage on all the wavelet

coefficients. Since the summation in our new models is separable, we will

see that our discussion can be easily generalized to the case of shrinkage on

detail coefficients only.

There are various types of shrinkage operators being discussed in the litera-

tures. We list those that we will use here:

• Soft shrinkage (cf. [DJ94]), for τ > 0

Sτ (w) =





w − τsign(w), if |w| > τ,

0, if |w| ≤ τ.

(4.1)

• Hard shrinkage (cf. [DJ94]), for τ > 0

Hτ (w) =





w, if |w| > τ,

0, if |w| ≤ τ.

(4.2)
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• Firm shrinkage (cf. [GB97]), for τ2 > τ1 > 0

Fτ1,τ2(w) =





w, if |w| > τ2,

τ2

τ2 − τ1

(w − τ1sign(w)), if τ1 < |w| ≤ τ2,

0, if |w| ≤ τ1.

(4.3)

One important feature of the wavelet-based denoising methods is their simplic-

ity and computational efficiency compared to, e.g. TV-based image restoration.

But their performance is heavily dependent on the type of noise and there may

exist some artifacts in the restored solutions, especially near edges. Some work

has been done to solve these problems, e.g., cf. [DC95] for a translation-invariant

denoising technique. The study of the relation between TV regularization meth-

ods and wavelet-based methods and furthermore combining their advantages is

an interesting research topic and has been investigated by several authors, e.g.,

in [CDL98, SWB04, SED05, DT05]. In this chapter we will generalize the iter-

ative regularization method and the inverse scale space method from previously

discussed TV-based image restoration to wavelet based image restoration.

First we recall that the total variation based ROF model is

u = arg min
u∈BV (Ω)

{
|u|BV +

λ

2
‖f − u‖2

L2

}
, (4.4)

where λ > 0 is a scale parameter, BV (Ω) is a bounded variation space equipped

with a seminorm |u|BV =
∫

Ω
|∇u|. Then we consider the Besov space B1

1(L
1(Ω)),

which contains, roughly speaking, functions with first order derivatives in L1(Ω).

(For formal definition of Besov spaces Bα
q (Lp(Ω)), cf., e.g., [DL92b]). It has been

found that the discrete l1 norm of the wavelet coefficients is equivalent to the

norm in the Besov space B1
1(L

1(Ω)), which is a subset of BV (Ω) for Ω ⊂ R2
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(cf., e.g., [Mey90, DL92a, CDL98, CDP99, CDD03, DT05]). Now we replace the

BV -seminorm in (4.4) by the l1 norm of wavelet coefficients

J(ũ) =
∑

j

|ũj| ≈ ‖u‖B1
1(L1). (4.5)

Here ‘≈’ is used to represent the equivalence between the two norms. Using

Parseval’s identity we have

‖f − u‖2
L2 = ‖f̃ − ũ‖2

L2 =
∑

j

|f̃j − ũj|2. (4.6)

We then approximate the TV-based ROF model (4.4) using the following

wavelet-based method:

ũ = argmin
ũ

{
J(ũ) +

λ

2
‖f̃ − ũ‖2

L2

}

= argmin
ũ

{∑

j

|ũj|+ λ

2

∑

j

|f̃j − ũj|2
}

(4.7)

where f̃j are the wavelet coefficients of the noisy image f and the restored image

u is the wavelet reconstruction of ũ.

Note that because the summation in (4.7) is separable, it suffices to solve a

sequence of scalar minimization problems min
ũj

φf̃j
(ũj), where

φf̃j
(ũj) = |ũj|+ λ

2
(f̃j − ũj)

2. (4.8)
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The minimizer of (4.7) is

ũj =





f̃j − 1

λ
sign(f̃j), if |f̃j| > 1

λ
,

0, if |f̃j| ≤ 1

λ
,

(4.9)

which is precisely the soft shrinkage algorithm (4.1) with threshold τ = 1
λ
:

ũ = S 1
λ
(f̃).

This conclusion (of the relation between ROF and soft shrinkage) was observed

by Chambolle et. al. in [CDL98].

Remark. Denote F (ũj) = |ũj| a scalar function, then J(ũ) =
∑

j

F (ũj)

and we can write the subgradient ∂J(ũ) = {∂F (ũj)}, where

∂ũj
F (ũj) =





sign(ũj), if ũj 6= 0,

[−1, 1], if ũj = 0.

(4.10)

The Euler-Lagrange equation of (4.7) is

∂F (ũj) + λ(ũj − f̃j) 3 0, for all j,

Denote p̃j = λ(f̃j − ũj) ∈ ∂F (ũj), ṽj =
p̃j

λ
, then ṽj = f̃j − ũj and we have a

decomposition f̃j = ũj + ṽj . From (4.9) we have

p̃j =





sign(f̃j) , if |f̃j| > 1

λ
,

λf̃j , if |f̃j| ≤ 1

λ
,

(4.11)

124



and

ṽj =





1

λ
sign(f̃j) , if |f̃j| > 1

λ
,

f̃j , if |f̃j| ≤ 1

λ
,

(4.12)

for all j.

Note that although ∂F (0) = [−1, 1] is a multivalued set, p̃j defined above is

unique.

4.2 Iterative Regularization Applied to Wavelet Denois-

ing

We start by reviewing the generalized Bregman distance discussed in Section

2.3.1. The generalized Bregman distance associated with J(ũ) in (4.5) can be

defined as

Dp̃(ũ, w̃) = J(ũ)− J(w̃)− 〈ũ− w̃, p̃〉. (4.13)

where p̃ ∈ ∂J(w̃). Again we note that for w̃j = 0, ∂F (w̃j) is a multivalued set.

However, as we shall see below, the proposed iterative regularization algorithm

will automatically select a unique subgradient p̃j.

Following the same idea as in Section 2.3, we replace J(ũ) in (4.7) by the

Bregman distance (4.13) and then obtain a sequence of minimization problems

on ũj and the update of its dual variable p̃j as follows

ũ(k) = argmin
ũ

{
Dp̃(k−1)

(ũ, ũ(k−1)) +
λ

2
‖f̃ − ũ‖2

L2

}
, (4.14)

p̃(k) = p̃(k−1) + λ(f̃ − ũ(k)), (4.15)

with k ≥ 1, ũ(0) = 0, p̃(0) = 0. We shall show that such p̃(k) ∈ ∂J(ũ(k)).
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If we denote ṽ(k) = p̃(k)

λ
, then ṽ(0) = 0, by plugging (4.13) into (4.14) and

dropping the constant terms from the minimization, after some simplification we

can rewrite (4.14) as

ũ(k) = argmin
ũ

{
J(ũ) +

λ

2

∥∥∥∥
(

f̃ +
p̃(k−1)

λ

)
− ũ

∥∥∥∥
2

L2

}
(4.16)

or

ũ(k) = argmin
ũ

{
J(ũ) +

λ

2

∥∥∥(f̃ + ṽ(k−1))− ũ
∥∥∥

2

L2

}
. (4.17)

We have the following decomposition for all k ≥ 1:

f̃ + ṽ(k−1) = ũ(k) + ṽ(k). (4.18)

We note that at the kth iteration we simply replace the wavelet coefficient f̃ in the

original minimization (4.7) by f̃ + p̃(k−1)

λ
or equivalently, f̃ + ṽ(k−1), and proceed

to solve the same minimization procedure as for (4.7). The minimizer of (4.17)

is then

ũ
(k)
j =





(f̃j + ṽ
(k−1)
j )− 1

λ
sign(f̃j + ṽ

(k−1)
j ) , if |f̃j + ṽ

(k−1)
j | > 1

λ
,

0 , if |f̃j + ṽ
(k−1)
j | ≤ 1

λ
,

(4.19)

or simply,

ũ
(k)
j = S 1

λ
(f̃j + ṽ

(k−1)
j ), (4.20)

where k ≥ 1, ṽ
(0)
j = 0 and

ṽ
(k)
j = f̃j + ṽ

(k−1)
j − ũ

(k)
j . (4.21)

We have the following observations for the above ũ
(k)
j and ṽ

(k)
j :
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Theorem 4.2.1. For the solutions ũ
(k)
j and ṽ

(k)
j defined in the updates (4.19) and

(4.21), k ≥ 1, we have

(1)

ṽ
(k)
j =





1

λ
sign(f̃j) , if |f̃j| > 1

kλ
,

kf̃j , if |f̃j| ≤ 1

kλ
,

(4.22)

and sign(ṽ
(k)
j ) ≡ sign(f̃j).

(2)

ũ
(k)
j =





f̃j , if |f̃j| > 1

(k − 1)λ
,

kf̃j − 1

λ
sign(f̃j), if

1

kλ
< |f̃j| ≤ 1

(k − 1)λ
,

0, if |f̃j| ≤ 1

kλ
,

(4.23)

and sign(ũ
(k)
j ) = sign(f̃j), if ũ

(k)
j 6= 0;

(3) for p̃j = λṽj, p̃j ∈ ∂ũj
F (ũj).

Proof. (1) Plugging (4.19) into (4.21) we have

ṽ
(k)
j =





1

λ
sign(f̃j + ṽ

(k−1)
j ) , if |f̃j + ṽ

(k−1)
j | > 1

λ
,

f̃j + ṽ
(k−1)
j , if |f̃j + ṽ

(k−1)
j | ≤ 1

λ
,

(4.24)

for k ≥ 1. Since ṽ
(0)
j = 0, we have sign(ṽ

(1)
j ) = sign(f̃j). By induction,

sign(ṽ
(k)
j ) = sign(f̃j) for all k ≥ 1. Next we also prove (4.22) by induction.

For k = 1, we have (4.22) from (4.12). For k ≥ 2,

(i) If |f̃j| > 1
(k−1)λ

, then ṽ
(k−1)
j = 1

λ
sign(f̃j), and |f̃j + ṽ

(k−1)
j | ≥ |f̃j| >

1
(k−1)λ

> 1
kλ

. From (4.24), ṽ
(k)
j = 1

λ
sign(f̃j);

(ii) If |f̃j| ≤ 1
(k−1)λ

, then ṽ
(k−1)
j = (k − 1)f̃j and |f̃j + ṽ

(k−1)
j | = |kf̃j|. From
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(4.24), if |kf̃j| > 1
λ
, i.e., |f̃j| > 1

kλ
, then ṽ

(k)
j = 1

λ
sign(f̃j + ṽ

(k−1)
j ) =

1
λ
sign(f̃j), otherwise, |kf̃j| ≤ 1

λ
, ṽ

(k)
j = f̃j + ṽ

(k−1)
j = kf̃j.

This validates (4.22).

(2) Now we prove (4.23). From (4.21) we have ũ
(k)
j = f̃j + ṽ

(k−1)
j − ṽ

(k)
j . Using

(4.22), for k > 1 we have

(i) if |f̃j| ≤ 1
kλ

< 1
(k−1)λ

, then

ṽ
(k−1)
j = (k − 1)f̃j, ṽ

(k)
j = kf̃j, =⇒ ũ

(k)
j = 0;

(ii) if |f̃j| > 1
(k−1)λ

> 1
kλ

, then

ṽ
(k−1)
j = ṽ

(k)
j =

1

λ
sign(f̃j), =⇒ ũ

(k)
j = f̃j;

(iii) if 1
kλ

< |f̃j| ≤ 1
(k−1)λ

, then

ṽ
(k−1)
j = (k − 1)f̃j, ṽ

(k)
j =

1

λ
sign(f̃j), =⇒ ũ

(k)
j = kf̃j − 1

λ
sign(f̃j),

and sign(ũ
(k)
j ) = sign(f̃j)sign(k|f̃j| − 1

λ
) = sign(f̃j).

Note that for k = 1, we have 1
(k−1)λ

= ∞ and (4.23) reduces to (4.9). This

validates (4.23).

(3) From (4.22) we have

p̃
(k)
j =





sign(f̃j) , if |f̃j| > 1

kλ
,

kλf̃j , if |f̃j| ≤ 1

kλ
,

(4.25)

For the first part, we have ũ
(k)
j 6= 0 and ∂J(ũ

(k)
j ) = sign(ũ

(k)
j ) = p̃

(k)
j . For the
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second part, we have ũ
(k)
j = 0, and |p̃j| ≤ 1, p̃j ∈ ∂J(ũ

(k)
j ). This also shows

that the dual variable p̃(k) updated via (4.15) is automatically a subgradient

of J(ũ(k)).

We note that (4.23) gives firm shrinkage (4.3) with thresholds τ (k) = 1
kλ

and

τ (k−1) = 1
(k−1)λ

. One can also see that these thresholds are monotonically decreas-

ing with respect to the iterates k. Therefore, the iterative soft shrinkage provides

a multiscale wavelet denoising sequence, in the sense that bigger coefficients in

ũj are saved earlier than smaller ones.

Now we need a stopping criterion for the iterations. We first observe that

the distance between f and u(k), which equals to the distance between f̃ and

ũ(k), is monotonically decreasing with respect to k. Then we can use the same

stopping criterion as was used for iterated total variation based models: we stop

the iteration (4.14) and (4.15) at the last k = k̄ where

‖f̃ − ũ(k)‖L2 ≥ σ,

where σ = ‖f − g‖L2 = ‖f̃ − g̃‖L2 is the variance of the noise f − g, g is used to

denote the original clean image. Note that this stopping criterion corresponds to

the commonly used L2 constraint in denoising problems. In general g is unknown,

however, as we discussed in previous chapter, in typical imaging situations, an

estimate for the noise variance is known, which yields a bound of the form ‖f −
g‖L2 ≤ σ.
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4.2.1 Bregman distance

We are interested in the Bregman distance between the original clean image g

and the restored image u. In the wavelet space, we now turn to compute the

Bregman distance (4.13) between the wavelet coefficients g̃ and ũ(k):

Dp̃(k)

(g̃, ũ(k)) = J(g̃)− J(ũ(k))− 〈g̃ − ũ(k), p̃(k)〉

= J(g̃)− 〈g̃, p̃(k)〉

=
∑

j

|g̃j| −
∑

j

p̃
(k)
j g̃j

=
∑

j:|f̃j|>1/kλ

(|g̃j| − sign(f̃j)g̃j) +
∑

j:|f̃j|≤1/kλ

(|g̃j| − kλf̃jg̃j) (4.26)

≥ 0.

And we also have

Dp̃(k)

(g̃, ũ(k))−Dp̃(k−1)

(g̃, ũ(k−1))

= −〈g̃, p̃(k) − p̃(k−1)〉

≤ −〈g̃ − ũ(k), p̃(k) − p̃(k−1)〉

= −〈g̃ − ũ(k), λ(f − ũ(k))〉

≤ λ(−1

2
‖f̃ − ũ(k)‖2

L2 +
1

2
‖f̃ − g̃‖2

L2)

< 0

as long as ‖f̃ − ũ(k)‖L2 > ‖f̃ − g̃‖L2 = σ.

Therefore, the Bregman distance (4.13) monotonically decrease for k less than

k̄, which is the last iterate such that ‖f̃ − ũ(k)‖L2 ≥ 0.
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4.2.2 Limiting case

If we reinterpret λ = ∆t as a timestep and kλ = tk, then (4.23) becomes

ũj(t
k) =





f̃j , if |f̃j| ≥ 1

tk −∆t
,

k(f̃j − 1

tk
sign(f̃j)) , if

1

tk
≤ |f̃j| < 1

tk −∆t
,

0 , if |f̃j| < 1

tk
.

Let ∆t ↘ 0, then for k À 1, t −∆t → t. Dropping k we have the following

solution

ũj(t) =





f̃j , |f̃j| ≥ 1

t
,

0 , |f̃j| < 1

t
,

(4.27)

which turns out to be hard shrinkage (4.2) with threshold τ = 1
t
:

ũ = H 1
t
(f̃).

The Bregman distance D(g̃, ũ(t)) is same as the one stated in (4.26), with kλ

replaced by t, i.e.,

D(g̃, ũ(t)) =
∑

j:|f̃j|>1/t

(|g̃j| − sign(f̃j)g̃j)−
∑

j:|f̃j|≤1/t

(|g̃j| − tf̃jg̃j) (4.28)

4.3 Regularized Wavelet Denoising and Inverse Scale Space

In this section we will generalize the above iterative regularization procedure

to a time-continuous inverse scale space. First we need to borrow the usual

regularization technique from the TV-based imaging community: we approximate
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F (ũj) = |ũj| as

Fε(ũj) =
√

ũ2
j + ε, (4.29)

where ε > 0 is a small constant (and independent of j). Note that

p̃j = ∂Fε(ũj) =
ũj√

ũ2
j + ε

(4.30)

is well-defined and unique everywhere now, and we can invert ũj from p̃j.

If we replace F (ũj) with Fε(ũj) in (4.7), we have

ũj = argmin
ũj

{√
ũ2

j + ε +
λ

2
(f̃j − ũj)

2

}
, ∀j. (4.31)

The corresponding Euler-Lagrange equation now is

ũj√
ũ2

j + ε
+ λ(ũj − f̃j) = 0. (4.32)

This is a nonlinear equation for ũj which can be solved numerically, e.g., by a

simple fixed point method. A slight extra computational cost comes with it as

compared to (4.23).

4.3.1 Inverse scale space

We start from the Bregman decomposition (4.18). Using ṽ(k) = p̃(k)

λ
, we have for

each j,

p̃
(k)
j − p̃

(k−1)
j = λ(f̃j − ũ

(k)
j ), k ≥ 1 (4.33)

ũ
(0)
j = p̃

(0)
j = 0. (4.34)
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Let λ = ∆t, k∆t → t, the equation becomes

dp̃j

dt
= f̃j − ũj, ũj(0) = 0. (4.35)

Since
dp̃j

dũj

=
ε

(ũ2
j + ε)3/2

, we have an inverse scale space flow for each ũj as follows

dũj

dt
=

(ũ2
j + ε)3/2

ε
(f̃j − ũj), ũj(0) = 0. (4.36)

4.3.2 Convergence analysis

We now study the behavior of the above regularized inverse scale space model

(4.36). First,

d

dt
‖f̃ − ũ(t)‖2

L2 =
d

dt

∑
(f̃j − ũj)

2

= −2
∑

j

(f̃j − ũj)
2

(
ε

(ũ2
j + ε)3/2

)−1

≤ −2ε1/2
∑

j

(f̃j − ũj)
2

≤ −2ε1/2‖f̃ − ũ(t)‖2
L2 .

From Granwall’s inequality we have

‖f̃ − ũ(t)‖2
L2 ≤ e−ε1/2(t−s)‖f̃ − ũ(s)‖2

L2 , t ≥ s.

If f ∈ L2, let s = 0, we have t →∞,

‖f̃ − ũ(t)‖2
L2 ≤ e−ε1/2(t)‖f̃‖2

L2 ↘ 0, as t ↗∞.
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Therefore, ũ(t) → f̃ in L2 as t → ∞, and as a consequence the reconstructed

result u(t) → f as t →∞.

Second, the Bregman distance between g̃ and ũ is
∑

j dj(g̃j, ũj), where

0 ≤ dj(g̃j, ũj) = Fε(g̃j)− Fε(ũj)− (g̃j − ũj)
∂Fε

∂ũj

(ũj)

=
√

g̃2
j + ε− ε + g̃jũj√

ũ2
j + ε

→ |g̃j| − g̃j sign(ũj) as ε ↘ 0.

For any g ∈ B1
1(L

1),

d

dt
D(g̃, ũ) =

∑

j

(g̃j − ũj)
dp̃j

dt
= −

∑

j

(g − ũj)(f − ũj)

≤ −
∑

j

(f̃j − ũj)
2

2
+

∑

j

(f̃j − g̃j)
2

2

< 0,

as long as ‖f̃ − ũ(t)‖L2 > ‖f̃ − g̃‖L2 .

We may rewrite

dj(g̃j, ũj) =
ε(ũj − g̃j)

2

√
ũ2

j + ε(
√

ũ2
j + ε

√
g̃2
j + ε + ε + g̃jũj)

(4.37)

The factor ε can be removed and we may rewrite, for any ε > 0

d

dt

D(g̃, ũ)

ε
< 0, as long as ‖f̃ − ũ‖L2 > ‖f̃ − g̃‖L2 = σ.

This is an interesting estimate which holds uniformly in ε. We also have a stopping
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criterion which is similar to the one for iterative refinement: we can stop the

evolution (4.36) at the last t = t̄ where ‖f̃ − ũ(t)‖L2 ≥ σ.

4.4 Numerical Examples
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Figure 4.1: shape image, 128 × 128. left: original image; right: noisy image,
σ = 30, SNR = 7.29.

In this section we present two numerical examples of the wavelet denoising

with soft shrinkage, hard shrinkage, the new iterative regularization method (W-

IRM, which is equivalent with a sequence of firm shrinkage) and the inverse scale

space (W-ISS) flow we mentioned above in this paper. We add Gaussian i.i.d.

noise to the original clean image g and get a noisy image f to use for experiments.

For different thresholds and parameters, there are two ways to define ‘optimal’

results numerically: (i) the SNR of the restored image u is biggest among all;

(ii) ‖f − u‖L2 ≈ σ. In general we may have an estimate of σ but no information

about g, therefore we can only use the second criterion in those cases. Moreover,

as indicated in previous sections, (ii) is also our stopping criterion for the iterative

method and inverse scale space flow. To compare results in this numerical section
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we choose thresholds τ for soft shrinkage and hard shrinkage such that their

results satisfy ‖f − u‖L2 = σ and we use stopping criterion (ii) for all our new

methods.

Figure 4.1 shows the original image g, which is composed of different shapes

and scales, and the noisy image f . σ = ‖f − g‖L2 = 30, the signal-to-noise-ratio

(SNR) is 7.29.

We choose the Haar basis and level 3 for wavelet decomposition in this ex-

ample. In Figure 4.2, the first row shows the results u from soft shrinkage

(threshold τ = 49) and hard shrinkage (τ = 101), with their corresponding

SNR = 12.03 and 13.04 respectively; the second row shows the results from iter-

ative regularization (W-IRM, λ = 0.001, k̄ = 11) and inverse scale space (W-ISS,

dt = 0.001, t̄ = 0.014, ε = 0.01), with their corresponding SNR = 13.56 and

13.45 respectively. We can see that these two new results are close to the result

of hard shrinkage. Their SNRs are slightly higher than that of hard shrinkage

and much higher than that of soft shrinkage.

In Figure 4.2 there are some artifacts in the results. This is a common defect

of wavelet imaging. We point out here that some techniques such as translation

invariant cycle-spinning (cf. [DC95]) can be easily incorporated into our new

methods. Moreover, in the W-ISS method proposed above, we introduced a

regularized parameter ε, which can also be used to decrease the artifacts if its

value is taken to be big. In Figure 4.3 we show a result u of W-ISS with a

bigger ε = 10, which has much fewer artifacts than the previous results. The

corresponding SNR = 12.84 is higher than that of soft shrinkage. Furthermore,

we also plotted the residual part v = f−u of this result (to enhance the visibility,

we plotted v + 128 here). We can see that it contains very little visible signal,

which is similar to the residual of hard shrinkage. In soft shrinkage, we removed
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Figure 4.2: First row: denoised results from soft shrinkage (left, SNR = 12.03)
and hard shrinkage (right, SNR = 13.04); Second row: denoised results from
iterative regularization (4.23) (left, SNR = 13.56) and inverse scale space (4.36)
(right, SNR = 13.45). All ‖f − u‖L2 ≈ σ = 30.
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some signal along with the residual.
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Figure 4.3: First row: denoised result u from inverse scale space with ε = 10 (left,
SNR = 12.84) and corresponding residual v = f − u (+128, right); Second row:
residuals v + 128 of soft shrinkage (left) and hard shrinkage (right) in Figure 4.2.

In Figure 4.4 we show the result from total variation based relaxed inverse

scale space discussed in previous chapter. The denoised result is better than that

from wavelet methods, with no artifacts and higher SNR, but the computational

cost is much more expensive due to the evolution of nonlinear partial differential

equations.

In the second example we denoised a magnetic resonance (MR) image. Figure
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Figure 4.4: Result from TV relaxed ISS. left: denoised u (SNR = 14.96,
‖f − u‖L2 = σ = 30); right: residual v + 128 (v = f − u).

4.5 shows the original image g and noisy image f . σ = 30 and SNR of f is 4.43.

We use db3 basis and level 3 for wavelet decomposition in this example. Figure 4.6

shows the results: the first row shows u and v from soft shrinkage (τ = 57, SNR =

11.72); the second row shows u from hard shrinkage (τ = 83, SNR = 11.01) and

the W-IRM method (λ = 0.0008, k̄ = 16, SNR = 11.01); the third row shows u

from the W-ISS method (dt = 0.001, t̄ = 0.012, ε = 10, SNR = 11.94). In this

example we can see that: compared with soft shrinkage, although the SNRs of

hard shrinkage and W-IRM are lower, using a relative large ε = 10 in W-ISS we

obtained a result with fewer artifacts, higher SNR, and much less visible signal

in the residual.
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Figure 4.5: MR image, 256×256. left: original image; right: noisy image, σ = 30,
SNR = 4.43,

140



50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

Figure 4.6: First row: denoised result from soft shrinkage (left, SNR = 11.72)
and corresponding residual v = f − u (+128,right); Second row: denoised re-
sults from hard shrinkage (left, SNR = 11.01) and iterative regularization (4.23)
(right, SNR = 11.01); Third row: denoised result from inverse scale space (4.36)
(left, ε = 10, SNR = 11.94) and corresponding residual v + 128 (right). All
‖f − u‖L2 ≈ σ = 30.
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4.5 Discussion and Conclusion

We have presented two alternatives to soft shrinkage. These involve the itera-

tive regularization (W-IRM) using generalized Bregman distances and the inverse

scale space (W-ISS) ideas borrowed from total variation based image restoration.

The solution of W-IRM turns out to be a firm shrinkage with the thresholds deter-

mined by the scale parameter λ and iterates k. It appears that the new methods,

especially W-ISS, perform better than soft shrinkage from the SNR point of view

and result in less loss of signal into the residual. All these methods are fast and

easy to implement. Since the summation part in the minimization functions is

separable, our methods can be easily combined with some other techniques of

wavelet denoising, such as shrinkage on detail coefficients only and keep the scal-

ing coefficients unchanged, and/or cycle spinning. The open questions include

the studies of the scale parameter λ in W-IRM and the regularized parameter ε

in W-ISS.
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