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by

Lin He

Doctor of Philosophy in Mathematics
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Professor Stanley Osher, Chair

An iterative refinement procedure has recently been introduced to the imaging

denoising field. This procedure has significantly improved image quality. Here

we first generalize this procedure to any variational model with non-quadratic

convex fidelity terms. By using a suitable sequence of penalty parameters, we

solve the issue of well-definedness of the minimization problems in each step of

the iterative procedure. We also obtain rigorous convergence results for exact

and noisy data. Secondly we apply the refinement method to solve blind decon-

volution problems. We formulate a new time dependent variational model with

additional constraints incorporated to preserve the mass and the nonnegativity

of the signal and the kernel. We present an analytical study of the model by dis-

cussing the uniqueness of the solution, convergence to steady state and a priori

parameter estimation. Finally we apply the iterative refinement method to MR

image reconstruction from sparsely sampled data in the k-space (i.e. the Fourier

transform domain). We formulate our cost functional by summing a fidelity term

and an L1 norm of a sparse representation of the reconstructed image. The fi-

delity term is used to satisfy the constraint condition of the undersampled data.
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The sparse representation is realized by the total variation regularization and/or

the wavelet transform. Furthermore, to speed up the iterative refinement method

we use a nonlinear inverse scale space method. In addition to above, we present

numerical experiments to show supporting evidence for all our work.
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CHAPTER 1

Introduction

The field of image processing is full of many interesting tasks. Its applications

are seen in many different fields such as astronomy, computer graphics, medical

imaging and security identification. Among the tasks performed in image pro-

cessing are image compression, image restoration, measurement extraction and

etc. Our research has been focused on image extraction (i.e. segmentation),

image restoration of noisy and/or blurry images and magnetic resonance (MR)

image reconstruction from the k-space, i.e. the frequency space.

There are many different approaches to work on image processing. There

are statistical methods for texture analysis. Also, there are Fourier and Wavelet

(cf. [Mey93, Mal99]) transformations which have inspired the JPEG image rep-

resentation. These methods have also led to new methods such as Ridgelets and

Curvelets (cf. [CD02, CDD05, CG02]). Another approach to image processing is

variational PDE based methods(cf. [ROF92, VO03, OSV03]). In our research we

used the last two methods. First, by using Variational PDE methods it is proved

that we can preserve edges well between homogeneous regions; Second, by using

image representation, more precisely, by using image sparse representation it is

possible for us to reconstruct MR image exactly from incomplete information

about Fourier transform coefficients (cf. [CRT04, CR05, LLD05, CHF06]).

The organization of this dissertation is as follows. In this chapter we begin

by reviewing some existing image restoration methods, discuss how total vari-
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ational regularization is connected with MR image reconstruction and give a

detailed derivation of the iterative refinement procedure. In Chapter 2, we fo-

cus on generalizing the iterative refinement procedure for any variational model

with non-quadratic fidelity terms. In the following chapter we apply the iterative

refinement method to solve the blind deconvolution problem. Next, we apply

the iterative refinement method again to MR image reconstruction from sparsely

sampled data in the Fourier transform domain. The numerical results are pre-

sented at the end of each chapter from Chapter 2 to Chapter 4. We conclude this

dissertation by discussing future work in Chapter 5.

1.1 Some Total Variational Based Image Restoration Mod-

els

We consider a given observed image f : Ω → R as a function of L2(Ω), where

Ω is an open and bounded subset of R2. For example, Ω could be the computer

screen. The image f is comprised of a combination of homogeneous regions,

contours and oscillatory patterns such as noise or texture. This scalar-valued or

gray-scale image f(x, y) at the pixel of (x, y) usually takes values between 0-black

and 256-white.

1.1.1 Rudin, Osher and Fatemi (ROF) Total Variation Minimization

We assume the image f has the following form :

f = k ∗ u + n,

where k is a convolution kernel with compact support (e.g., discrete Gaussian

kernel), u is the original image and n is Gaussian white noise. Our task is to

recover the unknown u and/or k from f .
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Given knowledge of the kernel k, one of the most successful approaches to solve

the above problem is the total variation (TV) regularization method proposed

by Rudin, Osher and Fatemi (cf. [ROF92, RO94]). They solved the following

constrained minimization problem:

u = arg min
u∈BV (Ω)

{
||u||BV +

λ

2
||k ∗ u− f ||2L2

}
, (1.1)

where λ is a positive parameter. The regularization functional is the BV -seminorm,

defined as the following :

Definition 1 For any functional u : Ω → R as an element of L2(Ω), the BV -

seminorm of u

||u||BV = sup
|g|∞≤1,g∈C1

c (Ω)2

∫

Ω

u(∇ · g)dx,

where |g| =
√

(|g1|2 + |g2|2)(x) and C1
c (Ω) denotes the class of continuously dif-

ferentiable functions of compact support in Ω.

The key feature of total variation regularization is the fact that it allows for (and

even favors) discontinuous solutions, i.e., images with sharp edges. Nevertheless,

this regularization suppresses oscillations and can still eliminate high-frequency

noise.

For general convolution kernel k, the restoration of the image u in (1.1) is

usually a numerically ill-posed problem. Vogel and Oman in [VO98] have demon-

strated that the ill-conditioning in solving the Euler-Lagrange equation of (1.1)

is due to the fact that the compact convolution operator, defined by k, has eigen-

values which cluster to zero.

Here we are interested in recovering the true image u and the kernel k with-

out having any a priori knowledge of k and u. This so-called blind deconvolu-

tion problem (cf. [YK96, CW98, YK99, HMO05]) is studied in Chapter 3. We
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not only propose a new time dependent model but also present an analytical

study discussing the uniqueness of the solution and a priori parameter estima-

tion. Furthermore, we apply the newly discovered idea of iterative regularization

in [OBG05] to recover finer scales.

1.1.2 Meyer’s Analysis on the ROF model

If k is the delta function, δ ∗ u = u, (1.1) becomes a pure denoising algorithm. It

is usually referred as the ROF model:

u = arg min
u∈BV (Ω)

{
||u||BV +

λ

2
||u− f ||2L2

}
. (1.2)

The ROF model is well known for its ability to remove noise while preserve sharp

edges.

However, the ROF model (1.2) has certain limitations. The ideal result of

minimizing ROF model (1.2) would be to decompose f into a true signal u and

an additive noise v := f −u. In practice, however, we often find some signal in v.

In [Mey01], Meyer has analyzed the ROF model by introducing the dual of the

BV space to extract both the u component in BV and the v component as an

oscillating function (texture or noise). For the topic of extracting texture from

images using variational methods, we refer to [VO03, AC05].

The norm of the dual of the BV space is denoted as the * norm:

Definition 2 Let G denote the Banach space consisting of all generalized func-

tions v(x) which can be written as

v(x) = ∂1g1(x) + ∂2g2(x) (1.3)

where g1, g2 ∈ L∞(R2).
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The norm of v in G ||v||∗ is defined as the lower bound of all L∞ norms of the

functions |g| where g = (g1, g2), |g| =
√

(|g1|2 + |g2|2)(x) and where the infimum

is computed over all decompositions (1.3) of v.

It is easy to derive the following lemma.

Lemma 1 ∫
uvdx ≤ ||u||BV ||v||∗ (1.4)

Based on (1.4), Meyer showed the following proposition.

Proposition 1 For the ROF denoising problem (1.2), if the norm of f in G does

not exceed 1
λ
, then the optimal ROF decomposition of f is given by

u = 0, v = f. (1.5)

Otherwise,

||v||∗ =
1

λ
,

∫
u(x)v(x)dx =

1

λ
||u||BV . (1.6)

The Euler-Lagrange equation from the ROF minimization is :

−∇ · ∇u

|∇u| = λ(f − u) = λv. (1.7)

The term v was previously thrown away even though it is an element in G with

its * norm = 1
λ

when ||f ||∗ > 1
λ
. In [OBG05], a correction step was taken which

added v back to f and then f + v was processed as the new noisy data by the

ROF minimization procedure again. Their iterative regularization procedure is:

decompose f + vk−1 = uk + vk by the ROF model, where k ≥ 1 and v0 = 0, until

the first k for which ||f − uk|| ≤ δ where δ is the L2 norm of the noise. This

iterative idea is equivalent to using the Bregman distance and Bregman iteration.

This will be shown in Section 4.3.
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1.1.3 Total Variational Models with Non-quadratic Fidelity

From above, we know that the term v that represents noise is usually ignored;

however, it often contains textures. In order to preserve textures, Meyer suggested

the modified variational problem

u = arg min
u∈BV (Ω)

{||u||BV + λ||f − u||∗} , (1.8)

whose computational solution is a rather difficult task because of the nature of

the norm || · ||∗ (cf. [AAB05, GY04]).

We also mention here another version of the total variation regularization

model that has been studied recently by Chan and Esedoglu [CE05] (see also the

references therein). They used the L1 norm instead the square of L2 norm as in

ROF, as a measure of fidelity between the observed and denoised image. Given

an observed image f ∈ L1(Ω), this model is based on the following variational

problem:

u = arg min
u∈BV (Ω)

{||u||BV + λ||u− f ||L1} . (1.9)

Even though this minimization problem may have a lack of uniqueness and the

continuous dependence on data is not clear, it has many desirable and some un-

expected consequences in applications such as reconstruction of binary images,

multiscale image decomposition (cf. [YGO05, HBO06]), and data driven param-

eter selection.

Both generalizations of total variational models with respect to the fidelity

functional can yield an improvement with respect to some aspects, but they share

the systematic error yielding a decrease in the total variation and therefore a loss

of information in either case. In order to overcome this issue, in Chapter 2 we

generalize the iterative version of Tikhonov regularization introduced in [OBG05]

that could be applied to any total variational model with non-quadratic fidelity

6



terms.

1.2 From TV Regularization to MR Image Reconstruc-

tion

Many applications in magnetic resonance imaging (MRI) require very short scan

time while the image reconstruction can be performed off-line. To this end, during

the scanning process it is necessary to sample the frequency plane (or k-space)

very sparsely. This usually results in image artifacts and/or low signal to noise

ratio (SNR).

As a result, in [CRT04, CR05] Candes et al. demonstrate the possibility to

exactly recover signal from incomplete frequency information for numerical phan-

toms. Their method is based on minimizing a sparse representation of a target

signal while enforcing the constraint so that the original sparse frequency sam-

ples are maintained. In their work, total variation regularization is used as one

of the sparse transformations for piecewise constant functions. This regulariza-

tion actually performs better than the wavelet transform (cf. [LLD05]) due to

the capability of total variation to recover piecewise smooth functions without

smoothing sharp discontinuities.

In Chapter 4, we propose a new formulation in terms of the sparse transfor-

mation while again apply the iterative refinement method to obtain finer scales

for our reconstructed image. Furthermore, we also experiment a nonlinear inverse

scale space method in addition to the iterative refinement procedure. Compared

with the iterative refinement procedure, the nonlinear scale space method which

provides similar results is shown to be a more straightforward and efficient algo-

rithm.
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1.3 The iterative Refinement Method

Consider a generalized minimization model:

u = arg min
u
{J(u) + λH(u, f)} , (1.10)

where J(u) is called the regularization term and H(u, f) is called the fidelity term.

Both functionals are required to be convex and J(u) needs to be non-negative.

1.3.1 The Bregman Distance

Definition 3 Given a differentiable function ϕ, the Bregman distance (cf. [Bre67])

is defined by

Dϕ(x, y) = ϕ(x)− ϕ(y)− < x− y, ∂ϕ(y) >,

where < ·, · > denotes the inner product in Rn and ∂ϕ(y) is an element of the

sub-gradient of ϕ at point y.

Since J(u) is convex, DJ(u, v) is also convex in u for each v. The quantity

DJ(u, v) is not a distance in the usual sense; e.g., in general, DJ(u, v) 6= DJ(v, u)

and also the triangle inequality does not hold. However, it is a measure of close-

ness in that DJ(u, v) ≥ 0 and DJ(u, v) = 0 if u = v (if and only if for strictly

convex functionals).

1.3.2 The iterative Refinement Procedure

Denote u0 = 0, an iterative procedure is given by the sequence of variational

problems

um = arg min
u∈BV (Ω)

P (um−1, f, λ) =: {DJ(u, um−1) + λH(u, f)} (1.11)
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We notice that the first iteration of the given procedure (1.11) is in fact the

minimization of the generalized model (1.10). We present here a detailed analysis

of the procedure by specifically considering the fidelity term H(u, f) = 1
2
||k ∗u−

f ||2L2 .

Take the sub-gradient of (1.11), we obtain the following for m ≥ 1:

λHu(um, f) + ∂J(um)− ∂J(um−1) = 0. (1.12)

So for m = 1,

λk̂ ∗ (k ∗ u1 − f) + ∂J(u1) = 0;

Write f − k ∗ u1 = v1, i.e.

∂J(u1) = λk̂ ∗ v1.

Plug the above equation into (1.12) for m = 2, it becomes

λk̂ ∗ (k ∗ u2 − f) + ∂J(u2)− λk̂ ∗ v1 = 0.

It can be simplified as

λk̂ ∗ (k ∗ u2 − f − v1) + ∂J(u2) = 0.

Write f + v1 − k ∗ u2 = v2, we then have

∂J(u2) = λk̂ ∗ v2.

From above we can see, if we denote v0 = 0 and

vm = f + vm−1 − k ∗ um ∀m ∈ N,

we will have

∂J(um) = λk̂ ∗ vm.

In other words, to apply the Bregman iteration we only have to change the

observed image from f to f + vm−1 at the m-th iteration. Therefore, solving the

9



sequence of minimization problems of (1.11) is equivalent to solving a sequence

of minimization problems

um = arg min
u∈BV (Ω)

Q(vm−1, f, λ) =: {J(u) + λH(u, f + vm−1)} . (1.13)

Thus all the nice properties of the original minimization problem (1.10) are kept

for (1.11), in particular this indicates the existence of the minimizer of (1.11).

Furthermore, it has been shown that in [OBG05] for the pure denoising problem

the sequence {uk} converges monotonically in L2 to the noisy image f . More

importantly, as k increases, for k ≤ k̄ and sufficiently small λ, the Bregman

distance between uk and the true noise free image ũ is decreasing. Here k̄ is

defined as

max{ k ∈ N|H(uk, f) > τH(ũ, f) } (1.14)

where τ > 1. We refer to [OBG05] for more details of the analysis. Comparing

with the denoised image from the ROF model (1.2), we see that this iterative

algorithm improves the results significantly.
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CHAPTER 2

Iterative TV Regularization with

Non-Quadratic Fidelity

A key observation in the analysis of the iterative scheme is a rewritten version as

the generalization of proximal point or Bregman iterations (cf. [Bre67, CT93]).

These methods are usually used to solve problems of the form

min{g(u) : u ∈ Rn},

where g : Rn 7−→ (−∞,∞] is a proper, lower semi-continuous convex function.

Proximal point methods generate a sequence {uk} from the minimization problem

uk = arg min
u∈Rn

{
g(u) + λ−1

k DJ(u, uk−1)
}

. (2.1)

In [CT93], the convergence analysis of the proximal point algorithms is based on

two assumptions:

• lim inf
k→∞

{λk :≥ 0} > 0;

• f is bounded below, and the iterative scheme generates a sequence {uk}
such that uk ∈ Rn for all k.

The second line assumes that a solution of the minimization problem (2.1) exists,

which is however not straight-forward to show for many important cases. We shall

introduce our a modified model with suitable decay of the penalty parameters
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which allows us to prove the existence of the minimizers in Section 2.1.1 and

2.1.2. Furthermore, following the theoretical proof in [OBG05], monotonicity

and convergence theorems are also obtained in Section 2.1.3. In Section 2.2,

some numerical results are given using various fidelity functionals H in (1.10)

while the regularization term J is kept as BV term. Comparisons with other

methods of similar spirit are also presented.

2.1 Analysis of a Modified Iterative Regularization Pro-

cedure

In general it is quite easy to generalize the iterative regularization algorithm to

variational models with a different regularization functional J , as long as this

functional has suitable lower-semicontinuity and compactness properties in some

topology (cf. [OBG05]). The analysis of the algorithm (with respect to well-

definedness, convergence, regularization properties) can be transfered in a one-

to-one way, only computational schemes have to be adapted to the specific form

of the functional.

By far more challenging is the generalization of the procedure with respect

to the fidelity term H. Of course, one can just write down (1.11) and try to

solve the minimization problems in each step. However, the well-definedness of

this procedure is not clear if H is not quadratic, since only in the quadratic

each minimization problem in (1.11) can be rewritten in the same form as (??)

and corresponding existence and uniqueness results for minimizers can be carried

over.
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2.1.1 Generalization of the Fidelity Term: A Modified Model

Inspired by Scherzer and Groetsch (cf.[SG01]) and Tadmor, Nezzar and Vese

(cf.[TNV04]), who multiplied the parameter λ by two after each iteration step,

we formulate a new iterative total variation regularization as

uk = arg min
u∈BV (Ω)

E(u, uk−1, f) :=

{
H(u, f) +

1

2k−1λ
DJ(u, uk−1)

}
, (2.2)

where J(u) satisfies the conditions assumed above, and H(u, f) := h(u− f) with

h being a nonnegative, convex, and positively homogeneous functional, which

is continuous with respect to weak-* convergence in BV . Moreover, we assume

that h(c) does not vanish for constant functions c 6= 0, so that h(u) + |u|BV is

indeed an equivalent norm on BV (Ω). For convenience we set p = ∂J , u−1 = 0

and p−1 = 0 so that u0 is defined as the minimizer of H(u, f) + 2J(u)
λ

. Using this

new construction, we are able to overcome the problem of lower boundedness and

thus obtain well-definedness in Section 2.1.2 and prove some monotonicity and

convergence theorems in Section 2.1.3.

The models in [TNV04, SG01], which inspire our setting, did not use a prox-

imal point iteration but instead used Tikhonov-Morozov iteration for which the

following convergence analysis does not apply. The difference is that one replaces

DJ(u, uk−1) in (2.2) by J(u − uk−1). We call this Tikhonov-Morozov iteration

with the multiscale coefficient alone a T-N-V method even if H(u, f) is not the

L2 square fidelity term as used in the original papers.

We mention that the multiscale decomposition of T-N-V concerned the func-

tion u directly, in [TNV04] the method was even set up as a sequence of mini-

mization problems for the update vk = uk − uk−1. For choosing λ constant, one

would obtain vk ≡ 0 for k ≥ 1 and hence, λ has to be decreased in order to access

small scale features that have been eliminated in the previous steps. Our model
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(2.2) can rather be considered as a multiscale decomposition for the dual variable

pk. Note that the optimality condition for the variational problem in (2.2) reads

pk − pk−1 ∈ −2k−1λ∂uH(uk, f),

and hence yields the update for k. In this case the dyadic choice is not as obvious.

For an arbitrary variable choice λk we obtain (after summation of the optimality

conditions and using the notation qj ∈ ∂uH(uj, f))

pk = p0 +
k−1∑
j=1

λjqj.

In the quadratic case H(uj−f) = ‖uj−f‖2, the subgradient is single valued and

given by qj = 2(uj − f), and in particular it scales with the residual. Since the

residual tends to zero, the sum
∑k−1

j=1 λjqj can also be bounded if λ is constant

(and indeed is as can be deduced from the results in [OBG05]). In the case of

positively one-homogeneous fitting functionals such the ones in (1.8) and (1.9),

the norm of the subgradients of H will be of order one in the dual space to

the fitting norm. E.g. for the L1-functional, we obtain that ‖qj‖∞ = 1 for

qj ∈ ∂uH(uj, f) (unless uj ≡ f , one can think of qj as the sign of uj − f almost

everywhere). Thus, the update in the dual variable will actually increase during

the iteration in these spaces (except uk ≡ f , which leads to no subsequent changes

in the iteration). In the worst case one has to expect that the norm of pk is given

by

‖pk‖∞ ∼
k∑

j=1

λj‖qj‖∞ =
k∑

j=1

λj.

In the iteration step from k to k + 1, the term 1
λk+1

pk appears in the Bregman

distance and subsequently in the optimality condition. In order to obtain a

reasonable scaling with the subgradient of H, also pk should be of order one and

this is not true for constant λ since from the above argument we would expect
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that
1

λk+1

‖pk‖∞ ∼ k.

On the other hand, the scaling to order one can be achieved directly by the dyadic

choice λk = 2k−1λ, for which we can expect

1

λk+1

‖pk‖∞ ∼ 1

2kλ

k∑
j=1

2k−1λ = 1.

We mention that the same type of scaling argument is possible for other posi-

tively one-homogeneous functionals. As we shall prove below, the dyadic choice

leads to a well-defined model for rather general fidelity functionals, but from

the scaling one might argue that it is not the optimal one if H is not positively

one-homogeneous (and one could find the optimal one from the scaling of sub-

gradients). However, positively one-homogeneous fidelity terms are by far the

most interesting examples in total variation based image restoration (except the

previously analyzed quadratic ones), so that we focus on the dyadic choice here.

Possible extensions for other functionals can then be carried out along the lines

of our analysis.

2.1.2 Well-Definedness of the New Iteration Model

We now derive the existence of minimizers for the modified iterative method (2.2):

Theorem 1 Under the above conditions, the iteration scheme (2.2) yields a well-

defined sequence uk ∈ BV (Ω).

Proof: With uk defined via (2.2) we obtain the Euler-Lagrange equations

qk +
1

2k−1λ
(pk − pk−1) = 0, qk ∈ ∂uH(uk, f), pj ∈ ∂J(uj), (2.3)
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Using (2.3), first we express pk ∈ ∂J(uk) in terms of the subgradients of the

functionals H(uj, f), 0 ≤ j < k, which are denoted by qj ∈ ∂uH(uj, f):

1

2k−1λ
pk =

1

2k−1λ
pk−1 − qk

=
1

2k−1λ
pk−2 − 1

2
qk−1 − qk

= . . .

=
1

2k−1λ
p0 −

k∑
j=1

1

2k−j
qj = −

k∑
j=0

1

2k−j
qj. (2.4)

Next we define v := f − u, thus H(u, f) = h(v). Due to the convexity, nonnega-

tivity, and homogeneity of the functional h, we have for any w ∈ BV , q ∈ ∂h(w),

and t > 0,

t〈v, q〉 = 〈(tv + w)− w, q〉 ≤ h(tv + w)− h(w)

≤ h(tv) = th(v).

Since t > 0, we obtain the inequality

〈v, q〉 ≤ h(v), ∀ v, w, q ∈ ∂h(w). (2.5)

In particular, if we choose w = f − uj, then (2.5) becomes

〈u− f, qj〉 ≥ −H(u, f). (2.6)
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Using (2.4) and (2.6) and defining {wn} as a minimizing sequence to uk, we know

there exist M > 0 such that

M ≥ H(wn, f) + 1
2k−1λ

J(wn)− 1
2k−1λ

J(uk−1)− 〈wn − uk−1,
1

2k−1λ
pk−1〉

= H(wn, f) + 1
2k−1λ

J(wn)− 1
2k−1λ

J(uk−1) + 〈uk−1 − f, 1
2k−1λ

pk−1〉

+1
2
〈wn − f,

∑k−1
j=1

1
2k−1−j q0〉

≥ 1
2k−1λ

J(wn)− 1
2k−1λ

J(uk−1) + 〈uk−1 − f, 1
2k−1λ

pk−1〉

+H(wn, f)−H(wn, f)
∑k−1

j=0
1

2k−j

≥ 1
2k−1λ

J(wn)− 1
2k−1λ

J(uk−1) + 〈uk−1 − f, 1
2k−1λ

pk−1〉.

Since both uk−1 and f are fixed and bounded independent of n, the sequence

{J(wn)} is bounded. From the compactness and lower semi-continuous prop-

erties of the functional J , we can conclude that the iteration model (2.2) is

well-defined.2

From the proof one observes that the choice 2k−1 is crucial but not the only

choice for the penalization parameters, but it suffices to choose a sequence λk

such that
∑∞

j=1
1
λj
≤ 1.

2.1.3 Convergence Analysis

We now study some convergence properties of the new iterative regularization

process. Our analysis below basically follows the lines in [OBG05]. In partic-

ular we shall see that all desirable properties like monotonicity of residual and

convergence for the exact image and for the noisy image still hold for our new

model.

Proposition 2 (Monotonicity) Let uk ∈ BV (Ω) be a sequence defined by

17



(2.2). Then the sequence H(uk, f) is monotonically non-increasing and satisfies:

H(uk, f) ≤ H(uk, f) +
1

2k−1λ
D(uk, uk−1) ≤ H(uk−1, f). (2.7)

Moreover, if J(u) < ∞, then we have:

D(u, uk) + D(uk, uk−1) + 2k−1λH(uk, f) ≤ 2k−1λH(u, f) + D(u, uk−1). (2.8)

Proof: Using the definition of subgradient and the fact that uk minimizes

E(u, uk−1, f), we have

H(uk, f) ≤ H(uk, f) + 1
2k−1λ

D(uk, uk−1) = E(uk, uk−1, f)

≤ E(uk−1, uk−1, f) = H(uk−1, f).

To prove (2.8), we use the convexity of the function H(u, f) and a standard

decomposition of the Bregman distance (with the same notation for subgradients

as above).

D(u, uk)−D(u, uk−1) + D(uk, uk−1) = J(u)− J(uk)− 〈u− uk, pk〉

−J(u) + J(uk−1) + 〈u− uk−1, pk−1〉

+J(uk)− J(uk−1)− 〈uk − uk−1, pk−1〉

= 〈u− uk, pk−1 − pk〉 = 〈u− uk, 2
k−1λqk〉

≤ 2k−1λ[H(u, f)−H(uk, f)].2

The above proposition states that the fidelity term H(uk, f) is decreasing.

Furthermore, if we choose u = f in (2.8) and use the fact that H(f, f) = 0, then

we obtain for ”exact data” satisfying J(f) < ∞ that

D(f, uk) ≤ D(f, uk) + D(uk, uk−1)

≤ D(f, uk−1) + 2k−1λ(H(f, f)−H(uk, f))

≤ D(f, uk−1).

(2.9)
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Hence, the Bregman distance between the solution uk of (2.2) at the k-th iteration

step and the image f is decreasing, too. In fact, as illustrated by computations in

Section 2.2, both the Bregman distance D(uk, f) and the fidelity term H(uk, f)

decrease as k increases.

Theorem 2 (Exact Data) Let f satisfy J(f) < ∞ and let uk be a sequence

generated by (2.2) with data f . Then

H(uk, f) ≤ J(f)

2kλ
(2.10)

and in particular {uk} is a minimizing sequence of H(·, f).

Moreover, uk → f in the weak-* topology of BV (Ω).

Proof: Summing all inequalities (2.8) from 1 to k, we have:

k∑
j=1

[D(uj, uj−1) + 2j−1λH(uj, f)] ≤ D(f, u0)−D(f, uk). (2.11)

From the fact that H(u, f) is a convex function, we also have the following in-

equality:

J(u0) + λH(u0, f) ≤ J(f)−D(f, u0). (2.12)

Now adding (2.12) to (2.11) and using both D(uj, uj−1) ≥ 0 and the monotonicity

property of H(uj, f), we conclude

2kλH(uk, f) ≤ J(f).
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Based on (2.11) and (2.12), we also obtain

J(f) ≥ ∑k
j=1 D(uj, uj−1) + J(u0)

= J(uk)−
∑k

j=1 〈pj−1, uj − uj−1〉

= J(uk)− 〈pk−1, uk − f〉+
∑k−1

j=1〈pj − pj−1, uj − f〉

= J(uk) + λ〈Hu(u0, f) +
∑k−1

j=1 2j−1Hu(uj, f), uk − f〉

−∑k−1
j=1〈2j−1λHu(uj, f), uj − f〉

≥ J(uk)− λ2k−1H(uk, f)−∑k−1
j=1 2j−1λH(uj, f)

≥ J(uk)− 3
2
J(f).

Therefore J(uk) ≤ 5
2
J(f). Because the level sets of {u ∈ U | J(u) ≤ M} are

compact, the further assertions then follow by standard weak-* convergence tech-

niques analogous to the arguments in [OBG05]. 2

The above result is important from a theoretical point of view since it verifies

convergence of the method. In practice however, the given data do not represent

the exact but rather a noisy version of the image, since otherwise one would not

need to denoise it. Therefore we consider the case where f contains noise in

the following. It is well-known for iterative methods that a regularizing effect is

obtained only via appropriate stopping in dependence of the noise level, which is

given for the fidelity functional H as

H(u∗, f) ≤ δ. (2.13)

We again inspect the decrease of the distance between the iterations and the

noisy image, which is now guaranteed only until the residual becomes to small:
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Proposition 3 Let u∗ be the true noise free image and let f be a given noisy

version satisfying (2.13). Then, as long as H(uk, f) > δ, the Bregman distance

between uk and the true solution u∗ decreases, i.e.,

D(u∗, uk) ≤ D(u∗, uk) + D(uk, uk−1) < D(u∗, uk−1). (2.14)

Proof: Plugging the noise free image u∗ into (2.8), we obtain

D(u∗, uk) + D(uk, uk−1) + 2k−1λH(uk, f) ≤ D(u∗, uk−1) + 2k−1λH(u∗, f)

With the assumption H(uk, f) > δ and (2.13), we can conclude (2.14).2

From Proposition 3 we can deduce that the generalized discrepancy principle

(cf. [Pla96]) is a good candidate as a stopping rule for (2.2), i.e., the iteration is

stopped at the index

k∗ = max{k ∈ N |H(uk, f) ≥ τδ} (2.15)

where τ > 1. Important features of k∗ are studied. For given δ > 0, we shall con-

sider uk∗ as the regularized solution, i.e., the result of our iterative scheme. With

such a stopping criterion, we can obtain a so-called semi-convergence property,

i.e., the regularized solutions converge to u∗ as δ → 0, more precisely:

Theorem 3 (Noisy Data) The stopping index k∗ is well-defined by (2.15) for

any δ > 0, and k∗(δ) = O(log δ).

Moreover, let fm denotes a sequence of noisy data satisfying (2.13) with noise

level δm → 0. If we denote by um = uk∗(δm) the regularized solutions obtained for

data fm, then there exists a subsequence um` that converges in the weak-* topology

of BV , and the limit of each convergent subsequence is a minimizer of H(., u∗).

Furthermore, if u∗ is the unique minimizer of H(., u∗) then the whole sequence

um converges to u∗ in the weak-* topology.
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Proof: It is easy to see that k∗ is well-defined because H(uk, f) is monotonically

decreasing and H(uk, f) → 0 as k increases. Furthermore, if we sum the inequal-

ities (2.8) from 1 to k, and then add the following inequality derived from the

convexity of the functional H(u, f)

J(u0) + D(u∗, u0) + λH(u0, f) ≤ J(u∗) + λH(u∗, f), (2.16)

we obtain:

2k∗λH(uk∗ , f) ≤ J(u∗) +

j=k∗∑
j=0

2j−1λH(uj, f) ≤ 2k∗λδ + J(u∗).

This means

τδ ≤ H(uk∗ , f) ≤ δ + J(u∗)
2k∗λ

,

i.e. 2k∗ ≤ J(u∗)
λ(τ−1)δ

.

In order to prove the weak-* convergence of subsequences, it suffices to prove

that the BV-norm of um is uniformly bounded with respect to m, which can be

obtained by analogous arguments to the proofs of Theorem 2 and the semicon-

vergence result in [OBG05]. 2

2.2 Numerical Results

In this section, we will present some numerical results obtained from two dif-

ferent fidelity term models by using our iterative regularization procedure. We

shall also compare them with the results from the original iterative regulariza-

tion procedure (cf. [OBG05]) and the hierarchical decomposition algorithm by

Tadmor-Nezzar-Vese(T-N-V)(cf. [TNV04, SG01]). For the sake of appropriate

comparison, we change the coefficient 1
2k−1λ

to 1
2kλ

in the model (2.2), which is

equivalent to doubling λ, and finally allows to choose the same parameter λ in

all three methods.
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2.2.1 L2 Fidelity Model

We start with the iterative total variation regularization using an L2 fidelity term

(but not the square of the L2 norm as in [OBG05], i.e.,

uk ∈ arg min
u∈BV (Ω)

{
||u− f ||L2 +

1

2kλ
D(u, uk−1)

}
. (2.17)

We start with a noisy satellite image with Gaussian white noise with δ = 20.0

and SNR = 11.5. In Figures 2.1, 2.2 and 2.3 provide a comparison of the three

methods mentioned above with λ = 10.0.

In Figure 2.1, (d)-(f) and (j)-(l) display the recovered image uk resulted from

our new Bregman iteration, and (g)-(i) and (m)-(o) display the corresponding

residual image uk − f . The choice of a small value of λ yields an oversmoothed

iteration u0, and uk gradually improves as k increases until the stopping criterion

becomes valued at k∗ = 3. The plot of the residual in (p) confirms the mono-

tonicity theorem, H(uk, f) simply decreases for all k. Moreover, at the kth step,

H(uk, f) is bounded above by J(f)
2kλ

. the residual H(uk, f) = ‖f − uk‖ The plots

in (q) and (r) showing these error ‖u∗ − uk‖ and D(u∗, uk) as a function of the

iteration index are in good agreement with the noisy data theorem, which states

that both the L2 distance and the Bregman distance between uk and the true

solution u∗ decrease as long as H(uk, f) > δ.

Figure 2.2 is obtained from the iterative total variation regularization model

proposed in [OBG05], i.e, we do not multiply 2 to λ after each iteration. We

observe similar but slightly worse results as in Figure 2.1. From (m) one observes

that the residual H(uk, f) is decreasing slower than in the modified version, which

is not too surprising since the residual is multiplied by increasing parameters in

the modified minimization problems.

Figure 2.3 displays the results obtained from the T-N-V algorithm (i.e., Tikhonov-
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Morozov) by using the BV + L2 model. The recovered u3 in (g) seems to be the

visually best one. From the rescaled version of u3− f in (j) one observes that al-

most all the important features of the satellite including the antenna are removed

from the residual. The plot of the L2-error in (n) shows a very similar behaviour

to the iterative total variation regularization; the closest distance between uk and

the exact image u∗, ||u3 − u∗||L2 = 12.3, is even better than ||uk∗ − u∗||L2 = 14.9

in Figure 2.1. However, at the moment there are no rigorous convergence and

monotonicity results for the T-N-V algorithm using the BV + L2 norm. More-

over, it is not clear how the T-N-V algorithm behaves with respect to Bregman

distances, which might provide more information about the convergence speed

of certain features such as edges (cf. [BO04]). Unfortunately one cannot even

compute suitable Bregman distances during the T-N-V algorithm since it does

not provide any subgradients.

2.2.2 L1 Fidelity Model

In this section we apply the new iterative regularization procedure using the L1

fidelity term model

uk ∈ arg min
u∈BV (Ω)

{
||u− f ||L1 +

1

2kλ
D(u, uk−1)

}
. (2.18)

Corresponding to the motivation of the L1-model as a suitable fidelity for binary

images, we consider the denoising of a black-and white finger print image as a

test case

Figures 2.4, 2.5 and 2.6 show restored images with the three different methods

(same order as before), for Gaussian white noise δ = 10.0 and SNR = 14.8.

The results show similar properties as noticed in the L2-case in the previous

subsection. At the earlier stage, uk is over-smoothed. As k increases, uk is

getting closer to the exact image u∗ in terms of L1 distance, until k∗ is reached,
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and subsequently noise is added to uk. Comparing the value of ||uk∗ − u∗||L1

among the three models we see that the differences are very small this time, less

than 0.1. However, visually the result of the T-N-V model seems more noisy than

the ones obtained from the iterative total variation method.

A difference from the L2-case is the behaviour of the original iterative total

variation regularization. In the case of the L2 fidelity term (see (m) in Figure 2.2),

H(uk, f) was decreasing rather slowly, which is not the case for the L1 fidelity

term model (see (m) in Figure 2.5). In fact, the fidelity term ||uk−f ||L1 seems to

converge to zero even though we cannot prove that the original iteration model

based on the L1 fidelity term is well defined. A detailed analysis of this effect

might be an interesting problem for future study.

Finally we draw attention to possible cartoon-texture decompositions (cf.

[CE05, YGO05]) for the BV + L1 model, which corresponds to (d), (g) and

(e), (h) of Figure 2.4 for the first and second iteration. One observes that the

main cartoon is already incorporated in the image after the first step, while the

texture remains in the residual v = f − u. In the later steps the texture is grad-

ually incorporated into the image. Hence, as a by-product of our algorithm we

obtain cartoon-texture decompositions at different scales.

25



(a)eu: Exact image (b)f: observed image, SNR = 11.5 (c)n: noise
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Figure 2.1: Satellite reconstructions with the new iterative

total variation method, Gaussian noise δ = 20, λ = 10.
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Figure 2.2: Satellite reconstructions with the original iterative

total variation method, Gaussian noise δ = 20, λ = 10.

27



(a)u
0

(b)u
1

(c)u
2

(d)u
0
−f+128 (e)u

1
−f+128 (f)u

2
−f+128

(g)u
3

(h)u
5

(i)u
7

(j)u
3
−f+128 (k)u

5
−f+128 (l)u

7
−f+128

0 2 4 6
0

10

20

30

40

(m) ||f−u
k
||

L
2 vs. k

0 2 4 6
0

10

20

30

40

(n) ||eu−u
k
||

L
2 vs. k

Figure 2.3: Satellite reconstructions with the BV +L2 T-N-V

method, Gaussian noise δ = 20, λ = 10.
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(a)eu: Exact image (b)f: observed image, SNR = 14.8 (c)n: noise
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Figure 2.4: Restorations of a finger print obtained with the

new iterative TV model, Gaussian noise, δ = 10, λ = 1.
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Figure 2.5: Restorations of a finger print obtained with the

original iterative TV model, Gaussian noise, δ = 10, λ = 1.
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Figure 2.6: Restorations of a finger print obtained with the

BV + L1 T-N-V model, Gaussian noise, δ = 10, λ = 1.
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CHAPTER 3

Blind Deconvolution Using TV Regularization

and Bregman Iteration

Instead of only minimizing u in (1.1), the blind deconvolution problem is viewed

as a joint minimization problem with respect to both u and k. For example, You

and Kaveh [YK96] proposed the following model

(u, k) = arg min
u,k

{
G(u, k) :=

1

2
||k ∗ u− f ||2L2 + α1||u||2H1 + α2||k||2H1

}
. (3.1)

However, the model (3.1) cannot preserve sharp edges in the minimizer u. More-

over, as we will prove in Section 3.1.2, it also does not yield a local minimizer. In a

later work [YK99] they, and independently Chan and Wong in [CW98], proposed

a similar blind deconvolution method using TV regularization. The minimization

problem was formulated as

(u, k) = arg min
u,k

{
F (u, k) :=

1

2
||k ∗ u− f ||2L2 + α1||u||BV + α2||k||BV

}
. (3.2)

The function F (u, k) depends on both u and k. If we fix u or k and view F as

a one-variable function depending only on k or u, respectively, then F is convex.

But F is not jointly convex if it is viewed as a two-variable function. In [CW98],

an alternating minimization (AM) algorithm was devised to solve the two Euler-

Lagrange equations of u and k alternatively. The idea is to fix k first, solve u
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from Fu(u, k) = 0, and then fix u, solve k from Fk(u, k) = 0, repeatedly:





Fu(u, k) = k̂ ∗ (k ∗ u− f)− α1∇ · ∇u

|∇u| = 0,

Fk(u, k) = û ∗ (u ∗ k − f)− α2∇ · ∇k

|∇k| = 0,
(3.3)

where k̂, û are the L2−conjugate of k and u respectively. The cosine precon-

ditioned conjugate gradient method and the fixed-point method (cf. [CCW99])

were applied to find the solution of each Euler-Lagrange equation. Although it

has been numerically shown that the AM algorithm converges quickly and re-

covers good image features after only a few AM iterations, time delay effects are

noticed in the convergent process since u and k are not updated at the same time.

Here we deal with (3.3) as a coupled system and evolve it by a time marching

method, which is based on the gradient descent method. Moreover the results in

[CW98, YK99, CW00] did not include the difficult case of Gaussian blur where

we will handle below.

Also, as noticed in [CW98], if (u, k) is a solution, so are (−u,−k), (
α2

α1

k,
α1

α2

u)

and (u(x ± c), k(x ∓ c)) as well, for any constant vector c ∈ Ω. We will modify

the energy function (3.2) by adding additional constraints for the kernel and the

image, removing this source of nonuniqueness.

3.1 Blind Deconvolution Models

3.1.1 Existence of Minimizers

First, we will prove the existence of minimizers of F (u, k) in (3.2). We will

only present the sketch of the proof derived from the Kondrachov compactness

theorem and lower semicontinuous property of the function F (u, k).

Take a minimizing sequence function {uj, kj} of (3.2), where F (uj, kj) de-
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creases to min
u,k

F (u, k) which is denoted as M . Since {uj} has bounded BV

norm and L1 norm, by the Kondrachov compactness theorem, this sequence

is precompact in L1(Ω), which means that up to an extraction, there exists a

function u that uj → u in L1(Ω). Then up to an extraction again, we can ac-

tually find uj → u a.e.. Also from lower semicontinuity of BV norm, we have

lim inf
j→∞

|uj|BV ≥ |u|BV .

Now among this subsequence of {uj}, correspondingly consider for {kj}, the

same conclusion holds that up to an extraction kj → k a.e. and lim inf
j→∞

|kj|BV ≥
|k|BV .

Since we have uj → u a.e. and kj → k a.e., applying the Fatou Lemma, we

obtain

lim inf
j→∞

∫
(kj ∗ uj − f)2dx ≥ ∫

lim inf
j→∞

(kj ∗ uj − f)2dx

=
∫

(k ∗ u− f)2dx,

which means that (u, k) is one of the minimizers of (3.2).

Remark If we replace the TV regularization term of u and k by
∫ |∇u|2dx

and
∫ |∇k|2dx respectively, i.e., H1 norm , then we still have the existence of

minimizers from the Rellich compactness theorem and the fact that L2(Ω) ⊂
L1(Ω) for bounded Ω.

3.1.2 Analysis of the H1 Regularization Blind Deconvolution Model

As we have mentioned, even though F (u, f) is convex with respect to u and k

respectively (if we fix one of them and consider F as a one-variable function),

it is not generally convex for (u, k). To study the behavior of (3.1) we will use

Fourier Transform to solve the Euler-Lagrange equations. We will conclude from

simple analysis that there are no local minimizers for the kernel k and the image
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u, if k(x) = k(−x).

We assume that there is a local minimizer (u, k) from (3.1), then (u, k) should

be the solution of the Euler-Lagrange equations:





Gu(u, k) := k̂ ∗ (k ∗ u− f)− α1∆u = 0

Gk(u, k) := û ∗ (u ∗ k − f)− α2∆k = 0.

These two equations can be solved by using Fourier Transform. Solve for Gu(u, k)

at ξ point, we have

−α1ξ
2F (u) = |F (k)|2 F (u)− F (k̂) F (f),

i.e.

F (u) =
F (k̂) F (f)

|F (k)|2 + α1 ξ2
.

Similarly, we have for k

F (k) =
F (û) F (f)

|F (u)|2 + α2 ξ2
.

Plugging F (u) into F (k), using

F (û) = F̂ (u) =
F (k) F (f̂)

|F (k)|2 + α1 ξ2
,

and denoting

X = |F (k)|2 + α1 ξ2,

then we obtain

F (k) ξ2(α2X
2) = F (k) ξ2(α1 |F (f)|2). (3.4)

(3.4) means that, when F (k) and ξ are not zero, X2 = α1

α2
|F (f)|2.

Since f is the observed image, α1 and α2 are constants, then

|F (k)|2 = −α1 ξ2 +

√
α1

α2

|F (f)|2,
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or

|F (k)|2 = −α1 ξ2 −
√

α1

α2

|F (f)|2.

To guarantee |F (k)|2 ≥ 0, we can only choose the first expression when

√
α1

α2

|F (f)|2 ≥ α1ξ
2,

which means ξ is bounded by above. However, |ξ| could go to ∞, which contra-

dicts the assumption for f ∈ L2. Hence, we proved that if there are minimizers

then they are not local minimizers.

Remark The above conclusion does not mean there are no local minimizers

for (3.2).

3.1.3 Analysis of TV Regularization Blind Deconvolution Model

Following (1.5) and (1.6) from Meyer’s book (cf. [Mey01]), we obtain a similar

result for the deblurring ROF model:

u = arg min
u

{
F (u) :=

1

2
||k ∗ u− f ||22 + α1||u||BV

}
.

Lemma 2 If the norm of k̂ ∗ f in G does not exceed α1, then the above energy

model gives a minimizer u such that

u = 0, v = f.

Otherwise,

||k̂ ∗ v||∗ = α1 ,

∫
(k ∗ u)v = α1||u||BV .

Applying this lemma to our blind deconvolution TV regularization formula (3.2),

we will also have the same conclusion for k.
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Corollary 1 If the norm of û ∗ f in G does not exceed α2, then (3.2) gives the

minimization on k that

k = 0, v = f.

Otherwise,

||û ∗ v||∗ = α2 ,

∫
(u ∗ k)v = α2||k||BV .

Combining these two interesting facts, if (3.2) has a minimizer u and k and for

sufficiently small α1 and α2, we will get





∫
(k ∗ u)v = α1||u||BV ,

∫
(u ∗ k)v = α2||k||BV .

Using
∫

(k ∗ u)v =
∫

(u ∗ k)v, we have

α1||u||BV = α2||k||BV . (3.5)

(3.5) will be a criteria which we use to choose α1 and α2.

3.2 New Model and Numerical Algorithm

3.2.1 New Model

As we have noted above, the model (3.2) may not yield reasonable solutions due

to the obvious fact that it does not have a unique solution. In order to obtain a

unique reasonable solution, we include the following constraints on u and k:

∫
k dx = 1,

∫
u dx = w =

∫
f dx, u(x), k(x) ≥ 0 (3.6)

This means that (−u,−k) and (α2

α1
k, α1

α2
u) do not satisfy as a solution. It is natural

to impose these constraints to preserve mass conservation and nonnegativity for
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the kernel and the signal. Thus our model is modified as the following:

(u, k) = arg min
u,k

F (u, k) := 1
2
||k ∗ u− f ||22 + α1||u||TV + α2||k||TV

+λ1

2
(
∫

u dx− w)2 + λ2

2
(
∫ |u|dx− w)2

+λ3

2
(
∫

k dx− 1)2 + λ4

2
(
∫ |k| dx− 1)2.

(3.7)

For λ1, λ2, λ3 and λ4 large, the constraints of (3.6) are approximately satisfied.

We still need to prevent (u(x ± c), k(x ∓ c)) from being a solution. Thus we

continue to assume the symmetry of the kernel k. Due to the fact that û ∗ (u ∗ k)

is symmetric if k is symmetric, we state that if we solve the Euler-Lagrange

equations (3.3) with a symmetric kernel as the initial guess, the kernel won’t

deviate too much when the noise n is not too large relative to the noisy and

blurry data f .

We have no proof yet that (3.7) has a unique solution when k is symmetric,

but in practice (3.7) yields a great improvement in quality of image and stability

and convergence of the algorithm. The idea is just to preserve the mass and the

positivity of the kernel and the image. Also numerically this model is very easy

to implement since the variational derivatives of these four additional terms are

constants.

In general, (3.7) yields very accurate solutions. In [CW98], these constraints

were imposed on (u, k) by modifying the results after every AM iteration from

solving (3.3). Thus after every AM iteration the accuracy was degraded and some

information was lost in the procedure.

3.2.2 Numerical Algorithm

It was proved that for the H1 blind deconvolution model (3.1) the AM procedure

converges globally (cf. [CW98]), but the solution depends on the initial guess(cf.
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[CW00]). Also as we have discussed before, because we are not updating u

and k simultaneously we observe time delay effects in the convergent process.

Furthermore, the AM algorithm fails to improve pure Gaussian blurred image

efficiently.

Therefore we propose a time marching method to update u and k after every

small time step, based on a straightforward gradient descent idea. Suppose we

have kn and un, plugging them into (3.8), gives us kn+1; plugging them into (3.9),

gives us un+1. Thus we obtain un+1 and kn+1.

• Solve for kn+1

kn+1−kn

dt
= −ûn ∗ (un ∗ kn − f) + α2∇ · ∇kn

|∇kn|

−λ3 (
∫ |kn| dx− 1)− λ4 (

∫ |kn| dx− 1) sgn(kn)

(3.8)

• Solve for un+1

un+1−un

dt
= −k̂n ∗ (kn ∗ un − f) + α1∇ · ∇un

|∇un|

−λ1 (
∫ |un| dx− w)− λ2 (

∫ |un| dx− w) sgn(un)

(3.9)

3.2.3 Application of Bregman Distance

Following Section 1.3.2, we will only apply the Bregman iteration on the image u.

The general procedure of our numerical algorithm using the Bregman iteration

is this: starting from a guess for the image u and the kernel k which are the

observed image f and δ function correspondingly, we solve the Euler-Lagrange

equation (3.8) and (3.9), and denote the solution as k1 and u10. Fixing the kernel

k1, we apply the Bregman iteration on u m times, and write the result as u1m.
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This is called a round. We expect this to give a better image than u10 because

||u1m−f ||22 will always decrease with m (cf. [OBG05]). Furthermore, ||u1m−f ||22
converges to zero for a pure deblurring problem, and for noisy data, the Bregman

distance between u1m and the true solution ũ is decreasing as long as the residual

||u1m − f ||22 lies above the noise level. These results were obtained in [OBG05].

We next go back to the Euler-Lagrange equation (3.8) and (3.9) with what

we expect to be a better guess k1 and u1m, and repeat the iteration for another

round. A better kernel than k1 is expected. We repeat these rounds and stop as

soon as the recovered image becomes noisy.

3.3 Explicit Numerical Scheme for the 2D Model

We can write our 2D model as:





ut = −k̂ ∗ (k ∗ u− f) + α1
uxx(u2

y+β)−2uxyuxuy+uyy(u2
x+β)

(u2
x+u2

y+β)
3
2

+λ1 (
∫ |u| dx− w) + λ2 sgn(u)(

∫ |u| dx− w)

kt = −û ∗ (u ∗ k − f) + α2
kxx(k2

y+β)−2∗kxykxky+kyy(k2
x+β)

(k2
x+k2

y+β)
3
2

+λ3 (
∫ |k| dx− 1) + λ4 sgn(k)(

∫ |k| dx− 1).

and use f and the delta function as initial guesses for u and k respectively.

Homogeneous Neumann boundary condition is used for f . The parameter β > 0

is the regularization parameter for the sgn function. It is chosen to be very small

for a pure deblurring problem. We usually pick it as 0.01, and change it to 1.0e−6

after the recovered image and kernel are improved. This usually happens after a

couple rounds of the procedure.

We consider un
ij and kn

ij the approximations to u(xi, yj, tn) and k(xi, yj, tn),
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respectively where xi = idx, yj = jdy, tn = ndt.

We denote by

vn
ij = [k̂n ∗ (kn ∗ un − f)]ij + λ1

[ ∫
|un| dx− w

]
+ λ2 sgn(un

ij)
[ ∫

|un| dx− w
]

and

wn
ij = [ûn ∗ (un ∗ kn − f)]ij + λ3

[ ∫
|kn| dx− 1

]
+ λ4 sgn(kn

ij)
[ ∫

|k| dx− 1)
]
,

where the convolutions are computed using the discrete cosine transform (DCT)

to enforce the homogeneous Neumann boundary condition. The explicit scheme

for the simultaneous evolution of the signal and the kernel reads as follows:

un+1
ij − un

ij

dt
= −vn

ij + α1 sn
ij(u) (3.10)

kn+1
ij − kn

ij

dt
= −wn

ij + α2 sn
ij(k). (3.11)

And the second order term sn
ij(u), (resp. sn

ij(k)) is computed by means of

sn
ij(u) :=

gxx
ij (u)(gy

ij(u)2 + β)− 2gxy
ij (u)gx

ij(u)gy
ij(u) + gyy

ij (u)(gx
ij(u)2 + β)

(gx
ij(u)2 + gy

ij(u)2 + β)
3
2

,

where

gx
ij(u) =

un
i+1,j − un

i−1,j

2dx
,

gy
ij(u) =

un
i,j+1 − un

i,j−1

2dy
,

gxx
ij (u) =

un
i+1,j − 2un

ij + un
i−1,j

dx2
,

gyy
ij (u) =

un
i,j+1 − 2un

ij + un
i,j−1

dy2
,
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gxy
ij (u) =

un
i+1,j+1 − un

i−1,j+1 − un
i+1,j−1 + un

i−1,j−1

4dxdy
.

The expressions for sn
ij(k) are the same using k instead of u.

To speed up the convergence of k to the true kernel solution (which is a

Gaussian kernel in our examples), we will compute the following equation in

place of (3.10). This model is based on level set motion and was formulated by

Marquina and Osher in [MO01]. It is very efficient and fast. Our model for k is

expressed in terms of explicit partial derivatives as

kt = −√
k2

x + k2
y {ûn ∗ (un ∗ kn − f) + α2

kxx(k2
y+β)−2∗kxykxky+kyy(k2

x+β)

(k2
x+k2

y+β)3/2

+λ3 (
∫ |k| dx− 1) + λ4 sgn(k)(

∫ |k| dx− 1)}.

The first order scheme reads as follows:

kn+1
ij − kn

ij

dt
= −

√
kgx

ij
2 + kgy

ij
2 (wn

ij + α2 sn
ij(k)),

where kgx
ij and kgy

ij are defined as follows from Rouy and Tourin (cf. [RT92]),

kgx
ij

2 = max(max(
kn

ij − kn
i−1,j

dx
, 0)2, min(

kn
i+1,j − kn

i,j

dx
, 0)2)

kgy
ij

2 = max(max(
kn

ij − kn
i,j−1

dy
, 0)2, min(

kn
i,j+1 − kn

i,j

dy
, 0)2)

if wn
ij > 0, and

kgx
ij

2 = max(min(
kn

ij − kn
i−1,j

dx
, 0)2, max(

kn
i+1,j − kn

i,j

dx
, 0)2)

kgy
ij

2 = max(min(
kn

ij − kn
i,j−1

dy
, 0)2, max(

kn
i,j+1 − kn

i,j

dy
, 0)2)

if wn
ij < 0. For more details, please see [MO01].

The speed up procedure is only applied to the kernel evolution equation. The

signal evolution equation (3.11) remains unchanged. Since we start with the

blurred and noisy signal f , we need to increase the total variation of the signal

to restore u. If we use the speed up procedure for the signal it is impossible to

recover local extrema because of the maximum principle.
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3.4 Numerical Results

In this section we present some of the results we have obtained using our blind

deconvolution TV regularization model with the iterated regularization proce-

dure. We also compare this with the results obtained using the H1 norm of k

instead of the BV norm of k.

We are given a scaled noisy and blurred gray image f that takes value from

[0,1]. We take the image f as the initial guess for u. We take a δ function as

the initial guess for the kernel k. Inside one round described above, we run 1000

iterations to solve the Euler-Lagrange equations for k and u, and then another

1000 iterations to update u by the Bregman iteration. For a 64 by 64 matrix

image, this takes 90 seconds for a computer with a Mobile Pentium 4 and 1.8Ghz

processor. Generally the full algorithm converges after 3 rounds, that means all

the work takes less than five minutes.

We usually pick λ1 = λ2 = 0.001 and λ3 = λ4 = 10 to enforce the positivity

of the kernel and the image and preserve their mass. Also, from (3.5), we know

α1||u||BV = α2||k||BV , i.e., the choice of α1 and α2 are dependent on the propor-

tion of the TV norm of the image and the kernel. Of course, we do not know the

value of both norms until we try some preliminary experiments.

We use white Gaussian noise η ∼ N (0, σ2) , ‖η‖L2 ≈ σ.

SNR := 20 ∗ log10

( ‖f − f̄‖L2

‖η − η̄‖L2

)

is the signal-to-noise ratio, measured in decibels(dB). f̄ and η̄ are the means of

f and η over Ω.

Figure 3.1 with SNR = 1.47 from (a) to (i) displays the results of our nu-

merical algorithm including the Bregman iteration. We have run this experiment

for three rounds. In every round we only apply the Bregman iteration to u once,
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thus, including the kernel, we obtain nine pictures. We observe that the iterated

refinement procedure gives us more details of the image. It is sometimes the case

that in the earlier rounds it also brings back some noise. However, as we do more

rounds the recovered kernel gets better.

Figure 3.2 shows us how to choose parameters α1, α2. The smaller the pa-

rameter, the more details we have of the picture in the very early rounds. This

sometimes unfortunately includes noise, see (g)∼(i). The bigger the parameter,

the more we smooth the image u and obtain less detail, see (d) ∼ (f). Since the

main purpose of applying the Bregman iteration is to bring back details without

noise, the bigger parameter is preferred; however, one must remember that the

noise will eventually come back in the later rounds, for proof and examples see

[OBG05].

Figure 3.3 is the noise free case. From [OBG05] we know that the Bregman

distance D(um, ũ) converges to zero, and we do see this. We have recovered

more and more details as we repeatedly apply the iterated refined procedure.

Comparing (e), (f) and (g), we see that (g) from deconvolution with the Bregman

iteration is the best, but (e) from blind deconvolution with the Bregman iteration

is as good as (f) from deconvolution without the Bregman iteration.

Figure 3.4 are all obtained from using blind decovolution with the iterated

refinement method. However, (c) and (d) are obtained from using the exact kernel

as the initial kernel. Comparing (c) and (d) with (a) and (b) where the δ function

is used as the initial kernel, we do not observe very remarkable differences. It is

not surprising to see that the algorithm converges faster for a better initial kernel

k. It is possible that this model, with the symmetry assumption, converges

globally, and the result does not depend on the initial guess.

In Figure 3.5, we show the results obtained by regularizing the square of the
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exact kernel exact image observed image

(a) k
1
: 1st round (b) u

10
:1st round before BD (c) u

11
:1st round after BD

(d) k
2
: 2nd round (e) u

20
:2nd round before BD (f) u

21
:2nd round after BD

(g) k
3
: 3rd round (h) u

30
:3rd round before BD  (i) u

31
:3rd round after BD

Figure 3.1: Example of numerical algorithm procedure, SNR = 1.47. We observe

that the recovered kernel does improve after every round, and the Bregman iter-

ation gives us more details of the image. However, the Bregman iteration brings

back some noise in the first round.
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(a) exact image (b) observed image,SNR = 7 (c) deconvolution without BD

(d) u
11

:1st round after BD (e) u
21

:2nd round after BD (f) u
31

:3rd round after BD

(g) u
11

:1st round after BD

α
1
 =0.02 for (c), α

1
 = 0.032,α

2
 = 8 for (d)~(f), α

1
 = 0.02,α

2
 = 5 for (g)~(i) 

(h) u
21

:2nd round after BD (i) u
31

:3rd round after BD

Figure 3.2: Compare different α1, α2. Notice that (d)∼(f) with fewer details is

smoother than (g)∼(i).

H1 norm of the kernel instead of using the TV norm of kernel. The observed

image is taken from Figure 3.4 with SNR = 2.6. Everything else is kept the

same, including the constraint terms and our algorithm. Figures (a) and (b)

are from blind deconvolution without the Bregman iteration. Figure (c) and (d)

are from blind deconvolution with the Bregman iteration. Even though we can

not tell the differences between (b) and (d) by eye, the L2 norm of the distance

from the exact image uexact shows us the effectiveness of the Bregman iteration.

Comparing the results with Figure 3.4, we see that using the H1 norm of the

kernel is almost as good as using the TV norm of the kernel. However there is a
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small disadvantage in using the H1 norm of the kernel, which is that we do not

know how to choose good parameters for α1 and α2.

Figure 3.6 displays the results of applying our new model with the Bregman

iteration to a blurred and noisy galaxy picture. The picture itself is complicated,

because the bright stars could be treated as noise. The result from using blind

deconvolution with the iterative regularization method (b), shows that we still

recover a good image as in (a), where we know the exact kernel. (c) and (d) are

presented to show again, that our model with the Bregman iteration does not

depend on the initial guess, and using the H1 norm of the kernel k can recover

a good picture as well if we know how to choose the value of the parameters α1

and α2.
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(a1) observed image (a2) exact image

(b) u
11

: 1st round after BD  (c) u
21

: 2nd round after BD  (d) u
31

: 3rd round after BD

 (e) u
41

: 4th round after BD

α
1
 = 0.00033,α

2
 = 0.105 for (b)~(e) 

α
1
 =1e−005 for (f), α

1
 = 0.0001 for (g) 

(f) deconvolution without BD (g) u
4
: deconvolution with BD

Figure 3.3: Noise free case. from (b) to (e), we see that more

details are restored.
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 exact kernel observed image, SNR = 2.6

(a) k
3
:||k

3
−kexact||

2
 = 1.0e−4 (b) u

31
: ||u

31
−uexact||

2
 = 28.1 

(c) k
1
:||k

1
−kexact||

2
 = 1.0e−4 

(a)~~(d) are all from using blind deconvolution with BD,
except (c) and (d) are obtained from having the exact kernel as the initial kernel

alpha
1
 = 0.04, alpha

2
 = 10.0 for both

(d) u
11

: ||u
11

−uexact||
2
 = 28.4

Figure 3.4: Comparison 1: We show that a better initial guess for the kernel does

not improve the result.
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(a) kernel:||k−kexact||
2
 = 1.0e−4 (b) image: ||u−uexact||

2
 = 31.4 

(c) k
3
: ||k

3
−kexact||

2
 = 1.0e−4

(a) and (b) are from using the H1 norm of kernel and blind deconvolution without BD

(c) and (d) are from using the H1 norm of kernel and blind deconvolution with BD
alpha

1
 = 0.04, alpha

2
 = 10.0 for both

(d) u
31

: ||u
31

−uexact||
2
 = 28.2

Figure 3.5: Comparison 2: We use the H1 norm of the kernel. The result is

comparable to that using the TV norm of kernel.
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exact image observed image, SNR = 9.0

(a) u
4
:deconvolution with BD (b) u

21
:blind deconvolution with BD

(c) u
11

:using a better initial kernel

α
1
 = 0.05 for (a);α

1
 = 0.01,α

2
 = 3 for (b) and (d), α

1
 =0.02 , α

2
 = 6 for (c).

 Both (c) and (d) are obtained from blind deconvolution with BD

(d) u
21

:using the H1 norm of the kernel

Figure 3.6: Comparison 3.
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CHAPTER 4

MR Image Reconstruction from Sparse Radial

Samples Using Bregman Iteration and

Nonlinear Inverse Scale Space Methods

In a recent paper [CRT04] by Candes et al., a general problem was proposed to

address the problem of image artifacts and/or low SNR resulted from MR image

reconstruction from sparsely sampled k-space data. They consider for a discrete

complex signal n of length N and a randomly chosen set of frequencies Ω of

mean size τN with τ < 1, whether it is possible to reconstruct n from the partial

knowledge of its Fourier coefficients on the set Ω. The answer is yes,

Proposition 4 if the signal n obeys

#{t, n(t) 6= 0} ≤ α(M) · (log N)−1 ·#Ω, ∀M ∈ N

then with the probability at least 1− O(N−M), n can be reconstructed exactly as

the solution to the L1 minimization problem

min
m

N−1∑
t=0

|m(t)|, s.t. m̂(ω) = n̂(ω) for all ω ∈ Ω,

where m is the reconstructed signal.

The assumption of the signal n being sparse is the key point in the proof of

the above proposition (cf. [CRT04]). However, in practice many applications
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deal with more complicated signals rather than sparse ones. Therefore, Candes

et al. in [CR05] choose to solve a extended L1 minimization problem by assuming

that the signal n has a sparse representation. The L1 minimization problem is

reformulated as

min
m
||ψ(m)||1 s.t. Fm = y, (4.1)

where m is the reconstructed signal/image, ψ transforms the image m into

a sparse representation, F is an undersampled Fourier matrix which satisfies

Fm = m̂|Ω, and y = n̂|Ω is the undersampled measured k-space data. There

is no theoretical proof on the extended L1 minimization problem yet. But the

numerical solutions of (4.1) solved from numerical phantoms (cf. [CRT04]) or

from practical signals (cf. [CR05, LLD05]) have shown that the reconstructed

MR image quality surpasses the conventional techniques.

Based on their work, we propose here to solve (4.1) with an iterative refine-

ment method (cf. [OBG05, HMO05, HBO06, XO06, CHF06]). Furthermore, a

time-continuous inverse scale-space formulation (cf. [BGO06]) is applied to solve

(4.1). In the context of processing noisy images, scale space methods which start

with the noisy image can separate the noise or so called small scales from large

scales by smoothing small scale features faster than large ones. However, inverse

scale space methods start with the image u0 = 0 and approach the noisy image f

as time increases, with large scales converge faster than small ones. Thus, if the

method is stopped at a suitable time, large scale features may already be incor-

porated into the reconstruction, while small scale features (including the noise)

are still missing. Therefore, the inverse scale space method may be treated as

the time continuous version of the iterative refinement method.
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4.1 Prerequisite to Solve the Model (4.1)

In this section, we describe related tools in more details to solve the given problem

(4.1). This includes the use of sparse transformations and the implementation

of maintaining the constraint condition. Following the work in [CR05, LLD05],

the total variation regularization or the wavelet transform are used for the MR

image reconstruction from raw k-space data of a numerical phantom.

4.1.1 The TV regularization

The total variation regularization or the so-called bounded variation (BV) norm

was first introduced in [ROF92] in the context of image denoising. Afterwards

this approach has been generalized to other image processing problems, such

as deconvolution (cf. [CW98]), decomposition (cf. [CE05, HBO06, YGO05]),

computer tomography (cf. [ZF05]), etc. It is proved to be particularly relevant in

recovering piecewise smooth functions without smoothing sharp discontinuities

while also being a sparse transformation for piecewise constant functions.

Normally, the bounded variation norm of an two dimensional real image m is

defined as

||ψ(m)||1 = ||m||BV :=
∑
i,j

√
|∇xm(i, j)|2 + |∇ym(i, j)|2. (4.2)

However, our reconstructed image m from (4.1) equals the magnitude of a com-

plex image (mr,mi) from the inverse Fourier transform of the undersampled data

y, i.e., m =
√

m2
r + m2

i . We can not just simply define the BV norm of image m

as (4.2) due to the non-convexity of this formulation. Instead, we define the BV
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norm of m as

||m||BV =
∑
i,j

√
|∇xmr(i, j)|2 + |∇xmi(i, j)|2 + |∇ymr(i, j)|2 + |∇ymi(i, j)|2.

(4.3)

Another alternatives is also used. The basic idea is similar to (4.3), that is,

to separate the real and imaginary part,

||m||BV =
∑
i,j

√
|∇xmr(i, j)|2 + |∇ymr(i, j)|2 +

√
|∇xmi(i, j)|2 + |∇ymi(i, j)|2.

(4.4)

The minimization of (4.3) and (4.4) subject to the constraint condition Fm = y is

guaranteed to converge to a point according to [Bre65]. Indeed, our experiments

show that they both produce similar and reasonable results.

4.1.2 The Wavelet Transform

The wavelet transform is tremendously popular in the signal and image processing

communities, due in large part to its ability to provide parsimonious representa-

tions for signals that are smooth away from isolated discontinuities. The wavelet

transform is widely used in image processing, and it generally represents a sparse

representation of the signal/image g. The result from the wavelet transform is

compared with the result from the total variation regularization subject to the

constraint condition in [LLD05]. The wavelet transform does a fairly good job

although not as good as the BV norm.

In the following we will first define the L1/wavelet norm ||ψ(g)||1 and then

derive the sub-gradient of the L1/wavelet norm. For the reason of simplicity, we

consider a 1D signal g of length N = 2J . At the level L of the wavelet transform,
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the signal g is decomposed as

g =
2L−1∑
p=0

αL,pϕL,p +
J∑

q=L+1

2q−1−1∑
p=0

αq,pφq,p, (4.5)

where the ϕL,p are scaling functions, the φq,p are oscillatory wavelets, see [Mey93,

BGG98, Mal99]. (Note, when L = J , for Haar wavelets, αL,p is just the pixel

value.) Then the L1/wavelet norm ||ψ(g)||1 is defined as

||ψ(g)||1 = ||g||W :=
2L−1∑
p=0

|αL,p|+
J∑

q=L+1

2q−1−1∑
p=0

|αq,p|. (4.6)

From (4.5), for the signal g and a variable signal h, we assume that





g =
∑2L−1

p=0 αL,pϕL,p +
∑J

q=L+1

∑2q−1−1
p=0 αq,pφq,p,

h =
∑2L−1

p=0 βL,pϕL,p +
∑J

q=L+1

∑2q−1−1
p=0 βq,pφq,p.

The sub-gradient of ||g||W is defined as:

lim
s→0

1

s
(||g + sh||W − ||g||W )

= lim
s→0

1

s
(
∑
p,q

|αp,q + sβp,q| −
∑
p,q

|αp,q|)

=
∑

p,q sgn(αp,q)βp,q

= (
∑2L−1

p=0 sgn(αL,p)ϕL,p,
∑2L−1

p=0 βL,pϕL,p)

+(
∑J

q=L+1

∑2q−1−1
p=0 sgn(αq,p)φq,p,

∑J
q=L+1

∑2q−1−1
p=0 βq,pφq,p)

= (
∑2L−1

p=0 sgn(αL,p)ϕL,p +
∑J

q=L+1

∑2q−1−1
p=0 sgn(αq,p)φq,p, h)

(4.7)

The last two steps are valid because the scaling functions ϕ and the wavelet

functions φ are an orthonormal basis. Thus, the sub-gradient of ||g||W is

2L−1∑
p=0

sgn(αL,p)ϕL,p +
J∑

q=L+1

2q−1−1∑
p=0

sgn(αq,p)φq,p,

which is implemented by the inverse wavelet transformation.
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4.1.3 The Constraint Condition

Depending on the accuracy for which the locations of the original k-space samples

are maintained, there are two ways to deal with the constraint condition.

After we have the measurement data from the MR scanner which for example

consists of 63 radial lines with 512 samples each, we can round off the sample

locations to the integer grids. Then the nonzero integer grids become the con-

straint set Ω. This corresponds to 0 order interpolation which is not accurate.

But we have the advantage of imposing the condition Fm = y directly by an in-

verse fast Fourier transform (FFT). Combining with descending at the gradient

of ||ψ(m)||L1 , m converges to the solution of (4.1) according to the well-known

algorithm of projection onto convex set (POCS) (cf. [Bre65]).

A better interpolation is to retain the locations of the sampled data and use

non-uniform FFT operator to approach y. We achieve this by minimizing ||Am−
y||22, where A denotes the non-uniform FFT operator, which we use NFFT from

[KP04] or NUFFT from [FS03]. We have found great convenience in modifying

the NFFT package that is written in C into C++. However, it is faster to operate

the interpolation by NUFFT package written in matlab because the NUFFT is

designed under the optimal min-max distance. To clarify it, the interpolation

coefficients of NUFFT depend on the location of the data in the spatial domain

only while the interpolation coefficients of NFFT also depend on the value of the

data in the spatial domain. Thus for NUFFT only one time pre-computation of

the interpolation coefficients is needed, while for NFFT this computation needs

to be repeated because the value of the data Am is changing.

By adding a parameter λ to control the L2 distance between Am and y, our
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problem is reformulated as

min
m

{
||ψ(m)||1 +

λ

2
||Am− y||22

}
. (4.8)

The sub-gradient of the second term in (4.8) is λÂ(Am − y), where Â is the

adjoint of A.

4.2 The Sparse Representation for a Piecewise Smooth

image

As it is proven in [CRT04], the reason that we can reconstruct the exact signal

from incomplete frequency information is based on the assumption that the image

has a sparse representation ψ. For a piecewise constant image, both the BV norm

and the wavelet transform are good sparse representations. However when we are

given raw measurement k-space data scanned from a real object, which is often

piecewise smooth, the TV regularization or the L1/wavelet alone will not be a

good sparse transformation. We have to look for other means.

4.2.1 Wavelet + TV

In [CDS98], Chen et al. proposed a dictionary merger jump+wavelet. As they

claim, the jump+wavelet dictionary based on a merger of wavelets with tapered

Heavisides (The Heaviside is equivalent to total variation norm in one dimension)

will lead to a sparse representation for a piecewise smooth image. Based on such

an over-complete dictionary we will decompose the image m into two components

where h is composed of a Heaviside orthonormal basis and w is composed of a

wavelet orthonormal basis. To be more general, when m = µh+νw, the following
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problem will be considered:

min
h,w,m=µh+νw

{
||m− νw||BV + ||νw||W +

λ

2
||Am− y||22

}
, (4.9)

where µ and ν are nonnegative parameters. (4.9) is still a convex formulation

due to the linear relationship between m, h and w. Furthermore, when µ = 0

or ν = 0, (4.9) is simplified to the case using wavelet transformation or total

variation regularization alone.

We also want to draw a connection to the work [CR05], where ||ψ(m)||1 =

||m||BV +ν||m||W is considered to solve the minimization problem (4.8), where the

parameter ν prescribes the importance of the solution having small L1 norm in

the wavelet domain versus having small BV norm in the spatial domain. However,

our formulation (4.9) is more faithful to finding a sparse representation over an

over-complete dictionary jump+wavelet for the piecewise smooth functions.

4.2.2 Curvelet + TV

The curvelet transformation (cf. [CD02, CDD05, CG02]) was developed by Can-

des et al. in the last few years in an attempt to overcome the inherent limi-

tations of traditional multiscale representations such as wavelets. Conceptually,

the curvelet transform is a multiscale pyramid with many directions and posi-

tions at each length scale, and needle-shaped elements at fine scales. Thus those

curvelets including new tight frames of curvelets (cf. [CD02]) are able to address

the problem of finding optimally sparse representations of objects with discon-

tinuities along C2 edges, for which wavelets are far from ideal. Based on the

good behavior of curvelet+TV in denoising images in [CG02] we believe that it

is worth implementing curvelet+TV as the sparse representation.
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4.3 The Iterative Refinement Method and the Inverse

Scale Space Method

4.3.1 The Bregman iteration

By substituting the nonuniform FFT operator A into the convolution kernel k

in Section 1.3.2 and following the calculus there, our Bregman iteration is in the

same manner. That is, at the kth iteration, we add the residual vk−1 back to y.

There is an intuitive perspective to explain the reason why we apply the

Bregman iteration. We consider a much simpler case where we full sample the

Fourier coefficients of a disk on the integer grids. That means we have the

complete information of y = F (αχR
(x0,y0)), where F denotes the uniform Fourier

transform, α is the grey value of the image and

χR
x0,y0

(x, y) =





1, if (x− x0)
2 + (y − y0)

2 ≤ R2;

0, otherwise.
(4.10)

To study the link between the Bregman iteration and our model (4.8) we consider

the following specific minimization problem:

min
m∈BV

||m||BV +
λ

2
||Fm− y||22. (4.11)

i.e. ||ψ(m)||1 = ||m||BV and non-uniform fast Fourier transform A becomes

uniform Fourier transform F . Based on the fact F̂Fm = m and Lemma 3.1.3 we

obtain the solution of (4.11) mλ
1 = (α− 2

λR
)χR

(x0,y0) when ||F̂ y||∗ = αR
2

> 1
λ
. Thus

the residual vλ
1 = y − Fmλ

1 = F 2
λR

χR
(x0,y0). Therefore, at the second Bregman

iteration, we end up minimizing (4.11) with y = F (α + 2
λR

)χR
(x0,y0), see Equation

(1.13). This will reconstruct the image m exactly, i.e. mλ
2 = αχR

(x0,y0).
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4.3.2 Nonlinear Inverse Scale Space Methods

The nonlinear inverse scale space method described in [BGO06] is derived as a

limit of the iterative refinement procedure for λ → 0.

The key point is to reinterpret the fidelity parameter λ = ∆t as a time step

and divide by ∆t on both sides of the Euler-Lagrange equation (1.12), then

∂J(m∆t
k )− ∂J(m∆t

k−1)

∆t
= −Â(Am∆t

k − y).

Setting tk = k∆t, p∆t(tk) = ∂J(m∆t
k ) and m∆t(tk) = m∆t

k , then we have

p∆t(tk)− p∆t(tk −∆t)

∆t
= −Â(Am∆t(tk)− y).

Letting ∆t → 0 and dropping the subindex k we arrive at the differential equation

∂tp(t) = −Â(Am(t)− y), p(t) ∈ ∂J(m(t)), (4.12)

with initial values given by m(0) = p(0) = 0.

The concise formulation of (4.12) is not straightforward to compute, as the

relations between p and m are quite complicated in nonlinear cases. Here we

resort to a relaxed version (cf. [BGO06]) which aims at having a flow with

qualitatively similar properties to that of (4.12) by using standard variational

formulations, which are simple to compute. We compute the following coupled

equations : 



∂tm(t) = −p(t)− λ(ÂAm(t)− Ây − v(t))

∂tv(t) = −α(ÂAm(t)− Ây),

(4.13)

where m(0) = v(0) = 0 and α > 0 is a constant. It is easy to see that the steady

state of these equations is u = f , v = p/λ. In order for the solution of (4.13)

to converge to the steady state, α ≤ λ/4 is required. Please see [BGO06] for

detailed analysis.
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To apply the Bregman iteration, the minimization problem has to be solved

several times before a stopping criterion is satisfied. This could be very time-

consuming. The inverse scale-space method is shown to be more straightforward

and more efficient than Bregman iteration. Our numerical experiments indicate

that the nonlinear inverse scale space method works much faster than the iterative

refinement method with similar results.

4.4 Experimental Results

The raw MR measurement data were obtained from a Siemens Magnetom Avanto

1.5T scanner. These data samples have a radial trajectory in k-space. Figure 4.1,

4.2 and 4.3 are reconstructed from the raw measurement k-space data scanned

from a numeric phantom. The k-space data is composed of a total of 63 radial

lines with 512 samples each. During the MR scanning, three coils/channels were

used, the pulse sequence is trueFISP, the scanning parameters are TR=4.8ms,

TE=2.4ms, flip angle a=60o, FOV=206mm with a resolution of 256 pixels; and

the final image is obtained by taking the square root of the sum of each channel,

which separately went through the proposed iterative procedure or the non-linear

inverse scale space method.

We solved the minimization problem (4.8) by conjugate gradient descent

method (cf. [She94]) and back-tracking line search (cf. [BV04]). We chose the

sparse representation and the parameter λ to reach the best visual effects.

Figure 4.1 is obtained from the conventional gridding algorithm. We see a lot

noise and image artifacts because the data is sampled sparsely.

Compared with Figure 4.1, the top left image in Figure 4.2 obtained from

solving (4.8) with ||φ(m)||1 = ||m||BV and λ = 100.0 demonstrates superior noise
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Figure 4.1: Conventional gridding algorithm.

deduction. In order to enforce the constrained condition Am = y we require a

small value of the fidelity term ||Am− y||22. We could use a large λ, however this

would result in a noisy image with a large bounded variation norm. Therefore,

we choose to apply the Bregman iteration in solving the minimization problem

(4.8). The sequence images of the 1st, 2nd, 4th and 6th Bregman iteration are

shown in figure 4.2. Each Bregman iteration takes 200-500 steps to converge.

As the iteration k increases, we observe a recovery of fine details, particularly

including the black dots in the top row.

In Figure 4.3, we present another four images corresponding to the 100th,

200th, 400th and 600th iteration results obtained from the time continuous flow

of the relaxed inverse scale space method with ||φ(m)||1 = ||m||BV and λ = 100.0.

As mentioned in (4.13), it starts from m(0) = 0 and v(0) = 0. Thus we notice

image artifacts at the early step, see the top two images of Figure 4.3. The

artifacts disappear at the later step and the image of the 600th steps from the non-

linear inverse scale space flow (see the bottom right of Figure 4.3) is comparable

with the result of the 6th Bregman iteration (see the bottom right of Figure
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Breg 1 Breg 2

Breg 4 Breg 6

Figure 4.2: A sequence images obtained from the iterative refinement method :

top left, 1st Bregman iteration; top right, 2nd Bregman iteration; bottom left,

4th Bregman iteration; bottom right, 6th Bregman iteration.

64



4.2). However, the iterative refinement procedure is around 3-4 times more time-

consuming.

Figure 4.4, 4.5 and 4.6 are reconstructed from 2 out of 8 interleaves of the

k-space data scanned from a head. Each interleave has 31 radial lines with 512

samples each and 4 channels are used during the scan. Scanning parameters are

TR=4.46ms, TE=2.23ms, flip angle a=50o, FOV=250mm with a resolution of

256 pixels.

Figure 4.4 is obtained from conventional gridding algorithm. Again we see a

lot of noise and image artifacts.

The minimization problem (4.9) is solved for Figure 4.5 and 4.6 with µ = 1.0,

ν = 0.1 and λ = 100.0. This is because, as we mentioned above, with the

wavelet and heaviside merged over-complete dictionary we will have a better

sparse representation. The Bregman iteration (see Figure 4.5) and the nonlinear

inverse scale space method (see Figure 4.6) are carried out as in the above section.

We observe that Figure 4.5 and 4.6 have less noise and are smoother compared

with Figure 4.4. However, in terms of sharpness, Figure 4.4 is the best. This

might be resulted from the ability of total variation to suppress oscillations.

The nonlinear inverse scale space method is two times faster than the iterative

refinement method.
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RISS iter 100 RISS iter 200

RISS iter 400 RISS iter 600

Figure 4.3: A sequence images obtained from the relaxed inverse scale space flow :

top left, iteration 100; top right, iteration 200; bottom left, iteration 400; bottom

right, iteration 600.
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Gridding method

Figure 4.4: Conventional gridding algorithm.
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 Breg 1  Breg 2

 Breg 3  Breg 4

Figure 4.5: A sequence images obtained from the iterative refinement method

with (4.9) where µ = 1.0, ν = 0.1, and λ = 100: top left, 1st Bregman iteration;

top right, 2nd Bregman iteration; bottom left, 3rd Bregman iteration; bottom

right, 4th Bregman iteration.
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 RISS iter 100  RISS iter 200

 RISS iter 300  RISS iter 400

Figure 4.6: A sequence images obtained from the relaxed inverse scale space flow

with (4.9) where µ = 1.0, ν = 0.1, and λ = 100: top left, iteration 100; top right,

iteration 200; bottom left, iteration 300; bottom right, iteration 400.
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CHAPTER 5

Conclusion and Future Work

In conclusion, we have proposed a modified iterative total variation regularization

procedure (cf. [HBO06]) that can be applied to any variational models with

non-quadratic convex fidelity terms and we have applied the original iterative

regularization procedure (cf. [OBG05]) into the blind deconvolution problem (cf.

[HMO05]) and MR image reconstruction from undersampled k-space data (cf.

[CHF06]). Experimental results of good quality have illustrated that finer scales

are recovered along the Bregman iteration.

The ongoing work for MR image reconstruction is to find a better sparse

representation for piecewise smooth functions. One possible option we are inves-

tigating right now is curvelet + TV.

Another possible future study is to apply the modified iterative regularization

procedure to the BV + G model (1.8) suggested by Meyer. Since the G norm is

a Banach norm satisfying the assumptions nonnegativity, convexity and positive

homogeneity, it seems possible that our approach could improve the denoisng

performance of the model.
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