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Abstract. Magnetic resonance imaging (MRI) reconstruction from sparsely sampled data has
been a difficult problem in medical imaging field. We approach this problem by formulating a cost
functional that includes a constraint term that is imposed by the raw measurement data in k-space
and the L1 norm of a sparse representation of the reconstructed image. The sparse representation
is usually realized by total variational regularization and/or wavelet transform. We have applied
the Bregman iteration to minimize this functional to recover finer scales in our recent work. Here
we propose nonlinear inverse scale space methods in addition to the iterative refinement procedure.
Numerical results from the two methods are presented and it shows that the nonlinear inverse scale
space method is a more efficient algorithm than the iterated refinement method.

Key words. Magnetic Resonance Image Reconstruction, Total Variation, Wavelet Transform,
Iterated Refinement Techniques, Inverse Scale Space Methods, Sparse Representation.

1. Introduction. Magnetic resonance imaging (MRI) has been very successful
for imaging parts of the body that are stationary. However, the major drawback of
MRI is imaging speed. Many of the new applications of MRI require fast imaging,
i.e., short scan time. To this end, during the scanning process, it is necessary to
sample the frequency plane (or k-space) very sparsely. This usually causes difficulties
to image reconstruction. Image artifacts and/or low signal to noise ratio (SNR) are
often seen in images reconstructed from the sparsely sampled data.

As a result, a general problem was proposed in [11] by Candes et al.. They
consider for a discrete complex signal n of length N and a randomly chosen set of
frequencies Ω of mean size τN with τ < 1, whether it is possible to reconstruct n
from the partial knowledge of its Fourier coefficients on the set Ω. The answer is yes,

Proposition 1.1. if the signal n obeys

#{t, n(t) 6= 0} ≤ α(M) · (log N)−1 ·#Ω, ∀M ∈ N

then with the probability at least 1 − O(N−M ), n can be reconstructed exactly as the
solution to the L1 minimization problem

min
m

N−1∑
t=0

|m(t)|, s.t. m̂(ω) = n̂(ω) for all ω ∈ Ω,

where m is the reconstructed signal.
The assumption of the signal n being sparse is the key point in the proof of the

above proposition (cf. [11]). However, in practice many applications deal with more
complicated signals rather than sparse ones. Therefore, Candes and etc choose to
solve a extended L1 minimization problem by assuming that the signal n has a sparse
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representation. The L1 minimization problem is reformulated as

min
m
||ψ(m)||1 s.t. Fm = y, (1.1)

where m is the reconstructed signal/image, ψ transforms the image m into a sparse
representation, F is an undersampled Fourier matrix which satisfies Fm = m̂|Ω, and
y = n̂|Ω is the under-sampled measured k-space data which satisfies. There is a series
of theoretical results on the extended L1 minimization problem involving the uniform
uncertainty principle (cf. [6]). Furthermore, the numerical solutions of (1.1) solved
from numerical phantoms (cf. [11]) or from practical signals (cf. [10, 20]) have shown
that the reconstructed MR image quality surpasses the conventional techniques.

Based on their work, we proposed in [14] to solve (1.1) with an iterated refinement
method or the so called Bregman iteration (cf. [24, 18, 17, 27]). It was recently
introduced to image denoising problems by Osher et. al. in [24]. The main idea is
that given a noisy image f , by denoting the residual for the first time iteration v1 = 0,
we obtain the reconstructed image u1 by solving the well known Rudin, Osher and
Fatemi (ROF) minimization (cf. [25]) from the observed image f/f + v1; at the kth
iteration, we denote vk = f + vk−1 − uk−1, then we obtain the reconstructed image
uk by simply performing the ROF minimization again from f + vk. This resulted
sequence of {uk} has been proved to converge monotonically in L2 to the noisy image
f . If f is noise free, then the reconstructed image sequence {uk} will converge to
the true image f . In addition the sequence {uk} monotonically gets closer to the
noise free image f in the sense of Bregman distance (cf. [24]). This fact inspired
us to apply the Bregman iteration [14] to solve our modified formulation of (1.1) to
obtain a sequence of reconstructed MR image {mk} where Fmk converges to y. In
the numerical demonstrations of this paper and [14], finer scales have been recovered.
The details of the procedure is described in Subsection 4.1.

Furthermore, the new idea of this paper is that a time-continuous inverse scale-
space formulation (cf. [4]) is applied to solve (1.1). In the context of processing noisy
images, scale space methods which start with the noisy image can separate the noise
or so called small scales from large scales by smoothing small scale features faster than
large ones. However, inverse scale space methods start with the image u0 = 0 and
approach the noisy image f as time increases, with large scales converge faster than
small ones. Thus, if the method is stopped at a suitable time, large scale features may
already be incorporated into the reconstruction, while small scale features (including
the noise) are still missing. Therefore, the inverse scale space method may be treated
as the time continuous version of the iterated refinement method. But to apply the
Bregman iteration, the minimization problem has to be solved several times before a
stopping criterion is satisfied. This could be very time-consuming. The inverse scale-
space method is shown to be more straightforward and more efficient than Bregman
iteration. We will discuss it in Subsection 4.2 and demonstrate it in our numerical
results.

The organization of this paper is as follows. Section 2 describes prerequisites to
implementing the model (1.1). Section 3 is dedicated to the sparse representation of an
image, particularly a piece-wise smooth one. As it has been mentioned above, Section
4 focuses on the iterated refinement procedure and the time continuous inverse scale
space methods. Finally, the numerical results are performed in Section 5 to show the
good quality of reconstructed images from (1.1) and the benefits of using the Bregman
iteration and the nonlinear inverse scale space method.
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2. Prerequisite to Solve the Model (1.1). In this section, we describe re-
lated tools in more details to solve the given problem (1.1). This includes the use of
sparse transformations and the implementation of maintaining the constraint condi-
tion. Following the work in [10, 20], the total variation (TV) regularization or the
wavelet transform are used for the MR image reconstruction from raw k-space data
of a numerical phantom.

2.1. The Total Variation Regularization . The total variation regularization
or the so-called bounded variation (BV) norm has been first introduced by Rudin et
al. in [25] in the context of image denoising. Afterwards this approach was generalized
to other image processing problems, such as deconvolution (cf. [13]), decomposition
(cf. [12, 17, 28]), computer tomography (cf. [29]), etc. It is proved to be particularly
relevant in recovering piecewise smooth functions without smoothing sharp disconti-
nuities while also being a sparse transformation for piecewise constant functions.

Normally, the bounded variation norm of an two dimensional real image m is
defined as

||ψ(m)||1 = ||m||BV :=
∑

i,j

√
|∇xm(i, j)|2 + |∇ym(i, j)|2. (2.1)

However, our reconstructed image m from (1.1) equals the magnitude of a complex
image (mr,mi) from the inverse Fourier transform of the under-sampled data y, i.e.,
m =

√
m2

r + m2
i . We can not just simply define the BV norm of image m by (2.1)

due to the non-convexity of this formulation. Instead, we define the BV norm of m
as

||m||BV =
∑

i,j

√
|∇xmr(i, j)|2 + |∇xmi(i, j)|2 + |∇ymr(i, j)|2 + |∇ymi(i, j)|2. (2.2)

Another alternative is also used. The basic idea is similar to (2.2), that is, to
separate the real and imaginary part,

||m||BV =
∑

i,j

√
|∇xmr(i, j)|2 + |∇ymr(i, j)|2 +

√
|∇xmi(i, j)|2 + |∇ymi(i, j)|2.

(2.3)
The minimization of (2.2) and (2.3) subject to the constraint condition Fm = y is
guaranteed to converge to a point according to [2]. Indeed, our experiments show
that they both produce similar and reasonable results.

2.2. The Wavelet Transform. The wavelet transform is tremendously popular
in the signal and image processing communities, due in large part to its ability to
provide parsimonious representations for signals that are smooth away from isolated
discontinuities. The wavelet transform is widely used in image processing, and it
generally represents a sparse representation of the signal/image g. The result from the
wavelet transform is compared with the result from the total variation regularization
subject to the constraint condition in [20]. The wavelet transform does a fairly good
job although not as good as the BV norm.

In the following we will first define the L1/wavelet norm ||ψ(g)||1 and then derive
the sub-gradient of the L1/wavelet norm. For the reason of simplicity, we consider a
1D signal g of length N = 2J . At the level L of the wavelet transform, the signal g is
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decomposed as

g =
2L−1∑
p=0

αL,pϕL,p +
J∑

q=L+1

2q−1−1∑
p=0

αq,pφq,p, (2.4)

where the ϕL,p are scaling functions, the φq,p are oscillatory wavelets, see [22, 5, 21].
Then the L1/wavelet norm ||ψ(g)||1 is defined as

||ψ(g)||1 = ||g||W :=
2L−1∑
p=0

|αL,p|+
J∑

q=L+1

2q−1−1∑
p=0

|αq,p|. (2.5)

From (2.4), for the signal g and a variable signal h, we assume that





g =
∑2L−1

p=0 αL,pϕL,p +
∑J

q=L+1

∑2q−1−1
p=0 αq,pφq,p,

h =
∑2L−1

p=0 βL,pϕL,p +
∑J

q=L+1

∑2q−1−1
p=0 βq,pφq,p.

The sub-gradient of ||g||W is defined as:

lim
s→0

1
s
(||g + sh||W − ||g||W )

= lim
s→0

1
s
(
∑
p,q

|αp,q + sβp,q| −
∑
p,q

|αp,q|)

=
∑

p,q sgn(αp,q)βp,q

= (
∑2L−1

p=0 sgn(αL,p)ϕL,p,
∑2L−1

p=0 βL,pϕL,p)

+(
∑J

q=L+1

∑2q−1−1
p=0 sgn(αq,p)φq,p,

∑J
q=L+1

∑2q−1−1
p=0 βq,pφq,p)

= (
∑2L−1

p=0 sgn(αL,p)ϕL,p +
∑J

q=L+1

∑2q−1−1
p=0 sgn(αq,p)φq,p, h).

(2.6)

The last two steps are valid because the scaling functions ϕ and the wavelet functions
φ are an orthonormal basis. Thus, the sub-gradient of ||g||W is

2L−1∑
p=0

sgn(αL,p)ϕL,p +
J∑

q=L+1

2q−1−1∑
p=0

sgn(αq,p)φq,p,

which is implemented by the inverse wavelet transformation.

2.3. The Constraint Condition. Depending on the accuracy for which the
locations of the original k-space samples are maintained, there are two ways to deal
with the constraint condition.

After we have the measurement data from the MR scanner which for example
consists of 63 radial lines with 512 samples each, we can round off the sample locations
to the integer grids. Then the nonzero integer grids become the constraint set Ω. This
corresponds to 0 order interpolation which is not accurate. But we have the advantage
of imposing the condition Fm = y directly by an inverse fast Fourier transform (FFT).
Combining with the minimization of ||ψ(m)||L1 , m converges to the solution of (1.1)
according to the well-known algorithm of projection onto convex set (POCS) (cf. [2]).
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A better interpolation is to retain the locations of the sampled data and use a
non-uniform FFT operator to approach y. We achieve this by minimizing ||Am−y||22,
where A denotes the non-uniform FFT operator, which we use NFFT from [19] or
NUFFT from [16]. We have found great convenience in modifying NFFT package
that is written in C into C++. However, it is faster to operate the interpolation by
NUFFT package written in matlab because the NUFFT is designed under the optimal
min-max distance. To clarify it, the interpolation coefficients of NUFFT depend on
the location of the data in the spatial domain only while the interpolation coefficients
of NFFT also depend on the value of the data in the spatial domain. Thus for NUFFT
only one time pre-computation of the interpolation coefficients is needed, while for
NFFT this computation needs to be repeated because the value of the data Am is
changing.

By adding a parameter λ to control the L2 distance between Am and y, our
problem is reformulated as

min
m

{
||ψ(m)||1 +

λ

2
||Am− y||22

}
. (2.7)

The sub-gradient of the second term in (2.7) is Â(Am− y), where Â is the adjoint of
A.

3. The Sparse Representation for a Piecewise Smooth Image. As it was
proven in [11], the reason that we can reconstruct the exact signal from incomplete
frequency information is based on the assumption that the image has a sparse rep-
resentation ψ. For a piecewise constant image, both the BV norm and the wavelet
transform are good sparse representations. However when we are given raw measure-
ment k-space data scanned from a real object, which is often piecewise smooth, the
TV regularization or the L1/wavelet alone will not be a good sparse transformation.
We have to look for other means.

3.1. Wavelet + TV. In [15], Chen et al. proposed a dictionary merger jump+wavelet.
As they claim, the jump+wavelet dictionary based on a merger of wavelets with ta-
pered Heavisides (the Heaviside is equivalent to total variation norm in one dimension)
will lead to a sparse representation for a piecewise smooth image. Based on such an
over-complete dictionary we will decompose the image m into two components where
h is composed of a Heaviside orthonormal basis and w is composed of a wavelet or-
thonormal basis. To be more general, when m = µh + νw, the following problem will
be considered:

min
h,w,m=µh+νw

{
||m− νw||BV + ||νw||W +

λ

2
||Am− y||22

}
, (3.1)

where µ and ν are nonnegative parameters. (3.1) is still a convex formulation due
to the linear relationship between m, h and w. Furthermore, when µ = 0 or ν = 0,
(3.1) is simplified to the case of using the wavelet transformation or the total variation
regularization alone.

We also want to draw a connection to the work [10], in which

min
m

{
µ||m||BV + ν||m||W +

λ

2
||Am− y||22

}
(3.2)

is considered, where the parameter µ and ν prescribes the importance of the solution
having small L1 norm in the wavelet domain versus having small BV norm in the spa-
tial domain. The formulation (3.1) is more faithful to finding a sparse representation
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over an over-complete dictionary jump+wavelet for the piecewise smooth functions.
However similar numerical results from both formulations are observed.

3.2. Curvelet + TV. The curvelet transformation (cf. [8, 7, 9]) was developed
by Candes et al. in the last few years in an attempt to overcome inherent limitations
of traditional multiscale representations such as wavelets. Conceptually, the curvelet
transform is a multiscale pyramid with many directions and positions at each length
scale, and needle-shaped elements at fine scales. Thus those curvelets including new
tight frames of curvelets (cf. [8]) are able to address the problem of finding opti-
mally sparse representations of objects with discontinuities along C2 edges, which the
wavelet is far from ideal. Based on the good behavior of curvelet+TV algorithm in
denoising images (cf. [9]) we believe that it is worth implementing curvelet+TV as
the sparse representation.

4. The Iterated Refinement Method and the Inverse Scale Space Method.

4.1. Bregman Iteration. Consider the minimization of a general model:

min
u
{J(u) + λH(u, f)} ,

where u and f denote, respectively, the reconstructed image and the known data or
the observed image. The regularization term J(u) and the fidelity term H(u, f) are
required to be convex functionals of u. Moreover, J(u) has to be non-negative.

Given a differentiable function J , the Bregman distance is defined by

DJ(x, z) = J(x)− J(z)− < x− z, ∂J(z) >,

where < · , · > denotes the inner product in Rn and ∂J(z) is an element of the
sub-gradient of J at point z. See [3].

Since J(u) is convex, DJ(u, v) is convex in u for each v. The quantity DJ(u, v)
is not a distance in the usual sense; e.g., in general, DJ(u, v) 6= DJ(v, u) and also
the triangle inequality does not hold. However, it is a measure of closeness in that
DJ(u, v) ≥ 0 and DJ(u, v) = 0 if u = v (if and only if for strictly convex functionals).

Suppose mλ
1 is the minimizer of J(m)+λH(m, y). An iterative procedure is given

by the sequence of variational problems for k ≥ 2,

mλ
k = arg min

m

{
DJ(m,mλ

k−1) + λH(m, y)
}

. (4.1)

In this paper, we consider:

H(m, y) = ||Am−y||22
2 ,

J(m) = ||ψ(m)||1.

In [24], it is shown that the sequence Amλ
k monotonically converges in the L2 norm to

the noisy image f , here to the Fourier coefficients y on the constraint set Ω. Another
benefit of applying the Bregman iteration is that in the context of image denoising,
we observe a smooth image at the beginning when the parameter λ is chosen small;
and the fine scales are recovered along the Bregman iteration and they are recovered
before the noise. Thus we just need to stop at the moment when the noise is still
missing. During our experiments on MR image reconstruction, we observe similar
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results, see Figure 5.2 and Figure 5.6. As surprised as we are by this observation that
the sequence of the reconstructed images ”know” what to recover along the Bregman
iteration and recover the noise last, we will include this as a future work.

In the following we will see how to apply the Bregman distance.
Take the sub-gradient of (4.1) for our problem. For k ≥ 2, we have :

λHm(mλ
k , y) + ∂J(mλ

k)− ∂J(mλ
k−1) = 0. (4.2)

While for k = 1,

λÂ(Amλ
1 − y) + ∂J(mλ

1 ) = 0.

Write y −Amλ
1 = vλ

1 , i.e.

∂J(mλ
1 ) = λÂvλ

1 ,

and plug the above equation into (4.2) for k = 2, it becomes

λÂ(Amλ
2 − y) + ∂J(mλ

2 )− λÂvλ
1 = 0.

It can be simplified as

λÂ(Amλ
2 − y − vλ

1 ) + ∂J(mλ
2 ) = 0.

Write y + vλ
1 −Amλ

2 = vλ
2 , we then have

∂J(mλ
2 ) = λÂvλ

2 .

From above we can see, if we denote vλ
0 = 0 and

vλ
k = y + vλ

k−1 −Amλ
k ∀k ≥ 1,

we will have

∂J(mλ
k) = λÂvλ

k .

In other words, to apply the Bregman iteration we only have to change the constraint
set of Fourier coefficients from y to y+vλ

k−1 at the kth iteration. Therefore, solving the
sequence minimizing problem of (4.1) is equivalent to solving the following sequence
minimizing problem

mλ
k = arg min

m

{
J(m) + λH(m, y + vλ

k−1)
}

. (4.3)

There is an intuitive perspective to explain the reason why we apply the Bregman
iteration. We consider a much simpler case where we full sample the Fourier coeffi-
cients of a disk on the integer grids. That means we have the complete information
of y = F (αχR

(x0,y0)
), where F denotes the uniform Fourier transform, α is the grey

value of the image and

χR
x0,y0

(x, y) =
{

1, if (x− x0)2 + (y − y0)2 ≤ R2;
0, otherwise.

To study the link between the Bregman iteration and our model (2.7) we consider the
following specific minimization problem:

min
m∈BV

{
||m||BV +

λ

2
||Fm− y||22

}
. (4.4)
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i.e. ||ψ(m)||1 = ||m||BV and non-uniform fast Fourier transform A becomes uniform
Fourier transform F . Based on a simple fact that F̂Fm = m and denote f = αχR

(x0,y0)
,

the simplified minimization problem (4.4) will become

min
m∈BV

{
||m||BV +

λ

2
||m− f ||22

}
.

This actually is the well-known total variation model, the so called ROF model.
From the analysis of the ROF model by Meyer in [23], we obtain the solution of
(4.4) mλ

1 = (α − 2
λR )χR

(x0,y0)
when αλR ≥ 1. Thus the residual vλ

1 = y − Fmλ
1 =

F 2
λRχR

(x0,y0)
. Therefore, at the second Bregman iteration, we end up minimizing

(4.4) with y = F (α + 2
λR )χR

(x0,y0)
, see (4.3). This will reconstruct the image m

exactly, i.e. mλ
2 = αχR

(x0,y0)
. And if αλR < 1, we denote the smallest integer n that

satisfies nαλR > 1, then at the n + 1th Bregman iteration, an exact reconstruction
m = αχR

x0,y0
would be achieved, see [24].

4.2. Nonlinear Inverse Scale Space Methods. The nonlinear inverse scale
space method described in [4] is derived as a limit of the iterated refinement procedure
for λ → 0. The key point is reinterpreting the fidelity parameter λ = ∆t as a time
step and divide by ∆t on both sides of the Euler-Lagrange equation (4.2), then

∂J(m∆t
k )− ∂J(m∆t

k−1)
∆t

= −Â(Am∆t
k − y).

Setting tk = k∆t, p∆t(tk) = ∂J(m∆t
k ) and m∆t(tk) = m∆t

k , then we have

p∆t(tk)− p∆t(tk −∆t)
∆t

= −Â(Am∆t(tk)− y).

Letting ∆t → 0 and dropping the subindex k we arrive at the differential equation

∂tp(t) = −Â(Am(t)− y), p(t) ∈ ∂J(m(t)), (4.5)

with initial values given by m(0) = p(0) = 0.
The concise formulation of (4.5) is not straightforward to compute, as the relations

between p and m are quite complicated in nonlinear cases. Here we resort to a relaxed
version which aims at having a flow with qualitatively similar properties to that of
(4.5) by using standard variational formulations, which are simple to compute. We
compute the following coupled equations :

{
∂tm(t) = −p(t)− λ(ÂAm(t)− Ây − v(t))

∂tv(t) = −α(ÂAm(t)− Ây),
(4.6)

where m(0) = v(0) = 0 and α > 0 is a constant. It is easy to see that the steady state
of these equations is u = f , v = p/λ. In order for the solution of (4.6) to converge
to the steady state, α ≤ λ/4 is required. Please see [4] for detailed analysis. Our
numerical experiments indicate that the nonlinear inverse scale space method works
much faster than the iterated refinement method with similar results.

5. Experimental Results. The raw MR measurement data were obtained from
a Siemens Magnetom Avanto 1.5T scanner. These data samples have a radial trajec-
tory in k-space. Figure 5.1, 5.2 and 5.4 are reconstructed from the raw measurement

8



Fig. 5.1. Conventional gridding algorithm

k-space data scanned from a numeric phantom. The k-space data is composed of
a total of 63 radial lines with 512 samples each. During the MR scanning, three
coils/channels were used, the pulse sequence is trueFISP, the scanning parameters
are TR=4.8ms, TE=2.4ms, flip angle a=60o, FOV=206mm with a resolution of 256
pixels; and the final image is obtained by taking the square root of the sum of each
channel, which separately went through the proposed iterative procedure or the non-
linear inverse scale space method.

We solve the minimization problem (2.7) by conjugate gradient descent method
(cf. [26]) and back-tracking line search (cf. [1]). And we choose the sparse represen-
tation and the parameter λ to reach the best visual effects.

Figure 5.1 is obtained from conventional gridding algorithm. We see a lot noise
and image artifacts due to the reason that the data is sampled sparsely.

Compared with Figure 5.1, the top left image in Figure 5.2 obtained from solving
(2.7) with ||φ(m)||1 = ||m||BV and λ = 100.0 demonstrates superior noise deduction.
In order to enforce the constrained condition Am = y we require a small value of
the fidelity term ||Am− y||22. We could use a large λ, however this would result in a
noisy image with a large bounded variation norm. Therefore, we choose to apply the
Bregman iteration in solving the minimization problem (2.7). The sequence images of
the 1st, 2nd, 4th and 6th Bregman iteration are shown in figure 5.2. Each Bregman
iteration takes 200-500 steps to converge. As the iteration k increases, we observe a
recovery of fine details, particularly including the black dots in the top row, see Figure
5.3.

In Figure 5.4, we present another set of four images corresponding to the 100th,
200th, 400th and 600th iteration results obtained from the time continuous flow of
the relaxed inverse scale space method with ||φ(m)||1 = ||m||BV and λ = 100. As
mentioned in equation (4.6), it starts from m(0) = 0 and v(0) = 0. Thus we notice
image artifacts at the early step, see the top two images of Figure 5.4. The artifacts
disappear at the later step and the image of the 600th steps from the non-linear
inverse scale space flow (see the bottom right of Figure 5.4) is comparable with the
result of the 6th Bregman iteration (see the bottom right of Figure 5.2). However,
the iterated refinement procedure is around 3-4 times more time-consuming.

Figure 5.5, 5.6 and 5.7 are reconstructed from 2 out of 8 interleaves of the k-
9



Breg 1 Breg 2

Breg 4 Breg 6

Fig. 5.2. A sequence images obtained from the iterated refinement method : top left, 1st
Bregman iteration; top right, 2nd Bregman iteration; bottom left, 4th Bregman iteration; bottom
right, 6th Bregman iteration.

space data scanned from a head. Each interleave has 31 radial lines with 512 samples
each and 4 channels are used during the scan. Scanning parameters are TR=4.46ms,
TE=2.23ms, flip angle a=50o, FOV=250mm with a resolution of 256 pixels.

Figure 5.5 is obtained from the conventional gridding algorithm. Again we see a
lot of noise and image artifacts.

The minimization problem (3.2) is solved for Figure 5.6 and 5.7 with µ = 1.0,
ν = 0.1 and λ = 200.0. This is only because, the computation of solving (3.2) is
easier than the computation of solving (3.1). The Bregman iteration (see Figure 5.6)
and the nonlinear inverse scale space method (see Figure 5.7) are carried on following
the above section. We observe that Figure 5.6 and Figure 5.7 have less noise and are
smoother than Figure 5.5. However, in terms of sharpness, Figure 5.5 is the best.
This might be resulted from the ability of total variation to suppress oscillations. The
nonlinear inverse scale space method is two times faster than the iterated refinement
method.
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Breg 1 Breg 2

Breg 4 Breg 6

Fig. 5.3. Zoom in images of the top row: top left, 1st Bregman iteration; top right, 2nd
Bregman iteration; bottom left, 4th Bregman iteration; bottom right, 6th Bregman iteration.

6. Conclusion. In this paper, we have applied the iterative refinement proce-
dure and the inverse scale space method on MR image reconstruction. The reconstruc-
tion is realized by minimizing the summation of a regularization term and a constraint
term (2.7). By simplify the formulation (2.7) to (4.4), we can actually obtain the ROF
model. By following the same analysis for the ROF model by Meyer [23], we obtain
an exact recovery for y = F (αχR

(x0,y0)
) at the (n + 1)th Bregman iteration where n is

the smallest integer that satisfies nαλR > 1.
The numerical experiments from the iterative refinement method demonstrate

similar behaviors as we have seen in applying the iterative refinement procedure to
denoising images by solving the ROF model. The behavior is described as: by choosing
a small λ, we obtain a smooth image at the first iteration; and the details of the image
come back before the noise comes back as the Bregman iteration number k increases.
Furthermore, the experimental results from inverse scale space methods have shown
that it is a more efficient method than the iterative refinement method while being
able to obtain similar results.

Compared with the conventional gridding method, our results demonstrate supe-
rior noise deduction while keeping the necessary features. However for the head image

11



RISS iter 100 RISS iter 200

RISS iter 400 RISS iter 600

Fig. 5.4. A sequence images obtained from the relaxed inverse scale space flow : top left,
iteration 100; top right, iteration 200; bottom left, iteration 400; bottom right, iteration 600.

Gridding Method

Fig. 5.5. Conventional gridding algorithm
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 Breg 1  Breg 2

 Breg 3  Breg 4

Fig. 5.6. A sequence images obtained from the iterated refinement method with (3.2) where
µ = 1.0, ν = 0.1, and λ = 200: top left, 1st Bregman iteration; top right, 2nd Bregman iteration;
bottom left, 3rd Bregman iteration; bottom right, 4th Bregman iteration.

which is piecewise smooth, we’d like to find better sparse representations to avoid the
over-smooth visual effects brought by the total variation term. Thus, the curvelet +
TV could be our future work.

REFERENCES

[1] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004.
[2] L. M. Bregman, Finding the common point of convex sets by the method of successive projec-

tion, Dokl. Akad. Nauk. USSR, 162 (1965), pp. 487–490.
[3] L. M. Bregman, The relaxation method for finding the common point of convex sets and its

application to the solution of problems in convex programming, USSR Comp. Math. and
Math. Phys., 7 (1967), pp. 200–217.

[4] M. Burger, G. Gilboa, S. Osher, and J.-J. Xu, Nonlinear inverse scale space methods,
Comm. Math. Sci., 4 (2006), pp. 175–208.

[5] C. Burrus, R. Gopinath, and H. Guo, Introduction to wavelets and wavelet transformations,
(1998). A Primer, Prentice-Hall.

[6] E. Candes and T. Tao, Near-optimal signal recovery from random projections and universal

13



 RISS iter 100  RISS iter 200

 RISS iter 300  RISS iter 500

Fig. 5.7. A sequence images obtained from the relaxed inverse scale space flow with (3.2) where
µ = 1.0, ν = 0.1, and λ = 200: top left, iteration 100; top right, iteration 200; bottom left, iteration
300; bottom right, iteration 500.

encoding strategies, submitted to IEEE Trans. Inform., (2004).
[7] E. J. Candes, L. Demanet, D. L. Donoho, and L. Ying, Fast discrete curvelet transforms.

2005.
[8] E. J. Candes and D. L. Donoho, New tight frames of curvelets and optimal representations

of objects with smooth singularities. Technical Report, Stanford University, Submitted,
2002.

[9] E. J. Candes and F. Guo, New multiscale transforms, minimum total variation synthesis: Ap-
plications to edge-preserving image reconstruction, Signal Processing, 82 (2002), pp. 1519–
1543.

[10] E. J. Candes and J. Romberg, Practical signal recovery from random projections. 2005.
[11] E. J. Candes, J. Romberg, and T. Tao, Robust uncertainty principles: Exact signal recon-

struction from highly incomplete frequency information, submitted to IEEE Trans. Inform.
Theory, (June 2004).

[12] T. F. Chan and S. Esedoglu, Aspects of total variation regularized L1 function approxima-
tion, SIAM J. Appl. Math, 65 (2005), pp. 1817–1837.

[13] T. F. Chan and C.-K. Wong, Total variation blind deconvolution, IEEE Trans. Image Process.,
7 (1998), pp. 370–375.

[14] T.-C. Chang, L. He, and T. Fang, MR image reconstruction from sparse radial samples using
Bregman iteration, ISMRM, 2006.

14



[15] S. S. Chen, D. L. Donoho, and M. A. Saunders, Atomic decomposition by basis pursuit,
SIAM J. Scientific Computing, 20 (1998), pp. 33–61.

[16] J. A. Fessler and B. P. Sutton, Nonuniform fast fourier transforms using min-max inter-
polation, IEEE Trans. Signal Process., 51 (2003).

[17] L. He, M. Burger, and S. Osher, Iterative total variation regularization with non-quadratic
fidelity, J. of Mathematical Imaging and Vision, (2006).

[18] L. He, A. Marquina, and S. Osher, Blind deconvolution using TV regularization and Breg-
man iteration, International Journal of Imaging Systems and Technology, 15 (2005), pp. 74–
83.

[19] S. Kunis and D. Potts, NFFT2.0.beta. technical report, University of Lubeck, Germany,
2004.

[20] M. Lustig, J. H. Lee, D. L. Donoho, and J. M. Pauly, Faster imaging with randomly
perturbed undersampled spirals and l1 reconstruction, in Proc. Of the ISMRM ’05, 2005.

[21] S. Mallat, A Wavelet Tour of Signal Processing, Academic Press, 1999.
[22] Y. Meyer, Wavelets Algorithms and Applications, SIAM, Philadelphia, 1993.
[23] Y. Meyer, Oscillating Patterns in Image Processing and Nonlinear Evolution Equations, AMS,

Providence, RI, 2001.
[24] S. Osher, M. Burger, D. Goldfarb, J.-J. Xu, and W. Yin, An iterative regularization

method for total variation based image restoration, Multiscale Modeling and Simulation, 4
(2005), pp. 460–489.

[25] L. I. Rudin, S. J. Osher, and E. Fatemi, Nonlinear total variation based noise removal
algorithms, Phys. D, 60 (1992), pp. 259–268.

[26] J. R. Shewchuk, An introduction to the conjugate gradient method without the agonizing pain.
August 1994.

[27] J.-J. Xu and S. Osher, Iterative regularization and nonlinear inverse scale space applied to
wavelet based denoising, (2006). submitted to IEEE Trans. Image Proc.

[28] W. Yin, D. Goldfarb, and S. Osher, Image cartoon-texture decomposition and feature se-
lection using the total variation regularized l1 functional, in Lecture Notes in Computer
Science 3752, Variational, Geometric, and Level Set Methods in Computer Vision, Springer,
2005, pp. 73–84.

[29] X.-Q. Zhang and J. Froment, Total variation based fourier reconstruction and regularization
for computerized tomography, Nuclear Science Symposium and Medical Imaging Confer-
ence, 2005.

15


