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Abstract

We develop a fast sweeping method for static Hamilton-Jacobi equations with con-
vex Hamiltonians. Local solvers and fast sweeping strategies apply to structured and
unstructured meshes. With causality correctly enforced during sweepings numerical
evidence indicates that the fast sweeping method converges in a finite number of iter-
ations independent of mesh size. Numerical examples validate both the accuracy and
the efficiency of the new methods.

1 Introduction

We consider a class of static Hamilton-Jacobi equations of the following form,

{

H(x,∇T (x)) = 1, x ∈ Ω \ Γ,

T (x) = g(x), x ∈ Γ ⊂ Ω,
(1.1)

where g(x) is a positive, Lipschitz continuous function, Ω is an open, bounded domain
in Rd and Γ is a subset of Ω; H(x,p) is Lipschitz continuous in both arguments, and
it is convex in the second argument. If H(x,p) = |p|H(x,p/|p|) = |p|F (x), then
the eikonal equation for isotropic wave propagation results; in general, the equation is
anisotropic in the sense that the wave speed varies along different directions, hence the
anisotropic eikonal equation results.

Such equations arise in a multitude of applications, ranging from seismic waves,
crystal growth, robotic navigation, and optimal control, to name just a few. Conse-
quently, it is necessary to develop accurate and efficient methods for computing numer-
ical solutions to this nonlinear boundary value problem. In this paper we extend the
fast sweeping method [1, 32, 27, 12, 13, 23] to tackle the above static Hamilton-Jacobi
equation on triangular meshes.

Mathematical foundation for the well-posedness of the equation traces back to the
theory of viscosity solution [5] and computability of such viscosity solution by monotone
finite difference methods is established in [6]. There are two crucial tasks in developing
an efficient numerical method for such type of equations: one is designing a local
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solver or discretization scheme that can capture causality of the underlying partial
differential equation (PDE), and the other is solving the resulting large system of
nonlinear equations after discretization. Many finite difference schemes are available
for discretizations on rectangular grids, such as Godunov schemes. On structured
grids, one-sided or upwind approximation of partial derivatives can be constructed
more readily. In most of these schemes causality and consistency are coupled and
enforced simultaneously in the local discretization. Due to nonlinearity of the PDE,
the corresponding local solver may be quite complicated. For example Godunov solvers
for general Hamiltonians can be very difficult.

To tackle such anisotropic eikonal equations in seismics, Dellinger [7] extended an
upwind finite difference method [29] to compute the first-arrival based viscosity solu-
tions in an anisotropic medium; Qin and Schuster [24] proposed a wavefront expansion
method, and it is based on Huygens’ principle and computes the first-arrival travel-
times associated with seismic energy propagating at the group velocity. As pointed
out in Dellinger and Symes [8], an anisotropic medium is different from an isotropic
medium in that for an isotropic medium the ray velocity vector (ie, the group velocity
vector, or the characteristic direction) has the same direction as the (negative) trav-
eltime gradient (ie, the phase velocity vector), which enables us to use the traveltime
gradient as a reliable indicator of energy flow (and thus the causality) in propagating
the traveltime field [29, 24, 28, 25, 32], while for an anisotropic medium this is no longer
true. Therefore one may compute wrong solutions by extending fast marching methods
designed for isotropic eikonal equations to anisotropic eikonal equations without taking
into account the above essential differences as demonstrated in [26].

Based on the above observation, Qian and Symes [17, 19, 20, 21] proposed a paraxial
formulation for the static Hamilton-Jacobi equation by formulating a relation between
the characteristic direction and the traveltime gradient direction, so that fast, efficient
and accurate methods with linear complexity can be obtained easily; furthermore,
Qian, Symes and Dellinger [22] made further improvement by removing the paraxial
assumption.

On the other hand, Sethian and Vladimirsky [26] designed ordered upwind methods
for the above static Hamilton-Jacobi equation. The spirit of their single-pass method
is the following: at a considered node which is to be updated, first one estimates the
possible numerical domain of dependency by using the so-called anisotropic coefficient
[26], the accepted solution and the mesh size; secondly one uses the so-called control-
theoretic update-from-a-single-simplex formula [9] to evaluate a tentative value at the
standing node by taking the minimum among all possible values resulting from all
the possible virtual simplexes constructed from its numerical domain of dependency;
thirdly one accepts the smallest value of all the considered nodes to maintain causality;
lastly one maintains the lists of accepted solutions and considered nodes. The resulting
ordered upwind methods have the computational complexity of O(ηM log M), where
η is the anisotropic coefficient depending on the Hamilton-Jacobi equation, and M is
the total number of mesh points.

As an iterative method for Hamilton-Jacobi equations, the fast sweeping method
was originated in Boue and Dupis [1], and its first PDE formulation was for implicit and
non-parametric shape reconstruction from unorganized points using a variational level
set method [34]; Zhao [32] proved the O(N) convergence of the method for the eikonal
equation based on the Godunov Hamiltonian on Cartesian meshes. Tsai, Cheng, Osher
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and Zhao [27] applied the fast sweeping methods to a class of static Hamilton-Jacobi
equations based on Godunov numerical Hamiltonians on uniform meshes, and they
have derived some explicit update formulae so that the Gauss-Seidel based sweep-
ing strategy can be easily carried out; numerical examples indicate that the sweeping
method has linear complexity. Kao, Osher and Tsai [12] proposed a class of fast sweep-
ing methods for the static Hamilton-Jacobi equations based on upwind-discretizing the
Bellman formula resulting from the Hamiltonian directly on uniform meshes; numerical
examples also indicate that the sweeping method has linear complexity. Kao, Osher
and Qian [13] have extended fast sweeping methods to deal with non-convex Hamilton-
Jacobi equations based on Lax-Friedrichs numerical Hamiltonians on uniform meshes.
Zhang, Zhao and Qian [31] have developed higher order fast sweeping methods based
on weighted essentially non-oscillatory schemes [16, 11, 10] on uniform meshes. Zhang,
Zhao and Chen [30] proposed fixed-point type sweeping methods on uniform meshes.
All of the above cited fast sweeping methods are based upon uniform meshes. In [23] a
class of novel fast sweeping methods was developed for isotropic eikonal equations on
triangular meshes for the first time. In [3], Cecil, Osher and Qian extended the fast
sweeping method to deal with level set equations on adaptive tree-based unstructured
meshes. Various parallel implementations of the fast sweeping method are developed
in [33]

In this paper we develop a local solver that decouples consistency and causality.
This approach allows one to deal with much more general Hamiltonians and applies
to both structured and unstructured grids. Since we are solving a nonlinear boundary
value problem, a large nonlinear system needs to be solved after discretization. We
apply the fast sweeping strategy developed in [23] to solve the system which gives an
efficient and unconditionally stable iterative method. In particular the fast sweeping
method is an iterative method of Gauss-Seidel type, consisting of correct causality
check and alternating sweeping orders. The key point is that all characteristics can be
divided into a finite number of groups and each group can be captured simultaneously
by one of the orderings. Recently this methodology has been studied extensively and
has also been applied successfully to other hyperbolic problems [14].

Here is the outline of this paper. In Section 2 a local solver for general convex
Hamiltonian will be described. The full numerical algorithm, the fast sweeping strategy
combined with our local solver, is summarized in Section 3. Explicit formulae is derived
for a class of anisotropic eikonal equations in Section 4. Finally numerical examples
will be shown in Section 5 to demonstrate both the efficiency and the accuracy of our
method.

2 Local solvers

2.1 Some basic facts

Because equation (1.1) arises naturally from geometrical optics for wave propagation
[2], without any hesitation we decide to adopt some common terminology from geo-
metrical optics in the following presentation.

For the sake of simplicity in the following derivation we assume that H is strictly
convex and homogeneous of degree one; we will comment on general cases later.
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Wavefronts of the traveltime are level sets defined by

{x ∈ Ω : T (x) = t, t ∈ R}.

The wavefront normal at a point x ∈ Ω is

n(x) =
∇T (x)

|∇T (x)| ,

whenever the gradient of traveltime T is well-defined, where p = ∇T (x) is the slowness
vector because it has the dimension of the reciprocal of velocity. Vp(x) = 1

|∇T (x)| is the
so-called phase speed. Thus we have

p(x) =
n(x)

Vp(x,n(x))
, (2.1)

Vp(x,n(x)) = H(x,n(x)), (2.2)

H(x,p) = 1. (2.3)

Since equation (1.1) is a nonlinear first-order equation, applying the method of
characteristics to the equation in phase space along ray trajectories (x(t),p(t)) yields

dx

dt
= ∇pH, (2.4)

dp

dt
= −∇xH, (2.5)

dT

dt
= p · dx

dt
= p · ∇pH = 1. (2.6)

The first equation defines the so-called group velocity vector, which points into the
same direction as the characteristic (ray) direction. Its magnitude is

vg(x,p) = |dx
dt

| = |∇pH|, (2.7)

which is the so-called group speed depending on the position x and the slowness vector
p, so that the group speed varies as the traveltime gradient does, implying the so-called
directional dependence.

In a homogeneous anisotropic medium, H(x,p) = H(p), the traveltime ∆T between
any given two points of distance ∆d is computed by the following relation:

∆T =
∆d

vg(p)
, (2.8)

where p is determined implicitly by using the condition that the ray direction is known
which is the unit vector along the straight line connecting the two given points. In
general, we have to use a numerical procedure to compute the above traveltime; for
example, see [17].

Remark: In an isotropic medium the group velocity vector (the ray direction) and
the phase velocity vector (the traveltime gradient) are in the same direction, and the
group speed and the phase speed are equal. As a result the computation of traveltime
between any two points is straightforward. In an anisotropic medium those are no
longer true.
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Remark: If limλ→0 ∇pH(x, λp) = 0, then the strict convexity of H(x,p) implies
that

(∇pH(x,p) −∇pH(x, λq)) · (p − λq) > 0 for ∀p,q; (2.9)

consequently, we have

p · ∇pH(x,p) ≥ 0 for ∀p. (2.10)

Therefore without using the homogeneity of H in p we conclude that the solution
value is nondecreasing along ray trajectories. Furthermore, if p · ∇pH(x,p) > 0, then
the solution value can be used as the running parameter along ray trajectories in the
above formulation. This is the most essential condition for the fast sweeping method to
work for Hamilton-Jacobi equations. Hence all the following algorithmic development
applies as long as limλ→0 ∇pH(x, λp) = 0 holds.

2.2 A local solver based on Fermat’s Principle

We tackle the two-dimensional case first. We consider a triangulation Th of Ω into non-
overlapping, nonempty and closed triangles T , with diameter hT , such that Ω̄=∪T ∈Th

T .
We assume that Th satisfies the following conditions:

• No obtuse triangles;

• No more than µ triangles have a common vertex;

• h = supT ∈Th
hT < 1;

• Th is regular: there exists a constant ω0 independent of h such that if ρT is the
diameter of the largest ball B ⊂ T , then for all T ∈ Th, hT ≤ ω0ρT .

Therefore, equation (1.1) is solved in the domain Ω, which has a triangulation Th

consisting of triangles. We consider every vertex and all triangles which are associated
with this vertex. See Figure 2.1 for a node C and its n triangles T1, T2, · · · , Tn. For a
typical triangle 4ABC we denote A : (xA, yA), B : (xB, yB) and C : (xC , yC); ∠A = β,
∠B = α, and ∠C = γ; AB = c, AC = b, and BC = a are the lengths of the edges AB,
AC and BC, respectively.

During the solution process we need a local solver at vertex C for each triangle; see
Figure 2.2. Given the values TA and TB at A and B of triangle 4ABC, we want to
calculate the value TC at C.

If TA and TB are used to update TC , then there must be a ray emanating from the
segment AB and hitting point C; namely there is an F (s) located in between A and
B, where s parametrizes the segment AB: F (0) = A and F (1) = B.

According to Fermat’s principle the traveltime at C is given by minimizing the
functional

TC(s) = sTB + (1 − s)TA +
d(s)

vg(C)
(2.11)

with respect to s, where

d(s) = CF (s) =
√

b2 + c2s2 − 2bcs cos β, (2.12)

vg(C; s) = vg(C; TC(s), TA, TB); (2.13)
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Figure 2.1: Vertex C and the local mesh.

α

A
B

C

β

γ

F

Figure 2.2: Update the value at C in a triangle.
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namely,

TC = min
s∈[0,1]

{

sTB + (1 − s)TA +
d(s)

vg(C; s)

}

. (2.14)

This is the so-called control-theoretic update-from-a-single-simplex formula as used in
[9, 26].

The main difficulty in implementing this formula is that we have to compute the
group speed vg(C; s) by using the current ray direction defined by C and F (s). By the
above formula we can immediately conclude that

TC ≥ min{TA, TB} (2.15)

if there exists a characteristic emanating from the segment AB to hit point C. However,
since the wave front normal ∇T does not coincide with the characteristic direction in
general, ∇T may not fall into the triangle; therefore, it is not necessarily true that

TC ≥ max{TA, TB}. (2.16)

These two facts are observed in our numerical examples.
Remark: In the special case of the eikonal equation, the wave front normal coin-

cides with the direction of characteristics and hence either one can be used to check
causality condition; since ∇T points away from C and is in between the two sides CA
and CB a causality-satisfying TC must be larger than max{TA, TB}.

Remark: The above formulation involves optimization which is avoidable by
adopting a fully Eulerian viewpoint.

2.3 A local solver based on an Eulerian discretization

By definition we have

TC − TA

b
= ∇T (C) ·

(

xC − xA

b
,
yC − yA

b

)t

+ o(h2), (2.17)

TC − TB

a
= ∇T (C) ·

(

xC − xB

a
,
yC − yB

a

)t

+ o(h2), (2.18)

where t denotes the transpose of vectors. Furthermore we have

(

TC−TA

b
TC−TB

a

)

= P∇T (C) + o(h2), (2.19)

where

P =

(

xC−xA

b
yC−yA

b
xC−xB

a
yC−yB

a

)

≡
(

rt
1

rt
2

)

. (2.20)

Assuming a linear approximation of T locally near C to ignore higher order terms
and solve for ∇TC , we have

∇T (C) ≈ P−1

(

TC−TA

b
TC−TB

a

)

, (2.21)
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where P−1 = PTQ and

Q =
1

sin2 γ

(

1, − cos γ
− cos γ, 1

)

.

Inserting ∇T (C) into the Hamilton-Jacobi equation at the mesh point C, we have
a consistent discretization of the equation in the triangle 4ABC:

H(C,∇T (C)) ≈ 1, (2.22)

Ĥ

(

C,
TC − TA

b
,
TC − TB

a

)

= 1, (2.23)

or

Ĥ(C, TC , TA, TB) = 1. (2.24)

Since in general this is a nonlinear equation for TC , we have to numerically solve the
nonlinear equation to obtain TC if TA and TB are given. For example, an anisotropic
eikonal equation will result in a quadratic equation for TC (see Section 4).

It is possible that we have multiple solutions of TC when solving the nonlinear
equation (2.24); thus we have to choose the one that satisfies causality, the so-called
characteristic condition.

The fundamental idea is the following. If there is no solution to equation (2.24)
it means that this triangle does not support a consistent TC . If there is one or more
solutions we need to check the causality condition. Using the computed TC and the
above equation, we get a ∇T (C) which can be used to compute the ray direction
∇pH(C,∇T (C)). The computed TC satisfies the causality condition if the character-
istic starting from C against the direction ∇pH(C,∇T (C)) intersects the line segment
AB, as illustrated in Figure 2.2. If there is no TC satisfying this causality condition it
means that this triangle does not support a TC that is both consistent and causality
satisfying. If after the causality check, there are multiple TC ’s from this triangle, then
we choose the smallest one using the first-arrival time principle.

Now we rigorously establish the above causality principle, the so-called character-
istic condition.

Since H(x,p) is strictly convex in the p argument, for a given x any straight line
in the slowness space intersects the slowness surface defined by H(x,p) = 1 at two
points at most; see Figure 2.3. In general, there are three cases:

1. two different intersections;

2. two repeated identical intersections;

3. no intersection.

In the first case two outward normals ∇pH at those two intersections give two
possible characteristic directions according to equation (2.4) at the given point x. In
the second case we have two repeated identical intersections, and the outward normal
at the intersection point also points into a characteristic direction at that point x.

Now consider the straight line equation (2.21) parametrized by TC in the slowness
space, which is rewritten as

p = r TC + r0 (2.25)

8



O P1

P2

Figure 2.3: A straight line intersects the convex slowness surface at two points at most.

where

r = P−1

(

b−1

a−1

)

=
a − b cos γ

a b sin2 γ
r1 +

b − a cos γ

a b sin2 γ
r2, (2.26)

r0 = P−1

(

−TA b−1

−TB a−1

)

=
b TB cos γ − a TA

a b sin2 γ
r1 +

a TA cos γ − b TB

a b sin2 γ
r2. (2.27)

This straight line intersects the slowness surface in exactly the same way as described
above in terms of the three cases; therefore we are able to establish the following
causality principle:

The first case: two different outward normals. These two outward normals
must have either opposite signs in the second component, which correspond to down-
going rays and upgoing rays, respectively, or have opposite signs in the first component
which correspond to left-going and right-going rays, respectively.

When the straight line is vertical or horizontal, these claims have been proved in
[21]; moreover, one can generalize the proof to handle the general case that the straight
line is inclined.

Consider an acute triangle 4ABC in Cartesian coordinates with the origin at the
mesh point C. We show that only one of those two ray directions may satisfy the
causality condition, since the acute triangle must belong to one of the following cases

1. if 4ABC is completely located in the upper half plane, then a downgoing ray
emanating from the segment AB should be selected to hit point C;

2. if 4ABC is completely located in the lower half plane, then a downgoing ray
emanating from the segment AB should be selected to hit point C;

3. if 4ABC is located completely in the right half plane, then a left-going ray
emanating from the segment AB should be selected to hit point C;
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4. if 4ABC is located completely in the left half plane, then a right-going ray
emanating from the segment AB should be selected to hit point C.

Finally to ensure that the characteristic indeed emanates from the segment AB,
one has to verify that the selected outward normal allows a ray to start from point C
and intersect with the segment AB and to accept the corresponding TC accordingly;
if not the rays hitting point C have to be enforced to travel along the edges AC and
BC, which will be dealt with in the third case.

The second case: two identical outward normals. We can use the similar
arguments as in the first case to decide whether to accept the corresponding charac-
teristic or not; if not we go to the third case.

The third case: no valid outward normals. In this case we force rays to travel
along either edge AC or edge BC. Since the ray direction is given and the Hamiltonian
is convex we can find the corresponding group speed by inversion of the relation (2.4)
(see [17] for more details). Then the traveltime at C is given by

TC = min

{

TA +
|AC|
vAC
g

, TB +
|BC|
vBC
g

}

(2.28)

where vAC
g and vBC

g denote the group speed along the edge AC and BC, respectively.
Remark: Rectangular grids can be considered as special cases. There are two

possible virtual triangulations on a rectangular grid as illustrated in Figure 2.4 for two
spatial dimensions. In case (a) four triangles are created which is similar to a five-point
stencil used in finite-difference schemes. In case (b) eight triangles are connected which
result in a nine-point stencil. Case (b) will give more accurate solutions on the same
Cartesian grid than Case (a) due to better directional resolution. As we will show
in our numerical examples, the gain in accuracy of case (b) justifies the extra cost
compared to case (a).

C C

(a) Four three-point stencils. (b) Eight three-point stencils.

Figure 2.4: Triangulation based on regular meshes.

We can summarize the above into an algorithm.
A 2-D local solver: (given TA and TB, determine TC = TC(TA, TB).)
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1. Solve equation (2.24) for two possible roots (more roots would be the same), T 1
C

and T 2
C , either analytically or numerically.

2. If there are two roots, T 1
C and T 2

C , then

(a) if T 1
C satisfies the characteristic condition, then

TC = min{TC , T 1
C};

(b) if T 2
C satisfies the characteristic condition, then

TC = min{TC , T 2
C};

(c) if none of the two roots satisfies the characteristic condition, then

TC = min

{

TC , TA +
|AC|
vAC
g

, TB +
|BC|
vBC
g

}

;

3. else

TC = min

{

TC , TA +
|AC|
vAC
g

, TB +
|BC|
vBC
g

}

.

Remark: The same local solver applies to vertices on the computational boundary
for outflow boundary conditions by using those triangles which are in the interior of
the computational domain only.

2.4 Consistency and monotonicity

Considering a triangle 4ABC in which TA and TB are given, we update the travel-time
TC at the vertex C. Denoting

q1 =
TC − TA

b
, q2 =

TC − TB

a
, q3 =

TB − TA

c
,

we adopt the framework given in [4] to show consistency and monotonicity of the
Godunov numerical Hamiltonian resulting from our local solver.

Lemma 2.1 (Consistency and Monotonicity) The numerical Hamiltonian Ĥ is

consistent:

Ĥ

(

C,
TC − TA

b
,
TC − TB

a

)

= H(C,p) (2.29)

if ∇Th = p ∈ R2. The numerical Hamiltonian Ĥ constructed in the local solver is

monotone if the causality condition holds.

Proof. By ∇Th = p ∈ R2, we have

(

TC−TA

b
TC−TB

a

)

= Pp. (2.30)

Inserting this into the numerical Hamiltonian, we have equation (2.29).
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Differentiating Ĥ(C, q1, q2) with respect to q1 and q2, the monotonicity of the Hamil-
tonian requires

∂Ĥ(C, q1, q2)

∂q1
≥ 0,

∂Ĥ(C, q1, q2)

∂q2
≥ 0; (2.31)

these can be satisfied if and only if the following holds component-wise:

P−1∇pH ≥ 0. (2.32)

The last inequality means that the characteristic direction ∇pH at C is a convex
combination of the two vectors CA and CB, which is exactly the condition that we
have imposed in choosing the characteristic direction in the local solver, the upwinding
condition. 2

2.5 How to compute the group speed?

In the above discussions we have to compute the group speed from a given ray direction.
Since in general anisotropic media we cannot find an explicit formula for the group
speed in terms of a given ray direction, we have to use a numerical procedure to
determine the group speed approximately.

Fortunately for the static Hamilton-Jacobi equation with the Hamiltonian H being
convex in the gradient argument we can easily modify a shooting method presented in
[17] to compute the group speed from a given ray direction which is uniquely determined
by two given points in a homogeneous medium. Since the algorithm is well explained
in [17], we will not pursue it any further.

2.6 Acute versus obtuse triangles

In developing our local solver we have assumed that the triangulation does not consist
of obtuse triangles. What happens if the triangulation does have obtuse triangles?
We illustrate the consequences by using the paraxial eikonal theory and geometrical
argument.

2.6.1 Isotropic cases

Consider the isotropic eikonal equation. Assuming that we have an obtuse triangle
4ABC in which TA and TB are given, we update the travel-time TC at the vertex
C. Let the unit directional vector r1 along edge CA and r2 along edge CB be in the
second and fourth quadrant, respectively; see Figure 2.5.

Then according to equation (2.26) we have vector r located in between r1 and r2,
as illustrated in Figure 2.5, and the straight line defined by equation (2.25) has r as its
directional vector. Depending on r0, i.e. on TA, TB and the triangle, the straight line
may have no intersection, two identical intersections, and two different intersections
with the slowness surface defined at the node C:

|p|F (C) = 1; (2.33)

see Figure 2.5.
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Figure 2.5: An obtuse triangle and its consequences in isotropic wave propagation.

P1

P2
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Figure 2.6: An obtuse triangle and its consequences in anisotropic wave propagation.
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By the characteristic condition, if the triangle supports a consistent discretiza-
tion then we will choose the intersection with the outward normal satisfying that the
characteristic starting from C against the direction provided by the outward normal
intersects the edge AB. As r varies in between r1 and r2, we have two extreme in-
tersections defined by extending r1 and r2 to the isotropic slowness surface; they are
D1 and D4 as illustrated in the figure. However, as observed from the figure the ray
direction defined by the outward normal at D1 has negative first-component and pos-
itive second-component while the ray direction defined by the outward normal at D4

has positive first-component and negative second-component; similar observations can
be made about D2 and D3.

In fact we can rigorously prove that as r varies from r1 to r2, the ray direction
defined by the corresponding outward normal changes its signs from (+,−) to (−, +),
noting that the ray direction hitting point C is opposite to the outward normal direction
in the figure. According to the proposed local solver, varying r between r1 and r2, the
possible ray direction hitting point C will change its sign from (+,−) to (−, +) going
through

(+,−) → (0,−) → (−,−) → (−, 0) → (−, +)

or
(+,−) → (+, 0) → (+, +) → (0, +) → (−, +)

due to the convexity of the slowness surface.
Therefore according to the paraxial eikonal theory [17] one cannot define a locally

stable, uni-directional propagation problem to update the traveltime at node C by
using traveltimes at node A and B.

2.6.2 Anisotropic cases

Next we consider the anisotropic eikonal equation. Assuming that we have an obtuse
triangle 4ABC in which TA and TB are given, we update the travel-time TC at the
vertex C.

Let the unit directional vectors r1 along edge CA and r2 along edge CB be in the
second and fourth quadrant, respectively; the slowness surface defined at node C is
given as illustrated in Figure 2.6. Then according to equation (2.26) we have vector r
located in between r1 and r2, as illustrated in Figure 2.6, and the straight line defined
by equation (2.25) has r as its directional vector. Depending on r0, i.e. on TA, TB and
the triangle, the straight line may have no intersection, two identical intersections, and
two different intersections with the convex slowness surface defined at the node C:

H(C,p) = 1; (2.34)

see Figure 2.6.
We note that this particular configuration as illustrated in Figure 2.6 has the fol-

lowing property: the sector of the slowness surface subtended by r1, r and r2 has
both horizontal and vertical tangent lines, and they are both unique due to the strict
convexity.

By the characteristic condition, if the triangle supports a consistent discretiza-
tion then we will choose the intersection with the outward normal satisfying that the
characteristic starting from C against the direction provided by the outward normal
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intersects the edge AB. As r varies in between r1 and r2, we have two extreme inter-
sections defined by r1 and r2, respectively; they are D1 and D4 as illustrated in the
figure. However, as observed from the figure the ray direction defined by the outward
normal at D1 has negative first-component and positive second-component while the
ray direction defined by the outward normal at D4 has positive first-component and
negative second-component; similar observations can be made about D2 and D3.

In fact we can rigorously prove that as r varies from r1 to r2, the ray direction
defined by the corresponding outward normal changes its sign from (+,−) to (−, +).
According to the proposed local solver, varying r between r1 and r2, the possible ray
direction hitting point C will change its sign from (+,−) to (−, +) going through

(+,−) → (0,−) → (−,−) → (−, 0) → (−, +)

or
(+,−) → (+, 0) → (+, +) → (0, +) → (−, +)

due to the convexity of the slowness surface.
Therefore according to the paraxial eikonal theory [17] one cannot define a locally

stable, uni-directional propagation problem to update the traveltime at node C by
using traveltimes at node A and B.

2.7 Generalizations to higher dimensions

All the above procedure can be easily extended to higher dimensions. The design
principle for the local solver still holds; namely, we first use consistency to find possible
candidates and then check the causality condition. The only thing to which we need to
pay attention is how to compute the group speed in higher dimensions if we are given
two points. In this case although we have to solve an implicit nonlinear system, the
problem still has a unique solution by the convexity of the slowness surface. Therefore,
we can use a similar shooting method as the one in [17].

3 The Fast Sweeping Algorithm

We now describe the complete algorithm combining the local solver explained in the
previous section with the fast sweeping strategy that we developed in [23].

• Step 1, Sorting: Sort all the nodes (vertexes) according to the lp distance to a
few reference points. In all our tests we use l1 distance.

• Step 2, Initialization: Assign large positive values to all nodes except those that
belong to or near the boundary (the initial front). Those boundary nodes are
assigned exact values or approximated values using shooting methods and these
values are fixed in later iterations.

• Step 3, Fast sweeping: Start Gauss-Seidel iterations using the local solver de-
scribed in the previous section with alternating sweeping orderings according to
the increasing and decreasing of distances of nodes to the chosen reference points.
During the iterations, it is crucial that the newly updated value is accepted only
if it is smaller than the current value. This updating rule will guarantee that (1)
the scheme is monotone and the value at any node is always improving; (2) once
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the value is correct, i.e., reaches the possible minimum value, it will not change
in later iterations.

Remark: If a rectangular grid is used then the sorting step is not needed as we can
alternate the natural ordering by indexes in different directions.

Given the consistency and monotonicity of the local solver by Lemma 2.1, one can
easily follow the proof in [32, 23] to show the following:

Theorem 3.1 There exists a unique solution for the discretized nonlinear system and

the fast sweeping iteration converges.

Also using similar arguments from [32, 23] one can show that the total number
of sweepings needed depends only on the specific properties of the PDE, such as the
turns of characteristics, which can be computed from the characteristic equations (2.4).
This tells us how many sweepings are need to cover the tangent directions along a
characteristic curve in the computational domain consecutively. On the discrete level,
this indicates into how many connected regions we can divide all nodes such that in
each region all nodes have the same dependence pattern on their neighbors; as a result
this dependence pattern can be covered by one of the orderings in the upwind fashion.

Letting M be the total number of nodes, the complexity of the above algorithm is
the following:

• on rectangular grids: O(M);

• on unstructured meshes. O(M log M).

One important note is that the constant in the complexity formula does not depend
on the anisotropy of the Hamiltonian. As an example, for elliptical anisotropic eikonal
equations, if the coefficients are constant, then the characteristics are straight lines; the
number of iterations needed for the fast sweeping method to converge is independent
of the anisotropy of the Hamiltonian.

Remark: On unstructured meshes the log M factor comes from the initial sorting
of all nodes. Once the sorting is done the complexity of the fast sweeping iterations is
O(M). Usually the sorting can be incorporated into the mesh generation easily with
little extra cost.

4 Application: an elliptical anisotropic eikonal

equation

We apply the above procedure and derive an explicit local solver for anisotropic eikonal
equations of the following type

[∇T (x)M(x)∇T (x)]
1

2 = 1, x ∈ Rd, (4.35)

where M(x) is a d × d symmetric positive definite matrix. In particular M can be
considered as a specific metric for the medium in which the wave front is propagating
or in which we want to compute geodesics.

For simplicity let us consider in two dimensions,

H =
√

a(x) p2
1 − 2c(x) p1 p2 + b(x) p2

2 = 1, (4.36)
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where a > 0, b > 0 and c2 − ab < 0. Without abusing notations we use a, b and c to
denote the coefficients in the anisotropic eikonal equation in the sequel.

Denote matrix P in equation (2.20) by

P =

(

n11, n12

n21, n22

)

,

where n11 = (xC −xA)/lb, n12 = (yC −yA)/lb, n21 = (xC −xB)/la, n22 = (yC −yB)/la;
lb, la and lc are the lengths of edge CA, CB and AB, respectively. Then

P−1 =
1

sin2 γ

(

n11 − n21 cos γ, n21 − n11 cos γ
n12 − n22 cos γ, n22 − n12 cos γ

)

≡
(

p11, p12

p21, p22

)

.

From (2.21), we have

∇T (C) ≈
(

(p11

lb
+ p12

la
)TC − (p11

lb
TA + p12

la
TB)

(p21

lb
+ p22

la
)TC − (p21

lb
TA + p22

la
TB)

)

≡
(

g1TC + g2

g3TC + g4

)

, (4.37)

where

g1 ≡ p11

lb
+

p12

la
, (4.38)

g2 ≡ −(
p11

lb
TA +

p12

la
TB), (4.39)

g3 ≡ (
p21

lb
+

p22

la
), (4.40)

g4 ≡ −(
p21

lb
TA +

p22

la
TB). (4.41)

Substituting ∇T (C) in (4.37) into the Hamilton-Jacobi equation (4.36), we obtain the
quadratic equation

w1T
2
C + w2TC + w3 − 1 = 0, (4.42)

where

w1 ≡ ag2
1 + bg2

3 − 2cg1g3, (4.43)

w2 ≡ 2ag1g2 + 2bg3g4 − 2c(g1g4 + g2g3), (4.44)

w3 ≡ ag2
2 + bg2

4 − 2cg2g4, (4.45)

where a = a(xC), b = b(xC), and c = c(xC).
If the quadratic equation (4.42) has real roots

TC =
−w2 ±

√

w2
2 − 4w1(w3 − 1)

2w1
, (4.46)

then we check the causality for the positive roots; i.e., if TC is a positive root, we
reconstruct ∇T (C) = (p, q) by (4.37), and we calculate the characteristic direction

d =

(

ap − cq
bq − cp

)

;

next we check whether the characteristic line with direction d passing vertex C falls
inside the triangle 4ABC or not. If the characteristic line is inside the 4ABC,
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causality is satisfied and we update TC if this new value is smaller than the current
numerical value of TC . Otherwise, if the quadratic equation (4.42) has no positive root
satisfying the causality condition, then we have to use the group speed along edges AC
and BC, and

TC = min

{

TC , TA +
|AC|
vAC
g

, TB +
|BC|
vBC
g

}

.

Remark: If M(x) is a constant matrix, then the characteristics are straight lines.
So four sweepings are enough to cover all directions of characteristics like the case of
eikonal equations.

5 Numerical experiments

In all the examples we choose four corners in 2-D rectangular computational domains
as the reference points and sort the nodes according to the l1-metric by using the
quicksort method, as in [23]. Actually ordering using l1 distance to two diagonal
corners are the same. Essentially our ordering is the same as using two corners on any
one side. The convergence of iteration is measured in terms of L1-norm as advocated
by Lin and Tadmor [15]; i.e., the iteration stops when the successive error satisfies
‖Tn+1 − Tn‖L1 < 10−10. In all of our test cases one sweeping means one Gauss-Seidel
iteration with a particular ordering through all nodes.

A typical acute triangulation is shown in Fig. 5.1. When we check the accuracy of
our methods, we refine the mesh uniformly, i.e., cutting each triangle into four smaller
similar ones. Exact solutions needed in initializing the algorithm and checking accuracy
are computed by the shooting method [17] whenever possible. In our examples, no
special treatment is needed for vertices on the boundary of the computational domain.
Their computational stencils (Fig. 2.1) only involves triangles which are in the interior
of the computational domain.

5.1 Example 1

We consider the following equation

√

a T 2
x + b T 2

y − 2c Tx Ty = 1, (x, y) ∈ (−2, 2) × (−2, 2), (5.1)

T (0, 0) = 0, (5.2)

where a > 0, b > 0 and c2 − ab < 0.
In a homogeneous anisotropic metric the eigenvalues of the symmetric positive

definite matrix

M =

(

a, c
c, b

)

characterizes the anisotropy of the metric. According to [26] the anisotropy coefficient
of the metric is defined by

η =

√

λmax(M)

λmin(M)
,

where λmax(M) and λmin(M) are the larger and smaller eigenvalues of M, respectively.
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Case 1: a homogeneous, mild anisotropic case. We take a = 1, b = 1, and
c = 0.9; η =

√
19. Since the point source problem has an upwind singularity at the

source [18] we have to measure the order of accuracy of the fast sweeping method
away from the singularity. Otherwise the accuracy will degenerate to h log h [32]. To
achieve this we first fix a small region, [−0.2, 0.2] × [−0.2, 0.2], around the source and
assign the exact solution to the grid points inside the small region, then the numerical
error is computed only for the grid points outside the small region; this is the so-called
wrapping technique. As shown in Table 5.1, with this wrapping technique we are able to
observe the expected first-order accuracy while without the wrapping technique we are
only able to observe the degraded first-order accuracy. In Table 5.1, we also observe
that the number of iterations needed for convergence is almost a constant which is
independent of mesh sizes. Figure 5.2 shows the contour plot for this test case.

Next we test our algorithm on rectangular grids, which can be considered as special
cases. See the discussion in Section 2 and Figure 2.4. The sweeping directions are based
on the l1-metric. The accuracy and sweeping iteration numbers are listed in Table 5.2
for both the four three-point stencils and the eight three-point stencils (Figure 2.4).
Apparently the eight three-point stencils can result in a much better accuracy than the
four three-point stencils.

In this case of rectangular grids we also test the i, j orderings as that used in the
fast sweeping method on rectangular meshes, and the same accuracy and the same
number of sweepings are obtained; we omit the results here.

Case 2: Homogeneous, strong anisotropic cases. We carry out a sequence of
tests to study the power and the robustness of our sweeping methods.

First we increase the coefficient a successively from 2 to 2000 with b = 1 and
c = 0 fixed. Figure 5.3 shows the contour plots of the results for a = 2, 20, 200, 2000
computed by using the same mesh with 5716 nodes and 11264 triangles. In addition for
a = 200, 2000 we use a finer mesh with 90625 nodes and 180224 triangles; the results
are shown in Figure 5.4, which have higher resolution than the ones shown in Figure
5.3.

The above cases have the symmetrical axis of the slowness surface aligned with
the Cartesian axis, which may not be able to test out the full power of the sweeping
methods. To do that we take out the two cases, (a = 200, b = 1, c = 0) and (a =
2000, b = 1, c = 0), and apply to the resulting matrices M a similarity transform
defined by a rotation with angle π

6 . Then we have (a = 150.25, b = 50.75, c = 86.16953)
and (a = 1500.25, b = 500.75, c = 865.5924); the resulting anisotropic coefficients are
η =

√
200 and η =

√
2000, respectively.

Figure 5.5 shows the contour plots for the two cases with the computational mesh
of 90625 nodes and 180224 triangles. Numerical errors and order of convergence are
shown in Table 5.3 and Table 5.4. We have used L1-norm to measure convergence
order which is advocated by Lin and Tadmor [15].

These results demonstrate that our sweeping method is robust enough to handle the
equation with a very high anisotropy coefficient. Unlike other methods with numerical
domain of dependency depending on the anisotropy coefficient η which may be very
large when η is large, our iterative methods do not have such a shortcoming and thus are
efficient and robust. As discussed in Section 3 the number of sweepings is independent
of mesh size and anisotropy and is dependent on the behavior of characteristics. For
the case of constant coefficients, the characteristics are straight-lines and that is why
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Table 5.1: The order of convergence; a = 1, b = 1, c = 0.9.

Wrapping [−0.2, 0.2] × [−0.2, 0.2] No wrapping
Nodes Elements L1 error order iter L1 error order iter

1473 2816 6.45E-2 – 4 7.47E-2 – 4
5716 11264 3.27E-2 0.98 4 4.68E-2 0.68 4

22785 45056 1.75E-2 0.91 4 2.87E-2 0.71 5
90625 180224 8.88E-3 0.97 4 1.71E-2 0.75 5

Table 5.2: Comparison of the accuracy between the four three-point stencils and the eight
three-point stencils (Fig. 2.4); Wrapping [−0.2, 0.2] × [−0.2, 0.2]; a = 1, b = 1, c = 0.9.

Four three-point stencils Eight three-point stencils
Mesh L1 error order iter L1 error order iter

40 × 40 1.17E-1 – 4 1.57E-2 – 4
80 × 80 6.35E-2 0.88 4 8.18E-3 0.94 4

160 × 160 3.39E-2 0.90 4 4.18E-3 0.97 4
320 × 320 1.78E-2 0.93 4 2.12E-3 0.98 4

we only need 4-5 sweepings.

5.2 Example 2

We consider the following equation with variable coefficients

√

a(x, y) T 2
x + b(x, y) T 2

y − 2c(x, y) Tx Ty = 1, (x, y) ∈ (−1, 1) × (−1, 1),

T (x, y) = 0, (x, y) ∈ Γ,

where Γ is a unit square in the middle of the domain: Γ = {x = ±0.5, |y| ≤ 0.5}∪{y =
±0.5, |x| ≤ 0.5}.

We choose a(x, y) = 150.25(1 + λ sin2(πxy)), b(x, y) = 50.75(1 + δ cos2(πxy)),
c(x, y) = 86.16953(1 − ε sin2(πxy)), where λ, δ and ε are constants to be selected;

Table 5.3: The order of convergence; a = 150.25, b = 50.75, c = 86.16953.

Wrapping [−0.2, 0.2] × [−0.2, 0.2] No wrapping
Nodes Elements L1 error order iter L1 error order iter

1473 2816 8.78E-3 – 4 8.87E-3 – 4
5716 11264 4.04E-3 1.12 4 5.38E-3 0.72 4

22785 45056 2.10E-3 0.94 4 3.22E-3 0.74 5
90625 180224 1.04E-3 1.02 4 1.88E-3 0.77 5
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Table 5.4: The order of convergence; a = 1500.25, b = 500.75, c = 865.5924.

Wrapping [−0.2, 0.2] × [−0.2, 0.2] No wrapping
Nodes Elements L1 error order iter L1 error order iter

1473 2816 6.23E-3 – 4 5.72E-3 – 4
5716 11264 2.89E-3 1.11 4 3.33E-3 0.78 4

22785 45056 1.53E-3 0.92 4 1.93E-3 0.79 5
90625 180224 7.66E-4 1.00 4 1.10E-3 0.80 5
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Figure 5.1: A typical acute triangulation.
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Figure 5.2: a = 1, b = 1, c = 0.9, η =
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19; convergence after 4 sweepings.
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Table 5.5: Comparison of iteration numbers of the four three-point stencil (Fig. 2.4 (a)), the
eight three-point stencil (Fig. 2.4 (b)) and the regular triangular stencil (Fig. 2.1), a(x, y) =
150.25(1 + λ sin2(πxy)), b(x, y) = 50.75(1 + δ cos2(πxy)), c(x, y) = 86.16953(1 − ε sin2(πxy))
where λ = 1, δ = 1, ε = 0.125.

Four three-point stencil Eight three-point stencil triangular stencil
Mesh iter Mesh iter Mesh Nodes iter

40 × 40 11 40 × 40 9 1473 9
80 × 80 13 80 × 80 10 5761 7

160 × 160 13 160 × 160 11 22785 8
320 × 320 13 320 × 320 13 90625 9

this is a perturbation of the homogeneous case (a, b, c) = (150.25, 50.75, 86.16953).
We solve this equation on three different sets of stencils: a regular triangular mesh

and two virtual meshes constructed from uniform rectangular grids, where one virtual
mesh consists of four three-point stencils at each node and the other of eight three-point
stencils at each node.

We take λ = 1, δ = 1 and ε = 0.125. The results in terms of mesh refinement are
shown in Table 5.5. Figure 5.6 shows contours of the solutions on different meshes.

6 Conclusion

We develop a fast sweeping method for static Hamilton-Jacobi equations with con-
vex Hamiltonians. Local solvers and fast sweeping strategies apply to structured and
unstructured meshes. With causality correctly enforced during sweepings numerical
evidence indicates that the fast sweeping method converges in a finite number of iter-
ations independent of mesh size. Numerical examples validate both the accuracy and
the efficiency of the new methods.
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Figure 5.3: (a): a = 2, b = 1, c = 0, η =
√

2; convergence after 5 sweepings; (b): a = 20, b =
1, c = 0, η =

√
20; convergence after 5 sweepings; (c): a = 200, b = 1, c = 0, η =

√
200;

convergence after 5 sweepings; (d): a = 2000, b = 1, c = 0, η =
√

2000; convergence after 5
sweepings.
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Figure 5.4: Refined mesh. (a): a = 200, b = 1, c = 0, η =
√

200; convergence after 5
sweepings; (b): a = 2000, b = 1, c = 0, η =

√
2000; convergence after 5 sweepings.
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Figure 5.5: (a): a = 150.25, b = 50.75, c = 86.16953, η =
√

200; convergence after 5
sweepings; (b): a = 1500.25, b = 500.75, c = 865.5924, η =

√
2000; convergence after 5

sweepings.
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22785 nodes, 45056 triangles.
8 sweeping iterations.
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160 x 160 mesh, using the eight three-point stencil
11 sweeping iterations.
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160 x 160 mesh, using the four three-point stencil
13 sweeping iterations.

(b) (c)

Figure 5.6: a(x, y) = 150.25(1 + λ sin2(πxy)), b(x, y) = 50.75(1 + δ cos2(πxy)), c(x, y) =
86.16953(1 − ε sin2(πxy)) where λ = 1, δ = 1, ε = 0.125. (a): On a general triangular mesh
with 22785 nodes, convergence after 8 sweepings; (b): on the 160 × 160 rectangular mesh,
using the eight three-point stencils, convergence after 11 sweepings; (c) on the 160 × 160
rectangular mesh, using the four three-point stencils, convergence after 13 sweepings.
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