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Abstract. We develop a step-flow model for the hetero-epitaxy of a generic, strained, subtitu-
tional, binary alloy. The underlying theory is based on the fundamental principles of modern con-
tinuum thermodynamics. In order to resolve the inherent disparity in the spatial scales—continuous
in the lateral directions vs. atomistically discrete along the epitaxial axis—, we represent the film as
a layered structure, with the layer height equal to the lattice parameter along the growth direction,
thus extending the classical BCF framework [Burton, Cabrera, & Frank. The growth of crystals
and the equilibrium of their surfaces. Phil. Trans. Roy. Soc. London A, 243 (1951) 299–358]
to growth situations in which the bulk behaviour impacts on the surface evolution. Our discrete-
continuum model takes the form of a free-boundary problem for the evolution of monoatomic steps
on a vicinal surface, in which interfacial effects on the terraces and along the step edges couple to
their bulk counterparts (i.e., within both film and, indirectly, substrate). In particular, the proposed
constitutive theory is such that the film layers are endowed with (generalized) Ginzburg–Landau free
energies that account for phase segregation and, concomitantly, competition between gradient-driven
coarsening and elastic refining of the separated domains. Importantly, the bulk and terrace effects
are intertwinned with the step dynamics via novel boundary conditions at the step edges derived
from separate balance laws for configurational and micro-forces. Specifically, the former forces are
associated with the evolution of defects (in the present setting, the steps) whereas the latter forces
accompany micro- and nano-scopic changes in an order parameter (for a binary alloy subject to
diffusion-mediated phase separation, the atomic density of one of its components or, equivalently,
the relative atomic density), and the postulated balances should be viewed as generalizations to
a dynamic, dissipative setting—such as epitaxial growth, a far-from-equilibrium process—of more
standard variational calculations.
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1. Introduction. The growth of thin solid films by molecular beam epitaxy
(MBE) is known to yield high-quality surfaces, i.e., ones characterized by well defined
crystallographic orientations. Correspondingly, the morphological evolution of such
surfaces during deposition has long been a major focus of attention in surface science,
cf., e.g., Tsao [1], Van der Eerden [2], Saito [3], Pimpinelli & Villain [4],
Jeōng & Williams [5]. Indeed, the quasi-planar shape of growing vicinal surfaces
can be significantly altered by instabilities of various types. In the context of applica-
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tions for which a planar morphology is desirable, e.g., for hetero-junctions in semicon-
ductor devices, such instabilities are considered detrimental. (The role of theory there
is to investigate the existence of growth regimes for which these instabilities can be
entirely suppressed.) In contrast, if the goal is the processing of nanostructures—e.g.,
quantum dots and wires—via the deposition of self-organizing films, then the same
instabilities come to be viewed as benefitial by crystal growers as they provide an
alternative to the more standard materials-patterning technologies. In either case, a
better mathematical understanding of the onset and evolution of such instabilities is
crucial. Specifically, these instabilities are geometric (i.e., curvature-driven), kinetic
(e.g., of the Ehrlich–Schwoebel, cf. Schwoebel & Shipsey [6] and Ehrlich &
Hudda [7], or of the Bales–Zangwill type, cf. Bales & Zangwill [8]), and thermo-
dynamic (i.e., energetic) in nature, and the interplay between the underlying physical
and/or chemical mechanisms during growth is still not completely understood, par-
ticularly in the context of multispecies epitaxy. The present work aims at deriving
a thermodynamically consistent, continuum-discrete model for the hetero-epitaxial
growth of a generic thin solid film made of a substitutional binary alloy, viewed as
a layered nanostructure and whose surface evolves via step flow.1 Of chief interest
are phase segregation and the ensuing competition between coarsening—which re-
sults from the incorporation of a gradient term into the bulk free-energy density that
penalizes abrupt spatial variations in chemical composition—and elastically driven
refining of the separated domains within the film and substrate. We begin with a
brief discussion of the literature, both theoretical and experimental.2

1.1. Homo-epitaxy. During homo-epitaxy, in which a thin film of a pure sub-
stance is deposited upon a substrate of the same material, the morphological evolution
of the film surface is governed solely by processes which occur locally, i.e., at the sur-
face and in its immediate vicinity (this is the so-called interface-controlled growth
regime). As originally proposed by Burton, Cabrera, & Frank [10] (referred to
below as the BCF model), the growth process can be effectively described by the
nucleation, advancement, and annihilation of monatomic steps. Mediated by the dif-
fusive transport of adatoms on the terraces and their attachment-detachment kinetics
along the step edges, these mechanisms provide the basis for a (2+1)-dimensional
description of surface evolution, i.e., two-dimensional in the lateral directions and
one-dimensional along the growth axis. Most importantly, such a framework embeds
a coarse-grained atomistic description of the steps, accounting in particular for edge
kinetic effects, within a continuum formalism whose range of validity encompasses
large time and length scales3. (For recent work on finer atomistic descriptions of step

1At sufficiently elevated temperatures, but below the roughening temperature, high adatom
mobilities insure that diffusion towards and attachment to the steps of the vicinal surface are the
predominant growth mechanisms. Accordingly, the nucleation and growth of monatomic-high islands
—resulting from collisions between adatoms, dimers, trimers, etc., during random walk—on the ter-
races can be ignored. Hence the assumption that growth occurs exclusively via step flow. Moreover,
it is expected that at high temperatures bulk atomic diffusion is activated and, in the presence of a
double-well bulk potential, phase separation ensues (cf. the more detailed discussion below).

2The list of articles reviewed herein is by no means exhaustive. Indeed, there exists a large body
of literature on epitaxial crystal growth that spans several decades of research and encompasses a
wide variety of methodologies, from atomistics to continuum. (A good starting point would be the
books by Tsao [1], Saito [3], and Pimpinelli & Villain [4], and/or the review articles by Van der
Eerden [2], Jeōng & Williams [5], and Krug [9].) Nevertheless, the novel features of the proposed
theory have no direct antecedents as is discussed below.

3The BCF formalism has become paradigmatic of the study of surface evolution during epitaxy.
For recent reviews of step dynamics in the setting of homo-epitaxy and the resulting morphological
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kinetics within the BCF formalism, cf., e.g., Caflisch et al. [12] and Balykov &
Voigt [13, 14].) Our goal here is to extend the discrete-continuum BCF formalism
to growth situations where the bulk behaviour impacts on the step-mediated surface
evolution. We propose to do so by modeling the film as a layered nanostructure with
the interfaces between adjacent layers as fictitious extensions of the flat terraces (cf.
Fig. 2.1).

1.2. Hetero-epitaxy. In contrast, during hetero-epitaxy, film and substrate are
made of different materials, e.g., Si on Ge, or possibly of the same material but with
different compositions, e.g., a film consisting of a generic binary alloy AαB1−α de-
posited upon a substrate made of the same alloy but with different stoichiometry
AδB1−δ (α 6= δ). In either case, a misfit stress is generated as a result of the dis-
crepancy in lattice parameters between film and substrate, and the ensuing compe-
tition between surface tension and bulk strain-energy is known to influence the film
growth, with the former inhibiting the growth of instabilities and the latter favoring
the formation, via adatom diffusion, of surface undulations that relieve the stress (as
established for single-component systems by Asaro & Tiller [15], Grinfeld [16],
Srolovitz [17], and Spencer, Voorhees, & Davis [18]).4 During alloy growth,
this competition is rendered more intricate by the presence of multiple chemical species
and the ensuing phase segregation (cf., e.g., Léonard & Desai [22] and the refer-
ences therein). From the point of view of applications, controlling the onset and
evolution of stress-driven instabilities during the epitaxy of self-assembling crystalline
films paves the way to the systematic (rather than ad hoc) processing of nanoscale
structures, e.g., quantum dots and wires, ordered two-dimensional patterns, lateral
multilayers, etc. This in turn is contingent on a better understanding of the interplay
between bulk elasticity, chemical composition, and surface mechanisms. Below is a
concise survey of previous studies pertaining to the impact on the surface morphology
of the interaction between chemical composition and strain-energy.

1.2.1. Film composition and strain-energy. During the growth of strained
alloy films, compositional inhomogeneities within the bulk and on the surface are
known to affect the morphological evolution of the latter.5 In Spencer, Voorhees,
& Tersoff [23, 24], this influence is traced back to two distinct features of the un-
derlying atomic structure of the growing film, namely the different atomic radii of
the alloy components and the differences in adatom mobilities, and it is established
that, for adatoms of distinct radii and mobilities, a growth regime exists for which
morphological and compositional instabilities can be suppressed. But these studies do
not consider phase separation within the bulk or on the surface of the growing film,6

a growth feature for which there is ample experimental evidence. The coupling be-
tween atomic ordering (alloying), phase segregation, and stress-driven morphological

instabilities, cf. Krug [9] and Pierre-Louis [11].
4Bulk strain-energy is a central ingredient of continuum theories of hetero-epitaxial growth.

Indeed, as mentioned above, the difference in the film and substrate lattice parameters generates
a mismatch strain and, correspondingly, a misfit stress. An alternative mechanism by which the
lattice mismatch is relieved resides in the formation of dislocations that are generated on the film-
substrate interface, cf., e.g., Kukta & Freund [19], Freund [20], and Freund & Suresh [21].
Herein we confine our attention to coherent substrate-film interface and hence assume that the film
is dislocation-free.

5Indeed, compositional non-uniformities lead to (i) solute stresses which in turn trigger the
formation of island-like structures on the surface, and (ii) variations in the elastic coefficients and
surface energy, hence contributing to the competition between interfacial and strain energies.

6In particular, bulk atomic diffusion is ignored, see also Guyer & Voorhees [25, 26].
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instabilities is, on the other hand, the subject of Léonard & Desai [27, 28, 29], a
series of articles in which the focus is on the growth of binary alloys such that the two
species are simultaneously deposited (a setting we shall also consider herein).7 These
theoretical studies are augmented by several recent experiments involving phase seg-
regation in compositionally inhomogeneous crystalline (sub)monolayers that indicate
a strong dependence of concentration on strain energy, cf., e.g., Pohl et al. [31],
Tober et al. [32], and Thayer et al. [33]. The stability of the observed two-
dimensional, phase-segregated domains was first investigated by Marchenko [34] and
Ng & Vanderbilt [35], and more recently by Lu & Suo [36, 37] and Kim & Lu [38]
with the aim of characterizing pattern formation during the deposition of epilayers.
Specifically, the observed patterns result from the interplay between two competing
mechanisms: coarsening, due to the presence of a phase-boundary free energy, and
elastically driven refining. Finally, additional evidence of nanoscale pattern forma-
tion was obtained via quantitative first-principles calculations, cf. Ozolins, Asta,
& Hoyt [39], and kinetic Monte Carlo simulations, cf. Volkmann et al. [40].

Despite the great impact that they have had on our understanding of the cou-
pled effects of elasticity and chemical composition on the morphological stability of
alloy films and epilayers, these studies, whether of a continuum nature or based on
an atomistic methodology, suffer from certain limitations. Specifically, the ones that
consider growth dynamics do so either at the mesoscale—i.e., by assuming that the
film surface is a smooth, time-dependent, two-dimensional manifold—with the conse-
quence that the role of the finer details of the surface nanostructure such as steps is
not accounted for, or for perfectly flat surfaces—i.e., neglecting surface fluctuations
altogether, a reasonable assumption only in the context of epilayer growth—, whereas
the remaining studies are confined to equilibrium situations. But, because phase seg-
regation and the ensuing pattern formation occur during MBE growth, and given that
the latter proceeds, at high temperatures, via the motion of steps, it is essential for
the understanding of the onset and evolution of stress-induced instabilities in alloy
films at the nanoscale to examine the interplay between chemical composition and
misfit strain in the dynamic setting of step-flow growth.

1.2.2. Stress-induced instabilities and the flow of steps. Various exper-
iments indicate that the early stages of the stress-induced self-assembly of facetted
three-dimensional islands are related to the merging of steps on the film surface, cf.,
e.g., Sutter & Lagally [41] and Tromp, Ross, & Reuter [42]. Specifically,
the spacing between steps gradually decreases until the sidewalls of the developing
pyramides attain certain crystallographic orientations. In Shennoy & Freund [43],
these observations serve as a basis for the formulation of a continuum theory for the
emergence of islands whose key ingredients are elastic step-step interactions and a
dependence of the step free energy on the mismatch strain. Changes in composition,
however, have not been considered. Moreover, that step flow plays a direct role in the
alloying (chemical ordering) of thin films has only recently been experimentally put
in evidence, cf. Hannon et al. [44] in which it is observed that the intermixing of
components during growth is enhanced on stepped surfaces and hindered on terraces
where step flow does not occur. Importantly, as alluded to above, a theoretical under-
standing of the role of steps during alloy epitaxy is still lacking. The model proposed

7Note that the resulting concentration modulations are also achieved by alternately depositing
different materials or, when one material is deposited upon another, via vertical exchange mechanisms
by which the substrate constituents remain present on the growing surface. Cf., e.g., Bierwald et
al. [30].
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herein is an attempt in that direction.

1.3. A step-flow model for alloy growth. Main results. In this article,
we present a discrete-continuum theory for the hetero-epitaxial, step-flow growth of
substitutional, binary alloys which couples surface (i.e., terrace and step) effects with
bulk (i.e., film and substrate) atomic transport and elasticity. Our goal is to provide a
thermodynamically compatible framework within which to investigate alloy formation
(i.e., intermixing and phase segregation), surface-morphology evolution, and their
interplay in the context of multicomponent film growth. Of chief interest are the
equations that govern the evolution of steps. Indeed, it is these equations that couple
the diffusion-mediated phase separation within the film layers to the step dynamics.

1.3.1. Step-flow growth of multispecies films. We briefly recall several at-
tempts to extend the classical BCF model to the case of multiple species, with and
without strain relaxation. Step-flow growth situations in which two distinct, chem-
ically reacting species are deposited upon a rigid substrate8 have been investigated
in Jabbour & Bhattacharya [45], Pimpinelli & Videcocq [46], Pimpinelli,
Videcocq, & Vladimirova [47], and Pimpinelli et al. [48]. In particular, all
three models share the rather restrictive assumption that the growing crystal consists
of just one type of (real or effective) particles formed via a chemical reaction, either
along the steps or on the terraces, between adatoms of the two deposited materials.
Hence, there is no atomic diffusion within the film and, subsequently, the issue of
coupling surface and bulk mechanisms is simply irrelevant in that context. A more
general theory of multispecies epitaxy that incorporates step anisotropy, allows for de-
partures from local equilibrium, and accounts for general chemical kinetics in a way
consistent with the second law, but is equally oblivious of the bulk phase is proposed
by Cermelli & Jabbour [49].9 In contrast, the model developed in Jabbour [50]
accounts explicitly for the coupling between bulk and surface as well as phase sepa-
ration, but it does not allow for either coarsening or refining of the formed domains
(i.e., its formulation precludes elasticity, and its constitutive provisions do not per-
mit a gradient-dependent bulk free energy). Moreover, it differs from the present
model in that it accounts only indirectly for the discrete structure of the film along
the growth direction, whereas our layered structure, by extending the vicinal sur-
face’s terraces into vitual interfaces between monolayers within the film, allows for an
explicit discrete-continuum description of the growth process. Finally, we note that
strain relaxation in a discrete-continuum framework has only recently been considered
by Schindler et al. [51], where an atomistic model is used to describe elasticity;
in contrast, our approach is based on standard continuum elasticity formulated on an
atomistic grid.

1.3.2. Main results: bulk and surface evolution equations. The main
contribution of the proposed model resides in the coupled PDE’s that govern the dy-
namics of steps on the film vicinal surface. As noted above, these equations couple
the evolution of steps to (a) the equations that govern the adsorption-desorption and
diffusive transport of adatoms on the terraces and to (b) the equations that describe
bulk atomic diffusion and elasticity. The former take the form of reaction-diffusion
PDE’s on the terraces whereas the latter, when supplemented by constitutive pre-
scriptions for the bulk free-energy densities of the Ginzburg–Landau type, reduce to

8I.e., one within which the stress is indeterminate.
9Specifically, it is assumed that the bulk atomic densities of the alloy components are constant.
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discrete-continuum Cahn–Hilliard equations, intertwinned with the mechanical equi-
librium equations (also in a hybrid discrete-continuum form), within the film layers
and substrate. Specifically, along each step, the evolution equations consist of (i)
species jump conditions that account for both diffusive and convective contributions
to the adatom fluxes from the adjacent terraces into the steps,10 (ii) a continuity-of-
traction condition that complements the bulk mechanical-equilibrium equations, (iii)
a chemical interface-condition that ensures the continuity of the relative chemical po-
tential across each step, (iv) a configurational force balance which, when constitutively
augmented by Eshelby-type relations, yields a “kinetic relation” that prescribes the
step velocity as a function of the thermodynamic driving force acting on it, (v) a
microforce balance which provides, over and above the species conservation equations,
a supplemental boundary condition for the Cahn–Hilliard equation within the upper
layer terminating at the given step, and finally (vi) a total atomic-density balance.11

Consider the step-flow growth of a binary substitutional alloy. Let ρk
i denote the

density of adatoms of the k-th species (k = 1, 2) on the i-th terrace (i = 1, . . . , N),
µk

i the corresponding chemical potential, ρ12
i,b and µ12

i,b the relative atomic density and
chemical potential within the i-th layer of the film respectively (ρ12

i,b := ρ1
i,b − ρ2

i,b

and µ12
i,b := µ1

i,b − µ2
i,b), ui the (two-dimensional) displacement within the i-th layer,

and Ei the corresponding linearized, discrete-continuum strain tensor (as defined in
(3.11)). Finally, denote by ρ12

−1,b, µ12
−1,b, u−1, and E−1 the relative atomic density,

relative chemical potential, (three-dimensional) displacement field, and the linearized
strain tensor within the substrate.

• Upon the i-th terrace (1 ≤ i ≤ N), the k-th species balance (k = 1, 2) takes
the form of a reaction-diffusion equation:

∂tρ
k
i − div

{
Lk

i∇µk
i

}
= Fk − γk

i µk
i , (1.1)

where Lk
i = Lk(ρ12

i−1,b), Fk, and γk = γk(ρ12
i−1,b) are the terrace atomic mo-

bility, deposition flux, and desorption coefficient of k-adatoms respectively.12

10For simplicity, we choose to neglect step adatom densities, i.e., the steps are endowed with a
thermodynamic structure but are not allowed to sustain mass. Furthermore, the terrace adatom
diffusion is assumed to be isotropic and interspecies coupling is ignored. For a general theory that
allows for anisotropic terrace adatom diffusion and accounts for edge adatom densities and anisotropy
as well as step and terrace chemical reactions, cf. Cermelli & Jabbour [49].

11Regarding the physical significance of (iv) and (v), a few remarks are in order. Configurational
forces are associated with the evolution of defects—here the steps—and we take the point of view
that they satisfy a separate balance law (cf., e.g., Gurtin [52, 53] and the references therein). The
latter, when localized to an evolving step and constitutively augmented, yields a generalization
to multispecies systems of the classical Gibbs–Thomson condition, one that does not require local
equilibrium along the step edges and is hence appropriate for dynamic, dissipative settings such as
the present one. On the other hand, microforces accompany the changes in an order parameter—
in the case of a phase-segregating binary alloy, the bulk density of one of its two components or,
equivalently, the relative atomic density—and, following Gurtin [54], we again postulate that they
obey a separate balance. Within each layer of the film, combining the microforce and species balances
yields a Cahn–Hilliard-type equation (coupled, as mentioned above, with the standard force balance).
Because it is fourth-order, the Cahn–hilliard equation requires a supplemental boundary condition
at the step that terminates the bulk layer in question. This additional condition is obtained by
localizing the microforce balance at the step and augmenting it constitutively.

12In a departure from more standard theoretical treatments of MBE, we assume that the atomic
mobility and desorption coefficient depend on the chemical composition of the layer immediately
below the i-th terrace. Moreover, we shall neglect interspecies coupling, so that the evaporation and
diffusive fluxes of k-adatoms are functions exclusively of the chemical potential associated with the
k-th species and its gradient respectively.
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Furthermore, the k-th chemical potential is specified by

µk
i = ∂ρk

i
Ψi,

with Ψi = Ψ(ρ1
i , ρ

2
i ) the terrace free-energy density (per unit area).13

• Within the i-th film layer (i = 0, . . . , N − 1), the species balances combine to
yield a discrete-continuum diffusion equation for the relative density:

∂tρ
12
i,b − div

{
L12

i,b∇µ12
i,b

}
=

αi−1

L12
i−1,bµ

12
i−1,b − L12

i,bµ
12
i,b

a2
− αi

L12
i,bµ

12
i,b − L12

i+1µ
12
i+1,b

a2
, (1.2)

where L12
i,b = L12

b (ρ12
i,b; i), the relative bulk atomic mobility within the i-th

layer, depends on the (local) chemical composition and is a decaying function
of the distance to the surface, and the relative chemical potential is specified
by

µ12
i,b = −ε∆ρ12

i,b + ∂ρ12
i,b

Ψ?
i,b(ρ

12
i,b) + ∂ρ12

i,b
W

(
ρ12

i,b,Ei(ui−1,ui)
)

− ε

{
αi−1

ρ12
i−1,b − ρ12

i,b

a2
− αi

ρ12
i,b − ρ12

i+1,b

a2

}
, (1.3)

with Ψ?
i,b a double-well potential that defines the two segregated phases and W

the strain-energy density associated with the i-th layer, a the lattice parame-
ter along the growth direction, ε a small parameter, and αi = 1 for both i and
i + 1 within the bulk, αi = 0 otherwise.14 Finally, letting e3 denote the unit
vector along the growth direction pointing upward and P3 := 1− e3 ⊗ e3 the
projection of R3 onto R2, eqts. (1.2) and (1.3) are coupled to the mechanical-
equilibrium condition:15

div {P3Ti}+
1
2

3∑
n=1

{
αi−1

Tn3
i−1 − Tn3

i

a
+ αi

Tn3
i − Tn3

i+1

a

}
e3 = 0, (1.4)

with Tnm
i := en · Tiem (n, m ∈ {1, 2, 3}) and Ti, the (three-dimensional)

stress tensor within the i-th layer, constitutively prescribed by

Ti = ∂Ei
W

(
ρ12

i,b,Ei(ui−1,ui)
)
, (1.5)

13We shall assume that the i-th terrace consists of a ternary regular solution, its three components
being the two species of adatoms and the empty adsorption sites. Then, letting wk denote the energy
per interatomic bond associated with an adatom of the k-th species (k = 1, 2), the terrace free-energy
density (per unit area) is given by

Ψ(ρ1
i , ρ2

i ) = Ψ̂(θ1
i , θ2

i ) = 4(w1θ1
i + w2θ2

i )(1− θ1
i − θ2

i )

+ kBT
{
θ1
i ln θ1

i + θ2
i ln θ2

i + (1− θ1
i − θ2

i ) ln(1− θ1
i − θ2

i )
}

,

with θk
i :=

ρk
i

ρsites the coverage density of the i-th terrace by adatoms of the k-th species and ρsites the

density (per unit area) of lattice sites, kB the Boltzmann constant, and T the (fixed) temperature.
14Given the lattice constraint for a binary substitutional alloy, ρ1

i,b + ρ2
i,b = ρsites, Ψ?

i,b =

Ψ?
b (ρ1

i,b, ρ
2
i,b) reduces to Ψ?

i,b = Ψ̃?
b (ρ12

i,b). Similarly, the stored-energy density can be made to depend

only on the relative density within the i-th layer, W = W(ρ1
i,b, ρ

2
i,b,Ei) = W̃(ρ12

i,b,Ei).
15Since thin film growth and related instabilities occur on a time scale slow in comparison with

material sound speeds, we neglect inertia within both film and substrate.
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and Ei, the discrete-continuum, infinitesimal strain tensor, defined by

Ei :=
1
2
{
∇ui + (∇ui)T

}
+

1
2
αi−1

{
ui−1 − ui

a
⊗ e3 + e3 ⊗

ui−1 − ui

a

}
.

(1.6)
• Within the substrate (itself a substitutional binary alloy made of the same

two chemical constituents), the governing equations consist of a bulk diffusion
equation for the relative density:

∂tρ
12
−1,b − div3

{
L12
−1,b∇3µ

12
−1,b

}
= 0, (1.7)

with L12
−1,b = L12

−1,b(ρ
12
−1,b) the substrate relative atomic mobility, augmented

by the constitutive prescription of the substrate relative chemical potential:

µ12
−1,b = −ε∆3ρ

12
−1,b + ∂ρ12

−1,b
Ψ?
−1,b(ρ

12
−1,b) + ∂ρ12

−1,b
W

(
ρ12
−1,b,E−1(u−1)

)
, (1.8)

and supplemented by balance of standard forces:

div3T−1 = 0. (1.9)

Here the subscript 3 denotes the three-dimensional gradient (∇3), divergence
(div3), and Laplacian (∆3), as opposed to their two-dimensional counter-
parts within the film layers, and T−1, the stress tensor within the substrate,
constitutively prescribed by

T−1 = ∂E−1W
(
ρ12
−1,b,E−1(u−1). (1.10)

• Along the i-th step (1 ≤ i ≤ N), the k-th species jump conditions reduce to:

Kk
i,+

{
(µk

i−1)
+ − µk

i,s

}
= (ρk

i−1)
+Vi + Lk

i−1(∇µk
i−1)

+ · ni,

Kk
i,−

{
(µk

i )− − µk
i,s

}
= −(ρk

i )−Vi − Lk
i (∇µk

i )− · ni.

}
(1.11)

Here ni is the unit normal to the i-th step pointing into the (i−1)-th terrace
and Vi its normal velocity;

Kk
i,+ = Kk

+(Θi, (ρ12
i−1,b)

−, ρ12
i−2,b) and Kk

i,− = Kk
−(Θi, (ρ12

i−1,b)
−, ρ12

i−2,b)

are the non-negative kinetic coefficients for the attachment-detachment of
k-adatoms from the lower and upper terraces onto the i-th step edge respec-
tively, with Θi the angle between ni and an in-plane reference axis; µk

i,s is
the chemical potential associated with k-adatoms along the i-th step; and
the + (−) superscript denotes limiting values as the i-th step is approached
from the (i−1)-th (i-th) terrace. Eqts. (1.11)1,2 are supplemented by the so-
called chemical interface-condition that ensures the continuity of the relative
chemical potential across the i-th step:16

µ1
i,s − µ2

i,s = (µ12
i−1,b)

−, (1.12)

and coupled to the continuity-of-traction condition:17

{P3Ti−1}− ni = 0. (1.13)

16Cf. Fried & Gurtin [55], eqt. (23.1).
17In eqts. (1.12) and (1.13), the− superscript denotes limiting values as the i-th step is approached

from within the (i− 1)-th layer, i.e., the layer that terminates at the i-th step (cf. Fig. 2.1).
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where Ti−1 is given by (1.5)–(1.6). Furthermore, letting γi = γ(Θi) denote
the i-th step free energy (per unit length), the interfacial conditions (1.11)–
(1.13) are complemented by a kinetic relation18 that results from constitu-
tively augmenting the normal configurational force balance along the step:19

[[ω]]i − (Ψi−1,b)− +
2∑

k=1

µk
i,sρ

k
i−1,b + γ̃iκi = βisVi, (1.14)

where [[ω]]i = ω+
i −ω−i−1 is the jump in the terrace grand canonical potential,

ωi = Ψi −
∑2

k=1 µk
i ρk

i , across the i-th terrace, and Ψi−1,b is the Helmholtz
free-energy density (per unit area) of the i-th layer; γ̃i = γ + ∂2γ

∂Θ2
i

is the step
stiffness; and βi,s = β(Θi, (ρ12

i−1,b)
−, ρ12

i−2,b) is the i-th step kinetic modulus.20

In addition, the microforce balance, when localized to the i-th step, takes the
form:

ε(∇ρ12
i−1,b)

− · ni = −αi(∂tρ
12
i−1,b)

−, (1.15)

with αi = α(Θi, (ρ12
i−1,b)

−, ρ12
i−2,b) a non-negative material parameter that

characterizes the step response to interfacial microforces. Finally, closure is
brought upon the step evolution equations by the total atomic balance which,
in the absence of edge diffusion, writes as:

ρsitesVi =
2∑

k=1

Kk
i,+

{
(µk

i−1)
+ − µk

i,s

}
+

2∑
k=1

Kk
i,−

{
(µk

i )− − µk
i,s

}
+

2∑
k=1

∂ς

{
Lk

i,s∂ςµ
k
i,s

}
, (1.16)

with ς the arclength parameter along Γi(t) and Lk
i,s = Lk

s(Θi, (ρ12
i−1,b)

−, ρ12
i−2,b)

the non-negative edge atomic mobility.
• Finally, letting the film-substrate interface coincide with the {x3 = 0}-plane

and assuming that the relative chemical potential is continuous across the
film-substrate boundary,

µ12
0,b = µ12

−1,b

∣∣
x3=0

,

the balance for the relative atomic density takes the form

L12
0,bµ

12
0,b − L12

1,bµ
12
1,b

a
= (L12

−1,b∇3µ
12
−1,b)

∣∣
x3=0

· e3, (1.17)

18Cf., e.g., Abeyaratne & Knowles [56].
19For a general discussion of configurational forces as primitive fields of continuum physics, cf.

Gurtin [57, 52, 53] and the references therein. For a discussion of the role of configurational forces
during epitaxy, cf. Fried & Gurtin [58, 55] and Jabbour & Bhattacharya [59]. On the role of
configurational forces in step-flow growth, cf. Cermelli & Jabbour [49] and Jabbour [50].

20Note that the kinetic modulus for the i-th step is dependent on both step orientation and
chemical composition, the former via Θi and the latter through the limiting value of ρ12

i−1,b as the

step edge is approached from within the (i−1)-th layer, Qi−1(t), as well as ρ12
i−2,b, the relative

atomic density within Qi−2(t). By contrast, when the edge adatom densities are negligible, the
second law restricts the step free-energy density to depend solely on its orientation, cf. Section 4
and, in particular, the dissipation inequality (4.12) and the discussion that follows.
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augmented by the continuity-of-traction condition:

T0 · e3 = T−1|x3=0 · e3, (1.18)

with T0 and T−1 prescribed by (1.5)–(1.6) and (1.10) respectively , and
complemented by the microforce balance:

ε

{
ρ12
0,b − ρ12

1,b

a
− ∇3ρ

12
−1,b

∣∣
x3=0

· e3

}
= α+∂tρ

12
0,b + α− ∂tρ

12
−1,b

∣∣
x3=0

, (1.19)

with α+ = α+(ρ12
−1,b|x3=0, ρ

12
0,b) and α− = α−(ρ12

−1,b|x3=0, ρ
12
0,b) non-negative

material parameters that characterize the response of the film-substrate in-
terface to microforces.

Outline. The remainder of the paper proceeds as follows. Section 2 introduces
basic notation and motivates the representation of the growing film as a layered struc-
ture at the nanoscale. In Section 3, we list and discuss the coupled PDE’s that form
the skeleton of the proposed free-boundary problem for the step positions, focusing
only on the key ingredients.21 Section 4 is mainly concerned with the thermodynamic
consistency of the model. Section 5 contains a brief discussion of the theory. Finally,
Appendix A discusses consistency with BCF models for single-species films.

2. Notation. The film as a layered nanostructure. To model epitaxy one
needs to consider the atomic deposition fluxes onto a vicinal surface, the diffusion
of the adsorbed atoms (adatoms) over the terraces, and eventually their desorption
back into the adjacent vacuum. Moreover, the terace adatoms may aggregate to form
nuclei, which would then grow into monatomic island, or they might attach directly
to pre-existing steps along whose edges they can diffuse. Furthermore, in the presence
of multiple species, chemical reactions can occur on the terraces and along the steps,
as well as atomic diffusion and phase segregation within the bulk phase. Finally,
during hetero-epitaxy, strain effects need to be incorporated. Multispecies epitaxial
growth can thus be described by the advancement, nucleation, and/or annihilation of
steps, and its mathematical formulation reduces to a free-boundary problem for the
evolving step positions. Importantly, the boundary conditions along the steps need
to account not only for surface—i.e., terraces and steps—mechanisms but should also
couple these with the behaviour of the film’s bulk.

We denote by Ω ⊂ R2 the projected domain of the film surface onto a two-
dimensional Cartesian coordinate system, and assume that Ω is independent of time
t. Furthermore, let Ωi = Ωi(t) ⊂ R2 (i = 0, . . . , N) be the projected domain of the
terrace of height i at time t, and define Γi = Γi(t) = Ωi(t) ∩ Ωi−1(t) (i = 1, . . . , N)
to be the projected (smooth) curve corresponding to the step separating the adjacent
terraces of heights i and i−1.22 The surface thus viewed delimits the film which
we represent as an atomistically layered structure, and we label Qi = Qi(t) ⊂ R2

(i = 0, . . . , N − 1) the projected domain of the bulk layer terminating at the (i+1)-th
step edge, such that Qi(t) = ∪j>iΩj(t). Finally, let Q−1 ⊂ R3 denote the substrate,
see Fig. 2.1.

21For the details of the derivation that yields the pointwise evolution equations from the integral
statements of the balance laws of continuum thermodynamics, we refer the reader to Jabbour &
Voigt [60].

22Importantly, the steps are assumed to be monatomic and the terraces flat. Correspondingly,
the thickness of the film layers equals the interatomic distance along the growth direction. Hence
the terrace heights are indexed using the integer i.
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Q0
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Q2

Q3

Q4
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Ω5

Ω4
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Ω2

Γ5

Γ4

Γ3

Q−1

Fig. 2.1. Schematic representation of a vicinal surface together with the underlying layered film
and the substrate.

Our view is that the layered film structure is needed to model step-flow-mediated
heteroepitaxial growth because the evolution of the i-th step, Γi(t), is governed not
only by the behaviour of the adjacent upper and lower terraces, Ωi(t) and Ωi−1(t)
respectively, but also by the mechanisms at play within the film—and, indirectly, the
substrate—, i.e., within the ascending layer Qi−1(t). Thus the key idea is to describe
the bulk as a continuum within the substrate, i.e., away from the surface, but as
a discrete-continuum atomistically layered structure within the growing film, i.e., in
the vicinity of the surface. Specifically, the discrete layers in the film are introduced
for two reasons: (i) they allow to resolve the disparate spatial scales in the horizontal
and vertical directions, and (ii) they provide the natural geometrical framework within
which to model the exchange processes between adatoms on the terraces and atoms in
the bulk through the attachment-detachment and absorption kinetics along the steps.

Basic notation. The subscripts s and b denote quantities defined along the step
edges and within the bulk, the latter term encapsulating both film and substrate.
The superscript k refers to the k-th species (for a binary system, k = 1, 2), whereas
the subscript i refers to a field or material parameter defined along the i-th step,
on the i-th terrace, or within the i-th layer, with i = −1 for the substrate. E.g.,
ρk

i (x1, x2, t) and µk
i (x1, x2, t) stand for the density of k-adatoms on the i-th terrace

Ωi(t) and the associated chemical potential respectively (as functions of the in-plane
Cartesian coordinates x1 and x2 and time t), while ρk

i,b(x1, x2, t) and µk
i,b(x1, x2, t)

represent their counterparts within the film’s i-th layer Qi(t); ρk
−1,b(x1, x2, x3, t) and

µk
−1,b(x1, x2, x3, t) the k-th atomic density and chemical potenial within the substrate,

with x3 the coordinate along the growth direction; and µk
i,s(ς, t) the k-th chemical po-

tential along the i-th step edge, where the variable ς denotes the arclength parameter;
etc.

3. Step-flow growth of a binary, substitutional-alloy film. For simplicity,
we restrict attention to the binary case, i.e., k = 1, 2. To highlight the key ingredients
of the theory, we merely list the governing PDE’s, leaving the details of the derivations
to Jabbour & Voigt [60]. In essence, our model requires the specification of (i)
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the dynamics of terrace-adatom transport, (ii) the dynamics of bulk atomic diffusion
within the film layers and substrate, coupled to the mechanical-equilibrium conditions,
(iii) the evolution equations that govern the far-from-equilibrium motion of steps, and
(iv) the jump conditions on the film-substrate interface. We first turn to the terrace
dynamics.

3.1. Terrace adatom transport. We assume that there are no advancies on
the terraces. Hence we ignore the exchange of atoms between the terraces and the
underlying bulk layers, and confine the flow of adatoms into the film to the step
edges. Letting ρk

i , µk
i , and ρ12

i−1,b denote the density of k-adatoms (k = 1, 2) on the
i-th terrace (i = 1, . . . , N), its associated chemical potential, and the relative atomic
density within the (i−1)-th layer (i.e., the one underlying the i-th terrace), the k-th
species balance upon the i-th terrace reduces to a reaction-diffusion PDE:

∂tρ
k
i −div

{
Lk

i∇µk
i

}
︸ ︷︷ ︸

diffusion

= Fk − γk
i µk

i︸ ︷︷ ︸
adsorption-desorption

on Ωi(t). (3.1)

Here Fk is the deposition flux of atoms of the k-th species; Lk
i = Lk(ρ12

i−1,b) and
γk = γk(ρ12

i−1,b) are the atomic mobility and desorption coefficient of k-adatoms on the
i-th terrace, both assumed to be non-negative functions of the chemical composition
of Qi−1(t), the layer immediately below the i-th terrace; and µk

i , the k-th chemical
potential on the i-th terrace, is given by:

µk
i = ∂ρk

i
Ψi, (3.2)

with Ψi = Ψ(ρ1
i , ρ

2
i ) the terrace free-energy density (per unit area). A few remarks are

in order. First, we ignore the nucleation of new islands.23 In addition, we assume that
adatom diffusion is isotropic and neglect interspecies coupling, so that the evapora-
tion and diffusive fluxes of k-adatoms on the i-th terrace, Rk

i and hk
i respectively, are

functions exclusively of the k-th chemical potential and its gradient, i.e., Rk
i = −γk

i µk
i

and hk
i = −Lk

i∇µk
i .24 Furthermore, as mentioned above, we neglect the exchange of

atoms between the terrace and the underlying bulk layer, an approximation that is
consistent with the assumption that there are no advancacies on the terraces. Hence
adatom incorporation into the bulk occurs solely along the steps. Finally, we shall as-
sume that the i-th terrace consists of a ternary regular solution, its three constituents
being the adatoms of the two deposited chemical species and the empty adsorption
sites. Hence, letting w1 and w2 be the bond strengths associated with adatoms of
type 1 and 2, and denoting by ρsites the density of lattice sites (per unit area), the

23See Footnote 2, p. 2. In order to incorporate island nucleation, the framework developed by
Politi & Castellano [61, 62] has to be generalized to the case of multiple species.

24A constitutive theory for the terraces that allows for anisotropic adatom diffusion and permits
interspecies coupling would be based on the stipulations

Rk
i = −

2∑
j=1

γkj
i µj

i and hk
i = −

2∑
j=1

Lkj
i ∇µj

i ,

where γkj
i ≥ 0 and the 2×2 mobility matrices Lkj

i satisfy
∑2

j=1∇µk
i · L

kj
i ∇µj

i ≥ 0.



Multispecies Step Flow with Phase Segregation 13

terrace free-energy density (per unit adsorption site) is given by:

Ψi = Ψ(ρ1
i , ρ

2
i ) = Ψ̂(θ1

i , θ2
i ) = 4(w1θ

1
i + w2θ

2
i )(1− θ1

i − θ2
i )︸ ︷︷ ︸

internal energy

+ kBT
{
θ1

i ln θ1
i + θ2

i ln θ2
i + (1− θ1

i − θ2
i ) ln(1− θ1

i − θ2
i )

}︸ ︷︷ ︸
−T×(entropy of mixing)

, (3.3)

where θk
i := ρk

i

ρsites is the k-adatom coverage of the i-th terrace, kB the Boltzmann
constant, and T the temperature (assumed constant, as we consider only isothermal
growth).25 By (3.2), it follows that

µk
i

ρsites
= 4wk

(
1− 2

2∑
j=1

θj
i

)
+ kBT ln

{
θk

i

1−
∑2

j=1 θj
i

}
. (3.4)

Hence, although seemingly uncoupled, the reaction-diffusion equations (3.1) are in-
tertwinned via the constitutive relations that specify the terrace species chemical
potentials (3.4).

3.2. Bulk atomic diffusion and elasticity. Contrary to their terrace coun-
terparts, the bulk atomic densities are not independent. Indeed, within each layer
Qi(t) (i = 0, . . . , N), letting ρsites denote the density of lattice sites (per unit area),
ρ1

i,b and ρ2
i,b are subject to the lattice constraint:

ρ1
i,b + ρ2

i,b = ρsites. (3.5)

Introducing ρ12
i,b := ρ1

i,b − ρ2
i,b and µ12

i,b := µ1
i,b − µ2

i,b, the relative atomic density and
chemical potential in the i-th layer, (3.5) can be used to reduce the system of diffusion
equations for ρ1

i,b and ρ2
i,b to a single discrete-continuum diffusion equation:

∂tρ
12
i,b − div

{
L12

i,b∇µ12
i,b

}
=

αi−1

L12
i−1,bµ

12
i−1,b − L12

i,bµ
12
i,b

a2
− αi

L12
i,bµ

12
i,b − L12

i+1,bµ
12
i+1,b

a2
within Qi(t), (3.6)

where L12
i,b = L12

b (ρ12
i,b; i), the relative bulk atomic mobility within the i-th layer,

depends on the (local) chemical composition and is a decaying function of the distance
to the surface (cf. Tu & Tersoff [63]), a is the layer thickness, and αi = 1 if both
the i- and (i+1)-layers are within the bulk and αi = 0 otherwise. Importantly,
the right-hand side of (3.6) models diffusion along the growth direction (and, hence,
encapsulates atomic exchange processes between adjacent layers) in a discrete fashion.
It can be viewed as a finite difference approximation of the second derivative along
the vertical direction on a grid with an atomistic resolution.26

25The statistical-mechanical argument that yields the constitutive relation (3.3) extends to the
binary case the more standard calculation of the free energy per surface site when the deposited
adatoms belong to the same species, cf. Tsao [1, pp. 203-204].

26Both αi and αi−1 equal one within the bulk. Thus the right-hand side of (3.6) is the exact
approximation of the second derivative. But, in the absence of a bulk layer at height (i+1), αi

vanishes. This is tantamount to a no-flux boundary condition at the surface and is consistent with
our assumption that the exchange of atoms between bulk and surface is confined to the steps.
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The diffusion equation (3.6) is complemented by the balance of linear momentum
which, when inertia is neglected, reduces to the mechanical-equilibrium condition:

divTi +
1
2

3∑
n=1

{
αi−1

Tn3
i−1 − Tn3

i

a
+ αi

Tn3
i − Tn3

i+1

a

}
e3 = 0 within Qi(t), (3.7)

with Ti the Cauchy stress tensor associated with the i-th layer, αi and αi−1 defined as
above, and e3 the unit vector along the growth direction. The right-hand side of (3.7)
can again be viewed as a finite difference approximation of the divergence operator in
the vertical direction on a grid with an atomistic resolution.

The discrete-continuum diffusion equation (3.6) and the mechanical-equilibrium
conditions (3.7) are coupled through the constitutive prescription of the bulk free-
energy density (per unit ara) associated with the i-th layer. Indeed, the latter takes
the form of a generalized Ginzburg–Landau functional:27

Ψi,b =
1
2
ε∇ρ12

i,b · ∇ρ12
i,b + Ψ?

i,b(ρ
12
i,b) + W(ρ12

i,b,Ei(ui−1,ui))

+
ε

2

{
αi−1

ρi−1,b − ρi,b

a
− αi

ρi,b − ρi+1,b

a

}2

, (3.8)

where ε is a given, small parameter; Ψ?
i,b is a double-well potential that defines the two

segregated phases within Qi(t) viewed as a binary regular solution whose constituents
are the two incorporated species:28

Ψ?
i,b(ρ

12
i,b) = Ψ̂?

i,b(c
12
i,b) = (1− c12

i,b)Ψ1 + c12
i,bΨ2

+ ρsiteskBT
{
c12
i,b ln c12

i,b + (1− c12
i,b) ln(1− c12

i,b)
}︸ ︷︷ ︸

−T×(entropy of mixing)

+ ρsitesΩc12
i,b(1− c12

i,b)︸ ︷︷ ︸
energy of mixing

, (3.9)

with Ψ1 (Ψ2) the excess energy when the i-th layer is made entirely of atoms of

the first (second) species, c12
i,b := 1

2

{
1− ρ12

i,b

ρsites

}
the concentration of atoms of the 2-nd

species within the i-th layer, and Ω a material parameter that measures bond strength
relative to the thermal energy;29 the strain-energy density is constitutively specified
by

W(ρ12
i,b,Ei(ui−1,ui)) =

1
2

{
Ei −E∗(ρ12

i,b)
}
· C(ρ12

i,b)
{
Ei −E∗(ρ12

i,b)
}

, (3.10)

with C(ρ12
i,b) the composition-dependent (fourth-order) elasticity tensor; and Ei =

Ei(ui−1,ui) is the discrete-continuum, linearized strain tensor:

Ei :=
1
2
{
∇ui + (∇ui)T

}
+

1
2
αi−1

{
ui−1 − ui

a
⊗ e3 + e3 ⊗

ui−1 − ui

a

}
, (3.11)

where ui =
∑2

j=1 uj
i (x1, x2)ej is the two-dimensional displacement within the i-th

layer, E∗(ρ12
i,b) is the stress-free strain when the i-th layer chemical composition is

27The quadratic-gradient term on the right-hand side of (3.8) is regularizing in that it penalizes
abrupt spatial variations in the (relative) atomic density within the layer. Moreover, the last term
on the RHS of (3.8) can be viewed as a discretized approximation of the gradient term along the
epitaxial direction.

28Cf., e.g., Tsao [1] and Lu & Suo [36].
29For Ω sufficiently large, Ψ?

i,b has two wells and hence drives phase separation.
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given by ρ12
i,b and, as before, the last two terms on the right-hand side of (3.11) model

the strain components along the growth direction in a discrete fashion. Importantly,
the two-dimensionality of the i-th displacement field, ui · e3 = 0, is needed to ensure
that the interfaces that separate adjacent layers remain flat. However, it does not
imply that either strain or stress is plane. Indeed, in view of (3.11), the only zero
strain component is E33

i := e3 · Eie3 and, by (3.13) below, the stress tensor is fully
three-dimensional. Importantly, the stress tensor Ti is constitutively prescribed by

Ti = ∂EiW
(
ρ12

i,b,Ei(ui−1,ui)
)

(3.12)

which, in view of (3.10), reduces to

Ti = C(ρ12
i,b)

{
Ei −E∗(ρ12

i,b)
}

. (3.13)

Moreover, the relative chemical potential is given by

µ12
i,b = ∂ρ12

i,b
Ψi − div

{
∂∇ρ12

i,b
Ψi

}
, (3.14)

which, when combined with (3.8), yields:30

µ12
i,b = −ε∆ρ12

i,b + ∂ρ12
i,b

Ψ?
i,b + ∂ρ12

i,b
W

(
ρ12

i,b,Ei(ui−1,ui)
)

− ε

{
αi−1

ρ12
i−1,b − ρ12

i,b

a2
− αi

ρ12
i,b − ρ12

i+1,b

a2

}
. (3.15)

3.3. The substrate: atomic diffusion, mechanical equilibrium, and the
jump conditions at the film-substrate interface. We assume that the substrate
is made of the same binary, substitutional alloy as the growing film. Hence the species
atomic densities, ρ1

−1,b and ρ2
−1,b, are subject to a lattice constraint similar to (3.5):

ρ1
−1,b + ρ2

−1,b = ρsites
−1 , (3.16)

where ρsites
−1 is the number of lattice sites per unit volume. We also assume that the

three-dimensional region it occupies, Q−1 ⊂ R3, coincides with the lower half-space
so that the film-substrate interface concides with the (x1, x2)-plane.31 Let ρ12

−1,b and
µ12
−1,b denote the relative atomic density and chemical potential within the substrate.

The species equations combine into a diffusion equation for the relative density:

∂tρ
12
−1,b − div3

{
L12
−1,b∇3µ

12
−1,b

}
= 0 in Q−1, (3.17)

with L12
−1,b = L12

−1,b(ρ
12
−1,b) the composition-dependent, relative, atomic mobility within

the substrate. Here, the subscript 3 refers to the three-dimensional divergence and
gradient (as opposed to their two-dimensional, subscript-free counterparts within the
film layers and on the terraces). As before, atomic diffusion is assumed isotropic

30As shown in Gurtin [54] and Jabbour & Voigt [60], this relation can be derived from a balance
of microforces. Together with (3.6), it yields a Cahn-Hilliard type equation for ρ12

i,b.
31Implicit is the assumption that the film-substrate interface remains planar throughout deposi-

tion. This is consistent with (i) our assumption that the displacement field within the zeroth layer,
Q0(t), is two-dimensional, i.e., u0 · e3 = 0, and (ii) the assumption that the film-substrate interface
is coherent, i.e., u0(x1, x2) = limε→0+ u−1(x1, x2,−ε).
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and interspecies coupling is ignored. Eqt. (3.17) is supplemented by the mechanical
equilibrium condition:

div3T−1 = 0 inside Q−1, (3.18)

where T−1 denotes the the Cauchy stress tensor within Q−1. The coupling between
(3.17) and (3.18) occurs, as within the film layers, via the constitutive prescription of
the substrate free-energy density (per unit volume):

Ψ−1,b =
1
2
ε∇3ρ

12
−1,b · ∇3ρ

12
−1,b + Ψ?

−1,b(ρ
12
−1,b) + W(ρ12

−1,b,E−1). (3.19)

Here, as in (3.8), the first term on the right-hand side of (3.19) penalizes rapid spatial
oscillations of the substrate chemical composition. Furthermore, assuming that the
substrate behaves like a binary, regular solution, Ψ?

−1,b, the free-energy density at
zero stress, is a temperature-dependent, double-well potential whose wells define the
separated phases within the substrate:

Ψ?
−1,b(ρ

12
−1,b) = Ψ̂?

−1,b(c
12
−1,b) = (1− c12

−1,b)Ψ
1
−1,b + c12

−1,bΨ
2
−1,b

+ ρsites
−1 kBT

{
c12
−1,b ln c12

−1,b + (1− c12
−1,b) ln(1− c12

−1,b)
}︸ ︷︷ ︸

−T×(entropy of mixing)

+ ρsites
−1 Ωc12

−1,b(1− c12
−1,b)︸ ︷︷ ︸

energy of mixing

,

(3.20)

with Ψ1
−1,b (Ψ2

−1,b) the excess energy (per unit volume) when the substrate consists

entirely of atoms of the first (second) species, c12
−1,b := 1

2

{
1− ρ12

−1,b

ρsites
−1

}
the concen-

tration of substrate atoms of the 2-nd species, and Ω defined as above.32 Finally,
consistent with the linear-elasticity assumption, the stored-energy density is specified
as a quadratic, composition-dependent, function of the infinitesimal strain:

W(ρ12
−1,b,E−1) =

{
E−1 −E∗(ρ12

−1,b)
}
· C(ρ12

−1,b)
{
E−1 −E∗(ρ12

−1,b)
}

, (3.21)

with C(ρ12
−1,b) defined as above, E−1 the linearized strain tensor given by

E−1 :=
1
2

{
∇3u−1 + (∇3u−1)

>}
, (3.22)

and E∗(ρ12
−1,b) the solute strain when the substrate composition is given by ρ12

−1,b. In
view of (3.19), (3.20), and (3.21), it follows that the stress tensor, given by

T−1 = ∂E−1Ψ−1,b = ∂E−1W, (3.23)

takes the form

T−1 = C(ρ12
−1,b)

{
E−1 −E∗(ρ12

−1,b)
}

, (3.24)

whereas the relative chemical potential, specified by

µ12
−1,b = ∂ρ12

−1,b
Ψ−1,b − div3

{
∂∇3ρ12

−1,b
Ψ−1,b

}
, (3.25)

32As for (3.8), for Ω sufficiently large, Ψ?
−1,b has two wells and hence drives phase separation.
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reduces to

µ12
−1,b = −ε∆3ρ

12
−1,b + ∂ρ12

−1,b
Ψ?

i,b + ∂ρ12
−1,b

, (3.26)

with ∆3 the three-dimensional Laplacian. Importantly, the injection of the consti-
tutive relation (3.26) into (3.17) yields a three-dimensional, Cahn–Hilliard-type PDE
for the substrate relative atomic density (viewed as an order parameter). Moreover,
appealing to (3.24) and (3.26), it can be seen that the coupling between atomic diffu-
sion, governed by (3.17), and elasticity, described by (3.18), resides in the dependence
of the stress on the substrate chemical composition and, conversely, of the relative
chemical potential on strain.

Boundary conditions on the film-substrate interface. At the interface be-
tween the zeroth film layer, Q0, and the substrate, Q−1, the mechanical-equilibrium
PDE’s (3.18) are complemented by the continuity-of-traction condition

(T0 −T−1)|x3=0 e3 = 0, (3.27)

with e3 the unit vector along the growth direction (pointing upward), T0 the stress
tensor within the zeroth layer, cf. eqts. (3.12) and (3.13), and T−1 is the substrate
stress tensor, cf. (3.23) and (3.24).33

Furthermore, as mentioned above, the substrate diffusion eqt., (3.17), when con-
stitutively augmented by (3.26), yields a fourth-order PDE for the relative atomic
density ρ12

−1,b of the Cahn–Hilliard type. As such, (3.17) requires the specification
of two boundary conditions at the film-substrate interface. These boundary condi-
tions result from the localization of the atomic-density and the microforce balances.
Assuming that the relative chemical potential is continuous across the film-substrate
boundary,

µ12
0,b = µ12

−1,b

∣∣
x3=0

, (3.28)

the former takes the form

L12
0,bµ

12
0,b − L12

1,bµ
12
1,b

a
= (L12

−1,b∇3µ
12
−1,b)

∣∣
x3=0

· e3, (3.29)

whereas the latter reduces to

ε

{
ρ12
0,b − ρ12

1,b

a
− ∇3ρ

12
−1,b

∣∣
x3=0

· e3

}
= α+∂tρ

12
0,b + α− ∂tρ

12
−1,b

∣∣
x3=0

, (3.30)

with α+ = α+(ρ12
−1,b|x3=0, ρ

12
0,b) and α− = α−(ρ12

−1,b|x3=0, ρ
12
0,b) non-negative material

parameters that characterize the response of the film-substrate interface to micro-
forces.34

3.4. Step evolution equations. Central to our theory are the step evolution
equations. Indeed, these equations couple the step dynamics to the transport of ter-
race adatoms and to the atomic diffusion and mechanics of film layers (and, indirectly,
to the latter’s counterparts within the substrate).

33Eqt. (3.27) results from the localization, in the absence of inertia, of the linear-momentum
conservation principle.

34As before, the left-hand side of (3.29) and the first term on the left-hand side of (3.30) can be
interpreted as finite-difference approximations of the film’s relative diffusive flux and atomic-density
gradient respectively along the growth (vertical) direction on an atomistic-resolution grid.
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Terrace-step coupling: the species jump conditions. Letting Jk
i,+ and Jk

i,−
denote the (scalar) flows of adatoms of the k-th species (k = 1, 2) into the i-th step
edge (i = 1, . . . , N) from the (i−1)-th (lower) and i-th (upper) terraces respectively,
the k-th species atomic-density balances on the adjacent domains Ωi−1(t) and Ωi(t),
when localized at Γi(t), yield the jump conditions:

Jk
i,+ = (ρk

i−1)
+Vi + Lk

i−1(∇µk
i−1)

+ · ni,

Jk
i,− = −(ρk

i )−Vi − Lk
i (∇µk

i )− · ni,

}
(3.31)

with ni the unit normal to the i-th step pointing into the (i−1)-th (lower) terrace
and Vi its normal velocity, and the superscripts + and − label limiting values as the
i-th step is approached from the lower ans upper adjacent terraces respectively. The
simplest constitutive expressions for Jk

i,+ and Jk
i,− consistent with the second law are

given by (cf. Section 4 below):

Jk
i,+ = Kk

i,+

{
(µk

i−1)
+ − µk

i,s

}
,

Jk
i,− = Kk

i,−
{
(µk

i )− − µk
i,s

}
,

}
(3.32)

where

Kk
i,+ = Kk

+(Θi, (ρ12
i−1,b)

−, ρ12
i−2,b) and Kk

i,− = Kk
−(Θi, (ρ12

i−1,b)
−, ρ12

i−2,b)

are the non-negative kinetic coefficients for the attachment-detachment of k-adatoms
from the lower and upper terraces onto the i-th step edge respectively, Θi is the angle
between ni and an in-plane reference crystalline axis, and µk

i,s denotes the chemical
potential associated with k-adatoms along the i-th step. Here, as for the transport of
adatoms on the terraces, interspecies coupling is neglected.35

Bulk-step coupling: continuity of the relative chemical potential, jump
condition for the relative atomic density, standard and microforce balances.
When, as is assumed herein, the edge adatom densities are ignored, the step species
chemical potentials are indeterminate.36 For simplicity, we shall assume that the
i-th step, Γi(t), is in local chemical equilibrium with the adjacent (i− 1)-th bulk
layer, Qi−1(t). Given that the film is made of a substitutional alloy, only the relative
chemical potential has meaning within the film (cf. Larché & Cahn [64, 65], Cahn

35Even in the context of single-species growth and assuming that adatom attachement-detachment
to the step edges is isotropic, an asymmetry in the kinetic coefficents, i.e., Ki,+ 6= Ki,−, is known
to dramatically impact on the morphological stability of stepped surfaces. E.g., in the presence
of an Ehrlich–Schwoebel effect, i.e., when attachment is energetically more favorable for adatoms
approaching a given step from its lower adjacent terrace, a one-dimensional train of equidistant steps
will remain as such during deposition, although step bunching will occur during sublimation, cf.,
e.g., Pimpinelli & Villain [4] and Krug [9]. Conversely, in the presence of an inverse Ehrlich–
Schwoebel barrier, i.e., when Ki,+ < Ki,−, such a train of steps will become unstable to linear
perturbations. Moreover, this kinetic asymmetry plays a critical role in step meandering, cf., e.g.,
Bales & Zangwill [8]. Finally, when the steps act as adatom sinks, i.e., in the limiting case when
Kk

i,± → ∞, the terrace chemical potentials become continuous and, concomittantly, the adatom

flows, Jk
i,+ and Jk

i,−, are rendered indeterminate. Hence eqts. (3.31) reduce to what sometimes are
referred to as thermodynamic boundary conditions:

µk
i = µk

i,s = µk
i−1.

36This is in contrast with the terrace chemical potentials which are prescribed by the constitutive
relations (3.2).



Multispecies Step Flow with Phase Segregation 19

& Larché [66], and the discussion of Fried & Gurtin [55]). Hence the local
chemical-equilibrium condition reduces to the requirement that the relative chemical
potential be continuous along the i-th step (1 ≤ i ≤ N):

µ1
i,s − µ2

i,s = µ12
i−1,b. (3.33)

Importantly, this continuity condition implies that the inflow of edge adatoms into
the bulk is now identically zero. It follows that the relative atomic-density balance
within Qi−1(t), when localized along the i-th step, takes the form:(

ρ12
i−1,b

)−
Vi = −

(
L12

i−1,b∇µ12
i−1,b

)− · ni, (3.34)

i.e., the diffusive flux of atoms from the (i−1)-th layer is converted entirely into the
convective motion of the i-th step edge.

In addition, neglecting standard stress along the step, the mechanical-equilibrium
condition within the film’s (i−1)-th layer, when localized to the i-step yields

Ti−1ni = 0, (3.35)

which states that the i-th step is traction-free. Here, the stress is constitutively
specified by (3.13).

Microforce balance. In the presence of diffusion within the crystalline bulk, the
relative atomic density ρ12

i,b can be viewed as an order parameter whose evolution
governs phase segregation within the i-th film layer. We take the point of view that
associated with changes in ρ12

i,b are microforces which, following Gurtin [54], are
assumed to satisfy a separate balance law. Specifically, we postulate the existence,
within the i-th layer Q−i(t), of a microforce vector-stress εi,b and a microforce scalar-
force πi,b, and, along the i-th step edge Γi(t), of an interfacial scalar-force ξi,s, such
that the microforce balance, when localized within the film layers and along the step
edges, yields

divεi−1,b + πi−1,b = 0 in Qi−1(t),

− (εi−1,b)
− · ni + ξi,s = 0 along Γi(t),

}
(3.36)

with (εi−1,b)− the limiting value of εi−1,b as the i-th step is apporached from within
the (i−1)-th layer. Consistency with the second law imposes the following relations
(cf. Jabbour & Voigt [60]):

πi,b = µ12
i,b − ∂ρ12

i,b
Ψi,b,

εi,b = ∂∇ρ12
i,b

Ψi,b,

ξi,s = −αi,s

(
ρ12

i−1,b

)−
,

 (3.37)

where, accounting for the step anisotropy, αi,s = αi,s((ρ12
i−1,b)

−,Θi) is a non-negative,
composition-dependent, scalar coefficient. Substitution of (3.37)1,2 into (3.36)1 yields
the identity between µ12

i,b and the variational derivative of Ψi,b with respect to the
relative atomic density, cf. (3.14). Moreover, when the free-energy density of the
i-th layer is specified by (3.8), the relative chemical potential within the i-th layer
reduces to (3.15) which, if substituted back into the atomic diffusion quation for
the i-th layer, (3.6), yields a discrete-continuum PDE within Qi(t) of the Cahn–
Hilliard type. Being of fourth-order, such an equation requires the specification of
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two boundary conditions along Γi+1(t), i.e., the step that terminates the i-th layer.
One such boundary condition results from the localization of (3.6) along the step,
cf. eqt. (3.34). The remaining condition is furnished by (3.36)2. Indeed, when
constitutively augmented by (3.37)2,3, the interfacial microforce balance reduces to

ε
(
∇ρ12

i−1,b

)− · ni = −αi,s

(
∂tρ

12
i−1,b

)−
(3.38)

where it was further assumed that the free-energy density for the i-th layer (i =
0, . . . , N − 1) is of the Ginzburg–Landau type, cf. (3.8).

Bulk-terrace-step coupling: total atomic-density and configurational
force balances. The i-th step, Γi(t), can be thought of as evolving as a result of
the inflow of adatoms from the adjacent upper and lower terraces, Ωi(t) and Ωi−1(t)
respectively, and that of bulk atoms from the (i−1)-th film layer, Qi−1(t). Importantly,
for a binary substitutional alloy, the net bulk diffusive flux is identically zero, even
though the individual species fluxes are not.37 In the absence of edge diffusion, it
follows that the total atomic-density balance at the i-th step reduces to

ρsitesVi =
2∑

k=1

{
Jk

i,+ + Jk
i,−

}
, (3.39)

with ρsites the constant density of lattice sites (per unit area), and the k-adatom
inflows from the upper and lower terraces, Jk

i,− and Jk
i,+ respectively, prescribed by

(3.32). If edge diffusion is to be incorporated, the right-hand side of (3.39) needs to
be supplemented by the contribution of the edge adatom fluxes,

2∑
k=1

∂ς

(
Lk

i,s∂ςµ
k
i,s

)
, (3.40)

where ς is the arclength parameter along the Γi(t), and Lk
i,s = Lk

s(Θi, (ρ12
i−1,b)

−, ρ12
i−2,b)

the non-negative edge atomic mobility, assumed to depend on both the step orienta-
tion and chemical composition. Therefore, in the presence of edge atomic diffusion,
(3.39) can be rewritten as

ρsitesVi =
2∑

k=1

{
Jk

i,+ + Jk
i,− + ∂ς

(
Lk

i,s∂ςµ
k
i,s

)}
along Γi(t). (3.41)

The total atomic-density balance is complemented by an interfacial configura-
tional force balance along the i-th step. Roughly, configurational forces are relevant
in the presence of non-material defects such as, in the present context, steps on a
vicinal surface. More specifically, the working of (i.e., the power expended by) these
forces accompanies the evolution of such defects.38 Below is a succint account of

37This is the so-called substitutional-flux constraint, cf. the discussions by Cahn & larché [66]
and Fried & Gurtin [55].

38The early investigations of the role of configurational forces have been variational, cf., e.g.,
Peach & Koehler [67] on dislocations, Herring [68] on sintering, and Eshelby [69, 70, 71, 72] on
lattice defects. As such, the variational treatment is contingent upon the a priori specification of
constitutive relations and is therefore restricted to particular classes of materials. Moreover, it is not
clear whether the variational formalism is not appropriate for dynamical, dissipative settings such
as epitaxial growth which occurs away from equilibrium. An alternative approach was developed
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how the configurational force balance, when constitutively augmented by Eshelby-
type identities, provides a generalization, along the evolving steps, of the classical
Gibbs–Thomson relation to the case of multispecies growth away from equilibrium.39

Configurational force balance. Let Ci and Ci,b be the configurational stress ten-
sors on the i-th terrace Ωi(t) and within the i-th film layer Qi(t) respectively. Fur-
thermore, denote by ci,s the configurational stress vector along the i-th step, and let
gi,s be the internal configurational force along Γi(t). The configurational foce balance,
when localized to the i-th step, yields (cf. Cermelli & Jabbour [49], Jabbour [50],
and Jabbour & Voigt [60])

ni · ∂ςci,s + ni · gi,s︸ ︷︷ ︸
step contribution

= ni · P3(Ci−1,b)−ni︸ ︷︷ ︸
bulk

contribution

−ni · [[C]]ini︸ ︷︷ ︸
terrace

contribution

along Γi(t), (3.42)

where P3 := 13 − e3 ⊗ e3 the projection onto the {x1, x2}-plane and 13 the three-
dimensional identity tensor, and [[C]]i = Ci−1−Ci the jump in the terrace configura-
tional stress across the i-th step. It can be shown that the bulk configurational stress
is given by the following Eshelby-type identity:

Ci,b = ωi,b13 −
{

(∇ui)>+ αi−1e3 ⊗
ui−1 − ui

a

}
Ti

− ε∇ρ12
i,b ⊗∇ρ12

i,b − ε

{
αi−1

ρ12
i−1,b − ρ12

i,b

a

}2

e3 ⊗ e3

− ε

{
αi−1

ρ12
i−1,b − ρ12

i,b

a

}(
∇ρ12

i,b ⊗ e3 + e3 ⊗∇ρ12
i,b

)
, (3.43)

with Ti given by (3.13) and

ωi,b := Ψi,b −
2∑

k=1

µk
i,bρ

k
i,b (3.44)

the grand canonical potential (per unit area) of the i-th film layer, whereas the terrace
configurational stress reduces to:

Ci = ωiP3, (3.45)

where ωi, the terrace grand canonical potential, is defined by

ωi := Ψi −
2∑

k=1

µk
i ρk

i . (3.46)

By (3.43)1 and (3.35), it follows that

ni · P3(Ci−1,b)−ni = ωi−1,b −
(
∂nρ12

i−1,b

)2

i
, (3.47)

independently by Heidug & Lehner [73], Truskinovsky [74], and Abeyaratne & Knowles [56]
who identify the configurational force as the conjuguate of the defect velocity and postulate a kinetic
relation by which the latter is a thermodynamically compatible function of the former. A different
approach is proposed by Gurtin & Struthers [75] and Gurtin [57, 52, 53] who views configurational
forces as primitive fields rather than variational constructs, and postulates a balance for these forces
distinct from the one that governs their Newtonian counterparts. It is this point of view that we
espouse here.

39A more detailled account is to be found in Jabbour & Voigt [60].
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with (∂nρ12
i−1,b)i := ∇ρ12

i−1,b · ni the normal-derivative of the relative atomic density
within the (i−1)-th layer, ρ12

i−1, evaluated along the i-th step, whereas (3.43)2 yields

ni · [[C]]ini = [[ω]]i, (3.48)

with [[ω]]i = ωi−1 − ωi the jump in the terrace grand canonical potential across Γi(t).
Furthermore, letting γi = γ(Θi) denote the Helmholtz free-energy density (per unit
length) of the i-th step, it can be shown that consistency with the second law imposes
the following Eshelby-type identity:40

ci,s = γiti +
∂γi

∂Θi
ni, (3.49)

where ti is the unit tangent along Γi(t) (obtained by rotating ni by π/2 clockwise).
Hence, when edge adatom densities are negligible, the step line-tension, the tangential
component of the step configurational stress vector, equals its free-energy density. It
then follows that

ni · ∂ςci,s = γ̃i,sKi, (3.50)

where Ki = ∂ςΘi is the curvature of the i-th step, and γ̃i,s its stiffness:

γ̃i,s := γi,s +
∂2γi,s

∂Θ2
i

. (3.51)

Moreover, we shall show in Section 4 that the constitutive prescription

ni · gi,s = −βi,sVi +
2∑

k=1

(µk
i,s − µk

i−1,b)ρ
k
i−1,b + ε(∂nρ12

i−1,b)
2, (3.52)

with βi,s = βi,s(Θi, (ρ12
i−1,b)

−) the non-negative kinetic modulus associated with the
i-th step, is thermodynamically compatible. Finally, substitution of (3.47), (3.48),
(3.50), and (3.52) into the (3.42) yields the following step evolution equation:

βi,sVi = [[ω]]i −Ψi−1,b + µ1
i,sρ

1
i−1,b + µ2

i,sρ
2
i−1,b + γ̃iKi, (3.53)

which, making use of the lattice constraint

ρ1
i−1,b + ρ2

i−1,b = ρsites

and the definition of the relative atomic density

ρ1
i−1,b − ρ2

i−1,b = ρ12
i−1,b,

reduces to

βi,sVi = [[ω]]i−Ψi−1,b +
1
2
µ1

i,s

(
ρsites + ρ12

i−1,b

)
+

1
2
µ2

i,s

(
ρsites − ρ12

i−1,b

)
+ γ̃iKi. (3.54)

Importantly, following an argument by Larché & Cahn [65] (cf. also Fried &
Gurtin [55]), we can use the postulated continuity of the relative chemical potential,
(3.33), to express the step individual chemical potentials µ1

i,s and µ2
i,s in terms of

40See Section 4 below.
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the (limiting value of the) bulk relative chemical potential. Specifically, assuming for
simplicity that local equilibrium holds along the i-th step, i.e., βi,s ≡ 0, and replacing
µ2

i,s by µ1
i,s − µ12

i−i,b, (3.54) yields the following identity:

µ1
i,s =

1
2
(c12

i−1,b − 1)(µ12
i−1,b)

− +
1

ρsites
{Ψi−1,b − [[ω]]i − γ̃iKi} . (3.55)

with c12
i−1,b := ρ12

i−1,b

ρsites = ρ1
i−1,b−ρ2

i−1,b

ρ1
i−1,b+ρ2

i−1,b
the relative atomic concentration within Qi−1(t).

Similarly, we obtain:41

µ2
i,s = −1

2
(c12

i−1,b + 1)(µ12
i−1,b)

− +
1

ρsites
{Ψi−1,b − [[ω]]i − γ̃iKi} . (3.57)

qts. (3.55) and (3.57) generalize the classical Gibbs–Thomson relation (cf., e.g., Bales
and Zangwill [8]) to the case of binary-alloy epitaxy.

4. Thermodynamic consistency. In relation to isothermal growth, the first
and second laws of thermodynamics—i.e., the energy balance and the entropy inequal-
ity, respectively—combine into a single inequality, the dissipation inequality, which
asserts that the rate at which the energy associated with a given domain is bounded
by the rate at which energy is transported into the domain across its boundary aug-
mented by the power expended by the (external) forces acting on it.

We focus on the i-th step.42 Let R(t) denote an arbitrary, time-dependent sub-
curve of Γi(t), viewed as an interfacial pillbox of infinitesimal thickness, cf. Fig. 4.1.
Omitting the superscripts + and − by which we have previously labelled limiting
values as the step is approched from the lower or upper terrace, or from within the
adjacent film layer, the dissipation inequality, or free-energy imbalance, as it applies
to R(t), reads

d

dt

∫
R(t)

γi,s dς ≤ E(t) +W(t), (4.1)

with E(t) the energy inflow across ∂R(t) due to accretive and diffusive atomic trans-

41The jump in the grand canonical potential encapsulates the contribution of adatom diffusion
on the adjacent terraces to the step kinetics. This term is often missing in classical step-flow models
but, as shown Cermelli & Jabbour [76], there exists a growth regime for which it can lead to novel
step-bunching instabilities. The term βi,sVi, with βi,s a kinetic modulus for the i-th step, represents
a dissipative force associated with step motion. In classical step-flow models, this term is typically
neglected, i.e., local equilibrium is assumed to hold along the steps. However, as pointed out Fried
& Gurtin [55], this term may be important even for small βi,s as long as βi,sL

max
i,s is large, with

Lmax
i,s := max{L1

i,s, L2
i,s}. Finally, for βi,s ≡ 0, we can rewrite (3.53) as

µ1
i,sρ1

i−1,b + µ2
i,sρ2

i−1,b = Ψi−1,b − γ̃iKi − [[ω]]i, (3.56)

where the right-hand side of (3.56) can be shown to coincide with the variational derivative of the
total free energy with respect to variations of the position of the interface, holding the composition
fixed, cf. Wu [77], Norris [78], and Freund [79].

42The complete treatment, accounting for the adjacent terraces and film layer as well as the
substrate, is to be found in Jabbour & Voigt [60].
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Qi−1

Ωi
Ωi−1

jni

R(t)

Fig. 4.1. Schematic of an interfacial pillbox along the i-th step. Let R(t) be an evolving, i.e.,
time-dependent, subcurve of Γi(t) whose geometric boundary consists of its two endpoints. Adapting
the approach of fried & Gurtin [55] to the present setting, i.e., that of step flow on a vicinal
surface, we view the interfacial pillbox as encapsulating R(t) and having an infinitesimal thickness.
The pillbox boundary then consists of (i) two curves—in fact the projections of two surfaces of height
a—, one with unit normal ni and lying on the lower terrace Ωi−1(t), the other with unit normal
−ni(t) and lying within the adjacent film layer Qi−1(t) as well as on the upper terrace Ωi(t), and
(ii) end faces which we identify with the endpoints of Ri(t).

ports:

E(t) :=
2∑

k=1

∫
R(t)

[[µk(Lk∇µk · n + ρkV )]]i dς︸ ︷︷ ︸
diffusive and accretive energy inflows

from upper and lower terraces

+
2∑

k=1

∫
∂R(t)

µk
i,sL

k
i,s∂ςµ

k
i,s︸ ︷︷ ︸

energy intake due to
edge diffusion

−
2∑

k=1

∫
R(t)

µk
i−1,b(L

k
i−1,b∇µk

i−1,b · ni + ρk
i−1,bVi) dς︸ ︷︷ ︸

diffusive and accretive energy inflows
from adjacent ascending film layer

, (4.2)

where, since the edge adatom densities are assumed negligible, the accretive intake of
energy into R(t) across its endpoints is ignored, and we have made use of the notation∫

∂R(t)

ϕ := ϕ(ς1(t), t)− ϕ(ς0(t), t), (4.3)

where ϕ(ς, t) is a smooth, time-dependent field on Γi(t), and, for Γi(t) parametrized
by xi = xi(ς, t), x(ς0(t), t) and x(ς1(t), t) the locations of the endpoints of R(t) such
that ς0(t) < ς1(t) for all t; and W(t) denotes the power expended by configurational,
standard, and microforces on the boundary of the interfacial pillbox:

W(t) :=
∫
R(t)

[[C]]ini · vi dς −
∫
R(t)

P3Ci−1,bni · vi dς +
∫

∂R(t)

ci,s · v∂R(t)︸ ︷︷ ︸
power expended by terrace, bulk, and edge configurational forces

−
∫
R(t)

P3Ti−1,bni ·Dtui−1 dς︸ ︷︷ ︸
standard-traction working

−
∫
R(t)

εi−1,b · niDtρ
12
i−1,b dς︸ ︷︷ ︸

microforce working

, (4.4)
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where P3 := 1 − e3 ⊗ e3 is the projection of R3 onto the plane, vi := ∂txi(ς, t) the
velocity of the i-th step, and

Dtui := ∂tui + (∇ui)vi

and

Dtρ
12
i,b := ∂tρ

12
i,b +∇ρ12

i,b · vi

the time-derivatives of ui and ρ12
i,b following the evolution of Γi(t) respectively, and

we have made use of the notation∫
∂R(t)

ci,s · v∂R(t) := ci,s(ς1(t), t)ς̇1(t)− ci,s(ς0(t), t)ς̇0(t). (4.5)

Importantly, by (3.35), the working of the standard traction that the (i−1)-th film
layer exerts on R(t) vanishes. Now, the species balances along the i-th step read

Jk
i,+ + Jk

i,− + ∂ς

(
Lk

i,s∂ςµ
k
i,s

)
− Lk

i−1,b∇µk
i−1,b · ni = ρk

i−1,bVi, (4.6)

for k = 1, 2. Moreover, applying the divergence theorem for line integrals,43 we obtain
the identity∫

∂R(t)

µk
i,sL

k
i,s∂ςµ

k
i,s =

∫
R(t)

{
µk

i,s∂ς(Lk
i,s∂ςµ

k
i,s) + Lk

i,s(∂ςµ
k
i,s)

2
}

dς. (4.7)

Furthermore, appealing to the step atomic-density jump conditions (3.31)1,2, the con-
tinuity of the relative chemical potential (3.33), the species equations (4.6), and re-
calling that the bulk net atomic flux is identically zero for a substitutional alloy, it
follows that

E(t) =
2∑

k=1

∫
R(t)

ρk
i−1,b(µ

k
i,s − µk

i−1,b)Vi dς︸ ︷︷ ︸
energetic contribution due to

adatom absorption

+
2∑

k=1

∫
R(t)

Lk
i,s

(
∂ςµ

k
i,s

)2
dς︸ ︷︷ ︸

energetic contribution via
edge diffusion

+
2∑

k=1

∫
R(t)

{
(µk

i − µk
i,s)J

k
i,+ + (µk

i−1 − µk
i,s)J

k
i,−

}
dς︸ ︷︷ ︸

energetic contribution due to adatom
attachment-detachment

. (4.8)

In addition, decomposing the step configurational-stress vector according to

ci,s = σiti + τini,

with σi the line tension associated with the i-th step and τi the configurational shear,
and appealing to the line divergence theorem, the definition of the curvature of the
i-th step, Ki = ∂ςΘi, the kinematic identity ∂ςVi =

◦
Θi, and the chain rule, we obtain

the following identity:∫
∂R(t)

ci,s · v∂R(t) =
∫
R(t)

{
τi

◦
Θi + (∂Θiτi)KiVi

}
dς +

∫
∂R(t)

σiv∂R(t) · ti, (4.9)

43For a smooth (scalar) field ϕ along the i-th step, the divergence theorem states that∫
R(t) ∂ςϕ dς =

∫
∂R(t) ϕ, with the right-hand side given by (4.3).
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where we make use of the notation∫
∂R(t)

ϕv∂R(t) · ti := ϕ(ς1(t), t)ς̇1(t)− ϕ(ς0(t), t)ς̇0(t).

Now, if we appeal to the transport theorem for line integrals,44

d

dt

∫
R(t)

γi,s dς =
∫
R(t)

{
◦
γi,s − γi,sKiVi

}
dς +

∫
∂R(t)

γi,sv∂R · ti, (4.10)

and if we postulate that the dissipation inequality hold irrespective of the choice
of parametrization of Γi(t), and by consequence of the tangential velocities of the
endpoints of R(t), we obtain the identity of the line tension with the step free-energy
density:

σi = γi, i = 1, . . . , N. (4.11)

Hence, appealing to (3.42), (4.8), (4.9), (4.10), and (4.11), and recalling that the
choice of the subcurve R(t) is arbitrary, the dissipation inequality (4.1) yields

◦
γi − τi

◦
Θi −

2∑
k=1

Lk
i,s(∇µk

i,s)
2 −

2∑
k=1

(µk
i − µk

i,s)J
k
i,+ −

2∑
k=1

(µk
i−1 − µk

i,s)J
k
i,−

−

{
2∑

k=1

ρk
i−1,b(µ

k
i,s − µk

i−1,b) + ε(∂nρ12
i−1,b)

2 − gi,s · ni

}
Vi ≤ 0. (4.12)

Now, we let γi = γi(Θi) and require that the dissipation inequality hold for any
thermodynamic process. Given that the dependence of the left-hand side of (4.12) on
◦
Θi is linear, the latter can be chosen to violate the dissipation inequality unless its
coefficient is identically zero. Hence the step configurational shear has to satisfy

τi = ∂Θi
γi for i ∈ {1, . . . , N}, (4.13)

and it is easily seen that the constitutive relations (3.32) and (3.52) are sufficient
for (4.12) to hold, granted that the attachment-detachment coefficients, Kk

i,+ and
Kk

i,−, the edge-adatom mobilities, Lk
i,s, and the step kinetic modulus, βi,s, are all

non-negative. Finally, the dissipation Di along the i-th step reduces to

Di :=
2∑

k=1

Lk
i,s(∇µk

i,s)
2

︸ ︷︷ ︸
dissipation due to adatom

edge diffusion

+ βi,sV
2
i︸ ︷︷ ︸

dissipation due to adatom
absorption into bulk

+
2∑

k=1

Kk
i,−(µk

i − µk
i,s)

2 +
2∑

k=1

Kk
i,+(µk

i−1 − µk
i,s)

2

︸ ︷︷ ︸
dissipation due to adatom
attachment-detachment

≥ 0. (4.14)

44Cf., e.g., Gurtin [57].



Multispecies Step Flow with Phase Segregation 27

5. Conclusions. Our goal is a thermodynamically consistent theory for multi-
species epitaxy at the nanoscale. For simplicity, we have focused on the binary case.
The two main features of the proposed model are (i) the extension of the discrete-
continuum BCF formalism and (ii) the derivation of novel boundary conditions at
the evolving steps that couple the transport of atoms on the terraces and along the
step edges to the bulk atomic diffusion and elasticity. Specifically, we represent the
film as a layered nanostructure such that the interfaces that separate adjacent layers
are virtual extensions of the terraces of the vicinal surface. Importantly, this layered
structure provides a most natural geometric framework within which to capture the
atomic exchanges between bulk and surface. Moreover, following Gurtin [57, 54],
we postulate separate balances for the configurational and microforces. The former
forces accompany the evoluion of steps whereas the latter forces are associated with
the changes in the bulk relative atomic density viewed as an order parameter for
phase separation within the film layers. Finally, we endow the film layers with free
energies of the Ginzburg–Landau type and derive sufficient conditions that ensure the
compatibility of the constitutively augmented evolution equations with the second
law.

The proposed theory should provide an appropriate paradigm for the study of
the role of steps in alloy formation and phase segregation during growth. As such, it
should pave the way to a better understanding of the formation of nanostructures such
as multilayers, two-dimensional stripes, quatum dots, etc. during multicomponent
hetero-epitaxy. The stability analysis and numerical implementation of the resulting
free-boundary problem are in progress.

Appendix A. Consistency with BCF-type theories for single-species
epitaxy.

Here we assume that both film and substrate consist of the same single species
which, without loss of generality, we take to be species 1. Accordingly, all fields as-
sociated with species 2 are assumed to vanish, e.g., ρ2

i = µ2
i = µ2

i,s = 0, etc. It then
follows that the relative atomic density and chemical potential reduce to their coun-
terparts for species 1, ρ12

i,b = ρ1
i , µ12

i,b = µ1
i,b, etc. For simplicity, we omit superscripts,

with the implicit understanding that all fields and parameters are associated with
species 1, e.g., ρi refers to ρ1

i , the atomic density of adatoms on the first (and only)
species on the i-th terrace, etc. Importantly, in the absence of vacancies in the bulk,
atomic diffusion is absent from both film and substrate and, correspondingly, bulk
atomic densities are fixed, i.e., ρi,b = ρsites and ρ−1,b = ρsites

−1 , with ρsites = aρsites
−1 ,

the density of lattice sites (per unit area) a prescribed constant and a the lattice
parameter for both film and substrate. Hence the bulk diffusion equations, (3.6) and
(3.17), are trivially satisfied. Moreover, since growth is now homo-epitaxial, there is no
lattice-parameter mismatch between film and substrate.45 Hence, we assume that the
displacement within the i-th layer (substrate) is identically zero, ui ≡ 0 (u−1 ≡ 0),
and so is the corresponding stress field, Ti ≡ 0 (T−1 ≡ 0), i.e., both film and sub-
strate are stress-free.46 Therefore, the bulk mechanical-equilibrium conditions, (3.7)
and (3.18), hold identically. Finally, in the absence of phase segregation, microforces,
defined as forces whose working accompanies variations in the bulk relative atomic
density, are extraneous to the formulation of the problem.

45We do not consider growth of a single-species film upon a substrate made of another material,
e.g., Si on Ge. As discussed in Section 1, such growth is hetero-epitaxial.

46For homo-epitaxy, the absence of compositional inhomogeneities in the bulk implies that the
solute stress is identically zero.
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The PDE’s (3.1) now reduce to a single reaction-diffusion equation for the trans-
port, i.e., adsorption-desorption and diffusion, of adatoms on the i-th terrace

∂tρi − L∆µi = F− γµi upon Ωi(t), (A.1)

where L, F, and γ are the constant adatom mobility coefficient, depostion flux, and
desorption coefficient. Here, as for the multispecies case, the adatom chemical poten-
tial is given by

µi = ∂ρi
Ψi, (A.2)

where, letting θi := ρi

ρsites denote the adatom coverage density (per unit area) and ω
be the energy per interatomic bond, and assuming that the terraces are regular binary
solutions with the two species being the adatoms and the open adsorption sites, the
terrace free-energy density is prescribed according to:

Ψi = Ψ(ρi) = Ψ(θi) = 4ωθi(1− θi) + kBT {θi ln θi + (1− θi) ln(1− θi)} . (A.3)

Furthermore, omitting the superscripts + and − for the limiting values as the
step is approched from the lower and upper adjacent terraces respectively, the sup-
plementary atomic-density jump conditions along the i-th step, (3.31)–(3.32), now
reduce to:

Ji,+ = L∇µi · ni + ρiVi,

Ji,− = −L∇µi−1 · ni − ρi−1Vi,

}
(A.4)

where the adatom inflows into the i-th step from the lower and upper adjacent terraces
satisfy

Ji,+ =Ki,+ {µi − µi,s} ,

Ji,− =Ki,− {µi−1 − µi,s} ,

}
(A.5)

and Ki,+ = Ki,+(Θi) and Ki,− = Ki,−(Θi) are the adatom attachment-detachment
coefficients from the lower and upper terraces respectively, both non-negative.47 Fur-
thermore, eqt. (3.33) now takes the form of a continuity condition for the (absolute)
chemical potential:

µi−1,b = µi,s, (A.7)

whereas the atomic-density equation (3.41) reads as

ρsitesVi = Ki,+(µi − µi,s) + Ki,−(µi−1 − µi,s) + ∂ς {Li,s∂ςµi,s} , (A.8)

with Li,s = Ls(Θi) the non-negative, anisotropic edge-adatom mobility. Finally, the
configurational force balance, subject to the assumption of local equilibrium, reduces
to

µi,s =
1

ρsites
{Ψb − γ̃iKi − [[ω]]i} (A.9)

47As discussed in footnote 34, if the i-th step acts as a perfect sink of adatoms, then the boundary
conditions (A.4) are replaced by their so-called thermodynamic counterparts, i.e.,

µi = µi,s = µi−1. (A.6)
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with Ψb the constant bulk free-energy density (per unit area) and γ̃i := γ(Θi)+γ′′(Θi)
the stiffness of the i-th step.

Now, let ρeq
i denote the adatom equilibrium density along the i-th step. Following

Cermelli & Jabbour [49], we expand the terrace chemical potential about ρeq
i :

µi = µi(ρ
eq
i ) + ∂ρi

µi(ρ
eq
i ) {ρi − ρeq

i }+ · · · , (A.10)

and, appealing to (A.2) and the definition of the terrace grand canonical potential,
ωi := Ψi − µiρi, we also arrive at

ωi = ωi(ρ
eq
i ) + ρeq

i ∂ρi
µi(ρ

eq
i ) {ρi − ρeq

i }+ · · · . (A.11)

Thus, by (A.5) and (A.9), it follows that

Ji,+ ∼ Mi,+

{
ρi − ρeq

i +
γ̃i

ρsites∂ρi
µi(ρ

eq
i )

Ki +
ρeq

i

ρsites
[[ρi − ρeq

i ]]i

}
, (A.12)

with Mi,+ := Ki,+∂ρiµi(ρ
eq
i ), and

Ji,− ∼ Mi,−

{
ρi−1 − ρeq

i +
γ̃i

ρsites∂ρi
µi(ρ

eq
i )

Ki +
ρeq

i

ρsites
[[ρi−1 − ρeq

i ]]i

}
, (A.13)

with Mi,− := Ki,−∂ρi
µi(ρ

eq
i ). Therefore, if we further assume that ρeq

i � ρsites,
the terms ρeq

i

ρsites [[ρi − ρeq
i ]]i and ρeq

i

ρsites [[ρi−1 − ρeq
i ]]i become negligible. Hence, in the

limit ρeq
i

ρsites → 0, the approximate free-boundary problem becomes of the BCF type.
Specifically, eqt. (A.1) reduces to

∂tρi −Di∆ρi = Fi − λiρi, (A.14)

with Di := L∂ρi
µi(ρ

eq
i ), Fi := F− γ {µi(ρ

eq
i )− ρeq

i ∂ρi
µi(ρ

eq
i )}, and λi := γ∂ρi

µi(ρ
eq
i ),

whereas the step jump conditions (A.4)–(A.5) take the form

Di∇ρi · ni + ρiVi = Mi,+

{
ρi − ρeq

i +
γ̃i

ρsites∂ρiµi(ρ
eq
i )

Ki

}
(A.15)

and

−Di∇ρi−1 · ni − ρi−1Vi = Mi,−

{
ρi−1 − ρeq

i +
γ̃i

ρsites∂ρi
µi(ρ

eq
i )

Ki

}
. (A.16)

Moreover, eqt. (A.9) is approximated by

µi,s = µeq −
γ̃i

ρsites
Ki, (A.17)

where µeq := Ψb

ρsites . Consequently, defining Di,s := Li,s

ρsites , eqt. (A.8) takes the form

ρsitesVi = Mi,+

{
ρi − ρeq

i +
γ̃i

ρsites∂ρiµi(ρ
eq
i )

Ki

}
+ Mi,−

{
ρi−1 − ρeq

i +
γ̃i

ρsites∂ρi
µi(ρ

eq
i )

Ki

}
− ∂ς {Di,s∂ς(γ̃iKi)} . (A.18)
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Thus we have obtained the classical BCF model, as described in , e.g., Krug [9] and
Pierre-Louis [11].48
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