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Abstract

This paper qualitatively compares three recently proposed models for signal/image
texture extraction based on total variation minimization: the Meyer [2], the Vese-
Osher (VO) [6], and the TV-L1 [11–18] models. We discreetly formulate these models
as second-order cone programs (SOCP) which can be solved by a modern interior-
point method. Our experiments of these models using 1D oscillating signals and
2D images reveal their differences: the Meyer model tends to extract the oscillation
patterns of its inputs, the TV-L1 model performs a strict multiscale decomposition,
and the Vese-Osher model has properties lying in between the two others.

Key words: image decomposition, texture extraction, feature selection, total
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1 Introduction

Let f be an observed image that contains texture and/or noise. Texture is
characterized as repeated and meaningful structure of small patterns. Noise is
characterized as uncorrelated random patterns. The rest of an image, which
is called cartoon, contains object hues and sharp edges (boundaries). Thus an
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image f can be decomposed as f = u+v, where u represents image cartoon and
v is texture and/or noise. A general way to obtain this decomposition using
the variational approach is to solve the problem min {TV (u) | ‖u−f‖B ≤ σ},
where TV (u) denotes the total variation of u and ‖ · ‖B is a norm (or semi-
norm). The total variation of u, which is

∫
|Du|, is minimized to regularize

u while keeping edges like object boundaries of f in u (i.e., while allowing
discontinuities in u). The fidelity term ‖t(u, f)‖B ≤ σ forces u to be close to
f .

1.1 The spaces BV and G

The Banach space BV of functions of bounded variation is important in image
processing because such functions are allowed to have discontinuities and hence
keep edges. This can be seen from its definition as follows.

Let u ∈ L1, and define [1]

TV (u) = ‖Du‖ := sup


∫

u div(~g) dx :
~g ∈ C1

0(Rn; Rn),

‖~g(x)‖l2 ≤ 1 for all x ∈ Rn


as the total variation of u, then u ∈ BV if ‖u‖BV = ‖u‖L1 + ‖Du‖ < ∞.
In the above definition, ~g ∈ C1

0(Rn; Rn), the set of continuously differentiable
vector-valued functions, serves as a test set for u. If u ∈ H1 ⊂ BV , it follows
from integration by parts that the ‖Du‖ is equal to

∫
|∇u|. However, the use

of test functions to define ‖Du‖ allows u to have discontinuities. Therefore,
BV is much larger than H1. Equipped with the ‖ · ‖BV -norm, BV is a Banach
space.

BV (Ω) with Ω being a bounded open domain is defined analogously to BV
with L1 and C1

0(Rn; Rn) replaced by L1(Ω) and C1
0(Ω; Rn), respectively.

Next, we define the space G [2]. Let G denote the Banach space consisting of
all generalized functions v(x) defined on Rn, which can be written as

v = div(~g), ~g = [gi]i=1,...,n ∈ L∞(Rn; Rn). (1)

Its norm ‖v‖G is defined as the infimum of all L∞ norms of the functions
|~g(x)|l2 over all decompositions (1) of f . In short, ‖v‖G = inf{‖ |~g(x)|l2 ‖L∞ :
v = div(~g)}. G is the dual of the closed subspace BV of BV , where BV :=
{u ∈ BV : |Df | ∈ L1} [2]. We note that finite difference approximations to
functions in BV and BV are the same. For the definition and properties of
G(Ω), see [3].
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An immediate result of the above definitions is that∫
u v =

∫
u∇ · ~g = −

∫
Du · ~g ≤ ‖Du‖‖v‖G, (2)

holds for any u ∈ BV with compact support and v ∈ G. We say (u, v) is an
extremal pair if (2) holds with equality.

In image processing, the space BV and the total variation semi-norm were first
used by Rudin, Osher, and Fatemi [4] to remove noise from images. Specifically,
their model obtains a cleaner image u ∈ BV of a noisy image f by letting u
be the minimizer of ‖Du‖+ λ‖u− f‖2

L2 , in which the regularizing term ‖Du‖
tends to reduce the oscillations in u and the data fidelity term ‖u−f‖L2 tends
to keep u close to f .

The ROF model is the precursor to a large number of image processing models
having a similar form. Among the recent total variation-based cartoon-texture
decomposition models, Meyer [2] and Haddad and Meyer [5] proposed using
the G-norm defined above, Vese and Osher [6] approximated the G-norm by
the div(Lp)-norm, Osher, Sole and Vese [7] proposed using the H−1-norm,
Lieu and Vese [8] proposed using the more general H−s-norm, and Le and
Vese [9] and Garnett, Le and Vese [10] proposed using the div(BMO)-norm.
In addition, Chan and Esedoglu [11] and Yin, Goldfarb and Osher [12] used the
L1-norm together with total variation, following the earlier work by Alliney
[13–15] and Nikolova [16–18].

1.2 Three cartoon-texture decomposition models

In this subsection we present three cartoon-texture decomposition models that
are based on the minimization of total variation. We suggest that readers in-
terested in the theoretical analysis of these models read the referenced works
mentioned below and in the introduction. Although the analysis of the ex-
istence and uniqueness of solutions and duality/conjugacy is not within the
scope of our discussion, in Section 3 we relate the differences among the image
results from these models to the distinguished properties of the three fidelity
terms: ‖f − u‖L1 , ‖f − u‖G, and its approximation by Vese and Osher.

In the rest of the paper, we assume the input image f has compact support
contained in a bounded convex open set Ω. In our tests, Ω is an open square.

1.2.1 The TV-L1 model

In [13–15,17,18,11,19] the square of the L2 norm of f − u in the fidelity term
in the original ROF model (min{TV (u) + λ‖f − u‖2

L2}) is replaced by the L1
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norm of f − u, which yields the following problem:

Constraint model: min
u∈BV

{
∫
Ω
|∇u|, s.t.

∫
|f − u| ≤ σ}, (3)

Lagrangian model: min
u∈BV

∫
Ω
|∇u|+ λ

∫
|f − u|. (4)

The above constrained minimization problem (3) is equivalent to its La-
grangian relaxed form (4), where λ is the Lagrange multiplier of the constraint∫
|f − u|. The two problems have the same solution if λ is chosen equal to the

optimal value of the dual variable corresponding to the constraint in the con-
strained problem. Given σ or λ, we can calculate the other value by solving the
corresponding problem. The same result also holds for Meyer’s model below.

We chose to solve the Lagrangian relaxed version (4), rather than the con-
straint version (3), in our numerical experiments because several researchers
[11,19] have established the relationship between λ and the scale of f−u∗. For
example, for the unit disk signal 1B(0,r) centered at origin and with radius r,
f − u∗ = 1B(0,r) for 0 < λ < 2/r while f − u∗ vanishes for λ > 2/r. Although
this model appears to be simpler than Meyer’s model and the Vese-Osher
model below, it has recently been shown to have very interesting properties
like morphological invariance and texture extraction by scale [11,19]. These
properties are important in various applications in biomedical engineering and
computer vision such as background correction [20], face recognition [21,22],
and brain MR image registration [23]. In Section 3, we demonstrate the ability
of the TV-L1 model to separate out features of a certain scale in an image.

1.2.2 Meyer’s model

To extract cartoon u in the space BV and texture and/or noise v as an oscil-
lating function, Meyer [2] proposed the following model:

Constraint version: inf
u∈BV

{
∫
|∇u|, s.t. ‖f − u‖G ≤ σ}, (5)

Lagrangian version: inf
u∈BV

∫
|∇u|+ λ‖f − u‖G. (6)

As we have pointed out in Section 1.1, G is the dual space of BV , a sub-
space of BV . So G is closely connected to BV . Meyer gave a few examples,
including the one shown at the end of next paragraph, in [2] illustrating the
appropriateness of modeling oscillating patterns by functions in G.

Unfortunately, it is not possible to write down Euler-Lagrange equations for
the Lagrangian form of Meyer’s model (6), and hence, use a straightfor-
ward partial differential equation method to solve it. Alternatively, several
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models [3,24,7,6] have been proposed to solve (6) approximately. The Vese-
Osher model [6] described in the next subsection approximates || |~g(x)| ‖L∞ by
|| |~g(x)| ‖Lp , with 1 ≤ p < ∞. The Osher-Sole-Vese model [7] replaces ‖v‖G by
the Hilbert functional ‖v‖2

H−1. The more recent A2BC model [3,25,24] is in-
spired by Chambolle’s projection algorithm [26] and minimizes TV (u)+λ‖f−
u− v‖2 for (u, v) ∈ BV ×{v ∈ G : ‖v‖G ≤ µ}. A similar projection algorithm
proposed in [27] is also used to approximately solve the TV-L1 model (4)
defined above. Recently, Kindermann and Osher [28] showed that (6) is equiv-
alent to a minimax problem and proposed a numerical method to solve the
latter saddle-point problem. In Section 2, we present SOCP-based optimiza-
tion models to solve both (5) and (6) exactly (i.e., without any approximation
or regularization applied to the non-smooth terms

∫
|∇u| and ‖v‖G except for

the use of finite differences). In contrast to our choice for the TV-L1 model,
we choose to solve (5) with specified σ’s to conduct numerical experiments
because setting an upper bound on ‖f − u‖G is more meaningful than pe-
nalizing ‖f −u‖G. The following example demonstrates that ‖v‖G is inversely
proportional to the oscillation of v: let v(t) = cos(xt), which has stronger oscil-

lations for larger t; one can show ‖v‖G = 1/t because cos(xt) =
d( 1

t
sin(xt))

dx
and

‖1
t
sin(xt)‖L∞ = 1/t. Therefore, to separate a signal with oscillations stronger

than a specific level from f , it is more straightforward to solve the constrained
problem (5).

To calculate the G-norm of a function f alone, one can choose to solve an
SOCP or use the dual method by Kindermann, Osher and Xu [29]. The authors
of the latter work exploit (2) to develop a level-set based iterative method.

1.2.3 The Vese-Osher model

Motivated by the definition of the L∞ norm of |~g(x)|l2 as the limit

‖ |~g|l2 ‖L∞ = lim
p→∞

‖ |~g|l2 ‖Lp , (7)

Vese and Osher [6] proposed the following approximation to Meyer’s model
(5):

inf
u∈BV,~g∈C1

0 (Rn;Rn)
{V Op(u,~g) :=

∫
|∇u|+ λ

∫
|f − u− div(~g)|2 + µ

[∫
|~g|pl2

]1/p

},

(8)
where p ≥ 1.

In R2, minimizing V Op with respect to u,~g = (g1, g2) yields the associated
Euler-Lagrange equations:
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u = f − ∂1g1 − ∂2g2 +
1

2λ
div

(
∇u

|∇u|

)
,(9)

µ
(
‖
√

g2
1 + g2

2‖p

)1−p (√
g2
1 + g2

2

)p−2

g1 = 2λ
[
∂1(u− f) + ∂2

11g1 + ∂2
12g2

]
,(10)

µ
(
‖
√

g2
1 + g2

2‖p

)1−p (√
g2
1 + g2

2

)p−2

g2 = 2λ
[
∂2(u− f) + ∂2

12g1 + ∂2
22g2

]
.(11)

In [6], the authors solve the above system of partial differential equations for
different values of p, with 1 ≤ p ≤ 10, via a sequential descent approach and
claim that they give very similar numerical results.

The VO model (8) can be viewed as a relaxation of the the Meyer’s model (5)
since the requirement f −u = div(g) is relaxed by penalizing its violation and
sup~g{‖|~g|l2‖L∞ : ‖|~g|l2‖Lp ≤ σ} = ∞. This point is clearly illustrated by the
numerical comparisons between these two models presented in Section 3.

1.3 Second-order cone programming

The purpose of this paper is to accurately compute and compare the three
TV-based models presented above using a uniform approach. To do this we
formulate and solve all of the above three models as second-order cone pro-
grams (SOCPs). These formulations do not require the use of regularization
to handle the non-smoothness of these models. In this subsection, we give a
short introduction to SOCP and the use of interior-point methods to solve
SOCPs.

In an SOCP the vector of variables x ∈ Rn is composed of subvectors xi ∈ Rni

– i.e., x ≡ (x1;x2; . . . ;xr) – where n = n1 + n2 + . . . + nr and each subvector
xi must lie either in an elementary second-order cone of dimension ni

Kni ≡ {xi = (x0
i ; x̄i) ∈ R× Rni−1 | ‖x̄i‖ ≤ x0

i },

or an ni-dimensional rotated second-order cone

Qni ≡ {xi ∈ Rni | xi = x̄, 2x̄1x̄2 ≥
ni∑

i=3

x̄2
i , x̄1, x̄2 ≥ 0}. (12)

Note Qni is an elementary second-order cone under a linear transformation;
i.e.,

(
1√
2
(x1 + x2);

1√
2
(x1 − x2); x3; . . . ; xni

) ∈ Kni ⇐⇒ (x1; x2; x3; . . . ; xt) ∈ Qni .
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With these definitions an SOCP can be written in the following form [30]:

min c>1 x1 + · · ·+ c>r xr

s.t. A1x1 + · · ·+ Arxr = b

xi ∈ Kni or Qni , for i = 1, . . . , r,

(13)

where ci ∈ Rni and Ai ∈ Rm×ni , for i = 1, . . . , r and b ∈ Rm.

Since a one-dimensional second-order cone corresponds to a semi-infinite ray,
SOCPs can accommodate nonnegative variables. In fact if all cones are one-
dimensional, then the above SOCP is just a standard form linear program.
As is the case for linear programs, SOCPs can be solved in polynomial time
by interior point methods. This is the approach that we take to solve the
TV-based cartoon-texture decomposition models in this paper.

1.4 Interior-point methods for SOCPs

Over the past two decades there has been extensive research on and devel-
opment of the interior-point methods for solving linear programs. In the last
few years this research and development has been extended to SOCPs. Con-
sequently, these problems can now be solved efficiently both in practice and
in theory (in polynomial time). Moreover, interior-point SOCP methods often
yield highly accurate solutions. The optimality conditions for the SOCP (13)
are

A1x1 + · · ·+ Arxr = b,

A>i y + si = ci, for i = 1, . . . , r,

x>i si = 0, for i = 1, . . . , r,

x0
i s̄i + s0

i x̄i = 0, for i = 1, . . . , r.

(14)

Interior-point methods for SOCPs approximately solve a sequence of per-
turbed optimality conditions (the “0” on the right-hand side of the third block
in (14), which is equal to the duality gap, is replaced by a positive scalar µ) by
taking single damped Newton steps while making sure that the new iterates
remain interior (i.e., xi + ∆xi and si + ∆si are strictly inside their respective
cones). The iteration stops once a new iterate satisfies certain prescribed stop-
ping conditions such as the duality gap µ falling below a tolerance. The typical
number of iterations is between 15 and 50 and is usually fairly independent of
the problem size. Moreover, in [31] it is shown that each interior-point itera-
tion takes O(n3) time and O(n2 log n) bytes for solving an SOCP formulation
of the Rudin-Osher-Fatemi model [4].
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2 Formulating the models as SOCPs

2.1 Preliminaries

In practice grey images are represented as 2-dimensional matrices, whose el-
ements give the grey-scale values of corresponding pixels. In this paper we
restrict our discussion to square domains in R2 and hence n× n real matrices
(denoted by Mn×n) for the sake of simplicity.

Let f ∈ Mn×n be an observed image and let u denote the cartoon and v denote
the texture and/or noise in f such that (f, u, v) satisfies

fi,j = ui,j + vi,j, for i, j = 1, . . . , n. (15)

fi,j, ui,j, and vi,j are, respectively, the grey-scale values of the observed image,
the cartoon, and the texture/noise at pixel (i, j).

All of the three models considered in this paper minimize the total variation of
u, TV (u), to regularize u. Here we present a discretization schema and convert
min TV (u) into an SOCP. First, we use forward finite differences to define the
total variation of u as follows:

TV(u)
def
=

∑
1≤i,j≤n

‖∂+ui,j‖, (16)

where ‖ · ‖ denotes the Euclidean norm, i.e., ‖∂+ui,j‖ = ( ((∂+
x u)i,j)

2 +
((∂+

y u)i,j)
2 )1/2, and ∂+ denotes the discrete differential operator defined by

∂+ui,j
def
=
(

(∂+
x u)i,j, (∂

+
y u)i,j

)
(17)

where

(∂+
x u)i,j

def
=ui+1,j − ui,j, for i = 1, . . . , n− 1, j = 1, . . . , n,

(∂+
y u)i,j

def
=ui,j+1 − ui,j, for i = 1, . . . , n, j = 1, . . . , n− 1.

(18)

In addition, to satisfy the Nuemann boundary condition ∂u
∂n

= 0 on image
boundary, the forward differentials on the image right and bottom edges,
(∂+

x u)n,j, for j = 1, . . . , n, and (∂+
y u)i,n, for i = 1, . . . , n, are defined to be

zero.

Next we introduce the new variables ti,j and the 3-dimensional second-order
cones

(ti,j ; (∂+
x u)i,j, (∂

+
y u)i,j) ∈ K3, (19)

for each pixel (i, j), i, j = 1, . . . , n. Each ti,j is no less than ((∂+
x u)2

i,j +

(∂+
y u)2

i,j)
1/2, so minimizing ti,j has the same effect of minimizing ((∂+

x u)2
i,j +
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(∂+
y u)2

i,j)
1/2. Therefore, we can express min TV (u) as min

∑
i,j ti,j subject to

the constraints in (19).

Now we are in the position to cast the non-TV fidelity terms in models (5),
(8), and (4) as SOCP objectives and constraints.

A piece-wise linear constraint
∫
|f − u| ≤ σ in the TV-L1 model can be ex-

pressed discretely as follows:

(fi,j − ui,j)≤σi,j, for i, j = 1, . . . , n, (20)

(ui,j − fi,j)≤σi,j, for i, j = 1, . . . , n, (21)∑
i,j

σi,j ≤σ. (22)

But if
∫
|f − u| appears as a minimization objective as is the case in (4), with

out loss of generality say the objective is min |x|, one can introduce an extra
variable (t or s below) and transform min |x| into equivalent problems:

min |x| (23)

⇐⇒ min t s.t. x ≤ t, −x ≤ t (24)

(s
def
= t + x) ⇐⇒ min (s− x) s.t. 2x ≤ s, s ≥ 0. (25)

Both Problems (24) and (25) consist of a linear objective and two linear con-
straints. However, Problem (25) is preferred by some solvers since the non-
negativity constraint s ≥ 0 is cheaper to handle [32].

For Meyer’s model (5), we define the discretized version of ‖v‖G as the infimum
of

‖
√

g2
1(i, j) + g2

2(i, j)‖L∞

over all g1, g2 ∈ R(n+1)2 satisfying v = ∂+
x g1 + ∂+

y g2 using forward finite differ-

ences. To express min ‖v‖G (or, equivalently, min ‖
√

g2
1(i, j) + g2

2(i, j)‖L∞) in
an SOCP, we introduce a variable s and a 3-dimensional second-order cone

(g0(i, j) ; g1(i, j), g2(i, j)) ∈ K3 (26)

for each i, j; hence, min ‖v‖G can be equivalently expressed as

min s, s.t. g0(i, j) ≤ s and (26), for all i, j. (27)

Next, we present the ways to express the two penalty terms in (8) in SOCPs.
Using forward finite difference, the residual penalty term

∫
|f−u−∂1g1−∂2g2|2

is implemented discretely as:∑
i,j

|f − u− ∂+
x g1 − ∂+

y g2|2. (28)
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Clearly, minimizing (28) is equivalent to minimizing s1 subject to the following
chain of constraints:

2s1s2≥ s2
3, (29)

s2 = 1/2, (30)

s3 = s4, (31)

s2
4≥

∑
1≤i,j≤n

r2
i,j, (32)

f − u− ∂+
x g1 − ∂+

y g2 = ri,j, (33)

where (30), (31), and (33) are linear constraints, (29) can be formulated as
(s1; s2; s3) ∈ Q3, and (32) can be formulated as (s4; [ri,j]1≤i,j≤n) ∈ Kn2+1.

For the penalty term

µ
[∫ (√

g2
1 + g2

2

)p]1/p

(34)

in (8) there are three cases to consider. When p = 1, the minimization of
(34) can be formulated as the minimization of the sum of µg0(i, j) over all
i, j = 1, . . . , n, where g0(i, j) is subject to (26). When p = ∞, (34) is equal
to µ‖v‖G as in the Meyer’s model and hence one can solve (27) to minimize
(34). When 1 < p < ∞, we use second-order cone formulations presented in
[30]. Let us study the general case of the p-norm inequality

(
n∑

i=1

|xi|l/m

)m/l

≤ t, (35)

where l/m = p ≥ 1 and t is either a given positive scale or a variable to
minimize. If we introduce si ≥ 0, for i = 1, . . . , n, we can express (35) as the
following set of inequalities:

|xi| ≤ s
m/l
i t(l−m)/l, si ≥ 0, for i = 1, . . . , n (36)

n∑
i=1

si ≤ t, (37)

which is equivalent to

xi ≤ s
m/l
i t(l−m)/l, −xi ≤ s

m/l
i t(l−m)/l, si ≥ 0, for i = 1, . . . , n (38)

n∑
i=1

si ≤ t, (39)

Let us now illustrate how to express the nontrivial inequality constraints in
(38) as a set of 3-dimensional rotated second-order cones and linear inequalities
by a concrete example. Suppose p = 5/3, i.e., m = 3, l = 5. Dropping the
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subscript i and introducing a scalar z ≥ 0 such that z + x ≥ 0, it is easy to
verify that the first inequality in (38) is equivalent to z + x ≤ s3/5t2/5, z ≥ 0
and z + x ≥ 0, which in turn is equivalent to (z + x)8 ≤ s3t2(z + x)3, z ≥ 0
and z + x ≥ 0. The latter can be further expressed as the following system of
inequalities:

w2
1 ≤ s(z + x), w2

2 ≤ w1s, w2
3 ≤ t(z + x) (40)

(z + x)2 ≤ w2w3, z ≥ 0, z + x ≥ 0 (41)

where the first four inequalities form four rotated second-order cones. The
same argument applies to −x ≤ s3/5t2/5 if we replace x wherever it appears in
the argument by −x.

2.2 SOCP model formulations

We now combine the SOCP expressions derived in the last subsection to give
complete SOCP formulations for (4), (5), and (8).

2.2.1 The TV-L1 model

Below we give both the SOCP formulations of the constraint and Lagrangian
(differences indicated in parenthesis) versions (3) and (4) of the TV-L1 model:

min
∑

1≤i,j≤n ti,j (Lagrangian ver.:
∑

1≤i,j≤n ti,j + λs)

s.t. −(∂+
x u)i,j + (ui+1,j − ui,j) = 0, for i, j = 1, . . . , n

−(∂+
y u)i,j + (ui,j+1 − ui,j) = 0, for i, j = 1, . . . , n

ui,j + σi,j ≥ fi,j, for i, j = 1, . . . , n

ui,j − σi,j ≤ fi,j, for i, j = 1, . . . , n∑
i,j σi,j ≤ σ, (Lagrangian ver.: replace σ by s)

(ti,j ; (∂+
x u)i,j, (∂

+
y u)i,j) ∈ K3, for i, j = 1, . . . , n,

(42)
where u, ∂+

x u, ∂+
y u, σi,j, s, and t are variables and f , λ, and σ are constants.

Moreover, to solve the TV-L1 model with Neumann boundary conditions, we
include the additional constraints
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(∂+
x u)n,j = 0, for j = 1, . . . , n

(∂+
y u)i,n = 0, for i = 1, . . . , n,

in (42) since the boundary constraints containing them also contain un+1,j’s
and ui,n+1’s, which are out of the image domain and undefined. This convention
also applies to the SOCP formulations of the other two TV-based models
below.

2.2.2 Meyer’s model

The following is the SOCP formulation for the constraint version (5) of Meyer’s
model (the differences of the one for the Lagrangian version (6) are given below
in parenthesis).

min
∑

1≤i,j≤n ti,j (Lagrangian ver.:
∑

1≤i,j≤n ti,j + λs)

s.t. ui,j + vi,j = fi,j, for i, j = 1, . . . , n

−(∂+
x u)i,j + (ui+1,j − ui,j) = 0, for i, j = 1, . . . , n

−(∂+
y u)i,j + (ui,j+1 − ui,j) = 0, for i, j = 1, . . . , n

vi,j − (g1,i+1,j − g1,i,j + g2,i,j+1 − g2,i,j) = 0, for i, j = 1, . . . , n

g0,i,j ≤ σ, (Lagrangian ver.: g0,i,j ≤ s) for i, j = 1, . . . , n + 1

(ti,j ; (∂+
x u)i,j; (∂

+
y u)i,j) ∈ K3, for i, j = 1, . . . , n

(g0,i,j ; g1,i,j, g2,i,j) ∈ K3, for i, j = 1, . . . , n + 1,

(43)
where u, v, ∂+

x u, ∂+
y u, g0, g1, g2, t, and s are variables and f , σ, and λ are

constants. Although solving for u and v is our ultimate goal, they can be
eliminated from the above formulation using the second, third, and fourth
sets of equations in (43). After solving the resulting problem for the remaining
variables, v can be recovered from (g1,i+1,j − g1,i,j + g2,i,j+1− g2,i,j) and u from
f − v.

2.2.3 The Vese-Osher (VO) model

The Vese-Osher model [6] with p = 1 is

inf
u,g1,g2

{∫
|∇u| dx + λ

∫
|f − u− ∂1g1 − ∂2g2|2 dx + µ

∫ ∣∣∣∣√g2
1 + g2

2

∣∣∣∣ dx
}

.

(44)
In this model the authors relax the constraint f−u = ∂1g1−∂2g2 by penalizing
the square of its violation (the second term in (44)) because they can then
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write down the Euler-Lagrange equations of (44) and use the gradient descent
method to find a solution. Ideally, λ = ∞ should be used when solving (44) to
give a decomposition of f into u and v with no residual. This is equivalent to
solving the residual-free version (45) below. Although we can formulate both
(44) and (45) as SOCPs, we chose to solve the latter in our numerical tests
because using a large λ in (44) makes it difficult to numerically solve its SOCP
accurately.

The constraint version of the Vese-Osher model is

inf
u,g1,g2

{∫
|∇u|dx + µ

∫ ∣∣∣∣√g2
1 + g2

2

∣∣∣∣ dx, s.t. f − u = ∂1g1 − ∂2g2

}
, (45)

which has a SOCP formulation as

min
∑

1≤i,j≤n ti,j + µ
∑

1≤i,j≤n+1(wi,j − g0,i,j)

s.t. ui,j + vi,j = fi,j, for i, j = 1, . . . , n

−(∂+
x u)i,j + (ui+1,j − ui,j) = 0, for i, j = 1, . . . , n

−(∂+
y u)i,j + (ui,j+1 − ui,j) = 0, for i, j = 1, . . . , n

vi,j − (g1,i+1,j − g1,i,j + g2,i,j+1 − g2,i,j) = 0, for i, j = 1, . . . , n

2g0,i,j ≤ wi,j, wi,j ≥ 0, for i, j = 1, . . . , n + 1

(ti,j ; (∂+
x u)i,j; (∂

+
y u)i,j) ∈ K3, for i, j = 1, . . . , n

(g0,i,j ; g1,i,j, g2,i,j) ∈ K3, for i, j = 1, . . . , n + 1,

(46)

where u, v, ∂+
x u, ∂+

y u, g0, g1, g2, t, and w are variables and f and µ are
constants. Similar to the SOCP for Meyer’s model, u and v can be eliminated
from the above formulation using the first, second, third, and fourth sets of
equations in (46) and recovered from remaining variables after solving the
problem.

The SOCPs for p = l/m > 1 and p = ∞ can be derived using the techniques
discussed in the last subsection.

3 Numerical results

In this section, we present numerical results for the three cartoon-texture de-
composition models and compare them. In all cases we solved the Lagrangian
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version (4) of the TV-L1 model, the constraint version (5) of Meyer’s model,
and the residual-free version (45) of the Vese-Osher (VO) model.

We used the commercial optimization package Mosek [32] as our SOCP solver.
Mosek is designed to solve a variety of large-scale optimization problems, in-
cluding SOCPs. Before solving a large-scale problem, Mosek uses a presolver to
remove redundant constraints and variables and reorders constraints to speed
up the numerical linear algebra required by the interior-point SOCP algorithm
that it uses. We could also have designed dedicated reordering algorithms for
each of the three models following an approach similar to the one described
in [31] to lower solution times. However, this was not done as our focus was
on decomposition quality comparisons.

In order to obtain accurate solutions for comparisons, we specified tolerances
of 1.0e-8 for all maximum primal and dual equation infeasibilities and signif-
icant digit requirements. In a couple of experiments, Mosek terminated and
returned a solution that did not satisfy these tolerances when numerical dif-
ficulties prevented the solver from improving the solution accuracy. However,
all returned solutions were accurate enough for our purpose of comparisons.
We report in Table 1 the measures of maximum primal and dual equation in-
feasibilities, maximum primal and dual bound infeasibilities, and duality gaps
of the solutions returned by Mosek in all of the 2D experiments. The 1D prob-
lems were much smaller and easier than the 2D’s, so we obtained solutions
with even higher accuracies. The two instances of small and negative duality
gaps were due to numerical inaccuracies in Mosek. Nevertheless, all of the
minimum objective values had at least five accurate digits as shown by the
powers of the significant digits reported in Table 1.

In our first set of tests, we applied the models to noise-free inputs: a 1D signal
and three 2D images.

Example 1: In this test we applied the three models to a 399-point 1D oscil-
lating signal as depicted in Figure 1 (a). The signal generated was:

fi = 5 +


cos(63π

2
i), i = 1, . . . , 189,

cos(21π
2

i), i = 190, . . . , 294,

(1 + (i−295)
50

) cos(21π
2

i), i = 295, . . . , 399.

(47)

This signal is a shifted (by +5) sample of an oscillating function consisting
of three sections: the first and second sections contain three and five cosine
cycles with wavelengths 63 and 21, respectively, where the second triples the
frequency of the first; the third section is a duplicate of the second with linearly
increasing amplifications from 1× to about 3×. We applied the three models
to this signal each with two choices of their perspective parameters: λ, σ, and
µ. The parameter values used to obtain all results are indicated below the

14



(a) Original (b) TV-L1 (λ = 0.1)

(c) TV-L1 (λ = 0.25) (d) The enlargement of (c) at i = 200, . . . , 250

Fig. 1. Example 1: 1D signal decomposition

u and v signals and images. The first of each parameter was chosen to be
small enough or large enough to remove the second section completely from
u; the second value chosen only partially removed the second section from u.
We were interested in learning how the three models performed on the signal
in the first and third sections. In Figures 1 (b)-(d) and 2 (e)-(j), we present
the decomposed signals u and v, along with the input f . In these plots f , u,
and v are plotted by dashed, solid, and dotted curves, respectively. For more
detailed views, the same parts, [200, 250] on the x-axis, of Plots (c), (f), and
(i) are horizontally enlarged by eight times and shown as Plots (d), (g), and
(j), respectively.

The TV-L1 model decomposed the signal by the scale (i.e., the width in 1D)
of the super and lower level sets of the signal, independent of wave amplitude.
In general, any parts of the signal with level sets of widths less than 2/λ
were removed from u according to the results from [13,12]. With λ = 0.1,
the complete second and third sections of the signal were excluded from u in
Figure 1 (b) since their half wavelength, equal to the width of the super and
lower level sets at 5 which is 21/2=10.5, was less than 2/λ = 20. In contrast
for λ = 0.25 as shown in Figures 1 (c) and (d), since 2/λ = 8 was smaller than
the half wavelength (=10.5), only parts of the signal were not in u. Moreover,
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(e) Meyer (σ = 5.0) (f) Meyer (σ = 1.5)

(g) The enlargement of (f) at i = 200, . . . , 250 (h) VO (µ = 0.06)

(i) VO (µ = 0.075) (j) The enlargement of (i) at i = 200, . . . , 250

Fig. 2. Example 1: 1D signal decomposition (continue)

we can see from Figure 1 (d) that those parts that were chopped off from u
had spans with width equal to 2/λ = 8.

The Meyer and Vese-Osher (VO) models did not decompose f this way.
Meyer’s model tended to capture the pattern of the oscillations in v, rather
than the oscillations themselves. As depicted in Figure 2 (e), Meyer’s model
with σ = 5.0 gave a v that had waves with more uniform amplitudes than
those of the v generated by the TV-L1 model depicted in Figure 1 (b). Cor-
respondingly, the u of Meyer’s model clearly compensated for the increasing
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amplification of the signal in the third section and did not completely vanish
in both the second and third sections as shown again in Figure 2 (e). With
both σ = 5.0 and 1.5, Meyer’s model resulted in artifacts that we do not
know how to relate to f . In Figures 2 (e)-(g), we can find that, in addition to
chopping off the waves, the model created the nonconforming u’s, which had
curves that do not match those in f . In v, we can observe these artifacts more
clearly as highlighted in Plot (g). Intuitively, we interpret this phenomenon as
the tendency of Meyer’s model to create oscillations in v = div(~g).

Similar artifacts can also be found in the results Figures 2 (h)-(j) of the VO
model, but the differences are that the VO model generated u’s that have a
block-like structure and thus v’s with more complicated patterns. However, the
VO model with µ = 0.06 gave a u and v quite similar to the u and v produced
by the TV-L1 model with λ = 0.25. In Figure 2 (h), most of the signal in the
second and third section was extracted from u, leaving very little signal near
the boundary of these signal parts. In short, the VO model performed like an
approximation of Meyer’s model but with certain features closer to those of
the TV-L1 model.

Example 2: In this test we applied the three models to a 117 × 117 finger-
print as depicted in Figure 3 (a). This fingerprint has slightly inhomogeneous
brightness because the background near the center of the finger is whiter than
the rest. We believe that the inhomogeneity like this is not helpful to the recog-
nition and comparison of fingerprints so should better be corrected. Figures 4
(a), (b), and (c) depict the decomposition results given by applying Meyer’s,
the VO, and the TV-L1 models, respectively. The left half of each figure gives
the cartoon part u, and the right half gives the texture part v, which is more
important for recognition. Since the VO model is an approximation to Meyer’s
model, they gave very similar results. We can observe in Figures 4 (a) and (b)
that their cartoon parts are close to each other, but slightly different from
the cartoon in Figure 4 (c). The texture parts of (a) and (b) appear to be
more homogenous than that of (c), which shows the whiter background near
the center of the finger. However, in (c) edges are sharper than they are in
the other two figures. Although no fingerprint recognition was done using the
resulting images, we conclude that the Meyer and VO models seem to give
more useful results than the TV-L1 model in this experiment.

Example 3: We tested textile texture decomposition by applying the three
models to a part of the image “Barbara” as depicted in Figure 3 (c). The
full Barbara image is depicted in Figure 3 (b). Ideally, only the table texture
and the strips on Barbara’s clothes should be extracted. Surprisingly, Meyer’s
model did not give good results in this test. In Figure 4 (d) and (e) we can
observe that the texture v’s contain inhomogeneous background, depicting
Barbara’s right arm and the table leg. To illustrate this effect, we used two
different σ’s, one very conservative and then one aggressive - namely, a small
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Table 1
Mosek termination measures

Input Model Primal Eq/Bnd Infeas. Dual Eq/Bnd Infeas. Duality Gap Sig. Digits

TV-L1 2.84e-14 / 8.21e-7 4.96e-8 / 0e0 9.74e-4 6.38e-9

Finger Meyer 5.24e-14 / 4.26e-6 3.22e-7 / 0e0 1.62e-1 4.78e-6

VO 6.03e-07 / 1.10e-5 1.42e-7 / 0e0 1.95e-3 3.56e-8

TV-L1 5.68e-14 / 2.37e-5 4.63e-9 / 0e0 -2.09e-4 -3.27e-10

Babara Meyer 5.68e-14 / 8.11e-6 1.10e-7 / 0e0 1.16e-1 4.40e-7

(part) VO 3.54e-05 / 6.09e-5 4.81e-9 / 0e0 -4.54e-3 -1.22e-8

TV-L1 5.68e-14 / 1.98e-6 1.05e-7 / 0e0 1.31e-2 7.54e-9

4tex- Meyer 6.75e-14 / 5.08e-6 4.04e-7 / 0e0 1.36e00 4.96e-6

ture VO 2.58e-06 / 2.74e-6 1.34e-7 / 0e0 7.87e-3 4.76e-9

noisy TV-L1 5.68e-14 / 1.25e-6 6.22e-8 / 0e0 7.46e-3 6.45e-9

Babara Meyer 6.75e-14 / 3.74e-6 2.36e-7 / 0e0 3.28e-1 1.22e-6

(part) VO 6.75e-05 / 9.87e-5 1.55e-9 / 0e0 2.38e-3 4.16e-9

Table annotation:
Primal Eq/Bnd Feas.: primal equality / variable bound infeasibilities
Dual Eq/Bnd Infeas.: dual equality / variable bound infeasibilities
Sig. Digits: significant digits of primal and dual objective values

(a) (b) (c)

(d) (e)

Fig. 3. Inputs: (a) original 117×117 fingerprint, (b) original 512×512 Barbara, (c) a
256×256 part of original Barbara, (d) a 256×256 part of noisy Barbara (std.=20),
(e) original 256× 256 4texture.

σ and then a large σ - in Meyer’s model. The outputs are depicted in Figure
4 (d) and (e), respectively. With a small σ = 6, most of the table cloth and
clothes textures remained in the cartoon u part. However, while a large σ = 15
allowed the Meyer’s model to remove more textures from u, it also allowed u
to contain lots of unwanted inhomogeneous background as mentioned above.
One can imagine that by further increasing σ we would get a result with less
texture left in the u part, but with more inhomogeneous background left in
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the v part. While Meyer’s method gave unsatisfactory results, the other two
models gave very good results in this test as little background appears in the v
parts of Figures 4 (f) and (g). The TV-L1 model still generated a little sharper
cartoon than the VO model in this test. The biggest difference, however, is
that the TV-L1 model kept most brightness changes in the texture part while
the VO model kept more such changes in the cartoon part. In the top right
regions of the output images, the wrinkles of Barbara’s clothes are shown in
the u part of Figure 4 (g) but in the v part of (g). This shows that the texture
extracted by the TV-L1 has a wider dynamic range. In this experiments, the
VO and the TV-L1 models gave us more satisfactory results than Meyer’s
model.

Example 4: We applied the three decompositions models to 4-textures de-
picted in Figure 3 (e) using parameter values just small enough or large enough
for the woven texture (the upper right part) to be extracted to v. Figures 5
(a)-(c) demonstrate the differences described in last paragraph more clearly.
Both the Meyer and the VO models kept the background brightness changes in
the upper right part in u but the TV-L1 model did not. However, on the upper
left and bottom right parts, the VO model and the TV-L1 models behaved
similarly while only Meyer’s model extracted the pattern of the rope knots in
v. However, the three models decomposed the wood texture (the bottom left
part) more or less indistinguishably except that the TV-L1 model gave the
texture part (i.e., the v part) with stronger contrast as depicted in (i). Once
again, the TV-L1 model decomposed textures by thresholding on the scales
of their level sets, and decomposition by Meyer’s model emphasized more the
patterns of the textures rather than the textures themselves. The VO model
exhibited properties lying in between the two others.

In our second set of tests, we applied the three models to noisy images to see
how their decompositions were affected by noise.

Example 5: We applied the three models to the image “Barbara” after adding
a substantial amount of Gaussian noise (standard deviation equal to 20). The
resulting noisy image is depicted in Figure 3 (d). All three models removed
the noise together with the texture from f , but noticeably, the cartoon parts
u in these results (Figure 5 (d)-(f)) exhibit different degrees of staircasing.
Compared to the parameters used in the three models for decomposing noise-
less images in Example 3, the parameters used in the Meyer and VO models
in this set of tests were changed due to the increase in the G-norm of the
texture/noise part v that resulted from adding noise. However, we did not
change λ when applying the TV-L1 model since the noise does not change the
scales of the feature level sets significantly. In subsequent tests, we used an
increased Lagrange multiplier µ and λ when applying the VO and the TV-L1

models and a decreased constraint bound σ when applying Meyer’s model in
order to keep the cartoon output u closer to f . Nevertheless, the staircase
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(a) Meyer (σ = 35) (b) VO (µ = 0.1) (c) TV-L1 (λ = 0.4)

(d) Meyer (σ = 6). Upper: the 256× 256 u and v;
Lower: a zoomed in part of the upper

(e) Meyer (σ = 15). Upper: the 256× 256 u and v;
Lower: a zoomed in part of the upper

(f) VO (µ = 0.5). Upper: the 256× 256 u and v;
Lower: a zoomed in part of the upper

(g) TV-L1(λ = 0.8). Upper: the 256× 256 u and v;
Lower: a zoomed in part of the upper

Fig. 4. Examples 2 and 3, cartoon-texture decomposition results: left halves - car-
toon, right halves - texture.

effect remained in the resulting u parts, while noise was not fully removed.
To summarize, none of the three decomposition models was able to separate
image texture and noise, and in fact all of them exhibited the staircase effect
in the presence of noise, well known to occur when minimizing total variation.

The codes used to generate the above results can be downloaded from the first
author’s homepage.
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(a) Meyer (σ = 50) (b) VO (µ = 1.0)

(c) TV-L1 (λ = 0.8) (d) Meyer (σ = 20)

(e) VO (µ = 0.5) (f) TV-L1 (λ = 0.8)

Fig. 5. Example 4 and 5, cartoon-texture decomposition: left halves - cartoon, right
halves - texture/noise.

4 Conclusion

In this work, we have applied the second-order cone programming and its
interior-point method to solve three total variation based models with dis-
creet inputs: the Meyer, the VO, and the TV-L1 models. We tested these
models using a variety of 1D signals and 2D images to reveal their differences
in decomposing an input to a cartoon and an oscillating/small-scale texture
parts. The Meyer model tends to capture the pattern of the oscillations in
an input, which makes it better suitable for the fingerprint image processing.
On the other hand, the TV-L1 model decomposes an input into two parts
of different geometric scales, one containing large-scale components and the
other containing small-scale ones, in a way independent of signal intensities.
The TV-L1 model outperformed the Meyer model in scale-based feature selec-
tion such as extracting the entire stripes on the cloth in the image “Babara”.
Interestingly, our experiments also exhibited the properties of the VO model
lying in between the other two models.
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