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Joint denoising and anisotropy estimation: original image, anisotropic cartoon and estimated orientation.
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Abstract

We propose a new approach for the extraction
of cartoons from 2D aerial images. Particularly
in city areas, these images are mainly character-
ized by rectangular geometries of locally vary-
ing orientation. The presented method is based
on a joint classification of the shape orientation
and a rectangular structure preserving prior in the
restoration of image shapes. Mathematically, an
anisotropic area functional encodes the preference
for edges aligned to locally preferable directions
and a higher order regularization term ensures a
smooth variation of these directions. The concrete
model is an anisotropic version of the Rudin-Osher-
Fatemi (ROF) scheme with a position dependent
anisotropy. Given the knowledge of the anisotropic
image structure, the restoration process can be sig-
nificantly improved, in particular the round-off ef-
fect of the ROF model can be reduced. By com-
bining the extraction of the anisotropy with the de-

noising method in a joint variational approach, we
obtain a suitable classification method, in which a
tedious direct anisotropy estimation can be avoided.
The implementation is based on a finite element dis-
cretization and an energy minimization via a step-
size-controlled Newton method. Instructive syn-
thetic images are considered to demonstrate the
methods performance and the approach is applied
to aerial images as a prototype application.

1 Introduction

Image restoration and the decomposition of images
into a cartoon (representation of the actual shapes)
and a texture are nowadays extensively studied
imaging tools [12, 13, 23]. An already classical ap-
proach is the Rudin-Osher-Fatemi model [20] and
variants of this method [14, 7, 27]. These meth-
ods are well-suitable to restore sharp edge con-
tours. But at corners formed by edges they come
along with a significant rounding artifact. In partic-



ular for images characterized by rectangular shapes
this hampers the identification of structures and de-
stroys a proper cartoon representation. Concepts
for anisotropic variational approaches, such as those
presented in [8, 17], and the anisotropic variant
of the Rudin-Osher-Fatemi model by Esedoglu and
Osher [11] point out a suitable modification, which
we are developing further here. As a prototype ap-
plication we consider aerial images of city zones,
the technique is however also suitable for other
types of images with similar morphologies. Hence,
we obtain the following problem set-up: We as-
sume, that the given possibly noisy and locally de-
stroyed image contains primarily structures with
straight edges and corners with right angles. Fur-
thermore, we assume that the orientation of these
structures varies in space. In particular we do not
fix an orientation a priori. The aim is now to extract
a cartoon representation of image shapes, while pre-
serving or even enhancing edges and sharp corners.
This extraction can also be regarded as an image
restoration technique. Let us briefly review the state
of the art. There already exists a large variety of ap-
proaches to feature preserving image restoration, as
for example nonlinear diffusion methods [25] and
the Rudin-Osher-Fatemi (ROF) model. The ROF-
model is the fundamental basis for a wide range of
image decomposition models, which separate the
input signal into a cartoon part u and a texture
part v (c. f. for instance [2, 3]). Inspired by Y.
Meyer’s idea [16] to characterize textures by func-
tions with a bounded ‖·‖∗ norm, i. e., the dual norm
of the BV -norm, the key ingredient for decomposi-
tion problems is the study of qualitative properties
for different norms in which the fidelity u − u0 is
measured.

Several methods were introduced to approximate
this problem by related problems, that are com-
putationally feasible and yield qualitatively similar
results [19, 12]. Recently, decomposition models
based on a L1-fidelity have attracted much attention
due to their desirable scale decomposition proper-
ties [14, 7, 27].

It is well known, that the restored image of the
ROF-model often suffers from a significant loss of
contrast. An iterative procedure based on Breg-
man iterations leads to a sequence of decreasing
scale, converging back to the original image, where
the loss of contrast is compensated already in very
early stages of the iteration [22, 18, 6, 5]. In the

continuous setting, this process can be interpreted
as an inverse scale space. The focus of this pa-
per is the study of the classical ROF model with
an anisotropic BV -norm. Based on the theory of
anisotropically aligned microstructures [26, 1, 24],
the concept of so-called Wulff shapes has been used
to denoise surfaces [8] and images [11] using es-
timated a-priori information about the shape of
the object to be denoised. In [17] the anisotropic
structure of blood vessels has been determined in
a first estimation step and subsequently deblurred
by “cigar-like” Wulff shapes with locally volume-
preserving mean-curvature flow.

In this paper, we propose a joint classification of
image anisotropies and a discontinuity-preserving
denoising model based on an anisotropic variant of
the approach by Rudin, Osher and Fatemi [20]. It is
well-known, that this model tends to round-off non-
smooth parts of the boundary of the shapes to be re-
stored. This motivated Esedoglu and Osher [11, 4]
to consider the minimization of

Eγ [u] :=

Z
Ω

γ(∇u) dx +

Z
Ω

λ(u0 − u)2 dx (1)

which already generalized the original ROF model,
in which γ(∇u) = |∇u|. Here, γ encodes the
anisotropic area. In this paper we further generalize
this approach to tackle real applications in which
the orientation of the anisotropy usually varies in
space.

The joint estimation of feature anisotropies and
the corresponding image cartoon approach one ob-
tains a convenient method of reconstructing lost
shape information, e. g., partially destroyed edges
or corners.

2 A Variational Approach

Let us first state the main goals of the model. For the
restored image u it is desirable to preserve the func-
tional features of the signal such as co-dimension
one discontinuities and at the same time geomet-
ric features, such as the shape of the level sets of
the original signal, which its co-dimension two ver-
tex characteristics. For the non-texture part of im-
ages it can often be assumed that in many areas
the anisotropic structure does not vary strongly in
space. Based on this assumption, we aim not only
at the preservation of geometric features but also at



the restoration in smaller areas, where strong cor-
ruption of the morphology can still be recovered by
the shape information in the vicinity.

Thus we consider anisotropy functions γ from a
suitable restricted space of admissible anisotropies
which are parameterized over the position. Previ-
ous models for anisotropic image or surface denois-
ing typically rely on estimated shape classification
[9, 17], which is used to specify a given anisotropy a
priori. The main disadvantage of these approaches
is the fact that they all need a separate classifica-
tion. This two-step method is either fairly expen-
sive or inaccurate, and hence we want to solve both
problems simultaneously. Thus we consider a joint
classification and smoothing approach encoded in
one energy functional.
As described in [11], an anisotropic version of the
total variation semi-norm on L1

loc(Ω) is given by

‖v‖BVγ := sup
g∈C1

c (Ω;Rd)

g(x)·n≤γ(n)∀n∈Rd,x∈Ω

−
Z

Ω

v divg dx.

It is crucial to note that ‖ · ‖BVγ is topologically
equivalent to ‖ · ‖BV on L1

loc(Rd). For the ease
of presentation we use instead the widerspread for-
mal notation

R
Ω

γ(∇v) dx. Here γ is assumed to
be positive and one-homogeneous.

The Franck diagram Fγ and the corresponding
Wulff shape Wγ are defined by

Fγ :=
n

z ∈ Rd : γ(z) = 1
o

,

Wγ :=

(
z ∈ Rd : γ∗(z) := sup

n∈Sd−1

〈z, n〉
γ(n)

= 1

)
.

Wulff shapeFranck−Diagram

{γ = 1}
Fγ Wγ

We essentially exploit the well-known fact, that the
Wulff shape has the optimal geometry, if normal di-
rections in Sd−1 are measured in terms of γ.

We eventually want to formulate a variational
problem over admissible anisotropies γ and im-
ages u, however the differentiation w.r.t. a general
space of anisotropies γ is not straightforward. We
aim at posing the problem over a restricted set of
anisotropies – well suited in particular for our ap-
plication on aerial images – that yields a convenient

differentiable structure and provides enough free-
dom for typical configurations in images with ac-
centuated edges, as in aerial images of city zones.
Let us first assume a fixed preferred alignment of

The original images.

Evolution with the isotropic ROF-method.

Our method without Bregman iterations.

Our method with one Bregman iteration.

Figure 1: Reconstruction of an artificial edge: In
the top row from left to right are the original im-
ages: A clean edge with noise, the same edge ar-
tificially destroyed, this destroyed edge with noise.
The noise is equally distributed in [−0.3, 0.3]. The
images have been intensity-scaled to show the full
range of noise. In the rows beneath we show the re-
sults from different methods. One can observe that
the isotropic ROF method always evolves rounded
edges whereas our method is able to produce sharp
corners.

edges, namely horizontal and vertical structures. In
this case, the anisotropy would be expressed by

γ(z) =

˛̨̨̨„
1
0

«
z

˛̨̨̨
+

˛̨̨̨„
0
1

«
z

˛̨̨̨
= |z1|+ |z2|,

which is the 1-norm with the unit square as the re-
spective Wulff shape.
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Figure 2: Left: Rotated Wulff shapes overlaying a
test example. Right: The definition of p and q.

In order to yield an alignment for arbitrary right
angles we have to rotate the Wulff shape. Conse-
quently, we introduce a free parameter α, which
represents the angle of the rotation.
In this paper we confine on the background of our
application to a rotated l1-norm as a Wulff shape.
Thus we are interested in structures with right an-
gles and an orientation given by an angle α. There-
fore we introduce a vector p = p(α) which is
collinear to the base line of the Wulff shape and a
vector q = q(α) which is orthogonal to it (see Fig-
ure 2):

p(α) :=

„
cos α
sin α

«
, q(α) :=

„
− sin α
cos α

«
.

We denote by M(α) :=

„
cos α sin α
− sin α cos α

«
the

orthogonal matrix for a rotation by −α. This leads
to the anisotropic energy

Eγ [u, α] :=
λ

s

Z
Ω

|u−u0|s dx+

Z
Ω

|M(α)∇u|1 dx,

where 1 ≤ s < ∞. Typical choices are s = 2 or
s = 1. Furthermore, we have to control the varia-
tion of the free parameter α. Recall, that the focus
of the proposed restoration method is the treatment
of corners, which are co-dimension two objects. In
case of a simple Dirichlet type regularization, we
would observe a lack of regularity from the Sobolev
embedding theorem. Thus, we consider a higher or-
der regularization energy, namely:

Eα[α] :=

Z
Ω

1

2

`
µ1|∇α|2 + µ2|∆α|2

´
dx.

Now, the total energy to be minimized is given by

E[u, α] = Eγ [u, α] + Eα[α].

The first term of the energy Eγ ensures, that the
evolution does not differ too much from the orig-
inal image, the second term is the rotated 1-norm

taking care of the prefered shapes. Furthermore, the
energy Eα limits the spatial variations of the orien-
tation parameter α.

Let us have a closer look at the second term:

Original Isotropic ROF

Anisotropic ROF, α = 0
constant

Anisotropic ROF, α
variable

Anisotropic ROF, α
variable, 2 Bregman

iterations

−π
2

π
2

Result of α

Figure 3: Reconstruction of two artificial squares
with different methods.

|M(α)∇u|1 = |p · ∇u|+ |q · ∇u|.

Assume for simplicity |∇u| = 1, then |p · ∇u| =
cos β is the length of the projection of ∇u onto p
where β is the angle between p and ∇u (see Figure
4). Analogously, |q · ∇u| = sin β is the length
of the projection of ∇u onto q. Thus, we have
|M∇u|1 = |p·∇u|+|q·∇u| = cos β+sin β which
is minimal if β is 0 or π

2
. But this just holds if and

only if either p or q are orthogonal to∇u. Therefore
it is energetically preferable to choose the angle α
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Figure 4: The energy attains a minimum if p is
collinear or orthogonal to ∇u.

in such a way, that the coordinate system spanned
by p and q is aligned to the image edges. At cor-
ners, we will switch then from an alignment of p
to an alignment of q or vice versa (cf. Figure 3).
This alignment requirement together with the regu-
larity of α ensured by Eα will lead to a smoothing
of curved structures as well.

Figure 5: Reconstruction of the teaser image with-
out (left), with one (middle), and with two Bregman
iteration (right).

3 Implementation

Regularization of the functional. First of all we
have to regularize the corner singularities in the
anisotropy γ. Thus, we replace the l1-norm by its
regularized version |x|1,δ = |x1|δ + |x2|δ with
|z|δ =

p
|z|2 + δ2 and obtain for the correspond-

ing regularized energy

Eδ =

Z
Ω

λ

2
|u− u0|2 + |M [α]∇u|1,δ

+
1

2

`
µ1|∇α|2 + µ2|∆α|2

´
dx.

As discussed in [10] the regularization parameter δ
has to be coupled with the grid size h of the com-
putational grid. δ is usually chosen proportional to
h.

Postprocessing by Bregman iteration. The coef-
ficients have to be choosen such that we balance

the fidelity energy and the anisotropic length func-
tional. This has to be done in such a way that the
sharpening of egdes is indeed energetically more
preferable than just keeping destroyed edges in their
initial shape, thereby reducing the fidelity term.
This balance with a rather small coefficient in front
of the fidelity term leads to a significant loss of con-
trast. To compensate for this loss, we proceed itera-
tively for with the minimization problems resulting
from the following Bregman iteration [18]:

(uk+1, αk+1) := arg min
(u,α)

n Z
Ω

|M(α)∇v|1,δ dx

+
λ

2

Z
Ω

(u0 + vk − u)2 dx + Eα[α]
o

,

vk+1 := vk + u0 − uk+1

where v0 := 0. As can be seen in Figure 5, we re-
tain high contrast already in the early stage of the it-
eration. More precisely, for an image consisting of a
cylinder, the Bregman iteration yields the true solu-
tion already after the first Bregman iteration, given
that λ is large enough, due to the compensation-
effect of adding the noise back onto the signal.

The Bregman iteration for ROF-type models
does also have a geometric interpretation, namely
the successive approximation of the normals of the
input image. Employing Bregman iterations using
an anisotropic BV -norm, we obtain even more pre-
cise shape approximation in the early stage of the
iteration. However, we also expect the sequence of
iterations to converge back to the original signal as
in the isotropic case.

Minimization Algorithm. We employ an alternat-
ing minimization algorithm to compute the mini-
mum of the regularized energy in each Bregman it-
eration, i. e., we alternately compute the optimal u
for fixed α and vice versa. This means we search for
uk+1 ∈ BV (Ω) and αk+1 ∈ H2,2(Ω) such that
δuEk

δ [u, α] = 0 for fixed α and δαEk
δ [u, α] = 0

for fixed u. Here δuEk
δ [u, α] and δαEk

δ [u, α] de-
note the first variations of Ek

δ [u, α] (cf. Appendix),
the energy to be minimized in the k-th Bregman it-
eration, which differs from Eδ only by a different
function u0 in the fidelity term.
For this sake we use Newton’s method to find the
root of a function F – in our case the gradient of
the energy Eδ with respect to u and α, respectively.
For a given start-value u0 = u0 we have to solve



the linear system of equations

F ′(uk,i)(uk,i+1 − uk,i) = −τF (uk,i)

in each iteration of our minimization algorithm.
Thus, we also need the second variations of
Eδ[u, α] (cf. Appendix). The step-size τ of New-
ton’s method is controlled by the Armijo-rule (cf.
[15]).

Finite Element Discretization. We consider a uni-
form rectangular mesh C covering the whole image
domain Ω and use a standard bilinear Lagrange fi-
nite element space.
The integrals

R
Ω

vw dx and
R
Ω
∇ξ · ∇ϑ dx result

in the usual mass (M ) and stiffness (L) matrices.
Since we deal with piecewise affine finite elements,
we introduce a second unknown w = −∆α and
write

R
Ω

∆α∆ϑ =
R
Ω
∇w ·∇ϑ, which leads to the

matrix LM−1L. We use a numerical Gauss quadra-
ture scheme of order three (cf. [21]) to compute the
integrals in the corresponding matrices and vectors.
The inverse of the second variation is computed ap-
plying a conjugate gradient descent preconditioned
by SSOR.

4 Discussion & Outlook

We have demonstrated the benefits of an anisotropic
Rudin-Osher-Fatemi-model for the cartoon extrac-
tion from images whose shapes are primarily rect-
angular with spatially varying orientation. Degrees
of freedom are the local orientation and the restored
image intensity. They are computed via a min-
imization of a joint variational classification and
cartoon extraction approach. An anisotropic shape
prior reflects the preference for rectangular shapes,
whereas a higher order regularization energy for the
orientation controls its spatial variation. As a pro-
totype application we have considered aerial images
of city zones with predominantly right-angled struc-
tures (see the Figures on page 8 and the colorplate
Figure 6, which both show the original image, the
cartoon and the estimated angular structure). Fur-
thermore, we have shown that this approach can
also be used to recover blurred corners. Obviously,
natural images can reveal far more complex struc-
tures. Corner singularities with opening angle dif-
ferent from π

2
have to be tackled via a further gen-

eralized model - a focus for future studies. Further-
more, besides the improvement of anisotropic car-
toon extraction, also the identification of the image

texture component can benefit from an anisotropic
variational treatment.
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5 Appendix

In this section, to enable a reimplementation we
give for the readers convenience a complete list of
the first and second variations of our energy in the
case of s = 2. To simplify notation we introduce
the following abbreviations: ∂p(α)u = ∇u·p(α) =
∇u · (cos α, sin α)T and ∂q(α)u = ∇u · q(α) =
∇u · (− sin α, cos α)T (see also Figures 2 and 4).
Using this we get the following first and second
variations with respect to u:

δuEδ[u, α](v) = λ

Z
Ω

(u− u0)v dx

+

Z
Ω

∂p(α)u

|∂p(α)u|δ
∂p(α)v +

∂q(α)u

|∂q(α)u|δ
∂q(α)v dx,

δuδuEδ[u, α](v, w) = λ

Z
Ω

vw dx

+

Z
Ω

„
1

|∂p(α)u|δ
−

(∂p(α)u)2

|∂p(α)u|3δ

«
(p⊗ p)∇v · ∇w dx

+

Z
Ω

„
1

|∂q(α)u|δ
−

(∂q(α)u)2

|∂q(α)u|3δ

«
(q ⊗ q)∇v · ∇w dx.

Here (a ⊗ a) = (aiaj)i,j . The first and second
variations with respect to α turn out to be:

δαEδ[u, α](ϑ)

= µ1

Z
Ω

∇α · ∇ϑ dx + µ2

Z
Ω

∆α∆ϑ dx

+

Z
Ω

∂p(α)u ∂q(α)u

|∂p(α)u|δ
ϑ−

∂q(α)u ∂p(α)u

|∂q(α)u|δ
ϑ dx,



δαδαEδ[u, α](ϑ, ξ)

= µ1

Z
Ω

∇ϑ · ∇ξ dx + µ2

Z
Ω

∆ϑ∆ξ dx

+

Z
Ω

(∂q(α)u)2 − (∂p(α)u)2

|∂p(α)u|δ
ϑξ dx

−
Z

Ω

(∂p(α)u)2(∂q(α)u)2

|∂p(α)u|3δ
ϑξ dx

+

Z
Ω

(∂p(α)u)2 − (∂q(α)u)2

|∂q(α)u|δ
ϑξ dx

−
Z

Ω

(∂q(α)u)2(∂p(α)u)2

|∂q(α)u|3δ
ϑξ dx.
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Figure 6: Application of our method to 3 different aerial images of city areas. Left: original image. Middle:
result of our algorithm. Right: color-coded angle of the anisotropic structure of the image.


