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Abstract

We consider the aggregation equation ut + ∇ · (u∇K ∗ u) = 0 in Rn, n ≥ 2, where
K is a rotationally symmetric, nonnegative decaying kernel with a Lipschitz point at
the origin, e.g. K(x) = e−|x|. We prove finite-time blow-up of solutions from specific
smooth initial data, for which the problem is known to have short time existence of
smooth solutions.

1 Introduction

The aggregation equation
ut + ∇ · (u∇K ∗ u) = 0 (1)

arises in a number of context of recent interest in the physics and biology literature.
In biology, a swarming mechanism, in which individual organisms sense others at a
distance, and move towards regions in which they sense the presence of others, in-
volves a complex neurological process at the individual level. These local individual
interactions lead to large scale patterns in nature for which it is desirable to have a
tractable mathematical model. The model also arises in the context of self-assembly
of nanoparticles (see e.g. Holm and Putkaradze [15, 16] and references therein).

The equation (1) with different classes of potentials and with additional regularizing
terms appears in a number of recent and older papers. Topaz and Bertozzi [27] derive
the model as multi-dimensional generalization of one-dimensional aggregation behavior
discussed in the biology literature [13, 23]. Bodnar and Velazquez [2] consider well-
posedness on R for different types of kernels. Burger and collaborators [5, 4] consider
well-posedness of the model with an additional ‘porous media’ type smoothing term.
This class of models, with diffusion, is also derived by Topaz et al [28] who cite some
earlier rigorous work from the 1980s in one space dimension. We specifically consider

1



the case where the kernel K has a Lipschitz point at the origin, as in the case of e−|x|

which arises in both the biological and nanoscience applications.
As a mathematics problem, equation (1) is an active scalar problem [10] in which

a quantity is transported by a vector field obtained by a nonlocal operator applied to
the scalar field. Such problems commonly arise in fluid dynamics, for example, the two
dimensional vorticity equation

∂ω

∂t
+ v · ∇ω = 0, v = ∇⊥Ne ∗ ω

where Ne is the Newtonian potential in two space dimensions. These active scalar
equations sometimes serve as model problems for the study of finite time blowup of
solutions of the 3D Euler equations in which the vorticity vector satisfies

∂~ω

∂t
+ ~v · ∇~ω = ω · ∇v, ~v = ~K3 ∗ ω (2)

where K3 is the 3D Biot-Savart kernel, homogeneous of degree −2 in 3D. Stretching
of vorticity is accomplished by the right hand side of of (2) in which the nonlocal
amplification of vorticity occurs. For this problem, finite time blowup of solutions is
an open problem. The 2D-quasi-geostrophic equations also pose an interesting family
of active scalar equations [9, 17]. An important distinction, between our problem and
that of the Euler-related problems, is that our transport field ~v is a gradient flow
whereas the ~v in fluid dynamics is divergence free. Nevertheless it is interesting to
note this analogy which also includes the well-known one dimensional model problem
studied by Constantin, Lax, and Majda [8] ut = H(u)u where H denotes the Hilbert
transform. There is no transport in this problem and the equation is known to have
solutions that blow up in finite time.

By differentiation, our problem can be written as

∂u

∂t
+ ~v · ∇u = (−∆K ∗ u)u, (3)

an advection-reaction equation in which the solution u is amplified by the nonlocal
operator (−∆K ∗ u). As in the Euler examples, there is a conserved quantity, namely
the L1 norm of the solution.

In one space dimension, (3) takes on a particularly simple form for which it is easy to
show solutions become singular in finite time for pointy potentials such as e−|x|. That
is, the ∆K ∗u operator splits into convolution with a Dirac mass plus convolution with
a bounded kernel. Thus, for a smooth solution one can apply a maximum principle
argument to obtain an estimate of the form (um)t ≥ Cu2

m − Dum (where um is the
maximum value of u) which implies finite time blowup of the solution provided a
suitable continuation theorem holds. This argument is described in a nonrigorous
fashion in [15]. Bodnar and Velazquez consider the one-dimensional problem in [2] and
prove finite time blowup by direct comparison with a Burgers-like dynamics. In higher
space dimensions one does not obtain such a straightforward blowup result. This is
because ∆K, for n ≥ 2, in (3) does not have a Dirac mass, instead its singular part
is of the form 1

|x| . As a convolution operator, ∆K is increasingly less singularly, as
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the dimension of space, n, increases. Note for example that the Newtonian potential,
which has the form of cn

|x|2−n in Rn, n ≥ 3, introduces a gain of two derivatives, as a

convolution operator. Indeed, if K has bounded second derivative, there is no finite
time blowup, so the type of kernel considered here poses an interesting problem for
nonlocal active scalar equations.

Another related problem of biological relevance is the chemotaxis model

ρt + ∇ · (ρ · ∇c) = ∆ρ, −∆c = ρ, (4)

where ρ is a mass density of bacteria and c is concentration of a chemoattractant [3].
The model is related to the much-studied Keller-Segel model [18] and it also arises as an
overdamped version of the Chandrasekhar equation for the gravitational equilibrium
of isothermal stars [6]. In (4) the left had side has the same structure as (1) where
the kernel K is now the Newtonian potential, which is significantly more singular than
the aggregation kernels considered in this paper. Finite time singularities for (4) are
known to occur even with the linear diffusion on the right hand side. The paper [3]
shows that the behavior of the blowup depends strongly on the dimension of space.
See [3] for a comprehensive literature on this problem.

Finally we mention a body of literature addressing both discrete and dynamic
models for aggregation [7, 11, 12, 14, 21, 24, 26, 29]. In discrete models, individuals
appear as points rather than as a continuum density. The analogue of (1) for the
discrete problem is a kinematic gradient flow model for particles interacting via the
pairwise potential K. As pointed out in [20], a pointy potential has a discontinuity in
the flow field which can result in finite time aggregation of a finite number of particles.
For smooth potentials, the aggregation occurs in infinite time since the velocity of
individuals approaches zero as they amass. This manuscript considers the same issue
for the continuum problem.

In our paper we prove, in dimension two and higher, that equation (1) with a pointy
potential, such as e−|x|, has solutions that blowup in finite time from smooth initial
data. The proof involves two important steps. The first step, outlined in the next
section, is to obtain a continuation theorem for the problem, that smooth solutions
can be continued in time provided a low norm (in our case we use Lq) is bounded.
This step is, for example, the analogue of the Beale-Kato-Majda result for 3D Euler
[1]. The second step is to prove that there exist initial data for which the solution
can not be continued past some finite time. Putting these results together, we obtain
Cauchy data for which the unique smooth solution blows up in finite time in the Lq

norm. Since we take our data to have compact support with radial symmetry, the
support remains uniformly bounded on the time interval of existence, and thus we also
obtain blowup in the L∞ norm (and Lp for all p ≥ q.) There remain a number of
interesting and open problem regarding the details of the blowup. We discuss these in
the last section of the paper.
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2 Continuation of smooth solutions with H
s ini-

tial data

In [19, 20] one of the authors proves local existence of solutions with data in H s and
global existence in the case of a sufficiently smooth kernel. In this section we show
that the local existence has a continuation result with control in an Lq norm. For
simplicity we consider solutions with compact support as we are interested in localized
blowup associated with aggregation. To prove the continuation result, we reconstruct
the local-in-time Hs solution by a simple approximating problem involving smoothing
the kernel K and smoothing the initial data. For the continuation result, we need only
some very general properties for the potential K as described below.

Definition 1 The potential K on Rn, n ≥ 2 is acceptable if ∇K ∈ L2(Rn) and
∆K ∈ Lp(Rn) for some p ∈ [p∗, 2], where 1

p∗ = 1
2 + 1

n .

Note that the ‘pointy’ potentials of interest satisfy the above definition.
Consider u0 ∈ Hs

0(R
n) (i.e. Hs) with compactly supported initial data. Define the

approximating problem as follows: uε(x, t) is the smooth solution of the problem

ut + ∇ · (u∇Kε ∗ u) = 0,

uε(x, 0) = Jεu0. (5)

Here Jε denotes convolution with a standard mollifier ρε = 1
εn ρ(x/ε) where ρ has

compact support and mass one. Kε = Jε ∗K is a smoothed kernel. Then from [19, 20]
we have the following result:

Theorem 1 The approximating problem (5) above has a unique smooth solution for
all time.

The smoothness of the kernel K is the key to obtaining smooth solutions globally in
time. We now show that in passing to the limit one obtains u ∈ C[0, T ;H s], and thus
one can continue the solution as long as the H s norm is controlled. Moreover, we derive
an a priori bound for this norm which shows that it is controlled by Lq for any q > 2.

We also need the following Lemma (2.4 from [20]) where we denote by T α the
trilinear form

Tα(u, v, w) =

∫

Rn

(Dαu) Dα∇ · [v (w ∗ ∇K)] dx. (6)

Lemma 1 Assume K is an acceptable potential and s ∈ Z+.

(i) If α is a multiindex of order s ≥ 1, then

|T α(u, u, w)| ≤ C ‖u‖2
Hs ‖w‖Hs ∀u ∈ Hs+1 (Rn) and ∀w ∈ Hs (Rn) .

The constant C > 0 depends only on α, K and n.

(ii) If α = 0 then
∣

∣T 0(u, u, w)
∣

∣ ≤ C ‖u‖2
L2 ‖w‖H1 ∀u,w ∈ H1 (Rn) , (7)

∣

∣T 0(u, v, w)
∣

∣ ≤ C ‖u‖L2 ‖v‖H1 ‖w‖L2 ∀u,w ∈ L2 (Rn) and ∀v ∈ H1 (Rn) . (8)

The constant C > 0 depends only on K and n.
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The following argument is closely based on the arguments in chapter 3 of [22]
proving continuation of solutions of the 3D Euler equation C[0, T ;H s]. The reader can
review that material for some additional details. First we prove the following

Theorem 2 Local in time existence of solutions to the aggregation equa-

tion Given K satisfying Definition 1, an initial condition u0 ∈ Hs, and s ≥ 2 is a
positive integer, then
i) There exists a time T with the rough upper bound

T ≤
1

cs‖u0‖Hs

, (9)

such that there exists the unique solution u ∈ C([0, T ];C 2(Rn)) ∩ C1([0, T ];C(Rn)) to
the aggregation equation (1). The solution u is the limit of a subsequence of approximate
solutions, uε, of (5).
ii) The approximate solutions uε and the limit u satisfy the higher order energy estimate

sup
0≤t≤T

‖uε‖Hs ≤
‖u0‖Hs

1 − csT‖u0‖Hs
. (10)

iii) The approximate solutions and the limit u are uniformly bounded in the spaces
L∞([0, T ],Hs(Rn)), Lip([0, T ];Hs−1(Rn)), CW ([0, T ];Hs(Rn)).

Definition 2 The space CW ([0, T ];Hs(Rn)) denotes continuity on the interval [0, T ]
with values in the weak topology of Hs, that is for any fixed φ ∈ Hs, (φ, u(t))s is a
continuous scalar function on [0, T ], where

(u, v)s =
∑

α≤s

∫

Rn

Dαu · Dαvdx.

We note that most of the above theorem is already proved in [20]. In particular unique-
ness of the Hs solution is proved in section 2.2 of [20] so we do not rederive that here.
However we rederive the short term existence result with a different approximating
problem (5) in order to concisely derive a continuation result in the high norm and
with a necessary condition for blowup involving the Lq norm.

The strategy for the local existence proof, that we implement below, is to first prove
the bound (10) in the high norm, then show that we actually have a contraction in the
L2 norm. We then apply an interpolation inequality to prove convergence as ε → 0.
Following the local existence proof, we establish Theorem 3 below, that the solution u
is actually continuous in time in the highest norm H s, and can be continued in time
provided that its Hs norm remains bounded. We need this fact in order to discuss the
link between the existence of these solutions globally in time and blowup in a lower
norm. To prove Theorem 2 we need a priori higher derivative estimates that are also
independent of ε.

Proposition 1 The Hs energy estimate Let u0 ∈ Hs with integer s ≥ 2. Then
the unique regularized solution uε ∈ C1([0,∞);Hs) satisfies

d

dt

1

2
‖uε‖2

Hs ≤ cs‖u
ε‖Hs−1‖uε‖2

Hs . (11)
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Proof.

To derive this estimate we need the following slightly improved version of Lemma
1: if α is a multiindex of order s ≥ 2, then

|T α(u, u, u)| ≤ Cα(‖∇K‖L2 + ‖∆K‖Lp) ‖u‖
2
Hs ‖u‖Hs−1 (12)

for all u ∈ Hs+1. Here p can be chosen to be 2 if we are in dimension N ≥ 3. If we are
in dimension N = 2, p can be chosen to be 3/2. The constant Cα is a positive constant
depending only on α. The proof of (12) is very similar to the one of Lemma 2.4 from
[20]) and we refer the reader there for details. To prove (11), if α is a multiindex of
order s then

(Dαuε, Dαuε
t) = −T α(uε, uε, uε) (13)

≤ Cα(‖∇Kε‖L2 + ‖∆Kε‖Lp) ‖u
ε‖2

Hs ‖u
ε‖Hs−1 (14)

≤ Cα(‖∇K‖L2 + ‖∆K‖Lp) ‖u
ε‖2

Hs ‖u
ε‖Hs−1 . (15)

The estimate of derivatives of lower order are simpler and left as an exercise for the
reader. We just need to use Lemma 1 and proceed as above.

We can now complete the proof of Theorem 2.
First we show that the family (uε) of regularized solutions is uniformly bounded in

Hs. The Hs energy estimate implies the time derivative of ‖uε‖Hs can be bounded by
a quadratic function of ‖uε‖Hs independent of ε,

sup
0≤t≤T

‖uε‖Hs ≤
‖u0‖Hs

1 − csT‖u0‖Hs

= ‖u0‖Hs +
‖u0‖

2
HscsT

1 − csT‖u0‖Hs

. (16)

Thus the family (uε) is uniformly bounded in C([0, T ];Hs) , provided that T < (cs‖u0‖Hs)−1.
Furthermore, the family of time derivatives ( duε

dt ) is uniformly bounded in Hs−1

‖
duε

dt
‖Hs−1 ≤ ‖∇ · (uε∇Kε ∗ uε)‖Hs−1 ≤ ‖uε∇Kε ∗ uε‖Hs

≤ ‖uε‖Hs‖∇Kε ∗ uε‖W s,∞ ≤ ‖uε‖
2
Hs‖∇K‖L2 .

We now show that the solutions uε to the regularized equation (5) form a contraction
in the low norm C([0, T ];L2(Rn)). Specifically we prove

Lemma 2 The family uε forms a Cauchy sequence in C([0, T ];L2(Rn)). In particular,
there exists a constant C depending only on ‖u0‖1 and the time T so that for all ε and
ε′,

sup
0<t<T

‖uε − uε′‖L2 ≤ C max(ε, ε′).

Proof: We have

d

dt

1

2
‖uε − uε′‖2

L2 =

(

uε − uε′ ,∇ · (uε − uε′)∇Kεuε

)

+

(

uε − uε′ ,∇ · uε′∇Kε(uε − uε′)

)

+

(

uε − uε′ ,∇ · uε′∇K(Jε − Jε′)u
ε′)

)

= T1 + T2 + T3.
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Using Lemma 1 we have the following estimates:
Applying (7) to T1 we have

|T1| ≤ C‖uε − uε′‖2
L2‖Jεu

ε‖H1 .

Applying (8) to T2 and T3 we have

|T2| ≤ C‖uε − uε′‖2
L2‖u

ε′‖H1 ,

and
|T3| ≤ C‖uε − uε′‖L2 max(ε, ε′)‖uε′‖2

H1 .

Putting this all together gives

d

dt
‖uε − uε′‖L2 ≤ C(M)(max(ε, ε′) + ‖uε − uε′‖L2)

where M is an upper bound, from (16) for the ‖uε‖H1 on [0, T ]. Integrating this yields

sup
0<t<T

‖uε − uε′‖L2 ≤ C(M,T )max(ε, ε′), (17)

where the final inequality is established by recalling that uε
0 − uε′

0 is bounded in L2 by
max(ε, ε′) times the H1 norm of u0. Thus uε is a Cauchy sequence in C([0, T ];L2(Rn))
so that it converges strongly to a value u ∈ C([0, T ];L2(Rn)).

We have just proved the existence of a u such that

sup
0≤t≤T

‖uε − u‖L2 ≤ Cε. (18)

We now use the fact that the uε are uniformly bounded in a high norm to show
that we have strong convergence in all the intermediate norms. In order to do this,
we need the following well-known interpolation lemma for the Sobolev spaces (see [22]
and references therein):

Lemma 3 Given s > 0, there exists a constant Cs so that for all v ∈ Hs(RN ), and
0 < s′ < s,

‖v‖s′ ≤ Cs‖v‖
1−s′/s
L2 ‖v‖

s′/s
Hs . (19)

We now apply the interpolation lemma to the difference uε − u. Using (16) and
(18) gives

sup
0≤t≤T

‖uε − u‖Hs′ ≤ C(‖u0‖Hs , T )ε1−s′/s.

Hence for all s′ < s we have strong convergence in C([0, T ];H s′(Rn)).
A bounded sequence ‖uε‖Hs ≤ C in Hs(RN ) has a subsequence that converges

weakly to some limit in Hs, uε⇀u. The preceding arguments show that

sup
0≤t≤T

‖uε‖Hs ≤ M and (20)

sup
0≤t≤T

‖
∂uε

∂t
‖Hs−1 ≤ M1. (21)
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Hence, uε is uniformly bounded in the Hilbert space L2([0, T ];Hs(Rn)) so there exists
a subsequence that converges weakly to

u ∈ L2([0, T ];Hs(Rn)). (22)

Moreover, if we fix t ∈ [0, T ], the sequence uε(·, t) is uniformly bounded in Hs, so that
it also has a subsequence that converges weakly to u(t) ∈ H s. Thus we see that for
each t, ‖u‖s is bounded. This combined with (22) implies that u ∈ L∞([0, T ];Hs). A
similar argument, applied to the estimate (21) shows that u ∈ Lip([0, T ];Hm−1(Rn)).

Now we conclude that u is continuous in the weak topology of H s. To prove that
u ∈ CW ([0, T ];Hs(Rn)), let [φ, u], φ ∈ H−s denote the dual pairing of H−s and Hs

through the L2 inner product. Estimates (20) and (21), the uniform compact support
of ue, and the Lions-Aubin lemma 10.4 from [22] imply uε → u in C([0, T ];Hs′); thus
it follows that [φ, uε(·, t)] → [φ, u(·, t)] uniformly on [0, T ] for any φ ∈ H−s′ . Using (20)
and the fact that H−s′ is dense in H−s for s′ < s, via an ε/2 argument using (20), we
have [φ, uε(·, t)] → [φ, u(·, t)] uniformly on [0, T ] for any φ ∈ H−s. This fact implies
that u ∈ CW ([0, T ];Hs).

We now show that the limit u is a distribution solution of the original equation.
Recall that the sequence of approximate uε satisfies

uε ∈ C([0,∞);Hs) ∩ C1([0,∞);Hs−1) for all s, (23)

uε
t + ∇ · (uε∇Kε ∗ uε) = 0, (24)

uε(0) = Jεu0. (25)

Since u0 ∈ H2, then we know that there exists a time T1 such that uε is Cauchy
sequence in C([0, T1];H

1). Therefore there exists a function u such that

uε → u in C([0, T1];H
1). (26)

Lemma 4 The function u satisfies

u ∈ C([0, T1];H
1) ∩ C1([0, T1];L

2), (27)

ut + ∇ · (u∇K ∗ u) = 0, (28)

u(0) = u0, (29)

with the dynamic equation in the sense of distributions.

Proof.

From (26) one can easily obtain

∇ · (uε∇Kε ∗ uε) → ∇ · (u∇K ∗ u), in C([0, T1];L
2). (30)

We omit the details since they are elementary. Let v = ∇ · (u∇K ∗ u). The proof will
be completed once we establish that v is the distributional derivative of u, i.e.:

∫ T1

0
u(t, x)φ′(t)dt = −

∫ T1

0
v(t, x)φ(t)dt (31)
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for all test function φ ∈ C∞
0 (0, T1). Since uε ∈ C1([0,∞);L2) it is clear that

∫ T1

0
uε(t, x)φ′(t)dt = −

∫ T1

0
uε

t(t, x)φ(t)dt. (32)

Also note that (30) can be written

uε
t → v in C([0, T1];L

2).

This convergence, together with (26), allows us to pass to the limit in (32), thus proving
(31).

Now we show that u is continuous in time with values in the highest H s norm.

Theorem 3 Continuity in the high norm Let u be the solution described in The-
orem 2. Then

u ∈ C([0, T );Hs) ∩ C1([0, T );Hs−1).

Proof: The argument follows the same reasoning as in [22, 25] for the Euler equa-
tions. By virtue of the equation it is sufficient to show that u ∈ C([0, T ];H s). It
is important to obtain this sharper result of continuity in time with values in H s in
order to prove the blowup result of the following section. By virtue of the fact that
u ∈ CW ([0, T ];Hs(Rn)), it suffices to show that the norm ‖u(t)‖s is a continuous func-
tion of time. Passing to the limit in this equation and using the fact that for fixed t,
lim supε→0 ‖u

ε‖Hs ≥ ‖u‖Hs we obtain

sup
0≤t≤T

‖u‖Hs − ‖u0‖Hs ≤
‖u0‖

2
HscsT

1 − csT‖u0‖Hs
. (33)

From the fact that u ∈ CW ([0, T ];Hs(Rn)), we have lim inf t→0+ |u(·, t)|Hs ≥ ‖u0‖Hs .
The estimate (33) gives lim supt→0+ |u(·, t)|Hs ≤ ‖u0‖Hs . In particular, limt→0+ |u(·, t)|Hs =
‖u0‖Hs . This gives us strong right continuity at t = 0. Since the analysis is time re-
versible, we could likewise show strong left continuity at t = 0.

It remains to prove continuity of the ‖ · ‖Hs norm of the solution at times other
than the initial time. Consider a time T0 ∈ [0, T ], and the solution v(·, T0). At this
fixed time, v(·, T0) ≡ vT0

0 ∈ Hs(Rn) and from (16)

|uT0

0 |Hs ≤ ‖u0‖Hs +
‖u0‖

2
HscsT0

1 − csT0‖u0‖Hs
. (34)

So we can take uT0

0 as initial data and construct a forward and backward in time
solution as above by solving the regularized equation (5). We obtain approximate
solutions uε

T0
(·, t) that satisfy

d

dt
‖uε

T0
‖Hs ≤ cs‖u

ε
T0
‖2

Hs , (35)

we can pass to a limit in uε
T0

as before and find a solution ũ to the Euler equation on
a time interval [T0 − T ′, T0 + T ′] with initial data uT0

. Following the same estimates
as above, we obtain that the time T ′ satisfies the constraint

0 < T ′ <
1

cs‖u0‖Hs
− T0.
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Furthermore, this solution ũ must agree with u on [T0−T ′, T0 +T ′]∩ [0, T ] by virtue of
uniqueness of Hs solutions and the fact that u and ũ agree at t = T0 ∈ [0, T ]. Following
the argument above used to show that ‖u‖Hs is continuous at t = 0, we conclude that
|ũ|Hs is continuous at T0, hence |u|Hs itself must be continuous at T0. Since T0 ∈ [0, T ]
was arbitrary, we have just showed that |u|Hs is a continuous function on [0, T ] and
hence by the fact that u ∈ CW ([0, T ];Hs(Rn)), we obtain u ∈ C([0, T ];Hs(Rn)).

We obtain the following corollary.

Corollary 1 Given K satisfying Definition 1 and an initial condition u0 ∈ Hs, s ≥ 2
is a positive integer, then there exists a maximal time of existence T ∗ ∈ (0,∞] and
a unique solution u ∈ C([0, T ∗);Hs) ∪ C1([0, T ∗);Hs−1) to (1). Moreover if T ∗ < ∞
then necessarily limt→T ∗ ‖u(·, t)‖Hs = ∞.

To continue solutions with control in a lower norm, we first show that the H s−1

control is inherited by the limit u and follow with an a priori bound in terms of the Lq

norm of the solution.
Recall that uε ∈ C1([0,∞);Hs) for every s and satisfies

d

dt
‖uε‖2

Hs ≤ C ‖uε‖Hs−1 ‖u
ε‖2

Hs . (36)

Of course this implies
d

dt
‖uε‖2

Hs ≤ C ‖uε‖3
Hs . (37)

Since u0 ∈ Hs, (37) implies that there exists a time T1 such that

|uε|L∞(0,T1;Hs) ≤ C (38)

where C is independent of ε. Moreover, we know that on this time interval [0, T1] we
have the following convergence:

uε → u in C([0, T1];H
s−1) strong, (39)

uε ⇀ u in L∞(0, T1;H
s) weak-star. (40)

Using Gronwall inequality we deduce from (36) that

|uε|L∞(0,T1;Hs) ≤ eC
R T
0
‖uε(s)‖

Hs−1ds. ‖u0‖Hs (41)

Fix now a time T ≤ T1. From (39) it is clear that

∫ T

0
‖uε(s)‖Hs−1 ds →

∫ T

0
‖u(s)‖Hk−1 ds,

and therefore

lim-infε→0‖u
ε‖L∞(0,T1;Hs) ≤ eC

R T
0
‖u(s)‖

Hk−1ds ‖u0‖Hk . (42)

Finally, because of (40) we get

‖u‖L∞(0,T1;Hs) ≤ eC
R T

0
‖u(s)‖

Hs−1ds ‖u0‖Hs . (43)

Since this inequality is true for every T ≤ T1, and since u ∈ C([0, T1];H
s), we have

just proven the following lemma:
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Lemma 5 For every t ∈ [0, T1],

‖u(t)‖Hs ≤ eC
R t
0
‖u(s)‖

Hs−1ds ‖u0‖Hs . (44)

We have proven existence of a continuous solution with value in H s up to time T1.
By iterating the argument, we can continue the solution on [T1, T2], then [T2, T3], . . .

We have also proven that

‖u(t)‖Hs ≤ eC
R t

0
‖u(s)‖

Hs−1ds ‖u0‖Hs on [0, T1]. (45)

The same proof show that

‖u(t)‖Hs ≤ e
C

R t
T1

‖u(s)‖
Hs−1ds

‖u(T1)‖Hs on [T1, T2]. (46)

Combining (45) and (46), we obtain that, for t ∈ [T1, T2],

‖u(t)‖Hs ≤ e
C

R t

T1
‖u(s)‖

Hs−1ds
eC

R T1
0

‖u(s)‖
Hs−1ds ‖u0‖Hs

≤ eC
R t
0
‖u(s)‖

Hs−1ds ‖u0‖Hs .

And therefore one can easily iterate the argument to find that, as long as the solution
exists, it must satisfies the estimate

‖u(t)‖Hs ≤ eC
R t
0
‖u(s)‖

Hs−1ds ‖u0‖Hs . (47)

To prove Lq control of blowup we need the following version of the Young inequality.

Lemma 6 Suppose 1 ≤ p ≤ 2, and q is the conjugate of p. If φ1 ∈ L2 (Rn), φ2 ∈
Lq (Rn), φ3 ∈ L2 (Rn) and φ4 ∈ Lp (Rn), then

∣

∣

∣

∣

∫

Rn

φ1 φ2 (φ3 ∗ φ4) dx

∣

∣

∣

∣

≤ ‖φ1‖L2 ‖φ2‖Lq ‖φ3‖L2 ‖φ4‖Lp .

Proof: Using Young’s inequality, we get ‖φ3 ∗ φ4‖Lr ≤ ‖φ3‖L2 ‖φ4‖Lp for r defined by
1/r = 1/2+1/p−1. Note that the condition p ≤ 2 ensure that 1/r is nonnegative. One
can then check that 1/r + 1/q = 1/2. This allow us to use Hölder’s inequality to show
that ‖φ2 (φ3 ∗ φ4)‖L2 ≤ ‖φ2‖Lq ‖φ3 ∗ φ4‖Lr . Then the Schwarz inequality concludes the
proof.

Proposition 2 Suppose n ≥ 3. Then, for every q ∈ [2,+∞]

d

dt
‖u‖2

H1 ≤ C
∥

∥D2K
∥

∥

Lp ‖u‖Lq ‖u‖
2
H1 , (48)

where p is the conjugate of q and
∥

∥D2K
∥

∥

Lp = supi,j

∥

∥Kxi,xj

∥

∥

Hp. The constant C
depends only on n.

If n = 2, then (2) holds for every q ∈ (2,+∞].
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Note that in dimension n = 2,
∥

∥D2K
∥

∥

L2 = ∞. This is why, when n = 2, we exclude

the case p = q = 2. In dimension n = 3,
∥

∥D2K
∥

∥

L2 < ∞ and we do not need to exclude
the case p = q = 2.

Proof: Integrating by part twice we easily obtain

d

dt
‖u‖2

L2 =

∫

∇K ∗ u · ∇(u2) = −

∫

u2u ∗ ∆K (49)

≤ ‖u‖2
L2 ‖u ∗ ∆K‖L∞ ≤ ‖u‖2

L2 ‖u‖Lq ‖∆K‖Lp . (50)

Differentiating the PDE we obtain

ut,xi
= −∇uxi

· (u ∗ ∇K) −∇uxi
(u ∗ ∆K)

−∇u · (u ∗ ∇Kxi
) − u(uxi

∗ ∆K),

and then, after some integration by parts

d

dt
‖uxi

‖2
L2 = −

∫

u2
xi

u ∗ ∆K − 2

∫

uxi
∇u · u ∗ ∇Kxi

− 2

∫

uxi
u · u ∗ ∆Kxi

= −A − 2B − 2C.

It is clear that
|A|, |B| ≤

∥

∥D2K
∥

∥

Lp ‖u‖Lq ‖∇u‖2
L2 .

and, using Lemma 6 we get

|C| ≤ ‖uxi
‖L2 ‖u‖Lq ‖uxi

‖L2 ‖∆K‖Lp

≤
∥

∥D2K
∥

∥

Lp ‖u‖Lq ‖∇u‖2
L2 .

Note that in order to apply Lemma 6 it is necessary that p ≤ 2 and therefore q ≥ 2.
From the estimate of |A|, |B| and |C| we easily obtain

d

dt
‖u‖2

L2 ≤ C
∥

∥D2K
∥

∥

Lp ‖u‖Lq ‖∇u‖2
L2 .

This together with (50) conclude the proof. Note that in order to estimate d
dt ‖u‖

2
H1 it

was necessary for u(t) to be in H2 (if u(t) was just in H1 then the integration by parts
would not have been justified).

The final result of this section is the continuation theorem:

Theorem 4 Continuation Theorem Given initial data u0 ∈ Hs(Rn), n ≥ 2, for
positive integer s ≥ 2, there exists a unique solution u(x, t) of (1) and a maximal time
interval of existence [0, T ∗) such that either T ∗ = ∞ or limt→T ∗ sup0≤s≤t ‖u(·, s)‖Lq =
∞. Here q ≥ 2 for n > 2 and q > 2 for n = 2.

We use this result in the following section to prove that for some specific initial
data, the Lq norm blows up in finite time.
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3 An energy estimate proving finite time blowup

In this section we consider the specific potential K = e−|x| and prove finite time
blowup for specific smooth initial data. The argument extends to slightly more general
potentials. The main feature is that ∇K = −N(x) at the origin. They key idea is to
use an energy, which was first derived in [28] for biological aggregation with additional
‘porous media’ dissipation. See [15, 16] for a discussion of energies as they related to
nanoparticle applications. We consider

E(u) =

∫

Rn

uK ∗ udx, (51)

for which integration by parts gives the following rate of increase of E(u):

dE

dt
= 2

∫

Rn

u|∇K ∗ u|2dx. (52)

We now show that E has an a priori uniform bound for all u ∈ L1(Rn) while at
the same time dE

dt has a positive lower bound for certain initial data. Thus the smooth
solution can not be continued past some critical finite time.

We have the following Lemma:

Lemma 7 For all u ∈ L1(Rn), we have

E(u) ≤ |u|2L1 .

Proof:

E(u) =

∫

Rn

uK ∗ udx ≤ |K ∗ u|L∞ |u|L1 ≤ |K|L∞ |u|2L1 = |u|2L1 .

Before proceeding with the proof of blowup we need the following result from [20]
Section 3.

Theorem 5 Let u be the solution described in the preceding section. Assume that
u0 ∈ W 1,1(Rn) and u0 is nonnegative. Then for each t in the domain of existence, the
solution u(x, t) is nonnegative and moreover ‖u(t)‖L1 = ‖u0‖L1 .

Using the above facts, the main idea of this section is to show that, for a specific
class of functions, the right hand side of (52) has a positive pointwise lower bound. To
do this we consider special smooth initial data close to a delta-distribution. Consider
a radially symmetric C∞

0 function ρ ≥ 0 with compact support in B1(0),
∫

Rn ρdx = 1.
Define

uδ(x) =
1

δn
ρ(

x

δ
) (53)

to be a rescaling of the smooth function ρ to approximate a delta mass at the origin.
We now prove the following kinematic estimate associated with all functions that

satisfy the above geometric constraint.
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Proposition 3 There exists a constant C > 0 such that for all δ sufficiently small, we
have, for any radially symmetric L1 function uδ with support inside a ball of radius δ,

∫

Rn

uδ|∇K ∗ uδ|
2dx ≥ C. (54)

The main idea is that for data with small support, ∇K∗uε is approximately −N ∗uε

where N is the kernel, homogeneous of degree zero, ~x
|x| . Thus we first prove the bound

for this kernel and then show that for data with small support, the support remains
small and the correction to the kernel results in a small perturbation of the constant.
The key lemma for N is described below.

Lemma 8 Let u be a radially symmetric, nonnegative function, with compact support.
Then

v(|x|) := (N ∗ u(x)) · N(x)

is a nonnegative, nondecreasing function of |x|.

Proof:

Since u is radially symmetric, it suffices to prove the result for u a delta ring
concentrated on radius 1. The reason is that space can be rescaled to any radius.
Moreover the geometry of the kernel, and the symmetry of u, imply that N ∗ u is a
scalar function times N , where the scalar function is a linear functional of u. Thus a
general radially symmetric function u can be thought of as a linear superposition of
infinitesimal ring elements at different radii and the resulting composite functional will
inherit the nonnegativity and monotone properties of the functional evaluated on the
ring.

For the delta ring (uniform distribution) of unit mass on ∂B1(0), we have

vδ(1)(x) :=
1

ω(n)
N(x) ·

∫

∂B(1)
N(x − y)dS. (55)

where ω(n) is the area of the unit ball in Rn. Note that the integral is a sum of unit
vectors from a point in space to the boundary of the unit ball therefore the size of the
convolution depends on the degree of cancellation for vectors in different directions.

Let us first prove that vδ(1)(x) is nonnegative. We include a figure in 2D illustrating
the notation and ideas. Without loss of generality, since u is radially symmetric, we
take x on the x1 axis and positive: x = (x1, . . . , xn). If x1 ≥ 1 then the quantity
N(x) ·N(x− y) is clearly nonnegative for every y in on the domain of integration and
therefore vδ(1)(x) is nonnegative. If 0 ≤ x1 < 1 we divide the domain of integration
into regions where the integrand N(x) ·N(x−y) is positive and negative. It is negative
for y1 > x1, and positive for −1 ≤ y1 < x1. Note that a larger mass of the delta-ring is
on the positive part and moreover there is less cancellation of vectors for these values
because y is farther away from x and thus y − x has a direction more in line with
the ~x vector. More precisely, for y1 > x1 > 0, compare a point y := (y1, y2, . . . , yn)
on ∂B1(0) with its reflection ỹ := (−y1, y2, . . . , yn) and note that |N(x) · N(x − ỹ)| is
always greater than |N(x) · N(x − y)| with equality when x = 0. Thus vδ(1)(x) is still
nonnegative when x is inside the ball.
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Figure 1: Figure for Lemma 8

To show that vδ(1) is nondecreasing as a function of radius, note that for each y, the
integrand in (55) increases monotonically as x1 increases. Thus the integral inherits
this monotonicity in x1.

We have the following corollary.

Corollary 2 For any decomposition u = u1 +u2, where u, u1, and u2 are nonnegative
radially symmetric functions, let v, v1, and v2 be the respective associated functionals
as in (55). Then v, vi are all nonnegative and moreover v = v1 + v2 and thus vi ≤ v.

Lemma 9 Given a nonnegative radial function u with support inside B1(0) and unit
mass, for |x| ≥ 1, the associated v satisfies v(x) ≥ C1 where

C1 = e1 ·
1

ω(n)

∫

∂B1(0)
N(e1 − y)ds > 0, (56)

where e1 is the unit vector in the x1 direction.

Proof: Since u has support inside the unit ball, following the arguments in Lemma 8,
we see that v is nondecreasing for |x| increasing. Thus it suffices to compute an estimate
for |x| = 1. Now we consider for what radially symmetric u does one minimize v(1).
By the geometry of the problem, v(1) decreases by moving more of the mass of u to
the edge of the support. Thus the minimum occurs for u as a delta ring concentrated
on the unit ball, yielding formula (56).

Proof of Proposition 3.
First we prove the proposition for the kernel K = −N where u is not required to

have small support. Given a radially symmetric u of unit mass, decompose u into two
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nonnegative, radially symmetric parts, u1, u2, defined as

u1 = χBR(0)u, (57)

u2 = [1 − χBR(0)]u, (58)

where R is defined to be the radius such that
∫

BR(0) udx = 1/2. Define v, v1 and v2 to

be the respective functionals as in (55). Note that

∫

BR(0)
N(x − y)u1(y)dy =

∫

B1(0)
N(Rx̂ − Rŷ)u1(Rŷ)Rndŷ =

∫

B1(0)
û1(ŷ)dŷ

where ŷ = y/R, x̂ = x/R, û1(ŷ) = Rnu1(Rŷ), and we use the fact that N is homoge-
neous of degree zero. Since û1 has total mass 1/2 when integrated in the ŷ variable,
then v ≥ v1 and moreover v1(x) ≥ C1 for |x| > R. Now we compute

∫

Rn

u|N ∗ u|2dx ≥

∫

x>R
u|N ∗ u|2dx ≥ C2

1

∫

x>R
udx =

1

2
C2

1 .

In the above we use the pointwise lower bound for N ∗ u outside of BR(0).
To finish the proof of the proposition, we consider the general kernel K and smooth

initial data of unit mass and support inside Bδ(0). Note that such data can be written
as uδ defined in (53). We write

∫

Rn uδ|∇K ∗ uδ|
2dx and rescale space as x̂ = x/δ,

ŷ = y/δ. Thus

∇K ∗ uδ(x) =

∫

Rn

∇K(x − y)
1

δn
ρ(

y

δ
)dy =

∫

Rn

∇K(x − δŷ)ρ(ŷ)dŷ.

And
∫

Rn

uδ(x)|∇K ∗ uδ(x)|2dx =

∫

Rn

ρ(x̂)|∇K ∗ uδ(δx̂)|2dx̂

where

∇K ∗ uδ(δx̂) =

∫

B1(0)
∇K(δx̂ − δŷ)ρ(ŷ)dŷ.

We now use the fact that ∇K(x) = −N(x) + S(x) where the vector field S(x) is
Lipschitz continuous. We use this decomposition to estimate the integral in (54) from
below. We have
∫

Bδ(0)
|∇K∗uδ|

2uδ ≥

∫

Bδ(0)
uδ|N∗uδ |

2−2

∫

Bδ(0)
|N∗uδ ||S∗uδ |uδdx ≥ C−2

∫

Bδ(0)
|N∗uδ ||S∗uδ |uδdx.

(59)
In the above we use the pointwise lower bound for |Nδ| as described above.

It remains to show the the last term in the above expression is small for δ small.

∫

Bδ(0)
|N ∗ uδ||S ∗ uδ|uδdx ≤ |N ∗ uδ|L∞ |S ∗ uδ|L∞(Bδ(0))

where we assume uδ has unit mass. Note that

|N ∗ uδ|L∞ ≤ |N |L∞ = 1.
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Using the above change of variables, we have

S ∗ uδ =

∫

B1(0)
S(δx̂ − δŷ)ρ(ŷ)dŷ ≤ δ|S|Lip

∫

B1(0)
|x̂ − ŷ|ρ(ŷ)dŷ ≤ δ|S|Lip.

Thus
|S ∗ uδ|L∞(Bδ(0)) ≤ 2δ|S|Lip.

Here we use that supB1(0)×B1(0) |x̂ − ŷ| = 2 and ρ has unit mass. Thus the last term
in (59) is bounded by 2δ|S|Lip, where we use the fact that uδ has mass one. Thus we
have finished the proof of Proposition 3.

Putting things together, we have the following theorem.

Theorem 6 Blowup Theorem Consider equation (1) on Rn for n ≥ 2 with Hs

initial data, radially symmetric, nonnegative, with compact support inside a ball of
radius δ as defined by Proposition 3. Then there exists a finite time T ∗ and a unique
solution u(x, t) ∈ C([0, T ∗);Hs) ∩ C1([0, T ∗);Hs−1) such that for all q ≥ 2 (q > 2 for
n = 2) sup0≤s≤t |u(·, s)|Lq → ∞ as t → T ∗.

Proof: Note that since u0 has compact support and since the vector field ∇K ∗ u
points inward, the support of the solution u, by method of characteristics, can only
shrink over time. Thus the solution at later times, which we know to exist for at least a
finite time, has support contained inside the support of the initial data. The symmetry
of the kernel and the equations (along with uniqueness of solutions) guarantees that
the solution retains radial symmetry as long as it exists. Lastly, Theorem 5 guarantees
that the L1 norm is preserved and the solution remains nonnegative. Thus the solution
will satisfy Proposition 3 as long as it remains in H s, which implies a lower bound on
the rate of increase of the energy. Since the energy has a finite upper bound for all L1

functions, the only choice is for the solution to cease to exist as an H s solution after
some finite time. The continuation theorem of the previous section tells us that the Lq

norm must blowup as t approaches the blowup time.
Note that for s > n/2 the solution is pointwise bounded up to the blowup time.

Thus the initial blowup involves the solution going to infinity in finite time in such a
way that the Lq norm blows up for all q ≥ 2 (q > 2 for n = 2).

4 Discussion

We have proved that (1) on Rn, n ≥ 2, with Hs initial data (s ≥ 2), with sufficiently
small compact support, and nonnegative and radially symmetric, has a unique solution
that blows up in finite time. The blowup result involves a singularity in the Lq(Rn)
norm for q ≥ 2, if n ≥ 3, and q > 2 for n = 2. The blowup proof uses an energy estimate
for the solution that makes careful use of the fact that ∇K has a discontinuity at the
origin which approximates the homogeneous kernel (of degree zero) N(x) = ~x/|x|.
Without this discontinuity, in particular when ∆K is bounded, the finite time blowup
result is false and one can obtain an a priori bound for the L∞ norm of the solution.
This bound was originally derived in [27] and global existence of smooth solutions with
such kernels was established in [20]. This paper settles the question, in dimensions
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two and higher, of whether finite time blowup is possible for less regular kernels, in
particular the commonly used biological kernel K(x) = e−|x|.

However a number of open questions remain regarding the nature of the blowup.
Bodnar and Velazquez [2] prove the shape of the blowup for the one-dimensional prob-
lem, by analogy to asymptotic theory for shock waves. In multi-dimensions, one very
important question is whether the blowup results in a concentration of mass at the
blowup time. The energy estimate is highly suggestive of this, but does not constitute
a proof. In fact, many PDEs exist for which an energy argument proves blowup, yet
the actual nature of the blowup is not as suggested by the energy, but rather involves
a more subtle form of singularity at a time preceding the blowup time predicted by
the a priori energy estimate. The rigorous results of this paper do not preclude the
possibility of blowup happening at a point, with a singularity weaker than Dirac delta
formation, but strongly enough to give Lq blowup as described above. The precise
nature of the blowup could be important for modelling if one wants to include diffu-
sion effects on small lengthscales, which would desingularize the singularity. To our
knowledge, there are no careful computational results in dimension n ≥ 2 that address
blowup of these kinds of problems. We also mention that it would be interesting to
know about local and global well-posedness of the problem for weaker classes of initial
data, such as L∞ ∩ L1, Lp ∩ L1, and the space of nonnegative measures.

Another point of further study is to link the discussed phenomena to the problem of
dynamic models for aggregation (see e.g. [7, 11, 12, 14, 21, 26, 29]). Two recent papers
[7, 11] show a connection between the scaling properties of dynamic discrete swarms
and the notion of H-stability of the interaction potential (from classical statistical
physics). Dynamic aggregation, defined by models in which the velocity of motion
is not determined by a kinematic rule but rather by a separate momentum equation
for the motion, exhibits much richer dynamics than its kinematic cousin. It would be
interesting to know how the singular part of the potential affects solutions of dynamic
swarms, in particular in regards to the scaling issues discussed in the recent literature.
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