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ABSTRACT OF THE DISSERTATION

Contribution to Problems in Image Restoration, Decomposition, and Segmentation

by Variational Methods and Partial Differential Equations

by

Linh Hue Lieu

Doctor of Philosophy in Mathematics, 2006

University of California, Los Angeles

Professor Luminita Vese, Chair

In the first part of this dissertation, we present two models for image reconstruction

and decomposition, based on ideas of Rudin-Osher-Fatemi bounded total variation regular-

ization [57], and on Y. Meyer’s ideas of using distributional normed spaces for modeling

oscillatory functions [46]. Given a degraded image f = Ku + n, where K is a blurring

operator and n represents additive noise, to extract a clean image u,we consider variational

problems of the form inf{E(u) := λF1(u) + F2(f −Ku)}, where F1 and F2 are function-

als acting on some normed spaces. Inspired by Meyer and motivated by Mumford-Gidas

[49] and Osher-Solé-Vese [52], we propose for the first model F1(u) =
∫
|Du|, the total

variation of u, and F2(f −Ku) = ||f −Ku||H−s, the norm on the Hilbert-Sobolev space

of negative exponent. For the second model, we consider for F1 a general regularization

penalty Φ(u) =
∫
φ(|Du|)dx < ∞, where φ is positive, increasing, and grows at most

linearly at infinity, while for F2, we propose the dual penalty F2(f −Ku) = Φ∗(f −Ku).

We present algorithms for computing the dual Φ∗ and for solving the minimization problem

xv



inf{E(u) := λΦ(u) + Φ∗(f − Ku)}. We also present theoretical and numerical results.

In the particular case when Φ is the total variation of u, we show that the proposed model

recovers the (BV,BV ∗) decomposition, as in Y. Meyer’s model.

In the second part of the dissertation, we present a solution to the problem of edge

detection in streak-camera images, which arises from scientific experiments. We present

an adaptation of the Chan-Vese segmentation model [18]: a novel approach in which we

segment two dimensional images by a 1D model.

Numerical results from each model will be presented in each part.

xvi



Notations and Symbols

R̄ R ∪ {−∞,+∞}

R+ the set of non-negative real numbers, i.e. [0,∞)

Z+ the set of positive integers, i.e. 1, 2, 3, ...

N the set of natural numbers, i.e. 0, 1, 2, 3, ...

Let n ∈ Z+, α = (α1, ..., αn) ∈ Nn, x = (x1, ..., xn) ∈ Rn:

|α| the modulus of α, |α| = α1 + · · ·+ αn
(
m
α

)
the binomial coefficient

(
m
α

)
= m!/(α1! · · ·αn!)

∂i the partial derivative with respect to xi, ∂i = ∂/∂xi

Dα Dαf = ∂α1
1 · · ·∂αnn f

∇ the gradient operator, ∇f = (∂1f, . . . , ∂nf)

div, ∇· the divergence operator, div~p = ∇ · ~p = ∂1p1 + · · ·+ ∂npn

Ω a bounded domain in Rn, with Lipschitz boundary

Ω̄ the closure of Ω in Rn

Γ the boundary of Ω, Γ = ∂Ω

ν the outward unit normal to Γ,

Ff or f̂ the Fourier Transform of f (cf definition 2.1.2)

χΩ the characteristic function of Ω (cf definition 1.1.3)

C∞(Rn), C∞(Ω) the space of infinitely differentiable functions

Ck(Rn), Ck(Ω) the space of differentiable functions whose partial

derivatives up to order kth are continuous
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Ck
c (Rn), Ck

c (Ω) the space of functions in Ck(Rn), Ck(Ω),

with compact support

D(Rn), D(Ω) the subspace of functions in C∞(Rn), C∞(Ω), with

compact support in Rn, Ω; also denoted C∞c (Rn), C∞c (Ω)

S(Rn) the space of rapidly decreasing functions of C∞(Rn)

such that all derivatives satisfy:

|x|k|Dαf(x)| → 0 as |x| → ∞,

∀k ∈ N, α ∈ Nn, (also called the Schwartz space)

D(Rn)n the space of n-tuples (ϕ1, . . . , ϕn) where ϕi ∈ D(Rn)

for i = 1, ..., n

D(Ω̄) the space consisting of ϕ|Ω for all ϕ ∈ D(Rn)

D(Ω̄)n the space consisting of ϕ|Ω for all ϕ ∈ D(Rn)n

BV (Ω), BV (Rn) the space of functions of bounded variations on Ω, Rn

SBV (Ω), SBV (Rn) the space of special functions of bounded variations on Ω, Rn

X ′, or X∗ the dual of the space X

S ′(Rn) the space of tempered distributions on Rn, i.e. the set of continuous

linear functionals on S(Rn)

D′(Ω) the space of distributions on Ω, i.e. the set of continuous linear

functionals on D(Ω)

M(Ω) the space of Radon measures on Ω

Let m ∈ N, p ≥ 1 and s ∈ R:

Lploc = Lploc(Rn), the space of classes of measurable functions on Rn, or Ω,

or Lploc(Ω) such that |f(x)|p is locally integrable
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Lp = Lp(Rn), the space of classes of measurable functions on Rn, or Ω,

or Lp(Ω) such that |f(x)|p is integrable

L∞ = L∞(Rn), the space of classes of measurable functions on Rn, or Ω,

or L∞(Ω) such that |f(x)| is essentially bounded

Wm,p = Wm,p(Rn), Sobolev space consisting of all f ∈ Lp (resp. f ∈ Lp(Ω))

or Wm,p(Ω) such that Dαf ∈ Lp (resp. Lp(Ω)), ∀α ∈ Nn, |α| ≤ m

Wm,p
0 (Ω) the closure of D(Ω) in Wm,p(Ω)

Hm = Hm(Rn), Wm,2, (resp. Wm,2(Ω))

or Hm(Ω)

Hm
0 (Ω) the closure of D(Ω) in Hm(Ω)

H−m(Ω) the dual space of Hm
0 (Ω)

Hs = Hs(Rn) the Sobolev space of functions or distributions on Rn

(cf definition 2.1.3)

Hs
loc(Rn) the space {f ∈ S ′(Rn) s.t. fϕ ∈ Hs, ∀ϕ ∈ S(Rn)}

| · |X the semi-norm in the space X

|| · ||X the norm in the space X

|| · ||p the norm on Lp

|| · ||∞ the norm on L∞, i.e. essential sup norm

|| · ||−s the norm in the space H−s

⇀ weakly convergent (convergent in the weak topology)
∗
⇀ weak* convergent (convergent in the weak* topology)

Ln the n-dimensional Lebesgue measure

|Ω| the volume of Ω in Rn, |Ω| = Ln(Ω)

Hn the n-dimensional Hausdorff measure
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PART I

IMAGE RESTORATION AND
DECOMPOSITION

This part of the dissertation is devoted to the study of image reconstruction and decompo-

sition via the calculus of variations and partial differential equations.

In Chapter 1, we introduce the problem and outline the mathematical framework of

our study. We also review previous works in image reconstruction that have motivated the

works in this dissertation.

In Chapter 2, we present a new variational model for image restoration and decompo-

sition. The model involves bounded total variation for regularization (in the framework of

Rudin, Osher, Fatemi) and Negative-Hilbert-Sobelev spaces for fitting (following the ideas

of Yves Meyer [46], Mumford-Gidas [49]). We present theoretical results on the existence

and uniqueness of solutions and properties of the proposed model, as well as numerical al-

gorithm for computing discretely the solutions. We end the chapter with numerical results

from our proposed model, and comparisions.

In Chapter 3, we propose a new model for image restoration and decomposition using

dual functionals and dual norms. We impose a standard regularization penalty Φ(u) =
∫
φ(|∇u|)dx < ∞ on u, where φ is positive, increasing and has at most linear growth at

4



infinity. On the residual f−Ku we impose a dual penalty Φ∗(f−Ku) <∞. In particular,

when φ is convex, homogeneous of degree one, and with linear growth (for instance the

total variation of u), we recover the (BV,BV ∗) decomposition of the data f , as in Y.

Meyer [46]. We present a minimization algorithm for solving our proposed model. We

also present experimental results and comparisons to validate our proposed model.

5



Chapter 1

Introduction And Motivations

In this dissertation, we will consider a gray-scale image as a function defined on a bounded

subset Ω in R2. Generally in practice, Ω is a rectangle. In this dissertation we focus on

studying variational problems, in the framework of functions of bounded variation, arising

from image reconstruction.

During the formation, transmission or recording process, images may be degraded by

noise and blur. Thus, an important problem in image processing is the reconstruction of the

original true image u from an observed image u0. The degradation in u0 is generally the

result of two phenomena. The first phenomenon is deterministic and is related to the mode

of image acquisition (e.g. the computation of integral projections in tomography) or to

defects in the imaging system (e.g. blur created by motion, lens adjustment, or atmospheric

turbulence). The second phenomenon is the noise introduced by random distortions in the

signal transmission. We will only consider additive noise. Then, the degradation model in

consideration is:

u0 = Ku+ η,

where K is a linear operator representing the blur, and η is the random noise.
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The recovery of u from u0 can be considered as an inverse problem which is ill-posed

in general. The information provided by u0 is not sufficient to ensure existence, uniqueness

and stability of a solution u. It is therefore necessary to regularize the problem by adding an

a-prior constraint on the solution. One common regularization technique, which we shall

consider extensively in this dissertation, is the bounded total variation regularization.

The process of removing noise from a noisy image u0 can also be viewed as the de-

composition of u0 into a sum of two parts: u0 = u+ v, where u is the clean restored image

and v is the residual. When total variation regularization is applied, the u component will

be piecewise smooth. This corresponds to a ’cartoon’ image. Then, the v component will

necessarily contain all oscillatory patterns (such as noise and texture). We shall refer to this

process as a cartoon + texture decomposition.

Our purpose in this dissertation is to study known models and to develop new models

for image restoration and decomposition. In a general setting, the models in which we shall

explore are energy minimization problems of the form

inf
(u,v)∈(X1 ,X2)

{F (u, v) = F1(u) + λF2(v), u0 = Ku+ v} , (1.1)

where F1, F2 are functionals acting on normed spaces X1, X2, K is a continuous linear

operator from X1 to X2, u0 is the initial data, and λ > 0 is a parameter. We shall apply

mathematical tools from the calculus of variations and partial differential equations to our

study of these problems.

1.1 Mathematical Preliminaries

In this section we outline some mathematical background essential to this manuscript. A

significant part of this section covers the theories of the space of functions of bounded
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variation (BV ). We will also review briefly the theories on convex optimization and the

calculus of variations.

1.1.1 Convexity and Lower Semicontinuity in Minimization Problems

Definitions 1.1.1 Let X be a Banach Space with the norm ||x||, and F : X → R.

• coercivity: F is X-coercive if

lim
||x||→+∞

F (x) = +∞.

• convexity: F is convex on X if

F (λx + (1− λ)y) ≤ λF (x) + (1− λ)F (y), ∀x, y ∈ X, λ ∈ [0, 1].

• lower semicontinuity: F is called lower semicontinuous (l.s.c) if for all sequence

xn → x0, then

lim inf
xn→x0

F (xn) ≥ F (x0).

The same definition can be given with a weak topology, in which case we say F is

weakly l.s.c.

Proposition 1.1.1 Assume F : X → R is convex. Then, F is weakly l.s.c. if and only if F

is l.s.c.

Consider the following minimization problem

inf
x∈X

F (x).

To prove existence of a minimizer, we follow the following steps:
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(1) Construct a minimizing sequence xn ∈ X, i.e.

lim
n→∞

F (xn) = inf
x∈X

F (x).

(2) Obtain a weakly convergent subsequence in some way.

For example: If F is X-coercive, we obtain a uniform bound ||xn|| ≤ C. If X is

reflexive, then xn has a weakly convergent subsequence, xnj⇀x0, for some x0 ∈ X.

(3) To prove that x0 is a minimizer, it suffices to show

lim inf
xnj⇀x0

F (xnj) ≥ F (x0), (1.2)

which implies that F (x0) = infx∈X F (x).

Notice that if F is weakly l.s.c, then (1.2) is automatically satisfied.

1.1.2 Definitions and Properties of the Space BV

In this section we outline some of the main points on the theory of functions of bounded

variation. For further details, we refer the readers to [30, 8, 11].

Let Ω denotes a domain (open, connected) of Rn (n > 1). When Ω is bounded in Rn,

we also assume the boundary Γ = ∂Ω of Ω is Lipschitz.

Let D(Ω) := C∞c (Ω) denote the space of infinitely differentiable functions with com-

pact support in Ω, and let D′(Ω) denote the space of distributions on Ω.

Definition 1.1.1 (Functions of bounded variation) Let u ∈ L1(Ω). We say that u is a

function of bounded variation in Ω if the distributional derivative of u is representable by

9



a finite Radon measure, i.e.

∫

Ω

u
∂ϕ

∂xj
= −

∫

Ω

ϕd(Dju), ∀ϕ ∈ C1
c (Ω)n, j = 1, ..., n, (1.3)

for some Rn-valued measure Du = (D1u, ..., Dnu) in Ω.

The space of all functions of bounded variation in Ω is denoted by BV (Ω), and the

total mass of Ω in the Du-measure is denoted by ||Du||(Ω).

An equivalent definition of the space BV (Ω) is obtained via the definition of the dual

space as follows:

Definition 1.1.2 Let u ∈ L1(Ω). The total variation of u in Ω is defined by

TV (u) := sup

{∫

Ω

udiv(ϕ)dx, ϕ ∈ C1
c (Ω)n, |ϕ| ≤ 1

}
. (1.4)

Proposition 1.1.2 Let u ∈ L1(Ω), u ∈ BV (Ω) if and only if TV (u) < ∞. Moreover,

TV (u) = ||Du||(Ω) for all u ∈ BV (Ω).

Notation: As a result of Proposition 1.1.2, it is valid to refer to ||Du||(Ω) as the total

variation of u in Ω. We will also use the notation
∫

Ω
|Du| for ||Du||(Ω).

For u, v ∈ BV (Ω), α ∈ R, we clearly have

a) ||D(u+ v)||(Ω) ≤ ||Du||(Ω) + ||Dv||(Ω), and

b) ||αu||(Ω) = |α|||Du||(Ω).

That is, the variation measure ||Du||(Ω) is a seminorm on BV (Ω). It is a norm on the

quotient space BV (Ω)/P0(Ω) where P0(Ω) is the space of constant functions on Ω. When

refering to the seminorm, we will also make use of the notation

|u|BV (Ω)
def
=

∫

Ω

|Du|.
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The space BV (Ω) is a Banach space endowed with the norm

||u||BV (Ω)
def
= ||u||L1(Ω) + |u|BV (Ω), u ∈ BV (Ω).

Example 1.1.1 Suppose that Ω is bounded in Rn. Recall W 1,1(Ω) ⊂ L1(Ω). For v ∈

W 1,1(Ω), the weak first derivative Dv exists and belongs to L1(Ω). And, for any ϕ ∈

C1
c (Ω)n, with |ϕ| ≤ 1, we have

∫

Ω

vdivϕ dx := −
∫

Ω

Dv · ϕ dx ≤
∫

Ω

|Dv|dx <∞.

Hence,

W 1,1(Ω) ⊂ BV (Ω).

Since Ω is bounded, Lp(Ω) ⊂ L1(Ω) for 1 ≤ p ≤ ∞, hence

W 1,p(Ω) ⊂ BV (Ω), for all 1 ≤ p ≤ ∞.

Definition 1.1.3 An Ln-measurable subset E ∈ Rn has finite perimeter in Ω if

χE ∈ BV (Ω),

where χE is the characteristic function of E defined as

χE(x) =





1, x ∈ E

0, x /∈ E.
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We shall denote the total variation of χE in Ω, called the perimeter of E in Ω, by

||∂E||(Ω).

For E with finite perimeter in Ω, ||∂E|| is the perimeter measure of E, whose value on

any open set U ⊂⊂ Ω is

||∂E||(U) = sup

{∫

E

divϕ dx, ϕ ∈ C1
c (U)n, |ϕ(x)| ≤ 1 for x ∈ U

}
.

By the Structure Theorem ([30], Ch. 5), there exists a ||∂E||-measurable function νE :

Ω→ Rn such that ∫

E

divϕ dx =

∫

Ω

ϕ · νE d||∂E||

for all ϕ ∈ C1
c (Ω)n.

Example 1.1.2 Assume E is a domain with smooth boundary in Rn such thatHn−1(∂E ∩

K) <∞ for each compact set K ⊂ Ω. Then for any ϕ ∈ C1
c (Ω), |ϕ| ≤ 1,

∫

E

divϕ dx =

∫

∂E

ϕ · ν dHn−1,

where ν denotes the outward unit normal along ∂E. Hence, for any V ⊂⊂ Ω,

∫

E

divϕ dx =

∫

∂E∩V
ϕ · ν dHn−1 ≤ Hn−1(∂E ∩ V ) <∞.

Therefore E has locally finite perimeter in Ω. Moreover,

||∂E||(Ω) = Hn−1(∂E ∩ Ω)

12



and

νE = ν Hn−1-a.e. on ∂E ∪ Ω.

Thus ||∂E||(Ω) measures the ”size” of ∂E in Ω. Since χE /∈ W 1,1
loc (Ω) (according to, for

instance, Theorem 2, Section 4.9.2 in [30]),

W 1,1
loc (Ω) ( BVloc(Ω),

W 1,1(Ω) ( BV (Ω).

Theorem 1.1.1 (lower semicontinuity of variation measure) Suppose uk ∈ BV (Ω) (k =

1, ...) and uk → u in L1
loc(Ω). Then

||Du||(Ω) ≤ lim inf
k→∞

||Duk||(Ω).

Approximation by Smooth Functions:

Definition 1.1.4 Let uk, u ∈ BV (Ω), (k = 1, ...) We say that uk strictly converges to u in

BV (Ω) if

(i) uk → u in L1(Ω),

(ii) ||Duk||(Ω)→ ||Du||(Ω) as k →∞.

Remark: Note that the second condition does not imply ||D(uk − u)||(Ω)→ 0.

Theorem 1.1.2 (local approximation by smooth functions) Assume u ∈ BV (Ω). There

exists a sequence uk ∈ C∞(Ω) ∩ BV (Ω) such that uk → u strictly in BV (Ω).

Theorem 1.1.3 Assume u ∈ BV (Ω). There exists a sequence uk ∈ C∞(Ω)∩BV (Ω) such

that
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(i) uk → u in L1(Ω),

(ii) if U ⊂⊂ Ω is such that ||Du||(∂U) = 0, then ||Duk||(U)→ ||Du||(U) as k →∞.

Theorem 1.1.4 (compactness) Assume Ω is a bounded domain inRn with Lipschitz bound-

ary Γ. Suppose uk ∈ BV (Ω) (k = 1, ...) is a sequence satisfying

sup
k
||uk||BV (Ω) <∞.

Then there exists a subsequence ukj and a function u∞ ∈ BV (Ω) such that

ukj → u∞ in L1(Ω).

Remark: For any bounded sequence uk ∈ BV (Ω), the Compactness theorem together

with the Lower Semicontinuity of the variation measure imply the existence of subsequence

ukj and a function u∞ ∈ BV (Ω) satisfying

ukj → u∞ in L1(Ω),

||Du||(Ω) ≤ lim inf
j→∞

||Dukj ||(Ω).

This shall be applied frequently to prove existence of solutions to the variational problems

to be presented in this manuscript.

Traces and Extensions:

Throughout this section, assume Ω is a bounded domain with Lipschitz boundary Γ.

Then the outward unit normal ν(x) exists for Hn−1-a.e. on Γ. The following theorem

guarantees the existence of the trace for functions of bounded variations.
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Theorem 1.1.5 (Trace theorem) There exists a bounded (continuous) linear mapping

T : BV (Ω)→ L1(Γ,Hn−1)

such that ∫

Ω

udiv(ϕ)dx = −
∫

Ω

ϕ · dDu+

∫

Γ

ϕ · νTudHn−1

for all u ∈ BV (Ω) and ϕ ∈ C1(Rn)n. Moreover, for any u ∈ BV (Ω) and Hn−1-a.e.

x ∈ Γ, we have

lim
r→0+

1

rn

∫

B(x,r)∩Ω

|u(y)− Tu(x)|dy = 0,

where B(x, r) is the ball of radius r centered at x.

Theorem 1.1.6 (Extension theorem) Let u1 ∈ BV (Ω), u2 ∈ BV (Rn\Ω̄). Define

v(x) =





u1(x) if x ∈ Ω

u2(x) if x ∈ Rn\Ω̄.

Then v ∈ BV (Rn) and

||Dv||(Rn) = ||Du1||(Ω) + ||Du2||(Rn\Ω̄) +

∫

Γ

|Tu1 − Tu2|dHn−1.

Since Ω is compact with Lipschitz boundary Γ = ∂Ω, it has finite perimeter, i.e.

Hn−1(Γ) <∞. Then Extension Theorem 1.1.6 implies that the extension by zeros

Eu(x) =





u(x) if x ∈ Ω

0 if x ∈ Rn\Ω̄.

belongs to BV (Rn) whenever u ∈ BV (Ω).
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Isoperimetric Inequalities:

Theorem 1.1.7 (Sobolev inequality) There is a constant C > 0 such that

||u||Ln/(n−1)(Rn) ≤ C||Du||(Rn) for all u ∈ BV (Rn).

Again, assume Ω is bounded in Rn. For u ∈ L1(Ω), let

uΩ
def
=

(
1

|Ω|

∫

Ω

u(x)dx

)
χΩ, (1.5)

where |Ω| = Ln(Ω) is the volume of Ω in Rn.

Theorem 1.1.8 (Poincaré’s inequality) For Ω a bounded domain in Rn with Lipschitz

boundary, there exists a constant CΩ > 0 depending only on Ω such that

∫

Ω

|u− uΩ|dx ≤ CΩ||Du||(Ω) ∀u ∈ BV (Ω).

The Sobolev inequality implies BV (Rn) ⊂ Ln/(n−1)(Rn). The following theorem says

that this is also true for bounded domains Ω with Lipschitz boundary. By Hölder’s inequal-

ity, we also have BV (Ω) ⊂ Lp(Ω) for any 1 ≤ p ≤ n/(n− 1).

Theorem 1.1.9 (Embedding theorem) Let Ω ⊂ Rn be a bounded domain with Lipschitz

boundary. Then the embedding BV (Ω) ↪→ Ln/(n−1)(Ω) is continuous and BV (Ω) ↪→

Lp(Ω) is compact for all 1 ≤ p < n/(n− 1).

Theorem 1.1.10 (Sobolev-Poincaré inequality) The Embedding theorem together with the

Poincaré inequality imply the following Sobolev-Poincaré inequality (which is also known
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as Poincaré-Wirtinger inequality):

||u− uΩ||p ≤ CΩ||Du||(Ω), ∀u ∈ BV (Ω), 1 ≤ p ≤ n

n− 1
,

for some CΩ > 0 depending only on Ω.

Decomposition of the Measure Du:

For u ∈ BV (Ω), Du decomposes into three mutually singular measures

Du = ∇u · Ln + Cu + Ju,

where∇u ∈ L1(Ω)n is the Radon-Nikodym derivative of Du with respect to the Lebesgue

measure Ln, Cu is the Cantor part, and Ju is the Hausdorff or jump part. We also have

Ju = (u+ − u−)ν · Hn−1
|Su ,

where Su is the set of jump discontinuities of u whose Hausdorff dimension is at most

(n − 1). For Hn−1-almost all x ∈ Su, u+(x) − u−(x) > 0 is the height of the jump at x,

and ν(x) ∈ Sn−1.

Thus, ||Du||(Ω) =
∫

Ω
|∇u|dx+

∫
Ω\Su |Cu|+

∫
Su

(u+ − u−)dHn−1.

The Space of Special Functions of Bounded Variation (SBV ):

Definition 1.1.5 The space of special functions of bounded variation on Ω, denoted

SBV (Ω) is defined as the space of those functions u ∈ BV (Ω) for which Cu = 0.

Theorem 1.1.11 Let uk ∈ SBV (Ω) be a sequence such that there exists a constant C > 0

with |uk(x)| ≤ C a.e. x ∈ Ω and
∫

Ω
|∇uk|2dx + Hn−1(Suk) ≤ C. Then there exists a
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subsequence ukj converging a.e. x to a function u ∈ SBV (Ω). Moreover, ∇ukj converges

weakly in L2(Ω)n to∇u, and limHn−1(Sukj ) ≥ H
n−1(Su).

(See [4] for proof).

Pairings between measures and BV functions:

Integrability conditions on the divergence of a vector field ~p in Ω yield trace properties

for the normal component of ~p on Γ = ∂Ω, as well as bounded measures that naturally

arise from pairing ~p with the total variation measure. We will outline here several results

from [60, 8].

Let Ω be a bounded domain inRn with Lipschitz boundary Γ = ∂Ω, and let ν(x) denote

the outward unit normal to Γ.

We will consider the following spaces:

• BV (Ω)c
def
= BV (Ω) ∩ L∞(Ω) ∩ C(Ω),

• X(Ω)p
def
= {~p ∈ L∞(Ω)n, div(~p) ∈ Lp(Ω)} ,

• X(Ω)µ
def
= {~p ∈ L∞(Ω)n, div(~p) is a bounded measure in Ω} .

Lemma 1 There exists a bilinear map 〈~p, u〉Γ : X(Ω)µ ×BV (Ω)c → R such that

〈~p, u〉Γ =
∫

Γ
u(x)~p(x) · ν(x)dHn−1 if ~p ∈ C1(Ω)n)

|〈~p, u〉Γ| ≤ ||~p||∞
∫

Γ
|u(x)|dHn−1 ∀(~p, u) ∈ X(Ω)µ ×BV (Ω)c.

Furthermore, there is a linear operator γ : X(Ω)n → L∞(Γ) such that

||γ(~p)||∞ ≤ ||~p||∞,

〈~p, u〉Γ =
∫

Γ
γ(~p)(x)u(x)dHn−1 ∀u ∈ BV (Ω)c

γ(~p)(x) = ~p(x) · ν(x) for all x ∈ Γ when ~p ∈ C1(Ω̄)n.
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(Proof of these results can be found in ([8], pp. 311-317))

The function γ(~p) is a weakly defined trace on Γ of the normal component of ~p. We

shall denote γ(~p) by ~p · ν.

ClearlyX(Ω)p ⊂ X(Ω)µ for all p ≥ 1. Thus the trace ~p·ν is defined for any ~p ∈ X(Ω)p.

We also have the following Green’s Formula:

Lemma 2 (Green’s Formula) Assume 1 ≤ p ≤ ∞, p′ = p/(p − 1). Then for all ~p ∈

X(Ω)p and u ∈ W 1,1(Ω) ∩ Lp′(Ω), we have

∫

Ω

udiv(~p) dx+

∫

Ω

~p · ∇udx =

∫

Γ

(~p · ν)(x)u(x)dHn−1.

Lemma 3 For every u ∈ Ln/(n−1)(Ω) and for every ~p ∈ Ln(Ω)n with div~p ∈ Ln(Ω), we

can define a distribution on Ω, denoted ~p ·Du, via the formula

〈~p ·Du, ϕ〉 = −
∫

Ω

(udiv~p)ϕdx−
∫

Ω

u(~p · ∇ϕ)dx, ∀ϕ ∈ D(Ω). (1.6)

Furthermore, the mapping (u, ~p)→ ~p·Du is bilinear weakly continuous fromLn/(n−1)(Ω)×

X into D′(Ω), the space of distributions on Ω, where

X = {~p ∈ Ln(Ω)n, div~p ∈ Ln(Ω)}, (1.7)

which is a Banach Space with the natural norm

||~p||X = ||~p||n + ||div~p||n. (1.8)

(A proof is in the Appendix).
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Lemma 4 Under the assumptions of Lemma 1 and if moreover u ∈ BV (Ω) and ~p ∈

L∞(Ω)n, then ~p ·Du is a bounded signed measure with

∫

Ω

|~p ·Du| ≤ ||~p||∞ ·
∫

Ω

|Du|, (1.9)

and the following generalized Green’s formula holds

∫

Ω

~p ·Du =

∫

Γ

u(~p · ν)dHn−1 −
∫

Ω

udiv(~p)dx, (1.10)

(A proof is in the Appendix).

1.2 Rudin-Osher-Fatemi (ROF) and Rudin-Osher Models

Assume Ω is an open and bounded subset of R2, with ∂Ω Lipschitz. For two dimensional

gray-scale images, Ω is in general a rectangle in the plane.

Assume the observed image u0 : Ω → R is degraded by an additive noise η : Ω → R

of zero mean and variance σ2, i.e.

u0(x, y) = u(x, y) + η(x, y),

where u : Ω→ R is the clean unknown image.

The reconstruction of u from u0 may be attempted by utilizing the known statistics of

the noise. We may try to find u such that

∫

Ω

u =

∫

Ω

u0, and
∫

Ω

(u− u0)2 = σ2.

The first condition corresponds to the noise having zero mean, and the second to that the
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variance of the noise is σ2.

Unfortunately, this problem is ill-posed. Existence, uniqueness, and stability of the

solution u is not guaranteed due to insufficient information provided by u0. Therefore reg-

ularization by adding a-priori constraint on the solution is necessary. It is desirable that the

choice of regularization be made so that sharp edges in u0 are maintained in u.

L. Rudin, S. Osher, and E. Fatemi propose in [57] to regularize u by requiring it to be of

bounded variation. They propose the following constrained minimization problem, refered

to as the ROF model, for reconstructing u from the observed image u0 :

Minimize
∫

Ω
|Du|

subject to
∫

Ω
u =

∫
Ω
u0, and 1

2

∫
Ω
|u− u0|2 = σ2|Ω|,

(1.11)

where
∫

Ω
|Du| is the total variation of u.

Remark: This ROF model can be applied to decompose a function u0 ∈ L2(Ω) into a sum

u0 = u+ v where u ∈ BV (Ω) is piecewise smooth and v ∈ L2(Ω) is oscillatory.

Assume further that blurring is present in the degradation process, i.e.

u0(x, y) = Ku(x, y) + η(x, y),

where K : L2(Ω) → L2(Ω) is a linear and continuous operator. Rudin and Osher propose

in [56] the following generalized version of (1.11) for recovering u :

Minimize
∫

Ω
|Du|

subject to
∫

Ω
Ku =

∫
Ω
u0, and 1

2

∫
Ω
|Ku− u0|2 = σ2|Ω|.

(1.12)

The space of functions of bounded variation (BV ) consists of piecewise smooth func-
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tions. Imposing that the reconstructed u belongs to the space (BV ) allows u to have discon-

tinuities, i.e. the reconstructed image is allowed to have sharp edges while having spurious

oscillations such as noise removed. Then, the objects (which are defined by their edges)

will appear sharply in the reconstructed image.

A. Chambolle and P.-L. Lions have shown in [17], via the use of the Lagrange multiplier

λ > 0, that problem (1.12) is equivalent to the following unconstrained problem:

inf
u∈BV (Ω)

{∫

Ω

|Du|+ λ

2

∫

Ω

|u0 −Ku|2
}
, (1.13)

under the following natural assumptions:

H1. K is a continuous linear operator of L2(Ω),

H2. KχΩ = χΩ (equivalently,
∫

Ω
K∗v =

∫
Ω
v for all v ∈ L2(Ω)),

H3. η(x) is an oscillatory function, representing an additive white noise,

H4.
∫

Ω
η = 0, and σ2 =

∫
Ω
|η|2 is known,

H5.
∫

Ω
Ku.η = 0, i.e. the noise η and Ku are totally uncorrelated signals, (this and the

degradation model would imply that ||u0−u0,Ω||2 ≥ σ, where u0,Ω := ( 1
|Ω|
∫

Ω
u0)χΩ.

For fixed u0 and Ω, the Lagrange multiplier λ > 0 corresponds uniquely to the given σ,

provided 0 < σ < ||u0 − u0,Ω||2, (see Lemma 2.3 in [17]).

The unconstrained problem (1.13) can be viewed as a penalty method approach to solv-

ing the constrained problem (1.12). The Lagrange multiplier λ > 0 is the penalty (or

regularization) parameter. It controls the tradeoff between the goodness of the fit to the

data, as measured by ||u0 − Ku||22, and the variability of the solution u, as measured by

|u|BV .
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Remark: In [57], the authors already used (1.13) as a numerical device. Chambolle and

Lions [17] gave theoretical analysis and proved the equivalence of the two problems.

Notations: We denote

J0(u) :=

∫

Ω

|Du|, and F (u) := J0(u) +
λ

2
||u0 −Ku||22.

Remark: F is strictly convex, i.e. F ( 1
2
u+ 1

2
v) < 1

2
F (u)+ 1

2
F (v) for all u 6= v. This is true

since J(u) is convex and ||·||22 is strictly convex: J( 1
2
u+ 1

2
v) ≤ 1

2
J(u)+ 1

2
J(v), and ||1

2
Ku+

1
2
Kv||22 = 1

4
||Ku||22 + 1

4
||Kv||22 + 1

2
〈u, v〉 ≤ 1

4
||Ku||22 + 1

4
||Kv||22 + 1

2
||Ku||2||Kv||2 <

1
2
||Ku||22 + 1

2
||Kv||22.

Existence of a solution of (1.13), for any u0 ∈ L2(Ω) and λ > 0, is obtained as follows

(see also [1, 17, 64]):

1. Since F (0) = (λ/2)||u0||22 < ∞, infu∈BV (Ω) F (u) < ∞. Therefore, we can find a

minimizing sequence {uk} ∈ BV (Ω), such that J0(uk) + ||u0 −Kuk|| < M, for all

k.

2. Sobolev-Poincaré inequalities imply ||uk−uk,Ω||p ≤ CJ0(uk) < M, for all k = 1, ...,

1 ≤ p ≤ 2, where C > 0 depends only on Ω, and uk,Ω = ( 1
|Ω
∫

Ω
uk)χΩ.

3. M > ||u0 −K(uk − uk,Ω)−Kuk,Ω||22 ≥ (||u0 −K(uk − uk,Ω)||2 − ||Kuk,Ω||2)2

≥ ||Kuk,Ω||2 (||Kuk,Ω||2 − 2||u0 −K(uk − uk,Ω)||2)

≥ ||Kuk,Ω||2(||Kuk,Ω||2 − 2(||u0||2 + ||K|| · ||(uk − uk,Ω)||2)).

K continuous and ||(uk − uk,Ω)||2 < M ⇒ ||u0||2 + ||K|| · ||(uk − uk,Ω)||2 < M ′.

Hence, ||KχΩ||2
|Ω|

∣∣∫
Ω
uk
∣∣ = ||Kuk,Ω||2 < M ′′. Thus,

∣∣∫
Ω
uk
∣∣ is uniformly bounded.

4. For 1 ≤ p ≤ 2, we have ||uk||p = ||uk − uk,Ω + uk,Ω||p ≤ ||uk − uk,Ω||p + |
∫

Ω
uk| <
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M +M ′′, i.e. ||uk||p is uniformly bounded.

5. ||uk||BV (Ω) := J0(uk) + ||uk||1 is uniformly bounded. Then, Compactness Theorem

implies existence of a subsequence, still denote uk, and u∞ ∈ BV (Ω) such that

uk −→ u∞ in L1(Ω), and uk ⇀ u∞ weakly in L2(Ω).

7. K is continuous ⇒ Kuk ⇀ Ku∞ weakly in L2(Ω). Then, ||u0 − Ku∞||22 ≤

lim inf ||u0 −Kuk||22.

8. Lower-semicontinuity of the variation measure implies J0(u∞) ≤ lim inf J0(uk).

9. Therefore, F (u∞) ≤ lim inf F (uk), hence u∞ is a minimizer.

Uniqueness of the minimizer is obtained when K is further assumed to be injective.

Suppose that u, v ∈ BV (Ω) are two minimizers. F is strictly convex; therefore, if Ku 6=

Kv, then F (1
2
u + 1

2
v) < 1

2
F (u) + 1

2
F (v) = inf F, which contradicts with u and v being

minimizers. Therefore, Ku = Kv. Thus, we obtain uniqueness if K is injective. �

Remark: We deduce from the existence proof that the functional F is: (1) lower semi-

continuous with respect to the L2 topology (≡ to the BV -w∗ topology); (2) BV -coercive;

to see this more clearly (see also [1]), assume u ∈ BV (Ω), and let w =
( R

Ω udx

|Ω|

)
χΩ,

v = u− w. Then,

(a)
∫

Ω
vdx = 0, so ||v||p ≤ C1J0(v), where C1 > 0, 1 ≤ p ≤ 2, (by Poincaré-Wirtinger

inequality).

(b) ||Kw||2 = C2||w||1, for some C2 > 0, and ||u0 − Kv||2 ≤ ||K|| · ||v||2 + ||u0||2 ≤

||K|| · C1J0(v) + ||u0||2.

(c) ||u||BV = ||v + w||1 + J0(v + w) ≤ ||w||1 + (C1 + 1)J0(v).
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(d) F (u) = J0(u) + λ
2
||u0 −Ku||22

= J0(v) + λ
2
||(u0 −Kv)−Kw||22

≥ J0(v) + λ
2

(||(u0 −Kv)||2 − ||Kw||2)2

≥ J0(v) + λ
2
||Kw||2 (||Kw||2 − 2||(u0 −Kv)||2)

≥ J0(v) + λ
2
C2||w||1 (C2||w||1 − 2(||K|| · C1J0(v) + ||u0||2)) .

(e) If C2||w||1 − 2(||K|| · C1J0(v) + ||u0||2) ≥ 1, then F (u) ≥ λ
2
C2||w||1, so ||u||BV ≤

(C1 + 1)J0(v) + ||w||1 ≤ (C1 + 1 + 2
λC2

)F (u).

(f) If C2||w||1−2(||K||·C1J0(v)+||u0||2) < 1, then ||w||1 < 1
C2

(1+2(||K||·C1J0(v)+

||u0||2)), so ||u||BV − 1+2||u0||2
C2

≤
(

2||K||C1

C2
+ C1 + 1

)
F (u).

Thus we can conclude from (e) and (f) that lim||u||BV→∞ F (u) =∞.

We can formally solve problem (1.13) via the calculus of variations, in which case we

obtain the following Euler-Lagrange equations:

div

(
Du

|Du|

)
+ λK∗(u0 −Ku) = 0 in Ω, (1.14)

Du

|Du| · ν = 0 on ∂Ω. (1.15)

where K∗ is the adjoint of K.

Non-differentiability of the functional J0 in (1.13) when Du = 0 presents a computa-

tional disadvantage. Indeed, equation (1.14) makes sense only when |Du| 6= 0. In [1], R.

Acar and R.C. Vogel consider the following approximation for J0:

Jβ(u) :=

∫

Ω

√
β + |Du|2 dx, (1.16)

where β ≥ 0. When β = 0, this reduces to the original functional J0. The authors have
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also established the following results:

R1. J0(u) ≤ Jβ(u) ≤ J0(u) +
√
β|Ω|, for any u ∈ L1(Ω). Hence, when u ∈ BV (Ω),

lim
β→0

Jβ(u) = J0(u).

R2. Jβ is convex and weakly lower semicontinuous with respect to the Lp topology for

1 ≤ p <∞, for any β ≥ 0.

R3. Define Fβ(u) := Jβ(u) + λ
2
||u0 − Ku||22, β ≥ 0. Existence and uniqueness of

minimizer of Fβ can be shown in the same manner as for problem (1.13).

Remark: Similar to F in problem (1.13), Fβ is strictly convex, BV -coercive, and

lower semicontinuous with respect to L2 topology. Notice also that (R1) implies

0 ≤ Fβ(u)− F (u) = Jβ(u)− J0(u) ≤ β|Ω| −→ 0 as β → 0.

R4. (Stability of Minimizers) Assume that 1 ≤ p < 2 and that the functionals F∞, Fk

areBV -coercive, lower semicontinuous with respect to Lp-topology and have unique

minimizers ū, ūk, respectively. Assume in addition

(i) (Uniform BV -coercivity) For any vj ∈ BV (Ω),

lim
||vj ||BV→∞

Fk(vj) = +∞, for all k.

(ii) (Consistency) Fk → F∞ uniformly on BV -bounded sets, i.e. given B > 0 and

ε > 0, there exists N such that

|Fk(u)− F∞(u)| < ε whenever k > N, ||u||BV ≤ B.
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Then,

||ūk − ū||p −→ 0.

For p = 2, we replace lower semicontinuity assumption by weak lower semicontinu-

ity assumption, then the convergence is weak:

ūk − ū ⇀ 0 in L2(Ω).

Example: We will now illustrate an application of the results above.

Assume λk, λ0 > 0, with λk → λ0, (k = 1, ...). Fix β ≥ 0. Let

Fk(u) = Jβ(u) +
λk
2
||u0 −Ku||22, for k = 0, 1, ...

Let ūk denote the unique minimizers of Fk. Clearly the hypotheses in (R4) are satis-

fied. So we have ūk → ū strongly inLp(Ω) for all 1 ≤ p < 2, and ūk ⇀ ūweakly in L2(Ω).

Thus far we have seen that given an observed image u0, a blurring operator K, and a

regularization parameter λ, problem (1.13) possesses a unique solution. Yves Meyer [46]

have shown that minimizers of (1.13) are characterized by certain properties. We now study

characterizations of minimizers in a similar manner as Theorem 4 in [46].

Denote by 〈, 〉 the scalar product in L2(Ω). For f ∈ L2(Ω) of zero mean, let

‖f‖∗ def
= sup

h∈BV (Ω), |h|BV 6=0

〈f, h〉
|h|BV

≤ ∞. (1.17)

Remark: If f ∈ L2(Ω) is such that ‖f‖∗ < ∞, then f has zero mean. Indeed, let

h ∈ BV (Ω) be such that |h|BV 6= 0, or h 6= constant functions. Let c be an arbitrary

constant. Then |h + c|BV = |h|BV and 〈f,h+c〉
|h+c|BV = 〈f,h〉+〈f,cχΩ〉

|h|BV = 〈f,h〉
|h|BV + c 〈f,χΩ〉

|h|BV . This has
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to be bounded from above for any constant c having the same sign with 〈f, χΩ〉. This can

hold only if 〈f, χΩ〉 = 0, or if
∫

Ω
f(x)dx = 0. We also deduce that if ‖f‖∗ ≤ C < ∞

according to the definition (1.17), then 〈f, h〉 ≤ C|h|BV for any h ∈ BV (Ω).

Theorem 1.2.1 u = 0 is a minimizer of (1.13) if and only if ‖K∗f‖∗ ≤ 1
λ

.

Proof: Assume that u = 0 is a minimizer of (1.13). Then for any h ∈ BV (Ω), we have

λ

2
‖f‖2

2 ≤
λ

2
‖Kh− f‖2

2 + |h|BV ,

or

λ〈f,Kh〉 ≤ λ

2
‖Kh‖2

2 + |h|BV .

Changing h into εh, with ε〉0, we obtain

λε〈f,Kh〉 ≤ λ

2
ε2‖Kh‖2

2 + ε|h|BV ,

then first dividing by ε, and then taking the limit as ε→ 0, gives

λ〈f,Kh〉 ≤ |h|BV , or λ〈K∗f, h〉 ≤ |h|BV ,

for any h ∈ BV (Ω). Therefore ‖K∗f‖∗ ≤ 1
λ

.

Conversely, assume that ‖K∗f‖∗ ≤ 1
λ
, i.e. suph∈BV (Ω), |h|BV 6=0

〈K∗f,h〉
|h|BV ≤

1
λ
. Therefore,

λ〈K∗f, h〉 ≤ |h|BV , for any h ∈ BV (Ω) with |h|BV 6= 0. Let u = 0. Then, for any

h ∈ BV (Ω), with |h|BV 6= 0, we have:
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|h|BV +
λ

2
‖f −Kh‖2

2 = |h|BV +
λ

2
‖f‖2

2 +
λ

2
‖Kh‖2

2 − λ〈f,Kh〉

= |h|BV +
λ

2
‖f‖2

2 +
λ

2
‖Kh‖2

2 − λ〈K∗f, h〉

≥ |h|BV +
λ

2
‖f‖2

2 +
λ

2
‖Kh‖2

2 − |h|BV

=
λ

2
‖f‖2

2 +
λ

2
‖Kh‖2

2

≥ λ

2
‖f‖2

2 =
λ

2
‖f −Ku‖2

2 + |u|BV .

Due to the assumption that
R
Ω f(x)dx

|Ω| = 0, it is easy to show that if a minimizer is a constant c,

then c must be zero. Therefore u = 0 is a minimizer of (1.13). �

Theorem 1.2.2 If ‖K∗f‖∗ > 1
λ

, then u is a minimizer of (1.13) if and only if

‖K∗(f −Ku)‖∗ =
1

λ
and < u,K∗(f −Ku) >=

1

λ
|u|BV . (1.18)

Proof: Assume u is a minimizer. Then, for any h ∈ BV (Ω), we have

λ

2
‖f −K(u+ εh)‖2

2 + |u+ εh|BV ≥
λ

2
‖f −Ku‖2

2 + |u|BV , or

λ

2
ε2‖Kh‖2

2 − λε〈Kh, f −Ku〉+ |u+ εh|BV ≥ |u|BV . (1.19)

By triangle inequality,

λ

2
ε2‖Kh‖2

2 − 2λε〈Kh, f −Ku〉+ |u|BV + |ε||h|BV ≥ |u|BV ,

or, for ε > 0,

|u|BV +
λ

2
ε‖Kh‖2

2 ≥ λ〈Kh, f −Ku〉.
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As ε decreases to 0+, we obtain that for any h ∈ BV (Ω),

|h|BV ≥ λ〈Kh, f −Ku〉,

and in particular
1

λ
≥ 〈h,K

∗(f −Ku)〉
|h|BV

if |h|BV 6= 0. Therefore

‖K∗(f −Ku)‖∗ ≤
1

λ
. (1.20)

Now, letting h = u in (1.19), with −1 < ε < 0, we have

λ

2
ε2‖Ku‖2

2 + (1 + ε)|u|BV ≥ |u|BV + λε〈u,K∗(f −Ku)〉, or

λ

2
ε2‖Ku‖2

2 + ε|u|BV ≥ λε〈u,K∗(f −Ku)〉.

For −1 < ε < 0, after division by ε and letting ε→ 0−, we obtain that

1

λ
|u|BV ≤ 〈u,K∗(f −Ku)〉.

Now, since u is a minimizer, we have that |u|BV 6= 0. Indeed, if by contradiction u with

|u|BV = 0 is minimizer, then u must be a constant c; however, c must be zero because f

has zero mean, therefore u = 0 would be a minimizer, contradiction with the hypothesis

and the previous theorem. Therefore,

1

λ
≤ 〈u,K

∗(f −Ku)〉
|u|BV

. (1.21)

Combining (1.20) and (1.21), we obtain (1.18).

Conversely, assume (1.18) for some u ∈ BV (Ω). Then ‖K∗(f −Ku)‖∗ = 1
λ

implies
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that λ〈K∗(f −Ku), u+ εh〉 ≤ |u+ εh|BV , for any real parameter ε and any h ∈ BV (Ω).

We then have, for any h ∈ BV (Ω):

|u+ εh|BV +
λ

2
‖f −K(u+ εh)‖2

2

= |u+ εh|BV +
λ

2
‖f −Ku‖2

2 +
λ

2
ε2‖Kh‖2

2 − λε〈f −Ku,Kh〉

≥ λ〈K∗(f −Ku), u+ εh〉+
λ

2
‖f −Ku‖2

2 +
λ

2
ε2‖Kh‖2

2 − λε〈f −Ku,Kh〉

= λ〈K∗(f −Ku), u〉+ λε〈K∗(f −Ku), h〉+
λ

2
‖f −Ku‖2

2

+
λ

2
ε2‖Kh‖2

2 − λε〈K∗(f −Ku), h〉

= λ〈K∗(f −Ku), u〉+
λ

2
‖f −Ku‖2

2 +
λ

2
ε2‖Kh‖2

2

= |u|BV +
λ

2
‖f −Ku‖2

2 +
λ

2
ε2‖Kh‖2

2 ≥ |u|BV +
λ

2
‖f −Ku‖2

2,

therefore u satisfying (1.18) is a minimizer. �

To motivate the problems we are studying in this dissertation, we give here some exam-

ples in which exact solutions to the Rudin-Osher-Fatemi model (1.13) are computed.

Example 1.2.1 We first examine a simple example considered in [59]. Assume Ω is a

compact domain in R2. Let Ω1 ⊂⊂ Ω with smooth boundary (∂Ω1 ⊂ Ω), and define the

function u0 as

u0(x) =





1 for x ∈ Ω1

0 for x ∈ Ω2 := Ω\Ω1.

Let uλ denote the solution of the ROF model (1.13) with initial data u0 and a fixed λ > 0.

Since u0 is piecewise constant and noise-free, we assume that

u(x) =





1 + δ1 for x ∈ Ω1

δ2 for x ∈ Ω2,
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for some δ1, δ2 to be determined. Applying Example 1.1.2 to u, we obtain the total variation

of u in Ω to be

J0(u) = |1 + δ1 − δ2||∂Ω1|.

Since |1 + δ1 − δ2| is the height of the jumps of the function u at points on ∂Ω1, we may

assume that 1 + δ1 − δ2 ≥ 0. The fitting error between u and u0 is

∫

Ω

(u0 − u)2dx = δ2
1 |Ω1|+ δ2

2 |Ω2|.

To find δ1, δ2, we solve the following minimization problem

min
δ1,δ2

{
(1 + δ1 − δ2)|∂Ω1|+

λ

2
(δ2

1|Ω1|+ δ2
2 |Ω2|)

}
.

Differentiating with respect to each δi yields

λδ1|Ω1|+ |∂Ω1| = 0 =⇒ δ1 = − |∂Ω1|
λ|Ω1|

λδ2|Ω2| − |∂Ω1| = 0 =⇒ δ2 = |∂Ω1|
λ|Ω2|

This Example 1.2.1 shows that the ROF model decreases the height of the jumps dis-

continuities. Then, the residual v = u0 − u will contain this lost height. Consequently,

edges will appear in v.

Next we study an example considered in [40] which shows that not all oscillatory func-

tions have small L2 norm. Hence, the space L2 is not a well-suited space for modeling

oscillatory patterns.

Example 1.2.2 [40, 46] Fix a > 0, n > 1, and let ϕ be a smooth function defined on R

such that

ϕ(x) =





1 for |x| < n,

0 for |x| > n + 1,

32



and ϕ is smoothly increasing on [−n − 1,−n] and smoothly decreasing on [n, n + 1]. Let

m > 1 and define

f(x) =
1

m
ϕ′(x)sin(mx) + ϕ(x)cos(mx).

Then, ||f ||22 ≥ 2a2
∫ n

0
|cos(mx)|2dx = a2(n+ 1

2m
sin(2mn)) ≥ a2(n− 1

2
) > 0. Therefore,

the L2 norm of f can be quite large.

We conclude from these examples that the ROF model is not very well suited for decom-

position of an image u0 into a sum of a piecewise-smooth component u and an oscillatory

component v : u0 = u+ v.

1.3 Yves Meyer’s Models of Oscillatory Patterns

We are interested in an energy minimization model of the form (1.1) that is suitable for

cartoon + texture decomposition. The fact that BV regularization allows discontinuities

makes it an acceptable space for modeling cartoon images. However, as we have seen in

the previous section, L2 space is not appropriate for modeling oscillatory patterns. The

idea is to use a norm that has small weights on oscillatory functions, i.e. weaker norm than

the L2 norm. Motivated by these observations, Yves Meyer [46] suggests the use of the

dual to the space BV (Ω), which possesses the inclusions BV (Ω) ⊂ L2(Ω) ⊂ (BV (Ω))′

for any bounded domain Ω in R2, to capture oscillatory functions. However, there is no

known integral representation for continuous linear functionals on BV (Ω). T. De Pauw

has presented a description of the dual of SBV (Ω) in [25], but it leads to a complicated

representation. To overcome this, Y. Meyer [46] suggests to approximate (BV (Ω))′ by the

following slightly larger space:

Definition 1.3.1 (The space G(R2)) [46] Let G denote the Banach space consisting of all

generalized functions f(x) which can be written as
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f(x) = div(~g(x)) := ∂1g1(x) + ∂2g2(x), ~g(x) ∈ L∞(R2)2.

Define the norm ||f ||G by

‖ f ‖Gdef
= inf

{
‖
√
g1(x)2 + g2(x)2 ‖∞, f = div(~g), ~g ∈ L∞(R2)2

}
. (1.22)

Recall that the homogeneous Sobolev spaceW 1,1
0 := W 1,1

0 (R2) is defined as the closure

in W 1,1 := W 1,1(R2) of the Schwartz class S(R2), (see def. 2.1.1). This space G is

identical to W−1,∞(R2), the dual of W 1,1
0 , according to the following lemma:

Lemma 1.3.1 [46] Let BV0 be the closure in BV (in the norm | · |BV ) of the Schwartz

class S(R2). Then the space G is the dual to the space BV0.

In addition to the space G, Meyer [46] has also suggested two additional spaces E and

F for modeling oscillatory patterns. For completeness, we shall give the definition of these

spaces here:

Definition 1.3.2 (The space BMO(R2)) [40] Let f ∈ L1
loc(R2). We say that f belongs to

the John-Nirenberg space of bounded mean oscillation, denoted BMO(R2), if

1

Q

∫

Q

|f − fQ| ≤ A,

for all squares Q (it is sufficient to consider squares with sides parallel to the axes). Here,

fQ = 1
Q

∫
Q
f(x)dx. The smallest of all upper bounds A is the norm of f in BMO(R2),

denoted ||f ||BMO(R2), i.e.

||f ||BMO(R2)
def
= sup

Q=square

1

Q

∫

Q

|f − fQ|.
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The spaces F, E are defined as follows [40]:

Definition 1.3.3 Let F be the space consisting of all generalized functions f which can be

written as

f(x) = div(~g(x)), ~g(x) ∈ BMO(R2)2.

Define the norm ||f ||F by

‖ f ‖F def
= inf

{
(||g1||BMO(R2) + ||g2||BMO(R2)), f = div(~g), ~g ∈ BMO(R2)2

}
. (1.23)

Definition 1.3.4 [32] A generalized function f belongs to the space E(R2) if it can be

written as f = ∆g, where g satisfies

sup
|y|>0

||g(.+ y)− 2g(.) + g(.− y)||∞
|y| < +∞.

Equivalently, E is the Besov space Ḃ−1
∞,∞ which is dual to the homogeneous Besov

space Ḃ1
1,1.

Remark: The following embeddings hold in R2,

W 1,1 ⊂ BV ⊂ L2 ⊂ G ⊂ F ⊂ E.

The space G possesses the following properties:

Lemma 1.3.2 If g ∈ L2(R2), then

∣∣∣∣
∫
g(x)f(x)dx

∣∣∣∣ ≤ |f |BV ||g||G. (1.24)
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Lemma 1.3.3 Let fk, k ≥ 1 be a sequence of functions in L2(Ω) satisfying the following

three conditions:

(a) there exists a compact set K such that the supports of fk are contained in K, for all

k ≥ 1,

(b) there exists an exponent q > 2 and a constant C such that ||fk||q ≤ C, and

(b) the sequence fk −→ 0 in the distributional sense.

Then ||fk||G −→ 0 as n→∞.

Example 1.3.1 We now repeat an example considered in [40] to illustrate Lemma 1.3.3.

Let f be as in Example 1.2.2 and let g(x) = ϕ(x)
m
sin(mx) + c, for any c = constant. Then

||g(x)||∞ = a
m

and f = g′. Thus

||f ||G := inf {||g||∞, f = g′, g ∈ L∞} ≤ a

m
−→ 0 as m→∞,

i.e. the G norm of f tends to 0 as the oscillation increases.

Lemma 1.3.3 and Example 1.3.1 show that a function in the space G may have large

oscillations but nevertheless small norm. Therefore the G norm is well suited for captur-

ing the oscillations of a function in an energy minimization model. However, in order to

apply the || · ||G norm to our energy minimization problem, we need a proper definition of

G(Ω) when Ω is a compact domain in R2 with Lipschitz boundary. A natural definition is

considered in [40] by restricting to Ω.

Definition 1.3.5 (The space GV(Ω)) Let GV (Ω) be the space of all distributions T ∈

D′(Ω) which can be written as

T = div(~g), ~g ∈ L∞(Ω)2,
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i.e. T (ϕ) = −
∫

Ω
(g1

∂ϕ
∂x1

+ g2
∂ϕ
∂x2

)dx, for all ϕ ∈ D(Ω). Define the || · ||GV norm by

‖ T ‖GV def
= inf

{
‖
√
g1(x)2 + g2(x)2 ‖∞, T = div(~g), ~g ∈ L∞(Ω)2

}
. (1.25)

We again recall that the homogeneous Sobolev spaceW 1,1
0 (Ω) is the closure ofD(Ω) :=

C∞c (Ω) inW 1,1(Ω). Therefore, functions inW 1,1
0 (Ω) have zero trace on ∂Ω, and is identical

to the quotient space W 1,1(Ω)/P0(Ω), where P0(Ω) is the set of constant functions on Ω.

(If u ∈ W 1,1
0 (Ω) and u = constant then u = 0 a.e.) Thus, ||u||W 1,1

0
:=
∫

Ω
|∇u|dx is a

norm on W 1,1
0 (Ω), and it is equivalent to the usual W 1,1 norm (by Sobolev inequality ([67],

pp. 56)). Hence, W 1,1
0 (Ω) is a Banach space under this norm ||u||W 1,1

0
. Furthermore, the

dual to W 1,1
0 (Ω) with respect to this norm and that with respect to the usual W 1,1 norm

coincide as spaces of distributions, and the dual norms are equivalent. We shall denote by

W−1,∞(Ω) the dual to W 1,1
0 (Ω).

Theorem 1.3.1 The space GV (Ω) under the || · ||GV norm is isometrically isomorphic to

W−1,∞(Ω) under the norm || · ||W−1,∞ dual to the norm || · ||W 1,1
0

=
∫

Ω
|∇u|dx. A proof is

given in the Appendix.

In [10], the authors considered a slightly smaller space for a definition of G(Ω) :

Definition 1.3.6 GA(Ω) is the subspace of W−1,∞(Ω) given by

GA(Ω) =
{
v ∈ L2(Ω), v = div(~g), ~g ∈ L∞(Ω)2, ~g · ν = 0 on ∂Ω

}

The norm || · ||GA on GA(Ω) is given by

||v||GA = inf
{
||
√
g1(x)2 + g2(x)2||∞, v = div(~g), ~g · ν = 0 on ∂Ω

}
.

37



Under definition 1.3.6, GA(Ω) =
{
v ∈ L2(Ω),

∫
Ω
v = 0

}
. (A proof of this identity is

given in [10]). With this, the inequality from Lemma 1.3.2 is also valid:

∣∣∣∣
∫
u(x)v(x)dx

∣∣∣∣ ≤ |u|BV ||v||GA, ∀v ∈ G(Ω).

Remark: We would like to emphasize that the difference between the space GV (Ω) and

GA(Ω) is that GV (Ω) contains generalized functions (since it is identified with W −1,∞(Ω))

while GA(Ω) is only the intersection of W−1,∞(Ω) with the space
{
v ∈ L2(Ω),

∫
Ω
v = 0

}
.

With the definition and properties of the space G given, Meyer proposes for cartoon +

texture decomposition the following minimization problem [46]:

inf
u∈BV (Ω)

{
|u|BV (Ω) + λ ‖ u0 − u ‖G

}
. (1.26)

We note that upon replacing the || · ||G norm in (1.26) with the norms || · ||F and || · ||E,

we obtain two additional energy minimization models.

1.4 Vese-Osher and Osher-Solé-Vese Models

Some numerical models [66, 52, 10, 13, 14] have been proposed in literature to solve

Meyer’s minimization problem (1.26), and the one most relevant to this dissertation is

the Osher-Solé-Vese model [52], which in turn is a particular case of an earlier work by

Vese-Osher [66].

The Vese-Osher [66] model is inspired by Meyer’s problem (1.26) and is based on the

following observations:

• G(Ω) = W−1,∞(Ω).
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• The spaces W−1,p(Ω) are dual to W 1,p′
0 (Ω), where 1

p
+ 1

p′ = 1.

• On a bounded set, ||
√
g2

1 + g2
2||∞ = limp→∞ ||

√
g2

1 + g2
2||p, therefore, the spaces

W−1,p(Ω) approximates W−1,∞(Ω) as p→∞.

• Finally, for any 1 ≤ p < ∞, G(Ω) ⊂ W−1,p(Ω), hence they allow for different

choices of weaker norms for the oscillatory component v.

Hence, Vese and Osher propose in [66] the following energy minimization problem:

inf
u∈BV (Ω),~g=(g1,g2)∈Lp(Ω)2

{
Gp(u,~g) =

∫

Ω

|Du|+ λ

∫

Ω

|u0 − (u+ div~g)|2dx

+ µ
[ ∫

Ω

(√
g2

1 + g2
2

)p
dxdy

] 1
p

}
, (1.27)

where λ, µ > 0 are tuning parameters, and p ≥ 1.

In (1.27), the unknowns are u, g1, g2. The first term ensures that u ∈ BV (Ω), the second

that v = u0 − u ≈ div(~g), and the last that v is approximately in the space W −1,p(Ω).

To see that (1.27) is an approximation to (1.26), take λ → ∞ and p → ∞, then in the

minimization, u0−u = div(~g) a.e. x, for all those ~g with smallest L∞(Ω) norm; the middle

term disappears and the last term becomes ‖ u0 − u ‖G.

In the particular case when p = 2, the residual v = div(~g) in (1.27) belongs to H−1(Ω),

the dual to the space H1
0 (Ω), with the following dual norm:

||v||2H−1(Ω) := inf
~g∈L2(Ω)2

v=div~g

{∫

Ω

(g2
1 + g2

2)dx

}
.

Assume ~g possesses a unique Hodge decomposition ~g = ∇P + ~Q, where P ∈ H1(Ω)

and div( ~Q) = 0. Then, v = div(∇P ) = 4P (or equivalently P = 4−1v).

In fact, if v ∈ L2(Ω) and
∫

Ω
vdx = 0, then there is a unique P ∈ H1(Ω),

∫
Ω
Pdx = 0,
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such that −4P = v, (∂P )/(∂ν)|∂Ω = 0, ([22], pp. 348-380). The uniqueness of P gives

sense to the expression P = 4−1v. Then, ~g = ∇(4−1v) + ~Q. Thus, on the subspace

{v ∈ L2(Ω),
∫

Ω
vdx = 0} of H−1(Ω), we can write the norm || · ||H−1 in the form

||v||2H−1(Ω) :=

∫

Ω

|∇P |2 =

∫

Ω

|∇(4−1v)|2. (1.28)

With these, Osher, Solé, Vese propose in [52] the following energy minimization prob-

lem:

inf
u∈BV (Ω)

{∫

Ω

|∇u|+ λ

∫

Ω

|∇(4−1(u0 − u))|2
}
. (1.29)

The solution to problem (1.29) is obtained by solving for steady state solution of the

following fourth-order nonlinear PDE:

ut = − 1
2λ
4
[
div
(
∇u
|∇u|

)]
− (u− f),

u(0, x, y) = f(x, y), ∂u
∂ν
|∂Ω = 0,

∂div( ∇u|∇u|)
∂ν

|∂Ω = 0.
(1.30)

1.5 Mumford-Gidas and Other Related Works

In [49] D. Mumford and B. Gidas apply techniques in statistical inference to analyze images

in various categories, including vegetation, manmade, road surfaces, sky (with clouds), to

name a few. In this work, the authors observe that the statistics of natural images are scale-

invariant. Since there are no scale invariance probability measures supported on a space

of functions, the authors inferred that natural images should be modeled by generalize

functions (distributions in the sense of Schwartz). In particular, the authors mention that

Gaussian white noise, measured by Gaussian probability measure, is supported in

∩ε>0H
−n/2−ε
loc ,
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where H−s is the Hilbert-Sobolev spaces of negative exponent (see definition 2.1.3). In

short, the Mumford-Gidas advocate, along the lines of Y. Meyer’s, that we search in the

space of distributions for models appropriate for oscillatory functions.

J-F. Aujol, G. Aubert, L. Blanc-Féraud, and A. Chambolle is a group of authors who,

inspired by Y. Meyer’s [46], have work extensively in image decomposition models using

total variation and dual norms, capturing texture with norms on distributional spaces, and

numerical algorithms for computing these norms. We refer the readers to [10, 13, 14, 15]

for all details on their work.

T. Le and L. Vese [40], and also with J. Garnett [32], inspired by Y. Meyer’s, have

proposed various numerical models for image decomposition and modeling texture with

Meyer’s G-norm and F-norm, and also with Besov norms.

For some works in image decomposition via wavelets approach, we refer the readers to

the works by I. Daubechies and G. Teske [20, 21], J.-L. Starck, M. Elad, and D.L. Donoho

[63].

Related to Chapter 2 of this dissertation is a work inspired by the Osher-Soé-Vese and

using the Fourier Transform for computation done by S. Roudenko [55].

For additional recent works in image reconstruction and decomposition using varia-

tional methods and partial differential equations, we refer the readers to the works by E.

Tadmor, S. Nezzar, and L. Vese [62], S. Esedoglu and S.J. Osher [28], S. Kindermann, S.J

Osher, and J. Xu [38], S.E. Levine [41], A. Marquina and S. Osher [44, 45].
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Chapter 2

(BV,H−s) Model

In this chapter we present a new model for image restoration and decomposition. We follow

Yves Meyer’s suggestion of modeling oscillatory patterns with generalized functions and

Rudin-Osher-Fatemi’s idea of regularization by total variation minimization.

The proposed model decomposes a given (degraded or textured) image u0 into a sum

u+v, where u ∈ BV is a function of bounded variation (the cartoon component of u0), and

the noisy (or textured) component v is modeled by tempered distributions belonging to the

negative Hilbert-Sobolev space H−s. It can be seen as generalization of Osher-Solé-Vese’s

model and have been motivated also by Mumford-Gidas [49].

We present proofs for existence and uniqueness of solution to the proposed model,

as well as two characterizations of the solution. We also give a numerical algorithm for

solving the minimization problem. And finally, we present numerical results on denoising,

deblurring, and decompositions of both real and synthetic images.

One related work has been done by Daubechies and Teschke [20, 21] via wavelets

approach. In [20, 21], the authors modified the Vese-Osher and Osher-Solé-Vese energies in

(1.27) and (1.29) by replacing BV (Ω) in the regularizing term with the space B1
1(L1(Ω)),

and limiting themselves to the case p = 2, whereby they arrived to a new minimization
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problem which gives a decomposition u0 ≈ u+ v, with u ∈ B1
1(L1(Ω)) and v ∈ H−1(Ω).

Other interesting related work for image decomposition and cartoon and texture sepa-

ration using generalized functions and dual spaces are by Aujol and collaborators [13, 14,

10, 15], Starck, Elad and Donoho [63], Tadmor, Nezzar and Vese [62], Esedoglu and Osher

[28], among others. A related preliminary work inspired from the OSV model[52] and also

using the Fourier Transform for computations and variants is by Roudenko [55].

2.1 Definitions and Assumptions

Definition 2.1.1 (Schwartz Space and Space of Tempered Distributions) [31, 22]

• The Schwartz Space is defined as:

S(Rn)
def
=
{
u ∈ C∞(Rn) s.t. ∀α ∈ N, β ∈ Nn, |x|α|Dβu| → 0 as |x| → +∞

}
.

• The dual to S(Rn), denoted S ′(Rn), is called the space of tempered distributions.

Definition 2.1.2 (Fourier Transforms) [22]

• The Fourier Transform of a function f ∈ S(Rn), denoted f̂ , is defined by

f̂(ξ)
def
=

∫

Rn
f(x)e−2πi x·ξdx, ξ ∈ Rn, (i =

√
−1).

The Fourier transform f̂ is also well defined for integrable functions f on Rn.

• Let the brackets 〈, 〉 denote the duality pairing between S ′(Rn) and S(Rn). The

Fourier Transform of a tempered distribution g is the tempered distribution ĝ defined

by:

〈ĝ, ϕ〉 = 〈g, ϕ̂〉 for all ϕ ∈ S(Rn).
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Definition 2.1.3 (The space Hs(Rn)) For any s ∈ R,

Hs(Rn)
def
=
{
g ∈ S ′(Rn) s.t. (1 + |ξ|2)s/2 · ĝ ∈ L2(Rn)

}
,

where ĝ is the Fourier transform of g.

Hs(Rn) is a Hilbert space equipped with the inner product

〈f, g〉s =

∫

Rn
(1 + |ξ|2)sf̂(ξ)ĝ(ξ)dξ,

and the associated norm ‖ f ‖s=
√
〈f, f〉s =

( ∫
Rn(1 + |ξ|2)s|f̂(ξ)|2dξ

)1/2

.

Remarks 2.1.1 • When s = m is an integer, then H s(Rn) is the same as the Sobolev

Space Hm(Rn) with equivalent norms. The dual to H−s(Rn) is the space Hs(Rn).

• If s1 > s2 ≥ 0, then ‖ f ‖s1>‖ f ‖s2 . Thus we have the following continuous

embeddings (injections) of spaces

S(Rn) ⊂ Hs1(Rn) ⊂ Hs2(Rn) ⊂ · · · ⊂ H0(Rn) = L2(Rn) ⊂ · · ·

· · · ⊂ H−s2(Rn) ⊂ H−s1(Rn) ⊂ S ′(Rn).

2.1.1 Extension from Ω to R2

Often when working with images, we work with functions defined on a bounded domain

Ω ⊂ R2. On the other hand, the Hs norm is given via the Fourier Transform which is

defined only for functions with values given on R2. To resolve this, whenever necessary,

we shall extend a function to R2 by setting it to zero at points outside of Ω. It is clear

that extension by zeros is a continuous embedding of L2(Ω) into L2(R2). Moreover, it is
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an embedding of BV (Ω) into BV (R2) [30]. In addition, since ∂Ω is Lipschitz, Poincaré-

Wirtinger Inequality [30] implies that BV (Ω) is continuously embedded into L2(Ω). We

thus have the following continuous embeddings: BV (Ω) ⊂ L2(Ω) ⊂ L2(R2) ⊂ H−s(R2),

s ≥ 0.

Henceforth, for analysis in the continuous setting, we will apply extension by zeros

when necessary. We shall assume that the initial data image u0 belongs to H−s(R2). For

functions u ∈ BV (Ω), we will first apply the Trace Theorem (1.1.5) to extend u to Ω̄. Then

we extend u = 0 to R2\Ω

In practice, we actually work in the discrete setting (for example see Section 2.6). In

this case, we apply the Discrete Fourier Transform (DFT) and the Inverse Discrete Fourier

Transform (IDFT). Then, the explicit extension by zeros of discrete functions outside Ω

is no longer needed. Indeed, observe that when u is defined only on Ω̄, and we apply

extension by zeros to R2, then the Fourier Transform

û(ξ) :=

∫

R2

u(x)e−2πiξ·xdx =

∫

Ω

u(x)e−2πiξ·xdx.

Therefore, in the case when Ω is a rectangular domain, we obtain an implicit equivalence

between the Fourier Transform of the extended function and the Fourier Transform on a

torus. Moreover, û(ξ) = 0 for all non-integer ξ (i.e. ξ /∈ Z). That is, the Fourier Transform

of the extended function is nonzero only at integer frequencies.

We are now ready to describe a new model, which we propose for image reconstruc-

tion and decomposition, using bounded total variation regularization and negative-exponent

Hilbert Sobolev fitting.
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2.2 Description of the (BV,H−s) Model

From hereforth, s ≥ 0, L2 = L2(R2), H−s = H−s(R2), Ω is an open, bounded and

connected subset of R2 with Lipschitz boundary Γ = ∂Ω, and the blurring operator K is

an injective continuous linear operator from L2 into L2 such that K1Ω 6= 0.

We propose the following new variational model for image restoration and decomposi-

tion:

inf
u∈BV (Ω)

F (u) := λ|u|BV (Ω) + ‖ u0 −Ku ‖2
−s, (2.1)

where s ≥ 0 is kept as a parameter for the fidelity norm, λ > 0 is a regularization parameter,

|u|BV (Ω) :=
∫

Ω
|Du| is the regularization (total variation) term, ‖ u0 −Ku ‖2

−s=
∫
R2(1 +

|ξ|2)−s|û0 − K̂u|2 dξ is the fidelity term.

Observe that the regularizing term is a convex functional on the space BV (Ω) which

consists of functions defined only on Ω. The fitting term is a strictly convex functional

defined on the space H−s consisting of generalized functions given on the whole frequency

domain R2. Clearly, the energy F (u) is convex. Secondly, observe that since the H−s-

norm is bounded by the L2-norm, the operator K is also continuous in the H−s-norm on

L2 ⊂ H−s. Hence, by Hahn-Banach Theorem, K can be extended to a continuous linear

operator K : H−s → H−s.

Remarks 2.2.1 (i) Taking K to be the identity operator and s = 0 and applying Par-

seval Identity
∫
|g|2dx =

∫
|ĝ|2dξ, (2.1) becomes exactly (1.13), i.e. our proposed

model recovers the ROF model.

(ii) We can obtain an equivalent form of (1.29) from (2.1) by setting s = 1 and writing

‖ u0 − u ‖H−s0
:=

∫
|ξ|−2s|û0 − û|2dξ, that is, we change the H−s norm into a

semi-norm by removing 1 from the first term in the integrand. Thus, we obtain an

equivalent formulation of the OSV model [52].
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Example 2.2.1 In this example, we show that the spaces L2 and L1 do not always model

oscillatory functions very well, whereas the spaces H−s for any s > 0 are better candi-

dates for modeling oscillatory functions. (We paraphrase Example 1.2.2 for the sake of

completeness.)

Let p be a fixed positive integer, and denote by χp the characteristic function of the

interval [−p, p], that is

χp(x) =





1, if |x| < p,

0, if |x| ≥ p.

Let f : [−p, p]→ R be given by f(x) = cos(2πqx)·χp(x), where q is a positive integer.

We have

(i) ||f ||2L2 = 2
∫ p

0
|cos(2πqx)|2dx = p > 0.

(ii) ||f ||L1 = 2
∫ p

0
|cos(2πqx)|dx > 2

∫ p
0
|cos(2πqx)|2dx = p > 0.

(iii) Since the Fourier Transform of a product is the convolution of the Fourier Trans-

forms,

f̂(ξ) = F (cos(2πqx)) ∗ F (χp)

=

(
1

2
[δ(y + q) + δ(y − q)] ∗ sin(2πpy)

πy

)
(ξ)

=
1

2π

(
sin(2πp(ξ + q))

ξ + q
+
sin(2πp(ξ − q)

ξ − q

)

=
1

2πq

(
sin(2πpξ)

ξ/q + 1
+
sin(2πpξ)

ξ/q − 1

)
.

So, for any s > 0,
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||f ||2−s =
1

(2πq)2

[∫

R

|sin(2πpξ)|2
(ξ/q + 1)2(1 + ξ2)s

dξ

+

∫

R

|sin(2πpξ)|2
(ξ/q − 1)2(1 + ξ2)s

dξ

+

∫

R

2|sin(2πpξ)|2
(ξ/q + 1)(ξ/q − 1)(1 + ξ2)s

dξ

]

≤ C

(2πq)2
,

where C is a constant independent of p and q. So, as q → +∞, ||f ||−s→ 0.

Therefore, as the oscillation increases, the H−s norm goes to zero, whereas the L2 and

L1 norms stay bounded below by p > 0. In other words, in a minimization model, the

oscillatory components will be better captured by a H−s norm with s > 0, rather than by

an Lp norm with p ≥ 1.

2.3 Existence and Uniqueness of Solutions

We now prove existence and uniqueness of minimizers for the proposed model, adapting

the techniques from [64, 17, 1] to the (BV,H−s) case.

Theorem 2.3.1 Given Ω ⊂ R2, open, bounded and connected, with Lipschitz boundary,

u0 ∈ H−s, λ > 0, and K : L2 → L2 is an injective continuous linear operator such that

K1Ω 6= 0, then the minimization problem

inf
u∈BV (Ω)

F (u) = λ|u|BV (Ω) + ‖ u0 −Ku ‖2
−s, s > 0,

has a unique solution in BV (Ω).
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Proof: Let un ∈ BV (Ω) be a minimizing sequence. Then there exists a constant M > 0

for which |un|BV (Ω) ≤ M and ‖ u0−Kun ‖2
−s ≤ M for all n. By the Poincaré-Wirtinger

inequality, we have a constant C > 0 which depends only on Ω such that

‖ un −
1

|Ω|

∫

Ω

un ‖L2(Ω) ≤ C|un|BV (Ω) ≤ CM, for all n. (2.2)

Claim 2.3.1 There exists a constant C ′ > 0 such that 1
|Ω|

∣∣∣
∫

Ω
un

∣∣∣ ≤ C ′, ∀n.

(We postpone the proof to this claim until later).

By the Claim, ‖ un ‖L2(Ω)≤M ′, ∀n, implying ‖ un ‖L1(Ω)≤M ′, ∀n. Hence

‖ un ‖BV (Ω):=‖ un ‖L1(Ω) +|un|BV (Ω) ≤M ′′, ∀n.

Therefore there exist a subsequence, still denoted un, and a u ∈ BV (Ω) such that un → u

in L1(Ω) and

|u|BV (Ω) ≤ lim inf
n→∞

|un|BV (Ω). (2.3)

Moreover, by passing to a subsequence if necessary, un ⇀ u weakly in L2(Ω). After

extending un, u by zeros toR2, we still have un ⇀ uweakly in L2. Since K is a continuous

linear operator from L2 to L2,
∫
R2 Kun(x)ϕ(x)dx =

∫
R2 un(x)K∗ϕ(x)dx, ∀ϕ ∈ L2.

Therefore, Kun ⇀Ku weakly in L2.

To show Kun ⇀ Ku weakly in H−s, we recall that for any ϕ ∈ H−s, ϕ̂(ξ)

(1+|ξ|2)s/2
∈

L2(R2;C), therefore ϕ̂(ξ)
(1+|ξ|2)s

∈ L2(R2;C). So F
(

ϕ̂(ξ)
(1+|ξ|2)s

)
∈ L2(R2;C). Hence (by sub-

sequently taking the real part and then the imaginary part and combining them afterwards)

∫

R2

F
( ϕ̂(ξ)

(1 + |ξ|2)s
)

(x)Kun(x)dx→
∫

R2

F
( ϕ̂(ξ)

(1 + |ξ|2)s
)

(x)Ku(x)dx as n→∞.
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Applying
∫
v ¯̂w =

∫ ¯̄̂vw, we thus have for any ϕ ∈ H−s,

∫

R2

ϕ̂K̂un
(1 + |ξ|2)s

dξ →
∫

R2

ϕ̂K̂u

(1 + |ξ|2)sdξ as n→∞.

Therefore, u0 −Kun ⇀ u0 −Ku weakly in H−s and by the lower semi-continuity of

the H−s-norm, we get

‖ u0 −Ku ‖2
−s≤ lim inf

n→∞
‖ u0 −Kun ‖2

−s .

Hence,

F (u) := λ|u|BV (Ω)+ ‖ u0 −Ku ‖2
−s≤ lim inf

n→∞

(
λ|un|BV (Ω)+ ‖ u0 −Kun ‖2

−s

)
.

So u is a minimizer.

For uniqueness, suppose u, v ∈ BV (Ω) are two minimizers, i.e. F (u) = F (v) =

infw∈BV (Ω) F (w), and suppose also Ku 6= Kv. Then we would have

‖ u0 −
1

2
Ku− 1

2
Kv ‖2

−s =
1

4
‖ u0 −Ku ‖2

−s

+
1

2
Re〈u0 −Ku, u0 −Kv〉−s

+
1

4
‖ u0 −Kv ‖2

−s

〈1
2
‖ u0 −Ku ‖2

−s +
1

2
‖ u0 −Kv ‖2

−s .

Then ‖ u0− 1
2
Ku− 1

2
Kv ‖2

−s +λ|1
2
(u+v)|BV (Ω) ≤‖ u0− 1

2
Ku− 1

2
Kv ‖2

−s +λ1
2
(|u|BV (Ω)+

|v|BV (Ω)) < 1
2
‖ u0 − Ku ‖2

−s +1
2
‖ u0 − Kv ‖2

−s +λ1
2
(|u|BV (Ω) + |v|BV (Ω)) =

infw∈BV (Ω)F (w). This implies F ( 1
2
(u + v)) < F (u) = F (v), which cannot be so if u

and v are minimizers. Thus, Ku = Kv. Since K is injective, u = v. �
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Proof: (of Claim 2.3.1) [1, 64]

Denote by wn =
(

1
|Ω|
∣∣ ∫

Ω
un
∣∣
)
χΩ and vn = un − wn, where un is a minimizing se-

quence as above. Then clearly wn, vn ∈ BV (Ω). Moreover, we have from (2.2)

‖ vn ‖−s≤‖ vn ‖L2=‖ un −
1

|Ω|

∫

Ω

un ‖L2(Ω)≤ C,

for some constant C > 0 independent of n, for all n. Thus,

M ≥‖ u0 −Kun ‖2
−s

=‖ u0 −Kvn −Kwn ‖2
−s

=‖ u0 −Kvn ‖2
−s + ‖ Kwn ‖2

−s −2Re〈u0 −Kvn, Kwn〉−s

≥‖ Kwn ‖2
−s −2 ‖ u0 −Kvn ‖−s‖ Kwn ‖−s

=‖ Kwn ‖−s
(
‖ Kwn ‖−s −2 ‖ u0 −Kvn ‖−s

)
.

≥‖ Kwn ‖−s
(
‖ Kwn ‖−s −2

(
‖ u0 ‖−s + ‖ K ‖‖ vn ‖−s

))
.

Denote by xn =‖ Kwn ‖−s and an =‖ u0 ‖−s + ‖ K ‖‖ vn ‖−s. Then

xn(xn − 2an) ≤M, and 0 ≤ an ≤‖ u0 ‖−s + ‖ K ‖ ·C = M ′, ∀n.

Hence 0 ≤ xn ≤ an +
√
a2
n +M ≤M ′′. This implies

1

|Ω|
∣∣∣
∫

Ω

un

∣∣∣ ‖ KχΩ ‖−s=‖ Kwn ‖−s≤ M ′′, ∀n.

Therefore, 1
|Ω|

∣∣∣
∫

Ω
un

∣∣∣ ≤ C ′, ∀n.

Remark: The above existence and uniqueness result also holds for other regulariz-

ing functionals on BV (Ω) instead of the total variation. For example, |u|BV (Ω) can be
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substituted by
∫

Ω
φ(Du) defined in the sense of convex functions of measures (see [26],

[64]), where φ : R2 → [0,∞) is continuous, even, convex, and satisfying φ(0) = 0,

a|x|−b ≤ φ(x) ≤ a|x|+b for some constants a > 0 and b ≥ 0, and any x ∈ R2. Examples

are φ(Du) = |ux1| + |ux2|, φ(Du) =
√
α + |Du|2, φ(Du) = log cosh(α + |Du|2), with

α > 0.

2.4 Characterization of Minimizers

In this section we present two approaches for characterization of the minimizer of our

proposed model. One approach is to characterize the subdifferential of the functional F in

(2.1) by studying the duality of convex optimization problems. This is a rigorous way to

derive the optimality conditions which validate that the solution to problem (2.1) is indeed

the solution to its associated Euler-Lagrange equation to be derived in Section 2.5. The

second approach is to utilize the H−s inner product to define a ’texture’ norm that is dual

to | · |BV , as in Meyer’s [46]. We will show that this ’texture’ norm provides a way for

determining how our proposed model discriminate cartoon versus textures.

2.4.1 Characterization of minimizers via duality

We first review the theoretical results in convex analysis which allow us to make an as-

sociation between a minimization problem (P) and a maximization problem (P ∗), called

the dual problem of (P). We shall apply these results to obtain characterizations of the

solution to problem (2.1), via the properties of the dual problem. We refer the readers to

[27, 64, 26, 61, 54] for all details covered in this section.

Duality in convex optimization:

Assume X is a Banach space, X∗ is its dual endowed with the weak-star topology, and
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F : X → R̄ is a functional defined on X.

Definition 2.4.1 (the sub-differential of F ) For u ∈ X, we say that φ ∈ X∗ is in the

sub-differential ∂F of F at u iff

F (u) ∈ R and F (u)− 〈φ, u〉X×X∗ ≤ F (v)− 〈φ, v〉X×X∗, ∀v ∈ X.

Theorem 1 F (u) = infv∈X F (v) if and only if 0 ∈ ∂F (u).

Definition 2.4.2 (Legendre transform) Assume Φ : X → R̄ is linear, the Legendre trans-

form or polar function of Φ, is the function Φ∗ : X∗ → R̄ given by

Φ∗(v∗) = sup
v∈X
{〈v, v∗〉 − Φ(v)} .

Theorem 2.4.1 (Duality Theorem) Let V, Y be two locally convex topological spaces,

and V ∗, Y ∗ their dual. Let Λ : V → Y be linear continuous operator (its adjoint Λ∗ :

Y ∗ → V ∗ is linear and continuous). AssumeF (resp. G) is a convex lower semi-continuous

function from V (resp. Y ) into R∪{+∞}, not identically +∞. Denote the primal problem

by (P), i.e.

(P) inf
v∈V
{F(v) + G(Λv)} .

Its dual (P∗) is:

(P∗) sup
p∗∈Y ∗

{−F∗(Λ∗p∗)− G∗(−p∗)} .

Then,

(1) −∞ ≤ sup of P∗ ≤ inf of P ≤ +∞.

(2) The two conditions (a) inf of P is in R, (b) ∃u0 ∈ V s.t. F(u0) < +∞ and G is
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continuous at Λu0, imply that

Inf P = Sup P∗.

(3) P∗ has at least one solution.

(4) If P and P∗ have solutions ū, p̄∗, and Inf P = Sup P∗, then

F(ū) + F∗(Λ∗p̄∗) = 〈Λ∗p̄∗, ū〉, (2.4)

G(Λū) + G∗(−p̄∗) = −〈p̄∗,Λū〉. (2.5)

Characterization of minimizers via duality:

We now follow the theoretical framework set forth above to formulate the dual to our

minimization problem (2.1). This will allow us to characterize the subdifferential of F

from which we obtain characterizations of the minimizer u of (2.1) by recalling Theorem

1.

First, we extend the functional F in (2.1) to the ambient space L2(Ω) by setting F (u) =

+∞ for u ∈ L2(Ω)\BV (Ω).

Now, the Fourier Transform can be written as a sum of two linear continuous operators

in the following way:

Ff = FCf + iFSf, (i =
√
−1).

When f is a function, these are exactly

FCf =

∫

R2

f(x)cos(2πx · ξ)dx, FSf =

∫

R2

f(x)sin(2πx · ξ)dx.

The definitions ofFC andFS can be extended in a natural way to tempered distributions
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f ∈ H−s by

〈FCf, ϕ〉 = 〈f,FCϕ〉, for all ϕ ∈ S(R2).

Let F1,F2 : L2(Ω)→ L2(R2) be linear continuous operators given by

(F1v)(y) = (1 + |y|2)−s/2(FCKvext)(y),

(F2v)(y) = (1 + |y|2)−s/2(FSKvext)(y),

where v ∈ L2(Ω), vext denotes the extension by zeros of v from Ω toR2, and K is the usual

blurring operator.

For the data image u0 ∈ H−s, we denote by

f̃1(y)
def
= (1 + |y|2)−s/2(FCu0)(y) and

f̃2(y)
def
= (1 + |y|2)−s/2(FSu0)(y).

With these notations, the functional F can be re-written as

F (u) =

∫

R2

(f̃1 − F1u)2dx+

∫

R2

(f̃2 − F2u)2dx+ λ

∫

Ω

|Du|, ∀u ∈ L2(Ω).

Now, fix u ∈ BV (Ω), and assume that φ ∈ L2(Ω) belongs to ∂F (u). Therefore, u is

the minimum on BV (Ω) of the following problem:

inf
v∈BV (Ω)

F (v)−
∫

Ω

φ · vdx. (2.6)

The infimum on BV (Ω) is the same as the infimum on W 1,1(Ω) (see [64]), so we

replace BV (Ω) with W 1,1(Ω), and (2.6) becomes

(P) inf
v∈W 1,1(Ω)

F (v)−
∫

Ω

φ · vdx,
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where

F (v) =

∫

R2

(f̃1 −F1v)2dx +

∫

R2

(f̃2 − F2v)2dx+ λ

∫

Ω

|∇v|dx, for v ∈ W 1,1(Ω).

We now formulate the problem (P∗) dual to (P). First, recall that the Legendre trans-

form of a linear functional Φ : X → R̄ is Φ∗ : X∗ → R̄ given by

Φ∗(v∗) = sup
v∈X
{〈v, v∗〉 − Φ(v)} .

Let Λ : W 1,1(Ω)→ L2(R2)2 × L1(Ω)2 be the linear continuous operator given by

Λv = (F1v,F2v,D1v,D2v).

Let F : W 1,1(Ω) → R, G1 : L2(R2) → R, G2 : L2(R2) → R, G3 : L1(Ω)2 → R, and

G : L2(R2)2 × L1(Ω)2 → R, such that

• F(v) = −
∫
φ · vdx,

• G1(w1) =
∫
R2(f̃1 − w1)2dx, G2(w2) =

∫
R2(f̃2 − w2)2dx, G3(w̄) = λ

∫
Ω
|w̄|dx,

• G(w) = G1(w1) + G2(w2) + G3(w̄), where w = (w1, w2, w̄) ∈ L2(R2)2 × L1(Ω)2.

Then the problem (P) is

(P) inf
v∈W 1,1(Ω)

{F(v) + G(Λv)} .

Since F and G are proper (i.e. not identically +∞) convex lower semi-continuous

functions, the dual problem (P∗) is

(P∗) sup
p∗∈L2(R2)2×L∞(Ω)2

{−F∗(Λ∗p∗)− G∗(−p∗)} ,
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where F∗ (resp. G∗) is the Legendre transform of F (resp. G), and Λ∗ is the adjoint of Λ.

We now compute F ∗(Λ∗p∗) and G∗(−p∗).

F∗(Λ∗p∗) := sup
v∈W 1,1(Ω)

〈Λ∗p∗, v〉W 1,1(Ω)×(W 1,1(Ω))∗ +

∫

Ω

φ · vdx

= sup
v∈W 1,1(Ω)

〈Λ∗p∗ + φ, v〉W 1,1(Ω)×(W 1,1(Ω))∗

=





0, if Λ∗p∗ + φ = 0 on W 1,1(Ω),

+∞, otherwise.

It is easy to see that G∗(p∗) = G∗1(p∗1) + G∗2(p∗2) + G∗3(p̄∗), where p∗ = (p∗1, p
∗
2, p̄
∗) ∈

L2(R2)2 × L∞(Ω)2. Applying the same steps above, we have

G∗1(p∗1) =

∫

R2

(
p∗1(x)2

4
+ f̃1(x)p∗1(x)

)
dx,

G∗2(p∗2) =

∫

R2

(
p∗2(x)2

4
+ f̃2(x)p∗2(x)

)
dx,

G∗3(p̄∗) = sup
p̄∈L1(Ω)2

∫

Ω

p̄ · p̄∗ − λ|p̄|dx =





0, if |p̄∗| ≤ λ,

+∞, otherwise.

LetK = {p∗ ∈ L2(R2)2 × L∞(Ω)2 : |p̄∗| ≤ λ, Λ∗p∗ + φ = 0 on W 1,1(Ω)} , then prob-

lem (P∗) can be re-written as

(P∗) sup
p∗∈K

{
−
∫

R2

(
(p∗1)2

4
− f̃1p

∗
1

)
dx−

∫

R2

(
(p∗2)2

4
− f̃2p

∗
2

)
dx

}
.
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The condition Λ∗p∗ + φ = 0 on W 1,1(Ω) implies

0 = 〈Λ∗p∗, w〉+ 〈φ, w〉

= 〈p∗,Λw〉+ 〈φ, w〉

= 〈p∗1,F1w〉+ 〈p∗2,F2w〉+ 〈p̄∗, Dw〉+ 〈φ, w〉

= 〈F∗1p∗1 + F∗2p∗2 − divp̄∗ + φ, w〉, ∀w ∈ W 1,1(Ω).

Therefore F ∗1p∗1 + F∗2p∗2 − divp̄∗ + φ = 0 as a distribution in D′(Ω). Now, F ∗1p∗1,

F∗2p∗2, φ ∈ L2(Ω), for p̄∗ to satisfy this relation, we must have divp̄∗ ∈ L2(Ω). Therefore,

following the trace theorem from Lemma 1, we can define the trace p̄∗ · ~n on Γ = ∂Ω,

where ~n is the outward unit normal to Γ. Moreover, applying integration by parts we get

for all v ∈ W 1,1(Ω),

∫

Γ

(p̄∗ · ~n)vdΓ =

∫

Ω

2∑

j=1

(Dj p̄
∗
jv)dx+

∫

Ω

2∑

j=1

(p̄∗jDjv)dx

= 〈F∗1p∗1, v〉+ 〈F∗2p∗2, v〉+ 〈φ, v〉

− 〈p∗1,F1v〉 − 〈p∗2,F2v〉 − 〈v, φ〉

= 0.

Thus we deduce that if p∗ = (p∗1, p
∗
2, p̄
∗) ∈ K then p̄∗ ·~n = 0 dΓ− a.e. on Γ. Hence, we

can write K as

K =
{
p∗ = (p∗1, p

∗
2, p̄
∗) ∈ L2(R2)2 × L∞(Ω)2 :

|p̄∗| ≤ λ,F∗1p∗1 + F∗2p∗2 − divp̄∗ + φ = 0 in D′(Ω), p̄∗ · ~n = 0 on Γ
}
.

Now, we had assumed that φ is in ∂F (u), i.e. u is the solution to (2.6). And since
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the infimum of (2.6) is same as the infimum of P, therefore inf P is finite. In addition,

the functional in (P) is convex and continuous with respect to Λv in L2(R2)2 × L1(Ω)2.

Thus, by duality theorem, (P∗) has a solutionM = (M1,M2, M̄) ∈ K and inf P = supP∗

(minimax relation). So we have

∫

R2

(f̃1 −F1(u))2dx+

∫

R2

(f̃2 − F2(u))2dx + λ

∫

Ω

|Du| −
∫

Ω

φ · udx

= −
∫

R2

(
M2

1

4
− f̃1M1

)
dx−

∫

R2

(
M2

2

4
− f̃2M2

)
dx. (2.7)

Since M ∈ K, F ∗1M1 + F∗2M2 − divM̄ + φ = 0 in D′(Ω). So (2.7) becomes

∫

R2

(
M2

1

4
− f̃1M1

)
dx +

∫

R2

(
M2

2

4
− f̃2M2

)
dx

+

∫

R2

(f̃1 − F1u)2dx+

∫

R2

(f̃2 − F2u)2dx + λ

∫

Ω

|Du|

+

∫

R2

M1(F1u)dx+

∫

R2

M2(F2u)dx−
∫

Ω

u · divM̄dx = 0. (2.8)

Following Lemmas (3),(4) we can associate to u and M̄ a Radon measure, denoted

Du · M̄, defined as a distribution on Ω :

〈Du · M̄, ψ〉 = −
∫

Ω

u(divM̄)ψdx−
∫

Ω

M̄ · (∇ψ)udx, ∀ψ ∈ D(Ω).

By the generalized Green’s formula,

∫

Ω

Du · M̄ = −
∫

Ω

u · divM̄ +

∫

Γ

u(M̄ · ~n)dΓ.
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Since M̄ · ~n = 0 dΓ-a.e., (2.8) becomes

∫

R2

(
M2

1

4
− f̃1M1

)
dx +

∫

R2

(
M2

2

4
− f̃2M2

)
dx

+

∫

R2

(f̃1 − F1u)2dx+

∫

R2

(f̃2 − F2u)2dx+ λ

∫

Ω

|Du|

+

∫

R2

M1(F1u)dx+

∫

R2

M2(F2u)dx+

∫

Ω

Du · M̄ = 0.

Applying the decompositionDu = ∇udx+Cu+(u+−u−)~ndH1|Su, where Cu(Su) =

0, ∇udx is the Lebesgue part, Su is the jump set, Ju := (u+ − u−)~ndH1|Su denotes the

jump part, and Cu is the Cantor part, we finally have

∫

R2

(
M2

1

4
− f̃1M1

)
dx+

∫

R2

(
M2

2

4
− f̃2M2

)
dx

+

∫

R2

(f̃1 −F1u)2dx +

∫

R2

(f̃2 − F2u)2dx

+ λ

∫

Ω

|∇u|dx+ λ

∫

Ω\Su
|Cu|+ λ

∫

Su

(u+ − u−)dH1

+

∫

R2

M1(F1u)dx+

∫

R2

M2(F2u)dx

+

∫

Ω

∇u · M̄dx+

∫

Ω\Su
M̄ · Cu +

∫

Su

(u+ − u−)M̄ · ~ndH1 = 0. (2.9)

By definition of G∗1(−M1), G∗2(−M2), and G∗3(−M̄ ), we have

1◦.
(
M2

1

4
− f̃1M1

)
+ (f̃1 − F1u)2 +M1(F1u) ≥ 0 for dx a.e.

2◦.
(
M2

2

4
− f̃2M2

)
+ (f̃2 − F2u)2 +M2(F2u) ≥ 0 for dx a.e.

3◦. ∇u · M̄ + λ|∇u| ≥ 0 for dx a.e. in Ω.

By the Radon-Nikodym derivative theorem, we have Cu << |Cu| and ∃h ∈ L1(|Cu|)2

such that |h| = 1 and Cu = h · |Cu|. Thus, M̄ · Cu = M̄ · h|Cu|, hence

4◦. (M̄Cu + λ|Cu|) = (λ+ M̄ · h)|Cu| ≥ 0, since |M̄ | ≤ λ.
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Finally, when u+ and u− are defined on Su, we have u+ − u− ≥ 0 and λ + M̄ · ~n ≥ 0

(since |M̄ | ≤ λ), hence

5◦. (u+ − u−)(λ+ M̄ · ~n) ≥ 0 for dH1 a.e. in Su.

In order for (2.9) to hold, we must have each of the quantity in 1◦, 2◦, 3◦, 4◦, and 5◦ to

be exactly 0. The quantity in 3◦ equals 0 implies

∇u · M̄ + λ|∇u| = 0, dx-a.e. x ∈ Ω.

Hence

M̄ = −λ ∇u|∇u| , when |∇u| 6= 0.

Therefore at points where |∇u| 6= 0, we have the Neumann boundary condition ∇u
|∇u| ·

~n = 0 dΓ-a.e., since M̄ · ~n = 0 dΓ-a.e. on Γ. A full characterization of the minimizer u

can thus be obtained by setting all quantities in 1o − 5o to zero, with the above properties

on M1,M2 and M̄.

We can now state the characterization of the subdifferential ∂F (u) of F at u as follows:

Theorem 2.4.2 Let F1,F2, f̃1, f̃1 be defined as above. Let φ ∈ L2(Ω) and u ∈ BV (Ω),

with Du = ∇udx+Cu+Ju the decomposition of Du. Then φ ∈ ∂F (u) if and only if there

exists M(x) = (M1(x),M2(x), M̄(x)) ∈ L2(R2) × L2(R2) × L∞(Ω)2, |M̄(·)| ≤ λ, such

that
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∇u · M̄ + λ|∇u| = 0, dx a.e. x in Ω, (2.10)

M̄ · ν = 0 dΓ a.e. on Γ = ∂Ω, (2.11)

F∗1M1 + F∗2M2 − divM̄ + φ = 0 in D′(Ω), (2.12)

M2
1

4
− f̃1M1 +M1(F1u) = (f̃1 − F1u)2 dx a.e. x in Ω, (2.13)

M2
2

4
− f̃2M2 +M2(F2u) = (f̃2 − F2u)2 dx a.e. x in Ω, (2.14)

λ+ M̄ · ν = 0 (i.e. |M̄ | = λ) dH1 a.e. x ∈ Su, (2.15)

and finally, supp(|Cu|) ⊂ N , (2.16)

whereN = {x ∈ Ω\Su, λ+M̄(x) ·h(x) = 0 where h ∈ L1(|Cu|)2, |h| = 1, Cu = h|Cu|}.

Recall that u is a minimizer of F if and only if 0 ∈ ∂F (u). Setting φ in Theorem 2.4.2

above to 0 gives characterizations of the solution of problem (2.1).

2.4.2 Characterization of minimizers via ”texture”-norm

In this section we present some more theoretical results that further characterize the solution

to our proposed problem (2.1). Similar calculations for minimizers of the ROF model have

be done by Y. Meyer [46] (see also [8] for related discussion).

We begin by defining a semi-norm ‖ · ‖∗ on H−s dual to the | · |BV norm as follows:

‖ f ‖∗ = sup
u∈BV (Ω), |u|BV (Ω) 6=0

|Re〈f, u〉−s|
|u|BV (Ω)

, f ∈ H−s. (2.17)

‖ · ‖∗ is a semi-norm since for any f, g ∈ H−s and u ∈ BV (Ω), Re〈f + g, u〉−s =

Re〈f, u〉−s+Re〈g, u〉−s, so |Re〈f+g, u〉−s| ≤ |Re〈f, u〉−s|+|Re〈g, u〉−s|. This implies

the triangle inequality. Moreover, it is clear that for any λ ∈ R, ‖ λf ‖∗= |λ| ‖ f ‖∗.
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Lemma 2.4.1 If f ∈ H−s is such that ‖f‖∗ <∞, then Re〈f, 1Ω〉−s = 0.

Proof: Let u ∈ BV (Ω) be such that |u|BV (Ω) 6= 0. Then for any constant c ∈ R

|Re〈f, u+ c〉−s|
|u+ c|BV (Ω)

=
|Re〈f, u+ c〉−s|
|u|BV (Ω)

=
|Re(〈f, u〉−s + 〈f, c〉−s)|

|u|BV (Ω)

≤ ‖f‖∗ <∞.

This implies that there is a constant C such that |Re〈f, c〉−s| ≤ C <∞ for any c ∈ R.

Then |c||Re〈f, 1Ω〉−s| ≤ C <∞ for any c ∈ R, therefore |Re〈f, 1Ω〉−s| must be zero. �

Remark 2.4.1 The above Lemma implies that if ‖f‖∗ <∞ defined by (2.17) is finite, then

|Re〈f, u〉−s| ≤ |u|BV (Ω)‖f‖∗ for any u ∈ BV (Ω).

Theorem 2.4.3 Fix λ > 0. Let u be a minimizer of (2.1) and set v := u0 −Ku. Then the

following holds,

(I) ‖ K∗u0 ‖∗≤ λ
2

if and only if u = 0, v = u0.

(II) Suppose ‖ K∗u0 ‖∗> λ
2
. Then u ∈ BV (Ω), v = u0 − Ku is minimizer if and

only if ‖ K∗v ‖∗≤ λ
2

and Re〈K∗v, u〉−s = λ
2
|u|BV . In both cases, if in addition

|u|BV (Ω) 6= 0 then ‖K∗v‖∗ = λ
2
.

Proof: (I) The minimizer is u = 0, v = u0 if and only if ∀h ∈ BV (Ω) and ∀ε ∈ R, ε 6= 0,

λ|εh|BV (Ω)+ ‖ u0 − εKh ‖2
−s≥‖ u0 ‖2

−s .

Expanding the term ‖ u0 − εKh ‖2
−s, we get

λ|ε||h|BV (Ω) − 2ε Re〈u0, Kh〉−s + ε2 ‖ Kh ‖2
−s≥ 0, for any ε 6= 0.
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If ε > 0 :

λ|ε||h|BV (Ω) + ε2 ‖ Kh ‖2
−s≥ 2|ε|Re〈u0, Kh〉−s.

If ε < 0 :

λ|ε||h|BV (Ω) + ε2 ‖ Kh ‖2
−s≥ −2|ε|Re〈u0, Kh〉−s.

Hence,

λ|ε||h|BV (Ω) + ε2 ‖ Kh ‖2
−s≥ 2|ε|

∣∣Re〈u0, Kh〉−s
∣∣.

Dividing both sides by |ε| and taking |ε| → 0, we obtain

λ|h|BV (Ω) ≥
∣∣Re〈u0, Kh〉−s

∣∣ =
∣∣Re〈K∗u0, h〉−s

∣∣, (2.18)

for all h ∈ BV (Ω). Hence, ‖ K∗u0 ‖∗≤ λ
2
.

Conversely, if ‖ K∗u0 ‖∗≤ λ
2
, then by the remark after the Lemma, the last inequality

(2.18) holds for any h ∈ BV (Ω). From here, add ‖ u0 ‖2
−s to both sides of (2.18) and

‖ Kh ‖2
−s to the left hand side, we obtain

λ|h|BV (Ω)+ ‖ u0 ‖2
−s −2 Re〈u0, Kh〉−s+ ‖ Kh ‖2

−s≥‖ u0 ‖2
−s .

That is,

λ|h|BV (Ω)+ ‖ u0 −Kh ‖2
−s≥‖ u0 ‖2

−s .

This is true for all h ∈ BV (Ω), thus u = 0 is the minimizer.

(II) We have u ∈ BV (Ω), v = u0 −Ku is minimizer if and only if ∀h ∈ BV (Ω), ∀ε ∈ R :

λ|u+ εh|BV (Ω)+ ‖ v − εKh ‖2
−s≥ λ|u|BV (Ω)+ ‖ v ‖2

−s .

64



Then,

λ|ε||h|BV (Ω) − 2ε Re〈v,Kh〉−s + ε2 ‖ Kh ‖2
−s≥ 0,

for any ε ∈ R, hence

λ|ε||h|BV (Ω) + ε2 ‖ Kh ‖2
−s≥ 2|ε||Re〈K∗v, h〉−s|.

Divide both sides by |ε| and taking ε→ 0, we get

λ

2
|h|BV (Ω) ≥ |Re〈K∗v, h〉−s|, ∀h ∈ BV (Ω).

Hence, ‖ K∗v ‖∗≤ λ
2
.

Repeat the same calculation with specifically h = u and−1 < ε < 0 (so that 1+ε > 0),

we get

λ(1 + ε)|u|BV (Ω)+ ‖ v ‖2
−s −2ε Re〈v,Ku〉−s + ε2 ‖ Ku ‖2

−s≥ λ|u|BV (Ω)+ ‖ v ‖2
−s .

=⇒ λε|u|BV (Ω) − 2ε Re〈K∗v, u〉−s + ε2 ‖ Ku ‖2
−s≥ 0. Since ε < 0, this is the same as

−λ|ε||u|BV (Ω) + 2|ε|Re〈K∗v, u〉−s + ε2 ‖ Ku ‖2
−s≥ 0.

Divide both sides by |ε| and then let ε↗ 0, we obtain

2 Re〈K∗v, u〉−s ≥ λ|u|BV (Ω).

Since |Re〈K∗v, u〉−s| ≤ λ
2
|u|BV (Ω), we get |Re〈K∗v, u〉−s| = λ

2
|u|BV (Ω). If |u|BV (Ω) 6= 0,

then ‖ K∗v ‖∗= λ
2
.

Conversely, suppose u ∈ BV (Ω) and v = u0−Ku satisfy ‖ K∗v ‖∗≤ λ
2

(with equality
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if |u|BV (Ω) 6= 0) and Re〈K∗v, u〉−s = λ
2
|u|BV (Ω). Then ∀h ∈ BV (Ω) and ε ∈ R,

λ|u+ εh|BV (Ω)+ ‖ v − εKh ‖2
−s

≥ 2 Re〈K∗v, u+ εh〉−s+ ‖ v ‖2
−s −2ε Re〈v,Kh〉−s + ε2 ‖ Kh ‖2

−s

=‖ v ‖2
−s +2 Re〈K∗v, u〉−s + ε2 ‖ Kh ‖2

−s

≥‖ v ‖2
−s +λ|u|BV (Ω).

Therefore, u is minimizer. �

Remark 2.4.2 Note that if Re〈u0, K1Ω〉−s = 0 (can be simply obtained by subtracting a

constant from u0), then in part (II) above we always have |u|BV (Ω) 6= 0 (because if u is a

constant minimizer, then u must be zero in this case, but this cannot hold in part (II)).

Remark 2.4.3 The above characterization of minimizers holds if the total variation |u|BV (Ω)

is substituted by another functional Φ onBV (Ω) that is convex, lower semi-continuous and

positive homogeneous of degree 1.

2.5 Derivation of the Euler-Lagrange Equation

In this section we will formally compute the Euler-Lagrange equation for the minimization

problem (2.1). We have shown in Section 2.4.1, via the dual variable M̄, that if u is the

minimizer of (2.1), then u automatically satisfies the Neumann boundary condition Du
|Du| ·

~n = 0 for dΓ-a.e. x ∈ ∂Ω where |Du| 6= 0. Recall also that u = 0 outside Ω when û

appears. The associated Euler-Lagrange equation for (2.1) is derived as follows:
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Take any test function ϕ ∈ C∞(Ω). Define

g(ε) = F (u+ εϕ) (2.19)

:= λ

∫

Ω

∣∣Du+ εDϕ
∣∣+

∫

R2

(û0 − K̂u− εK̂ϕ)(¯̂u0 − K̂u− εK̂ϕ)

(1 + |ξ|2)s dξ.

Recall the two identities
∫
vŵdx =

∫
v̂wdx and

∫
v ¯̂wdx =

∫ ¯̄̂vwdx, for any w(x) ∈

R. Applying these to (2.19), we obtain

g′(0) = λ

∫

Ω

Du

|Du| ·Dϕ−
∫

R2

¯̂u0 − K̂u
(1 + |ξ|2)s K̂ϕ−

∫

R2

û0 − K̂u
(1 + |ξ|2)s K̂ϕ

= λ

∫

∂Ω

ϕ
Du

|Du| · ~n ds− λ
∫

Ω

div
( Du
|Du|

)
ϕ

−
∫

R2

F
( ¯̂u0 − K̂u

(1 + |ξ|2)s
)
Kϕ−

∫

R2

F
( ¯̂u0 − K̂u

(1 + |ξ|2)s
)
Kϕ.

The first integral vanishes by applying the implicit Neumann boundary condition. The

last two integrals are conjugates of each other. Thus we obtain

g′(0) = −λ
∫

Ω

div
( Du
|Du|

)
ϕ− 2

∫

R2

Re
{
F
( ¯̂u0 − K̂u

(1 + |ξ|2)s

)}
Kϕ

= −λ
∫

Ω

div
( Du
|Du|

)
ϕ− 2

∫

R2

K∗
(
Re
{
F
( ¯̂u0 − K̂u

(1 + |ξ|2)s
)})

ϕ

for all ϕ ∈ C∞(Ω), where K∗ is the adjoint of K. Thus, the Euler-Lagrange equation is





λdiv
(
Du
|Du|

)
+K∗

(
2 Re

{
F
(

¯̂u0−dKu
(1+|ξ|2)s

)})
= 0 in Ω

Du
|Du| · ~n = 0 on ∂Ω,

u = 0 outside Ω

(2.20)

Remarks 2.5.1 (i) When s = 0 and K is the identity operator, the Euler-Lagrange
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equation in (2.20) above is the same as that of the ROF model (because u0 − u =

F( ¯̂u0 − ¯̂u) when u0 and u are real-valued). This proves that the obtained PDE is

consistent with the energy (2.1), (see Remark 2.2.1(i) above).

(ii) When the operator K is convolution with a kernel k, (e.g. K is convolution with a

Gaussian kernel), then owing to the identity K̂ϕ = k̂ϕ̂, equation (2.20) becomes

λdiv
( Du
|Du|

)
+ 2 Re

{
F
( ¯̂u0 − ¯̂

k ¯̂u

(1 + |ξ|2)s k̂
)}

= 0.

In fact, F
(

¯̂u0−¯̂
k ¯̂u

(1+|ξ|2)s
k̂
)

is real-valued, hence we get

λdiv
( Du
|Du|

)
+ 2F

( ¯̂u0 − ¯̂
k ¯̂u

(1 + |ξ|2)s k̂
)

= 0. (2.21)

(iii) If we integrate both sides of (2.21) over R2, imposing that u = 0 outside of Ω and

Du
|Du| · ~n = 0 on ∂Ω(~n is the outward normal to ∂Ω), then the first term vanishes, and

we get

∫

R2

F
( ¯̂u0 − ¯̂

k ¯̂u

(1 + |ξ|2)s k̂
)

= 0, implying that F
(
F
( ¯̂u0 − ¯̂

k ¯̂u

(1 + |ξ|2)s k̂
))

(0) = 0.

If we write w(ξ) = û0(ξ)−k̂(ξ)û(ξ)
(1+|ξ|2)s

¯̂
k(ξ), then w̄(ξ) = w(−ξ). Then

ˆ̄w(x) =

∫

R2

w(−ξ)e−2πiξ·xdξ, (make a change of variables − ξ → ξ),

=

∫

R2

w(ξ)e2πiξ·xdξ

= w̌(x)

Therefore, ˆ̌w(0) = w(0) =
(
û0(0)− k̂(0)û(0)

)¯̂
k(0) = 0. We impose that k̂(0) 6= 0,
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that is, k has nonzero mean, then û0(0)− û(0) = 0, which means that the component

v = u0 − u has zero mean.

2.6 Numerical Approximation of the Model

We present here a numerical algorithm for solving the proposed model (2.1). We shall

work with the case when the blurring operator K is the convolution with a kernel k, i.e. the

problem we are solving is

inf
u∈BV (Ω)

F (u) = λ

∫

Ω

|Du|dx+

∫

R2

|û0 − k̂û|2
(1 + |ξ|2)sdξ. (2.22)

Since the total variation is not differentiable at 0, we approximate (2.22) with the fol-

lowing:

inf
uε∈BV (Ω)

Fε(uε) = λ

∫

Ω

√
ε2 + |Duε|2dx+

∫

R2

|û0 − k̂ûε|2
(1 + |ξ|2)s dξ (2.23)

Remark 2.6.1 It can be shown that the regularized minimization problem (2.23) has a

unique solution for each λ > 0 and ε > 0 by repeating the steps in Section 2.3. In addition,

following the arguments in [17], it can be shown that as ε converges to zero, the unique

solution of (2.23) converges to the unique solution of (2.22).

Applying gradient descent method to solve (2.23), we obtain the following non-linear

PDE: 



∂u
∂t

= λdiv
(

∇u√
ε2+|∇u|2

)
+ 2 F

(
¯̂u0−¯̂

k ¯̂u
(1+|ξ|2)s

k̂
)

in Ω

∇u√
ε2+|∇u|2

· ~n = 0 on ∂Ω

u = 0 outside Ω.

(2.24)

To proceed with the discretization of (2.24), let us assume that the initial discrete image

u0 is ofM×M pixels, and that it has been sampled from its continuous version at uniformly
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spaced points starting at (0, 0), i.e. u0,j,l = u0(j4x, l4x) for j, l = 0, 1, · · · ,M−1, where

4x is to be determined.

2.6.1 The ”force” term

Computing the force term F
(

¯̂u0−¯̂
k ¯̂u

(1+|ξ|2)s
k̂
)

in (2.24) requires the Discrete Fourier Transform

(DFT), which is defined for any M ×M signal u as

ûm,n =
1

M2

M−1∑

j,l=0

uj,le
−2πi(jm+ln)/M , for m,n = 0, 1, · · · ,M − 1.

The Inverse Discrete Fourier Transform (IDFT) for u is defined as

ǔj,l =

M−1∑

m,n=0

um,ne
2πi(jm+ln)/M , for j, l = 0, 1, · · · ,M − 1.

The DFT array (û)m,n is, indeed, as taken from its continuous counterpart at frequencies

(m4ξ, n4ξ) (m,n = 0, 1, ...,M − 1). The inverse relation between the DFT and IDFT

implies that4x and4ξ are inversely related by

4ξ =
1

M4x.

Therefore, to give our numerical computations a balance weight between the spatial terms

and the Fourier frequency terms, we shall choose

4x =
1√
M

and 4ξ =
1√
M
.

A final note on computing the force term: before taking the DFT, we multiply (−1)j+l

to the signal. This shifts the origin of the frequency domain to the center of the image. Thus,
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for 0 ≤ m,n < M, the (m,n) entry corresponds to the Fourier coefficient at frequency

((m− M
2

)4ξ, (n− M
2

)4ξ). Therefore, we evaluate the weight function 1
(1+|ξ|2)s

at points

ξ1, ξ2 = −M
2
4ξ,− (M−1)

2
4ξ, · · · , (M−1)

2
4ξ.

2.6.2 The curvature term

For the discrete gradient, we shall use the following usual notations:

∇+,+u = (∇+
x u,∇+

y u), ∇+,−u = (∇+
x u,∇−y u)

∇−,+u = (∇−x u,∇+
y u), ∇−,−u = (∇−x u,∇−y u)

where

∇+
x u = uj+1,l − uj,l, ∇−x = uj,l − uj−1,l

∇+
y u = uj,l+1 − uj,l, ∇−y = uj,l − uj,l−1.

Since the dual operators to ∇+,+, ∇+,−, ∇−,+, ∇−,− are, respectively, the operators

div−,−, div−,+, div+,−, div+,+, we can write the regularized curvature term in one of four

ways:

div(
∇u√

ε2 + |∇u|2
) ≈ divα∗,β∗

( ∇α,βu√
ε2 + |∇α,βu|2

)
(2.25)

where divα∗,β∗ denotes the dual operator of ∇α,β, with α, β = +,−.

To make our numerical scheme rotationally invariant, we use all four approximations

to the gradient operator by alternating them with each iteration [8]. For example, if un was

computed using ∇+,+, then we use ∇+,− to compute un+1, ∇−,+ to compute un+2, and

∇−,− to compute un+3, and then repeat.
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2.6.3 Numerical algorithm

We solve (2.24) with the following iterative semi-implicit scheme [64]:

1. u0 is arbitrarily given (we can take u0 = u0)

2. Once un is calculated, compute the forcing term F n = F
(

¯̂u0−¯̂
k ¯̂un

(1+|ξ|2)s
k̂
)

3. Compute un+1
j,l , for j, l = 1, 2, · · · ,M − 2 as the solution of the linear discrete equa-

tion:

un+1
j,l = unj,l +4t

(
λ
4xdiv

α∗,β∗
(

∇α,βun+1√
ε2+|∇α,βun|2

)
j,l

+ 2F n
j,l

)

with ε = ε′4x, some ε′ > 0 small, and the boundary conditions

un+1
0,l = un+1

1,l , un+1
M−1,l = un+1

M−2,l, un+1
j,0 = un+1

j,1 , un+1
j,M−1 = un+1

j,M−2.

To clarify the notations in step 3 of our algorithm, assume that we are solving at pixel

(j, l) the equation

un+1
j,l = unj,l +4t

( λ

(4x)
div−,−

( ∇+,+un+1

√
ε2 + |∇+,+un|2

)
j,l

+ 2F n
j,l

)
.

Let dj,l = (
√
ε2 + |∇+,+un|2)j,l, which is known since un is already computed. Then

div−,−
( ∇+,+un+1

√
ε2 + |∇+,+un|2

)
j,l

=
unl+1,l − un+1

j,l

dj,l
−
un+1
j,l − unj−1,l

dj−1,l

+
unj,l+1 − un+1

j,l

dj,l
−
un+1
j,l − unj,l−1

dj,l−1

Basically, we set all terms at the current pixel (j, l) in the curvature term to be unknown.

Setting cj,l = λ4t
dj,l(4x)

, then we have

(1+cj−1,l+2cj,l+cj,l−1)u
n+1
j,l = unj,l+cj−1,lu

n
j−1,l+cj,lu

n
j+1,l+cj,lu

n
j,l+1+cj,l−1u

n
j,l−1+24tF n

j,l.

Hence, un+1
j,l is obtained by dividing the coefficient (1 + cj−1,l + 2cj,l + cj,l−1) to both sides

of the equation. We remark here that the semi-implicit scheme above approaches the steady
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state equation much faster than an explicit scheme, and hence, an advantage.

2.6.4 The blurring kernel

In our implementation, we perform blurring directly in the Fourier frequency domain. Since

the Fourier Transform of a Gaussian is again a Gaussian, to blur an image, we multiply

(pixel-wise) a Gaussian kernel to the DFT of the image, then we take the inverse transform.

For a Gaussian kernel we used the form

k(ξ1, ξ2) = exp
(
− ξ2

1 + ξ2
2

2/α2

)
.

Thus, in our numerical computation, we never compute a discrete convolution.

2.7 Numerical results for image restoration

In this section we present numerical results obtained by applying our proposed new model

to image denoising, deblurring and decomposition. For comparison, we also present results

from application of the ROF model [57] to the same images. In our implementation of both

models (our proposed model and the ROF model), we discretize the curvature term in the

manner given in Section 2.6.2. In our proposed model, s is a parameter. We will show

numerical results obtained with various values of s.

For image restoration, the parameter λ was chosen so that the best residual-mean-

squared-error (RMSE) is obtained. For the RMSE and SNR, we used the expressions

RMSE =

√∑(
uj,l − uc,j,l

)2

MN
, SNR =

∑(
uj,l −

P
uj,l

MN

)2

∑(
uj,l − uc,j,l −

P
(uj,l−uc,j,l)
MN

)2 ,

where uc is the clean image (which is known in all of our experiments), and M,N are the
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size of the image.

We mention that alternative approaches for selecting λ is the method proposed by

Gilboa-Sochen-Zeevi [37], where the authors choose λ in an optimal way, by maximiz-

ing an estimate of the SNR or by minimizing the correlation between u and f − u.

In Figure 2.2, we show the denoising results obtained from our proposed new model

with H−1 and H−0 norms in the fidelity and the ROF model performed on a synthetic

piece-wise constant image with additive Gaussian white noise of σ = 30 (shown in Fig.

2.1). In Figure 2.3, we show more results on the same image from our proposed model

using s = 0.5 and s = 2, respectively, for the H−s norm in the fidelity term. We also show

the results from our model using H−1
0 semi-norm for the fidelity term (as discussed in

Remark 2.2.1, equivalent case with the model from [52]). The RMSE and SNR, together

with the value of the parameter λ, for all results in this experiment are shown in Table 2.1.

Comparing the results, our model with H−0.5 norm gives results with the best RMSE,

while the H−1
0 semi-norm gives results with the best SNR. Visually, the results from our

model with H−1 norm preserves best the edges in the u component. Overall, our proposed

model performs much better than the ROF model, as expected.

In Figure 2.5 we show results from another denoising application. We applied our

model using H−0.5 and H−1 and the ROF model to a noisy image of a woman. The noise

is additive white noise with standard deviation σ = 20 (see Fig. 2.4). The RMSE and

SNR of the original noisy image is 0.0762599 and 8.01743, respectively. After denois-

ing, the best results from the ROF, H−0.5, and H−1 have the SNR of 30.64769, 32.97592,

32.82501, and the RMSE of 0.03548729, 0.03461537, 0.03472017, respectively. The

values for λ that yield these results are 14, 0.4, 0.25 for the ROF,H−0.5, H−1 model, respec-

tively. Again, our model yields better results than the ROF model.

We also try texture removal with our H−1-model and compare with ROF model. The

results are shown in Figures 2.6, 2.7. In Figure 2.6, the texture image is synthetically
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Restoration Model λ RMSE SNR

Noisy Image 0.224578 4.03064

ROF 55 0.0526239 51.99021

H0 9.3 0.05204916 53.11084

H−0.5 3 0.04953237 58.99322

H−1 1.75 0.04959289 59.41552

H−2 0.9 0.05290355 52.67199

H−1
0 3.8 0.04977601 59.905

Table 2.1: RMSE and SNR for the denoising results on the synthetic piece-wise constant
image shown in Figures 2.2,2.3.

created, and in Figure 2.7, the image is natural. We can see that the H−1-norm models

better the texture than the L2-norm.

In Figures 2.8, 2.9, we show deblurring results on a synthetic image and a natural

image of an office. The blur is done as described in Sect. 2.6.4 with α = 0.8. For the

result in Figure 2.8, the blurred image has RMSE = 0.1016. The improved image has

RMSE = 0.03618513 using the parameter λ = 0.0011. For the result in Figure 2.9, the

blurred image has RMSE = 0.181955, and the improved image has RMSE = 0.10373

using λ = 0.0004. Visually, we see a significant improvement in the recovered image as

compared to the degraded one.

Our last experiment is recovering from a blurred and noisy image. In Figure 2.10,

we add white noise of standard deviation σ = 10 to the blurry image in Figure 2.8. The

degradation has RMSE = 0.121289. The improved image is obtained with λ = 0.0675,

and the RMSE = 0.0607262.
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original Noisy σ = 30

Figure 2.1: A synthetic image and its noisy version with additive Gaussian white noise with
standard deviation 30 and zero mean.

2.8 Conclusion

We have proposed a new variational model for image restoration and decomposition, using

the Hilbert-Sobolev spaces of negative degree of differentiability to capture oscillatory pat-

terns. We have presented an algorithm to solve the proposed variational problem. We have

also presented results of numerical experiments for our proposed model and for the clas-

sical ROF model. In each experiment, we have chosen the parameter λ so that the RMSE

measurement is minimized. The results obtained from our proposed model are improved,

visually and quantitatively (in terms of RMSE and SNR), over the ROF model, for values

of s ∈ [0.5, 1]. Outside this interval, we have obtained results similar with those produced

by the ROF model.

In each of our numerical experiments, we choose manually the value for s. The results

from our numerical experiments with synthetic and real images suggest that Gaussian white

noise is captured best by the H−s norm when 0.5 ≤ s ≤ 1. This agrees with Mumford

and Gidas [49] whose work has motivated us to investigate the spaces H−s for modeling

oscillatory patterns.

We also conclude that the value s = 1 corresponding toH−1 can be used both for image
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uROF vROF + 60

uH−1 vH−1 + 60

uH0 vH0 + 60

Figure 2.2: Comparison of results from our proposed model (s = 0 and s = −1) with
the ROF model. Top: denoising results obtained from the ROF model. Middle: denoising
results obtained with H−1. Bottom: denoising results obtained with H0.

77



uH−0.5 vH−0.5 + 60

uH−2 vH−2 + 60

uH−1
0

vH−1
0

+ 60

Figure 2.3: More results from our proposed model, using for the norm in the fidelity term
H−0.5 (row 1), H−2 (row 2), and H−1

0 semi-norm (row 3).
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original Noisy σ = 20

Figure 2.4: Lena image and its noisy version with additive white noise.

denoising as well as for cartoon and texture separation. However, we do not focus in this

paper on u + v + w decompositions, with u a cartoon component, v a texture component

and w a noise component, and we leave the study of separating noise from texture in a

future work; we refer the reader to Aujol-Chambolle [15] for a solution in this direction.
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uROF vROF + 60

uH−0.5 vH−0.5 + 60

uH−1 vH−1 + 60

Figure 2.5: Denoising results on Lena image. Result of ROF model (top), result of our
model with H−0.5 (middle), result of our model with H−1 (bottom).
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original

uROF vROF + 60

uH−1 vH−1 + 60

Figure 2.6: Decomposition of a synthetic textured image. Results from ROF model (λ =
42) and our model with H−1 (λ = 0.5).
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original

uROF vROF + 60

uH−1 vH−1 + 60

Figure 2.7: Decomposition of a natural textured image. Results from ROF model (λ = 58,
middle) and our model with H−1 (λ = 2.5, bottom).
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original blurred (α = 0.8) uH−1

Figure 2.8: Deblurring on a synthetic image. Result is obtained from our model with H−1

(λ = 0.0011).

original blurred (α = 0.8) uH−1

Figure 2.9: Deblurring on image of an office. Result is obtained from our model with H−1

(λ = 0.0004).
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original noisy blurred (α = 0.8, σ = 10)

uH−1 vH−1 + 60

Figure 2.10: Denoising-deblurring result using our model with H−1 (λ = 0.0675).

84



Chapter 3

(Φ,Φ∗) Decomposition Model and

Minimization Algorithms

In this chapter, we consider a decomposition model that imposes the standard regularization

penalty Φ(u) =
∫
φ(|∇u|)dx < ∞ on u, where φ is positive, increasing and has at most

linear growth at infinity. However, on the residual f − Ku, the model imposes the dual

penalty Φ∗(f − Ku) < ∞, instead of the usual ‖f − Ku‖2
L2 fidelity term. In particular,

when φ is convex, homogeneous of degree one, and with linear growth (for instance the

total variation of u), we recover the (BV,BV ∗) decomposition of the data f , as in Y.

Meyer [46].

We present practical minimization algorithms, together with experimental results and

comparisons to illustrate the validity of the proposed models.

The work in this chapter is jointly done with Triet Le. I thank him very much for his

generous contribution.

We begin with some basic assumptions and motivational background:

Let Ω be an open and bounded subset of R2, with ∂Ω Lipschitz. For two dimensional
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images, Ω is in general a rectangle in the plane. Again, we assume the linear degradation

model f = Ku + n, where f, u : Ω → R are the degraded and the clean unknown

images respectively, K : L2(Ω) → L2(Ω) is a linear and continuous operator, and n

represents additive noise of zero mean. Recall our discussion in Chapter I that the problem

of recovery of the unknown image u, given f and given this degradation model, is known

to be an ill-posed problem. Therefore, regularization techniques as a-priori smoothness on

the unknown u are usually imposed in a minimization approach, of the form

inf
u
E(u) = R(u) + λF (f −Ku), (3.1)

where the first term acts as a regularization term (usually depending on spatial derivatives

of the unknown u), F (f−Ku) acts as a fidelity term, and λ ≥ 0 is a tunning parameter. The

behavior of functionals R and F is chosen function of the a-priori smoothness assumptions

on u and function of the statistics of the noise n. The standard case is when R(u) depends

on the gradient ∇u of u and on its discontinuity set Su, and if additive Gaussian noise

of zero mean is observed, then F (u) = ‖f − Ku‖2
2. These cases include the Perona-

Malik model [53] (λ = 0), the Mumford and Shah model for image segmentation and

piecewise-smooth regularization, the models of D. Geman, S. Geman and collaborators

[33, 34, 35, 36] in the non-convex regularization, the total variation minimization of Rudin,

Osher and Fatemi [57, 56]. Other related models and analysis in variational approach are

by Acar-Vogel [1], A. Chambolle-P.L. Lions [17], Aubert-Vese [12], Vese [64]. In the PDE

approach, we mention again the Perona-Malik equation [53], as well as the anisotropic

smoothing [16, 9].

More recently, D. Mumford - B. Gidas [49] and Y. Meyer [46] advocated the use of

generalized functions as distributions in dual spaces for modelling images with oscillations,

such as natural images, noise, texture, oscillatory patterns; thus proposing spaces such as
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H−s(Ω) [49] and spaces that approximate the dualBV ∗(Ω) of the spaceBV (Ω) [46]. Such

oscillatory images are better modeled if weaker (dual) norms are considered as penalty or

assumption, instead of the ‖ · ‖2
2 fidelity penalty.

Here, we follow the approach suggested by Y. Meyer of using duality to obtain weaker

norms to represent the oscillatory component v = f − Ku. When analyzing the Rudin-

Osher-Fatemi model [57] in the book manuscripts by Y. Meyer [46] and Andreu-Vaillo,

Caselles and Mazón [8], the dual functional Φ∗(v) of the total variation Φ(u) = |Du|(Ω)

already appears in the characterization of minimizers. We propose in this paper minimiza-

tion models of the form

inf
u

Φ(u) + λΦ∗(f −Ku).

We will consider in particular the penalty u ∈ BV (Ω), or more generally of the form

φ(|Du|)(Ω) < ∞, with φ convex and of linear growth (φ(t) = |t|, φ(t) =
√

1 + t2,

φ(t) = log cosh(|t|)), as well as non-convex potentials. In the convex case these include the

total variation minimization proposed by L. Rudin, S. Osher, and E. Fatemi [57]. Related

recent work is proposed by J.-F. Aujol and A. Chambolle [15], and by S. Levine [41], where

the authors use the duality given by the Legendre-Fenchel transform to solve cartoon and

texture decomposition models. However, our approach proposed here is different.

In Vese-Osher [65, 66], Osher-Sole-Vese [52], Aujol and collaborators [13, 14], ap-

proximations to the (BV,BV ∗) model of Y. Meyer have been previously proposed.

The use of the dual norm of the total variation has also appeared, independently and

contemporaneously, in S. Kindermann, S. Osher, and J. Xu’s work [38] in a different frame-

work.
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3.1 Description of the Model and Properties

Assume we have a normed space E and E∗ its dual space. Let Φ : E → [0,∞] be any

function. Let us define Φ∗ : E∗ → [0,∞], by

Φ∗(v) = sup
{〈v, u〉

Φ(u)
: u ∈ E},

with the convention that 0
0

= 0, 0
∞ = 0. Here, 〈v, u〉 = v(u) denotes the duality pairing.

Note that Φ∗(v) ≥ 0, for any v ∈ E∗. Note also that the supremum is attained on the

set of u ∈ E such that 〈v, u〉 ≥ 0. Note also that we have the following Cauchy-Schwartz

inequality

〈v, u〉 ≤ Φ∗(v)Φ(u), if Φ(u) > 0.

We are interested in image decomposition models of the form

inf
{

Φ(u) + λΦ∗(v), u ∈ E, v ∈ E∗, f = u+ v
}

(3.2)

where f ∈ E∗ is a given data. The component u models the cartoon part of f , while the

component v models the rough, oscillatory, or noise part of f . We will choose Φ so that if

Φ(u) < ∞, then u is a piecewise-smooth function, with homogeneous regions and sharp

boundaries.

3.2 (Φ,Φ∗) Decomposition Model

Consider the following general decomposition model:

inf
u

{∫

Ω

φ(|∇u|) dx+ λ sup
w,
R
Ω φ(|∇w|)6=0

∫
Ω

(f − u)w dx∫
Ω
φ(|∇w|) dx

}
. (3.3)
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In the form of (3.2), Φ(u) =
∫

Ω
φ(|∇u|) dx. We assume that φ is a differentiable,

increasing function on [0,∞), possibly non-convex, with at most linear growth at infinity,

and satisfying φ(0) > 0 again to avoid division by zero. In the convex case, φ(|Du|) is

well defined for u ∈ BV (Ω), convex and lower semi-continuous, as a convex function

of measures (see Demengel-Temam [26]). In the non-convex case, we work with u ∈

W 1,1(Ω) ⊂ BV (Ω) ⊂ L2(Ω) and the distributional gradient∇u, as a function in (L1(Ω))2.

In a time-dependent approach, the solution of (3.3) is obtained as follows: start with

(u0, w0) = (u(0, x), w(0, x)), and solve for t > 0 the following evolutionary coupled

system in the unknowns u, w

∂w

∂t
= f − u+

∫
Ω

(f − u)wdx∫
Ω
φ(|∇w|)dx div

(
φ′(|∇w|) ∇w|∇w|

)
, (3.4)

∂u

∂t
= w +

|w|BV (Ω)

λ
div
(
φ′(|∇u|) ∇u|∇u|

)
. (3.5)

Details of this minimization algorithm is given in Section 3.3.1 for the particular case

when Φ(u) =
∫

Ω
|∇u|dx.

3.3 (BV,BV ∗) Image Decomposition

Recall that u ∈ L1(Ω) has bounded variation in Ω if

∫

Ω

|Du| def
= sup

{∫

Ω

udivφdx : φ ∈ C1
c (Ω, R2), |φ| ≤ 1

}
<∞.

The total variation of u in Ω, denoted |u|BV (Ω) :=
∫

Ω
|Du|, is a seminorm on the space

BV (Ω) and vanishes only for constant functions. Therefore it is a norm on the quotient

space BV (Ω)/P0(Ω)
def
= BV(Ω) (i.e. functions in BV (Ω) that are different only by a

constant are identified).
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Recall also the Poincaré-Wirtinger inequality: in two dimensions, for u ∈ BV (Ω),

‖u− uΩ‖2 ≤ C

∫

Ω

|Du|,

where uΩ =
R
Ω u(x)dx

|Ω| denotes the mean of u in Ω.

Now, let us consider the particular case E = L2(Ω), E∗ = E = L2(Ω), 〈v, u〉 =
∫

Ω
uvdx, for u, v ∈ L2(Ω), and

Φ(u) =





∫
Ω
|Du| if u ∈ BV (Ω),

+∞ if u ∈ L2(Ω) \BV (Ω).
(3.6)

Let X = {v ∈ L2(Ω) :
∫

Ω
v(x)dx = 0}. For v ∈ X , define

‖v‖∗ := Φ∗(v) = sup
w∈BV (Ω)
|w|BV (Ω) 6=0

∫
Ω
vwdx

|w|BV (Ω)

= sup
w∈BV (Ω)
|w|BV (Ω) 6=0

|
∫

Ω
vwdx|

|w|BV (Ω)

. (3.7)

Note that when |w|BV (Ω) 6= 0 and v ∈ X , then |
R
Ω
vwdx|

|w|BV (Ω)
=
|
R
Ω
v(w+c)dx|

|w+c|BV (Ω)
, for any real

constant c. Therefore, the supremum in the definition of ‖v‖∗ can be computed over the

quotient space BV(Ω).

Note also that, if v ∈ L2(Ω) and ‖v‖∗ < ∞, then v ∈ X. In other words v necessarily

has zero mean. To see this, take any such v and any w ∈ BV (Ω) with |w|BV (Ω) 6= 0. Then

for any constant c,

∫
Ω
v(w + c)dx

|w + c|BV (Ω)

=

∫
Ω
v(w + c)dx

|w|BV (Ω)

=

∫
Ω
vwdx+ c

∫
Ω
vdx

|w|BV (Ω)

≤ ‖v‖∗ <∞.

This can hold if and only if
∫

Ω
v(x)dx = 0, therefore v ∈ X .

We make the following observations:

90



1. || · ||∗ is a norm on X. Furthermore, X is a complete space under this norm. This is

clear, since if vn ∈ X is a sequence that converges to some v in this || · ||∗ norm, then

for some index N, ||vN − v||∗ <∞ implying vN − v ∈ X, so v ∈ X.

2. For any v ∈ X and w ∈ BV ,
∣∣∫

Ω
vwdx

∣∣ ≤ ||v||∗|w|BV .

3. Φ is a norm on BV and Φ∗ defined via duality is a norm onX. We note that X is only

a closed subspace of Fv ∈ BV∗(Ω), the dual of (BV(Ω), | · |BV (Ω)).

Let us provide more details to item 3. Denote by wΩ :=
R
Ω w(x)dx

|Ω| the mean on Ω of a

function w ∈ L2(Ω). To any v ∈ X , we associate a linear functional Fv : BV(Ω) → R

defined by Fv(w) =
∫

Ω
vwdx. If v ∈ X , then

|Fv(w)| = |
∫

Ω

vwdx| =≤ ‖v‖∗|w|BV (Ω) = C|w|BV (Ω). (3.8)

Therefore, Fv is linear and bounded (hence continuous) functional on BV(Ω), i.e. Fv ∈

BV∗(Ω). Note that not all elements of BV∗(Ω) can be expressed in this way (see T. De

Pauw [25] for a characterization of the dual of SBV (Ω), of special functions of bounded

variation).

Finally, since |Fv(w)| ≤ ‖v‖∗|w|BV (Ω) for all w ∈ BV(Ω), we have ‖Fv‖BV∗(Ω) =

‖v‖∗, recertifying ‖ · ‖∗ is a norm on a subspace X of BV∗.

Recall the notation X(Ω)p
def
= {~p ∈ L∞(Ω)2, div(~p) ∈ Lp(Ω)} . It is shown in [8],

Chapter 1, that

Φ∗(v) = inf {‖~g‖∞ : ~g ∈ X(Ω)2, v = −div(~g) in D′(Ω), ~g · ν = 0 } ,

where ν denotes the outward unit normal to ∂Ω and ~g · ν is the trace of the normal com-

ponent of g. Recall from definition 1.3.6 the space GA(Ω) and the norm || · ||GA on
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GA(Ω). It is shown in [10] that GA(Ω) = X = {v ∈ L2(Ω),
∫

Ω
vdx = 0}. Thus, || · ||∗

is a different way to define the norm || · ||GA on the space X, and we have the identity

(GA(Ω), || · ||GA) = (X, || · ||∗).

Recall also the space GV (Ω) in definition 1.3.5. (This space is isometrically isomorphic

to (W 1,1
0 (Ω))∗ = W−1,∞(Ω) under the norm || · ||W−1,∞(Ω) dual to | · |BV ). The norm on

GV (Ω) is defined as ||v||GV = inf{|||~g|||∞, v = div(~g), ~g ∈ L∞(Ω)2}. Now, if v ∈ X,

then for any ~g ∈ L∞(Ω)2 with v = div(~g), 0 =
∫

Ω
vdx =

∫
Ω

div(~g) =
∫
∂Ω
~g · νds. This

implies ~g · ν = 0. Therefore, based on the above remarks, we conclude that for any v ∈ X,

||v||∗ = ||v||W−1,∞(Ω). Thus, (X, || · ||∗) is a closed subspace of W−1,∞(Ω) under the same

norm as the ambience space.

Application to image decomposition:

Since at every pixel the light intensity has finite energy, we can assume that an image f

belongs to L∞(Ω) ⊂ L2(Ω) (since Ω is bounded). Indeed, it is not too restrictive to assume

that f ∈ L2(Ω).

We are interested in decomposing f into u+ v, with u ∈ BV (Ω) and v := f − u ∈ X .

The first term u corresponds to a cartoon component, while v corresponds to an additive

oscillatory component of zero mean (such as additive noise or texture).

One of the minimization model that we would like to solve is, given f ∈ L2(Ω),

inf{E(u, v) = |u|BV (Ω) + λ‖v‖∗, f = u+ v, u ∈ BV (Ω), v ∈ X},

which is equivalent with

inf
u∈BV (Ω)

E(u) = |u|BV (Ω) + λ‖f − u‖∗, (3.9)
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where

‖v‖∗ = sup
w∈BV (Ω)
|w|BV (Ω) 6=0

|
∫
vwdx|

|w|BV (Ω)

= sup
w∈BV (Ω)
|w|BV (Ω) 6=0

∫
vwdx

|w|BV (Ω)

.

Remark 3.3.1 We can assume without loss of generality that the data f ∈ L2(Ω) has zero

mean, i.e.
∫

Ω
f(x)dx = 0. Then f ∈ X and ‖f‖∗ <∞. Therefore, if we take u(x) = 0 for

all x ∈ Ω in (3.9), then E(u) = λ‖f‖∗ <∞. This shows that the functional in (3.9) has a

finite infimum. Moreover, the functional Φ∗(v) = ‖v‖∗ defined in (3.7) for v ∈ X is convex,

lower-semicontinuous and positive homogeneous of degree one (see [8], Chapter 1).

We do have existence of minimizers for the problem (3.9). Indeed, let un be a mini-

mizing sequence such that E(un) ≤ E(0) < ∞. Therefore un ∈ BV (Ω) ∈ L2(Ω) and

|un|BV (Ω) ≤ C, for all n ≥ 0. Also, ‖f − un‖∗ ≤ C <∞. This implies that f − un ∈ X ,

i.e. f − un has zero mean. Applying Poincaré inequality, we deduce that un is uniformly

bounded in BV (Ω) and in L2(Ω). We then obtain existence of a subsequence, still denoted

by un, and u ∈ BV (Ω), such that un converges to u strongly in L1(Ω), weekly in L2(Ω)

and weekly in BV − w∗(Ω). In conclusion, by the lower semi-continuity of | · |BV (Ω) and

‖ · ‖∗, we deduce that

E(u) ≤ lim inf
n→∞

E(un) = inf
w∈BV (Ω)

E(w),

in other words, u is a minimizer. It is posisble to show that there is no uniqueness of

minimizers for this model (Y. Meyer [47]).

3.3.1 (BV,BV ∗) Minimization Algorithm

We now give an algorithm for solving the minimization problem 3.9. We shall use the

notation |u|BV :=
∫

Ω
|Du|dx for the total variation of u.

• Start with u0.
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• For integers n ≥ 0, if un is known or previously computed, estimate wn by the

maximization process:

‖f − un‖∗ ≈ sup
w∈BV (Ω)
|w|BV (Ω) 6=0

∫
(f − un)wdx∫ √
ε2 + |∇w|2dx

.

Remark: In the calculation of the supremum, with ε-regularization of the total variation,

|w|BV will never become zero, because if it does, then w =constant, which makes the

quantity
R
vwdx

R √
ε2+|∇w|2dx

= 0, hence cannot be the supremum, unless f − u = 0.

The associated PDE in w = wn, (to obtain wn), formally is

0 =
f − un∫

Ω

√
ε2 + |∇w|2dx

+

∫
Ω

(f − un)wdx

(
∫

Ω

√
ε2 + |∇w|2dx)2

div
( ∇w
|∇w|

)
, (3.10)

or

0 = (f − un) +

∫
Ω

(f − un)wdx∫
Ω

√
ε2 + |∇w|2dx

div
( ∇w
|∇w|

)
, (3.11)

with associated natural boundary condition ∂w
∂ν

= 0 on ∂Ω.

• Once wn is computed, we compute un+1 by minimizing with respect to u = un+1 the

energy

E(u) =

∫

Ω

|∇u|dx+ λ

∫
(f − u)wndx

|wn|BV (Ω)

,

which formally yields the associated Euler-Lagrange equation in u = un+1:

0 =
λw

|w|BV (Ω)
+ div

( ∇u
|∇u|

)
, (3.12)

or

0 = w +
|w|BV (Ω)

λ
div
( ∇u
|∇u|

)
, (3.13)
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with ∂u
∂ν

= 0 on ∂Ω.

Remark: Integrating (3.11) in space, we obtain that
∫

Ω
(f − un)dx = 0.

In a time-dependent approach, the main algorithm is summarized as follows: start with

(u0, w0) = (u(0, x), w(0, x)), and solve for t > 0

∂w

∂t
= f − u+

∫
Ω

(f − u)wdx∫
Ω

√
ε2 + |∇w|2dx

div
( ∇w
|∇w|

)
, (3.14)

∂u

∂t
= w +

|w|BV (Ω)

λ
div
( ∇u
|∇u|

)
. (3.15)

We note that when u = un fixed, in the maximization process in w, if we start with w0

such that
∫

Ω
(f − u)w0dx ≥ 0, then

∫
Ω

(f − u)wdx ≥ 0, because we increase the energy in

w with the right choice of 4t (in the supremum formula) at any step. If this is a problem,

then we can keep the absolute value in the definition of the supremum, to avoid numerical

instability.

3.4 Application to Image Denoising and Decomposition

We have applied the (Φ,Φ∗) model introduced above to image denoising and also to cartoon

+ texture separation. In addition to the convex case where Φ(u) =
∫

Ω
|Du|, have also

considered the case when Φ is not convex.

3.4.1 (BV,BV ∗) denoising and decomposition results

In practice, to solve (3.9) for the (BV,BV ∗) model, we use the time dependent equations

for gradient ascent in w and gradient descent in u, as given in (3.14)-(3.15).

We will compare the proposed (BV,BV ∗) model with the Rudin-Osher-Fatemi (BV, L2)
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model,

inf
u∈BV (Ω)

F(u) =

∫

Ω

|∇u| dx+ λ

∫

Ω

|f − u|2 dx. (3.16)

Recalling from Section 1.2, a minimizer of (3.16) satisfies the Euler-Lagrange equation,

0 = div

( ∇u
|∇u|

)
+ λ(f − u). (3.17)

To solve the above stationary equation, we consider the gradient descending method

∂u

∂t
=

1

λ
div

( ∇u
|∇u|

)
+ (f − u). (3.18)

We use explicit central schemes for all the partial differential equations, with the diver-

gence operator in expanded form:

div

( ∇u
|∇u|

)
=
uxxu

2
y − 2uxyuxuy + uyyu

2
x

(u2
x + u2

y)
3/2

. (3.19)

Our numerical computations use ∆x = ∆y = 1, and ∆t = 0.001.

We summarize again the main steps of the algorithm:

1. Start with initial guesses for u0 = f , and w0, such that
∫

Ω
|∇w0| 6= 0.

2. Given un, and wn , we then compute wn+1 using equation (3.14) for 10 iterations.

3. With un, and wn+1 known, we then compute un+1 with method (3.15).

4. Repeat step 2− 3 until Max Iter is reached.

In all of our numerical computations, Max Iter = 1000. In each figure, w̄ denotes the

rescaling of w to be in the range [0, 255].

Let ū be the true image of size N ×M , and u be the recovered image. To quantify how

good the recovered image is, and to choose the parameter λ, we use the root mean square
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error

rmse =

√∑
i,j |ūi,j − ui,j|2

NM
.

The following experimental results and comparisons show improvement over the (BV, L2)

model.

3.4.2 Denoising and Decomposition with non-convex functional Φ and

its dual Φ∗

Similarly, the decomposition model (3.3), with φ(t) non-convex function, can be minimized

by the algorithm given in (3.4)-(3.5). Here we will consider two choices (see [33], [34],

[35], [36] for non-convex regularizations):

φ(t) = |t|p, 0 < p < 1, (3.20)

and

φ(t) =
|t|q

1 + α|t|q , 0 < α < 1, q ≥ 1. (3.21)

Through out our numerical computations, we use p = 0.75 in (3.20) and α = 0.001 and

q = 2 in (3.21). The following experimental results with a non-convex potential are again

much improved over the ROF model, and we no longer see “geometry” in the v component,

both in the denoising and decomposition results.
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(a) clean (b) noisy

(c) clean (d) noisy

Figure 3.1: Data images.
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(a) clean (b) noisy

(c) clean (d) noisy

Figure 3.2: Data images.
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u f−u+100

u f−u+100

w̄

Figure 3.3: Denoising results of our proposed (BV,BV ∗) model and ROF model applied
to noisy image in Fig. 3.1(b). Top: ROF using (3.18) with λ = 2.04, rmse = 0.01020834.
Bottom: (BV,BV ∗) using (3.14) and (3.15) with λ = 1900, rmse = 0.009918792.
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u f−u+100

u f−u+100

w̄

Figure 3.4: Denoising results of our proposed (BV,BV ∗) model and ROF model applied
to noisy image in Fig. 3.1(d). Top: ROF using (3.18) with λ = 7.92, rmse = 0.0645842.
Bottom: (BV,BV ∗) using (3.14) and (3.15) with λ = 5000, rmse = 0.06406284.
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u f−u+100

u f−u+100

w̄

Figure 3.5: Denoising results of our proposed (BV,BV ∗) model and ROF model applied
to noisy image in Fig. 3.1(b). Top: ROF using (3.18) with λ = 63.75. Bottom: (BV,BV ∗)
using (3.14) and (3.15) with λ = 2000.
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u f−u+100

w̄

Figure 3.6: Denoising result of (BV,BV ∗) model applied to noisy image in Fig. 3.2(d)
using (3.14) and (3.15) with λ = 2500.
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original u v

Figure 3.7: Decomposition result of our proposed (BV,BV ∗) model.
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u f−u+100

w̄

Figure 3.8: Denoising result of (Φ,Φ∗) model with non-convex Φ in (3.20) applied to noisy
image in Fig. 3.1(b), rmse = 0.00746253, λ = 10.
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u f−u+100

w̄

Figure 3.9: Denoising result of (Φ,Φ∗) model with non-convex Φ in (3.20) applied to noisy
image in Fig. 3.1(d), rmse = 0.05111486, λ = 8.
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u f−u+100

w̄

Figure 3.10: Denoising result of (Φ,Φ∗) model with non-convex Φ in (3.20) applied to
noisy image in Fig. 3.2(b), rmse = 0.02197276, λ = 110.
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u f−u+100

w̄

Figure 3.11: Denoising result of (Φ,Φ∗) model with non-convex Φ in (3.20) applied to
noisy image in Fig. 3.2(d), rmse = 0.04416518, λ = 100.
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u f−u+100

w̄

Figure 3.12: Denoising result of (Φ,Φ∗) model with non-convex Φ in (3.20) applied to
noisy image in Fig. 3.2(d), rmse = 0.04296311, λ = 120.
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u f−u+100

w̄

Figure 3.13: Denoising result of (Φ,Φ∗) model with non-convex Φ in (3.21) applied to
noisy image in Fig. 3.1(b), rmse = 007092052, λ = 1.
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u f−u+100

w̄

Figure 3.14: Denoising result of (Φ,Φ∗) model with non-convex Φ in (3.21) applied to
noisy image in Fig. 3.1(d), rmse = 0.04810694, λ = 0.4.
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u f−u+100

w̄

Figure 3.15: Denoising result of (Φ,Φ∗) model with non-convex Φ in (3.21) applied to
noisy image in Fig. 3.2(b) rmse = 0.02260758, λ = 5.
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u f−u+100

w̄

Figure 3.16: Denoising result of (Φ,Φ∗) model with non-convex Φ in (3.21) applied to
noisy image in Fig. 3.2(d) rmse = 0.04596249, λ = 7.
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u f−u+100

w̄

Figure 3.17: Denoising result of (Φ,Φ∗) model with non-convex Φ in (3.21) applied to
noisy image in Fig. 3.2(d) rmse = 0.04297547, λ = 9.
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3.5 Application to Image Deblurring

The above model (3.9) can also be applied to image deblurring. We give a description of

the algorithm in the section below. Following the description, we present numerical results

from our experiments.

3.5.1 Description of the algorithm

Let K : L2(Ω) → L2(Ω) be a linear and continuous operator (sometimes, we have to

assume in addition that K does not anihilate constants). If we assume the degradation

model f = Ku + n, where K denotes a blurring operator and n denotes additive noise of

zero mean, then we propose the following restoration model:

inf
u∈BV (Ω)

E(u) = |u|BV (Ω) + λ‖f −Ku‖∗, (3.22)

or

inf
u∈BV (Ω)

E(u) = Φ(u) + λΦ∗(f −Ku), (3.23)

with Φ defined in (3.6). We apply the same steps in the minimization algorithm as before,

and the associated time-dependent Euler-Lagrange equations formally are:

∂w

∂t
=

f −Ku∫
Ω

√
ε2 + |∇w|2dx

+

∫
Ω

(f −Ku)wdx

(
∫

Ω

√
ε2 + |∇w|2dx)2

div
( ∇w
|∇w|

)
, (3.24)

∂u

∂t
= K∗w +

|w|BV (Ω)

λ
div
( ∇u
|∇u|

)
, (3.25)

where K∗ denotes the adjoint operator of K. Note that here, we no longer have to invert

K∗Ku as it is obtained when the fidelity term is ‖f −Ku‖2
2.
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3.5.2 (BV,BV ∗) Image deblurring results

We apply the deblurring model (3.22), and solve the coupled system (3.24)-(3.25). The

blur operator K is given by a convolution with a 5x5 (symmetric) blurring mask (or kernel

k) of the form:

1

273
·

1 4 7 4 1

4 16 26 16 4

7 26 41 26 7

4 16 26 16 4

1 4 7 4 1

The equation in u from (3.25) is discretized using a semi-implicit scheme, as in [12, 64],

while the equation in w from (3.24) is discretized by a fully explicit scheme. We run 30

iterations in w for every iteration in u. Also, 4x = 4y = 1. The root mean square error

(RMSE =

√P
i,j(u0(i,j)−u(i,j))2

MN
for an image of size MxN) is being used to measure the

quality of the restoration, and to find the optimal parameter λ.

Below, for the purpose of validation, we give experimental results obtained with our

proposed (BV,BV ∗) deblurring method and those obtained with the Rudin-Osher model

[56].

I. For results in Figure 3.18 (Deblurring the synthetic image) :

(i) Original RMSE = 0.0812219

(ii) ROF : 6000 iterations, RMSE = 0.03262219, λ = 13.5

(iii) (BV,BV*) : 1000 iterations, RMSE = 0.03408236, λ = 24,000

II. For results in Figure 3.19 (Denoising and deblurring) :

(i) Original RMSE = 0.105052
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uROF u w

Figure 3.18: A synthetic image, the blurring kernel represented as an image, and the blurry
version of the synthetic image (top). Deblurring with ROF and deblurring with (BV,BV*)-
model (bottom).

(ii) ROF : 6000 iterations, RMSE = 0.0573248, λ = 0.4

(iii) (BV,BV*) : 6000 iterations, RMSE = 0.06060835, λ = 10,000

III. For results in Figure 3.20 (Deblurring the office image)

(i) Original RMSE = 0.111223

(ii) ROF : 3000 iterations, RMSE = 0.04248943, λ = 60

(iii) (BV,BV*) : 6000 iterations, RMSE = 0.04450807, λ = 250,000

3.6 Conclusions

We have presented numerical algorithms for minimizing functional energies consisting of

the sum of a functional Φ and its dual Φ∗. We have shown in the particular case when the
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uROF vROF+100

u v+100 w

Figure 3.19: A synthetic image and its noisy-blurred version (top). Reconstruction using
ROF (middle). Reconstruction using (BV,BV*)-model (bottom).
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uROF

u w

Figure 3.20: Original image of an office and a blurry version (top). Deblurring with ROF
(middle). Deblurring with (BV,BV*)-model (bottom).
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functional is the total variation of functions in the quotient space BV(Ω) = BV (Ω)/P0(Ω),

then its dual coincides with the norm || · ||W−1,∞(Ω) on a closed subspace of W−1,∞(Ω).

We have validated our algorithms with experimental results of image denoising, image

decomposition, and image deblurring. For image denoising and decomposition, we have

considered the cases when Φ is convex and nonconvex. For image deblurring with or

without noise, we have considered the case when Φ is the total variation. Our results show

an improvement over the (BV, L2) model in cartoon + texture separation, especially for the

case of non-convex Φ.
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PART II

IMAGE SEGMENTATION

This part of the dissertation is devoted to image segmentation. We are presented with an

edge detection problem arising from the analysis of image data collected by streak cameras

during scientific experiments at Los Alamos National Lab (LANL). We consider the two

well known models in image segmentation, Mumford-Shah [50] and Chan-Vese [18], for

our edge detection problem.

In the next chapter, we give a description of our research problem. Then we review

in details the Mumford-Shah and Chan-Vese models. We show how the Chan-Vese model

performs when applied to our problem. And finally, we present a modification of the Chan-

Vese model that better fits our purpose and improves overall performance.

This research is part of a summer project sponsored by the Los Alamos National Lab

which was supervised by Professor Andrea Bertozzi of UCLA and Larry Hill of LANL.
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Chapter 4

Edge Detection in Streak-Camera

Images

4.1 Description of the Research Problem

During a detonation of explosives experiment, data is collected with a rotating lense, which

deflects a ray of lights across the surface of a film. The result is a two dimensional image on

film. We then scan the films to obtain digital streak-camera images, such as those in Figure

4.1. The vertical direction in the image is the time dimension, and the horizontal is the

spatial dimension. Each line across the spatial dimension corresponds to one rotation in the

lense. We want to warn the readers that this description of streak-camera image acquisition

is only the general idea. It is not at all a thorough description.

The task at hand to determine the edge in the image (which in many cases describes

the detonation waves). We want to detect the edge as accurately as possible, so that we can

further determine various information concerning the waves. For example, we would like

to be able to determine the rate of change and the curvature of the edge.

Since these images consist of two homogeneous regions of approximately the same
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gray scale intensity, we consider the Chan-Vese ”Active Contour Without Edges” model

for our problem. In this chapter, we will describe in details the Chan-Vese model. But,

to better understand the Chan-Vese model, we will first study the Mumford-Shah model

[50] in Section 4.2. In Section 4.3.4, we will give some numerical results to illustrate the

drawback in application of Chan-Vese model to our problem. In Section 4.4, we present

a modified version of the Chan-Vese model adapted to our problem, together with the

improved numerical results.

Figure 4.1: Examples of streak-camera images.

4.2 Mumford-Shah Segmentation Model

Throughout this chapter, we will denote by I : Ω → R2 the two-dimensional gray-scale

image in consideration. Solid objects in an image generally appear as regions where the

values of I vary smoothly, and the boundary of these regions appear in the image as a result

of marked changes in I. In other words, edges appear because of discontinuities in the

intensity function. Thus, the problem of edge detection is actually the problem of finding

a discontinuity set that corresponds to the edges. Unfortunately, oscillatory patterns such

as texture and noise also belong to the discontinuity set of I. The question then is how to
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formulate an automated process that detects edges (boundary of objects) and ignore small

oscillatory details (texture and noise).

D. Mumford and J. Shah suggest to solve the problem by finding an optimal approxi-

mation u of I such that: (i) u is piecewise smooth in Ω, and (ii) the set of discontinuities of

u, denoted by K, is the union of piecewise smooth boundaries of disjoint connected open

subsets of Ω. More precisely, Ω\K = ∪Rj, where Rj ⊂ Ω are open connected sets with

piecewise smooth boundary, and u is continuously differentiable on each Rj. In [50] the

authors propose the following variational approach to image segmentation:

Minimize E(u,K) =

∫

Ω

(u− I)2dx + α

∫

Ω\K
|∇u|2dx+ βH1(K), (4.1)

where I is assumed to belong to L∞(Ω), α, β > 0 are fixed parameters, K varies in the

class of one dimensional closed subsets in Ω, and u varies in C1(Ω\K).

The first term in (4.1) demands that u approximates I, the second term that u is smooth

in Ω\K, and the third term that length of K be minimized.

As observed in [11], the difficulty in studying problem (4.1) is that it involves two

unknowns of different nature: u is a function defined on two-dimensional space, while K

is a one-dimensional set. The map R 7→ H1(∂R) is not lower semicontinuous with respect

to any compact topology, therefore it is not possible to prove existence of solutions for (4.1)

by direct method of the calculus of variations. A variant formulation of (4.1) is necessary.

The idea is to set K = Su, the set of jumps discontinuities of u. Then problem (4.1) has

the following weak formulation:

Minimize F (u) =

∫

Ω

(u− I)2dx+ α

∫

Ω\Su
|∇u|2dx+ βH1(Su). (4.2)

Existence of solutions for (4.2) in the space SBV (Ω)∩L∞(Ω) is a direct consequence
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of Theorem 1.1.11 (see also [19]). The minimizers uF of F are piecewise C1 functions,

and (see [4]) if we set K = Ω ∩ Su, then (uF , K) solves (4.1), (see also [24]).

For the purpose of practical computation of a minimizer, L. Ambrosio and V.M. Tor-

torelli [5, 6] have proposed two approximations for the Mumford-Shah functional. The

simpler of the two is the following elliptic approximation [6]:

Gε(u, v) =

∫

Ω

[
ε|∇v|2 + α(v2 + oε)|∇u|2 +

(v − 1)2

4ε
+ β|u− I|2

]
dxdy, (4.3)

where ε ↓ 0, and oε is any non negative infinitesimal quantity approaching 0 faster than ε.

The authors have shown in [6] that if wε = (uε, vε) minimizes Gε, then (passing to

subsequences) uε is an approximation of a minimizer u of the Mumford-Shah problem in

(4.1), and vε → 1 as ε→ 0+ in the L2(Ω)-topology.

Here, vε ≤ 1. Indeed, it is equal to less than 1 only in a small neighborhood of Su,

which shrinks as ε→ 0+.

Minimizing (4.3) with respect to u and v, we obtained the associated Euler-Lagrange

equations





u = α
β

div
[
(v2 + oε)∇u

]
+ I in Ω,

v
(

1
4ε

+ α|∇u|2
)

= ε4v + 1
4ε

in Ω,

(v2 + oε)
∂u
∂~n

= 0 on ∂Ω,

∂v
∂~n

= 0 on ∂Ω.

In [50], Mumford and Shah have also considered the particular case of (4.1), the case

of minimal partition problem in which u is constrained to be piecewise constant. In this

case, the segmentation problem reduces to:
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Minimize E0(u,K) =
∫

Ω
(u− I)2dx+ βH1(K),

subject to ∇u = 0 in Ω\K.
(4.4)

Proof of existence of solutions for (4.4) can be found in [48].

Ambrosio and Tortorelli have also proposed an approximation to (4.4) [6]:

Eε(u, v) =

∫

Ω

[
ε|∇v|2 + (Mεv

2 + oε)|∇u|2 +
(v − 1)2

4ε
+ β|u− I|2

]
dxdy, (4.5)

where Mε → +∞ as ε→ 0+, and oε is as before.

The associated E-L equations in this case will be:





u = 1
β

div
[
(Mεv

2 + oε)∇u
]

+ I,

v
(

1
4ε

+Mε|∇u|2
)

= ε4v + 1
4ε
,

A variant formulation of (4.4), in the level-set approach, has been done by Chan and

Vese [18]. We will study this in the next section.

4.3 Chan-Vese Active Contours Without Edges

The Chan-Vese model is derived from the Mumford-Shah model by restricting the Mumford-

Shah energy to the space of binary piecewise constant functions. In the level-set formu-

lation, the model is written in an elegant way as a minimization problem of a functional

energy. We now give a full description of the Chan-Vese model and implement the model

in application to our problem of edge detection.
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4.3.1 Description of the Chan-Vese Model

The basic idea in the Chan-Vese Active Contours Without Edges model [18] is to partition

the pixels in an image into two sets: one contains pixels belonging to the objects in the

image and the other contains pixels belonging to the background. Given an image I : Ω→

[0, L], the Chan-Vese model searches for a binary piecewise-constant function u such that

(a) u best approximates I ,

(b) the boundary of the two level sets of u is the desired segmentation contours C, and

(c) u =





c1 = average of I on the ’inside’ of C

c2 = average of I on the ’outside’ of C

The Chan-Vese model is the following variational problem:

inf
c1,c2,C

E(c1, c2, C) := µ Length(C) + ν Area(inside(C))

+λ1

∫

inside(C)

|I(x, y)− c1|2dxdy (4.6)

+λ2

∫

outside(C)

|I(x, y)− c2|2dxdy,

where µ > 0, ν > 0, λ1 > 0, λ2 > 0, are parameters which can be adjusted to weigh the

importance of each of the terms in the energy.

The parameter µ in the Length term controls the smoothness and total length of the

contours C. When µ is small, it allows the contours C to have larger length, hence it can

be oscillatory. When µ is large, C has to have small length, hence no oscillations. So when

we want to detect many small objects, choose µ to be small because the contours C need

to wrap around many regions in the image resulting in larger length. Similarly, choose µ

large when we want to detect few large objects.
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In practice, the parameter ν is set to 0, so the energy can be written without the Area

term. This is because Area(inside(C)) ≤ const·(Length(C))n/(n−1) when C lies in Ω ⊂

Rn (n > 1). Hereafter, we will remove the Area term completely from our discussion of

the model. The last two terms in the energy are simply least-square fitting of two constants

c1, c2 to the values of I in the regions inside(C) and outside(C), respectively.

4.3.2 Level-Set Formulation

In this section, we review the level set formulation of the Chan-Vese model. The level set

representations offer unambiguous reference to the ’inside’ and the ’outside’ of the contour

C. It is as follows (see [51] for details on level set methods):

Let φ : Ω→ R be a Lipschitz function such that

• C = {(x, y) ∈ Ω : φ(x, y) = 0},

• inside(C) = {(x, y) ∈ Ω : φ(x, y) > 0}, and

• outside(C) = {(x, y) ∈ Ω : φ(x, y) < 0}.

Example: Assume the contour C is the unit circle C = (x, y) ∈ R2, x2 + y2 = 1. Then

inside(C) is the unit disk (see Fig. 4.3.2) and the level set function φ(x, y) can be defined

as the signed distance function

φ(x, y) = 1−
√
x2 + y2.

Using the Heaviside function H and the one-dimensional Dirac measure δ0, namely

H(z) =





1, if z ≥ 0

0, if z < 0, δ0(z) = d
dz
H(z),
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Figure 4.2: Illustration of different regions defined by the unit circle C.

we can express the length term as

Length({φ = 0}) =

∫

Ω

|∇H(φ(x, y))|dxdy =

∫

Ω

δ0(φ(x, y))|∇φ(x, y)|dxdy.

Then we have the following mathematical expression for the Chan-Vese model:

inf
φ

inf
c1,c2

E(c1, c2, φ) := µ

∫

Ω

δ0(φ(x, y))|∇φ(x, y)|dxdy

+λ1

∫

Ω

|I(x, y)− c1|2H(φ(x, y))dxdy (4.7)

+λ2

∫

Ω

|I(x, y)− c2|2(1−H(φ(x, y)))dxdy.

4.3.3 Algorithm and Numerical Approximation

We apply the following iterative algorithm to find a minimizer for (4.7):

• Starting with any initial level set function φ0.

• For n = 0, 1, 2, . . . , do

129



1. Solve infc1,c2 E(c1, c2, φ
n).

Obtain c1(φn), c2(φn) = argminE(c1, c2, φ
n).

2. Solve infφE(c1(φn), c2(φn), φ) via Steepest Gradient Descent.

Obtain φn+1 = argminE(c1(φn), c2(φn), φ).

3. Solve infc1,c2 E(c1, c2, φ
n+1).

Obtain c1(φn+1), c2(φn+1) = argminE(c1, c2, φ
n+1).

4. Stop if solution (c1(φn+1), c2(φn+1), φn+1) is stationary.

If not, continue.

This process is convergent to a stationary point, since the energy is strictly decreasing

at each step.

Steps 1 and 3 can be solved directly from the Euler-Lagrange equations associated with

minimizing E in (4.7) with respect to c1 and c2.

The Euler-Lagrange equation associated with minimizing E with respect to c1 is

∫

Ω

I(x, y)H(φ(x, y))dxdy− c1

∫

Ω

H(φ(x, y))dxdy = 0.

If
∫

Ω
H(φ(x, y))dxdy = 0, we have no constraints on c1. Otherwise,

c1 =

∫
Ω
I(x, y)H(φ(x, y))dxdy∫

Ω
H(φ(x, y))dxdy

. (4.8)

Similarly,

c2 =

∫
Ω
I(x, y)(1−H(φ(x, y)))dxdy∫

Ω
(1−H(φ(x, y)))dxdy

, (4.9)

provided
∫

Ω
(1−H(φ(x, y)))dxdy > 0. Otherwise, c2 can be any value.
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Remark: The optimality conditions for c1 and c2 dictate that c1 and c2 be the average of

I ’inside’ and ’outside’ of C, respectively. This is expected because we know that the

solution to a least-square fitting has to be the average.

To solve Step 2, we need to compute the first variation of E with respect to φ. Since the

Heaviside function H is not differentiable at 0, we approximate it with a smoother Hε. In

addition, we add an artificial time variable t > 0 to φ to parameterize the descent direction.

Let ~n and ∂φ/∂~n denote the outward unit normal to the boundary ∂Ω and the outward

normal derivative of φ on ∂Ω, respectively. Then, the evolution PDE for φ is:





∂φ
∂t

= δε(φ)
[
µdiv

(
∇φ
|∇φ|

)
− λ1(I − c1)2 + λ2(I − c2)2

]
in Ω× (0,∞),

φ(0, ·) = φ0(·) in Ω,

δε(φ)
|∇φ|

∂φ
∂~n

= 0 on ∂Ω × (0,∞),

where the Neumann boundary condition is implicit (see [64]).

Finally, the φn+1 in Step 2 is computed via the following semi-implicit scheme:

φn+1 − φn
4t = δε(φ

n)
[
µdiv

(∇φn+1

|∇φn|
)
− λ1(I − c1(φn))2 + λ2(I − c2(φn))2

]
(4.10)

Numerical Approximation:

We give here the discretization of (4.10) as given in the original Chan-Vese paper [18].

Basically, only the second order term in (4.10) needs to be addressed. Recall the following

standard notations:

• 4x, 4y are spatial step size

• φi,j = φ(i4x, j4y), 1 ≤ i ≤M, 1 ≤ j ≤ N .

• D−x φi,j = φi,j − φi−1,j, D
+
x φi,j = φi+1,j − φi,j, D0

xφi,j = φi+1,j − φi−1,j,
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D−y φi,j = φi,j − φi,j−1, D
+
y φi,j = φi,j+1 − φi,j, D0

yφi,j = φi,j+1 − φi,j−1.

Following the ideas in [57], we apply the following discretization for the second order term

in (4.10):

div
(∇φn+1

|∇φn|
)

=
1

4xD
−
x

(
(D+

x φ
n+1)/4x√

δ2 +
(
D+
x φn

4x

)2

+
(
D0
yφ
n

24y

)2

)

+
1

4yD
−
y

(
(D+

y φ
n+1)/4y√

δ2 +
(
D0
xφ
n

24x

)2

+
(
D+
y φn

4y

)2

)
,

where we add a small δ to avoid dividing by zero.

To obtain the Neumann boundary condition, we extend the boundary points of φn. This

makes φnext become (M + 2) × (N + 2). Then we compute φn+1 at all grid points using

φnext. This semi-implicit scheme is unconditionally stable (see [12] for details).

We initialize φ0 by a periodic function whose zero level set is many small circles (see

FIG. 4.3). Distributing the initial curves everywhere in the image has the advantage of

faster detection of the segmentation edge.

For a smooth approximation of the Heaviside function H, we use

Hε(z) =
1

2

(
1 +

1

π
arctan(

z

ε
)
)
. (4.11)

Because the energy F is nonconvex, there may be many local minima, hence the so-

lution may depend on the initial φ0. With this choice of Hε, the Euler-Lagrange equation

in φ can act on all level curves of φ. This allows the attainment of the global minimizer

independent of the initial curve.
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Figure 4.3: Initial Contours.

Although in theory the numerical scheme is unconditionally stable, in practice we set

4t = 0.1 to control the speed down the gradient flow. This helps when the image is highly

blurred and degraded. We set ε = 4x = 4y = 1 pixel and solve the linear system at each

time step by Gauss-Seidel iterative method.

4.3.4 Numerical Results

We first apply the Chan-Vese model to the streak-camera images in Fig. 4.1. The results

are shown in Fig. 4.4 and Fig. 4.5.

In Fig. 4.4 the segmentation completely misses the edge toward the right of the image.

Recall that the Chan-Vese model is simultaneously minimizing the length of the contours

and obtaining the best-fit of the two (dark and bright) regions in the image to their averages.

Since the region in the upper right corner of the image is so much closer to the (bottom)

darker region than the bright (upper left) region, the optimal segmentation obtained by the

Chan-Vese model failed to recognize the edge as the human eyes can. As an attempt to

solve this problem, we decrease the value of the parameter λ1 to relax the constraint on

133



(a) (b)

Figure 4.4: Segmentation result of Chan-Vese model. The parameters are: for (a) µ =
0.8 · max2, λ1 = 0.5, λ2 = 1, for (b) µ = 2.2 · max2, λ1 = 0.05, λ2 = 1 (where
max=maximum intensity value of image I).

the best-fit of the regions to their averages and increase the value of µ to impose that the

length of the segmentation contour be shorter. An example is shown in Figure 4.4(b). We

can see that the strong regularization on the length of the contour makes it almost a straight

line. And in trying to best-fit the regions to their averages, the contour misses the true edge

completely.

Similar behaviors can be seen in the results in Fig. 4.5. When the regularization pa-

rameter µ is small, the contour length is large, resulting in erroneous segmentation. We

increased the value in µ and got better result. However, we still get the unsatisfactory seg-

mentation. The contour caves into regions called ’dropped-out’ regions. Further increase

in µ will make the contour disappear, i.e. we get the trivial solution.
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(a) (b)

Figure 4.5: Segmentation result of Chan-Vese model. The parameters are : (a) µ = 0.05 ·
max2, λ1 = 1, λ2 = 1 and (b) µ = 0.15 ·max2, λ1 = 1, λ2 = 1 (where max=maximum
intensity value of image I).

4.4 1-D Modified Chan-Vese Model

4.4.1 Formulation of the Model

Since our interest lies solely in detecting the edge that characterizes wave front, we consider

defining our level set function φ via the graph of a function f : [0, a] → [0, b]. That is, we

restrict the Chan-Vese energy to the space of functions defined as follows: assuming that

Ω = (0, a) × (0, b), let φ(x, y) = y − f(x) for all (x, y) ∈ Ω. The zero level set of φ is

exactly the curve y = f(x). In this setting, we produce the following simplified energy
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whose unknown is in one dimension:

Ẽ(c1, c2, f) =
µ

2

∫ a

0

|f ′(x)|2dx

+λ1

∫

Ω

(
I(x, y)− c1

)2

H(y − f(x))dxdy (4.12)

+λ2

∫

Ω

(
I(x, y)− c2

)2(
1−H(y − f(x))

)
dxdy,

Anologous to the two dimensional case, c1 and c2 are the averages of I in the region

above and below the graph of f(x), respectively. However, instead of imposing a penalty

on the length of the contour, which is length :=
∫ a

0

√
1 + |f ′(s)|2ds,we impose a stronger

regularizing condition on f, requiring it to be in the Sobolev space H 1((0, a)). (We shall

clarify our preference of H1 regularization at the end of Section 4.4.2). Another difference

in this modified model from the original Chan-Vese model is that we are able to compute

exactly the length of the contour instead of an approximation via the use of Hε.

The optimality conditions for c1 and c2 are similar to above case in two dimension:

c1 =

∫
Ω
I(x, y)H(y − f(x))dxdy∫

Ω
H(y − f(x))dxdy

, c2 =

∫
Ω
I(x, y)(1−H(y − f(x)))dxdy∫

Ω
(1−H(y − f(x)))dxdy

, (4.13)

provided the denominators are nonzero, i.e. when the intersection between the graph of

f and the open rectangle (0, a) × (0, b) is nonempty. In the case that f(x) ≤ 0 for all

x ∈ [0, a], then the optimal c1 is the average of I in Ω, and c2 can be anything. Similar, if

f(x) ≥ b for all x, then the optimal c2 is the average of I in Ω, and c1 can be anything.

Since the given image I is defined on the rectangle Ω = (0, a)× (0, b), how the graph

of f behave outside of Ω does not matter to our minimization problem in (4.12). Therefore,

it makes sense to search for a solution in the space Y = H1((0, a)) ∩ {f(x)| 0 ≤ f(x) ≤

b ∀x ∈ (0, a)}. To prove existence of a minimizer for problem (4.12), we recall a definition

and a theorem:
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Definition 4.4.1 (Hölder Continuous with Exponent γ) Assume U ⊂ Rn is open and

0 < γ ≤ 1. A function f : U → R is said to be Hölder continuous with exponent γ if

there is a constant C such that

|f(x)− f(y)| ≤ C|x− y|γ for all x, y ∈ U.

The space of all such Hölder continuous functions with exponent γ, denoted by C0,γ(U), is

a Banach space under the γth-Hölder norm

||f ||C0,γ(Ū)
def
= ||f ||C(Ū) + sup

x,y∈U
x6=y

{ |f(x)− f(y)

|x− y|γ
}
.

Theorem 4.4.1 (General Sobolev Inequality [29]) Let U be a bounded open subset of

Rn, with a C1 boundary. Assume u ∈ W k,p(U). If k > n
p
, then u ∈ C0,γ(Ū), where

γ =




bn
p
c + 1− n

p
, if n

p
is not an integer,

any positive number < 1, if n
p

is an integer,

where b·c is rounding down to the nearest integer. In addition, we have the estimate

||u||C0,γ(Ū) ≤ C||u||W k,p(U),

where the constant C depends only on k, p, n, γ, and U.

Theorem 4.4.2 (Existence of Solution) Suppose Ω = (0, a) × (0, b), and define the set

Y = H1((0, a))∩ {0 ≤ f(x) ≤ b, ∀x ∈ (0, a)}. If I(x, y) ∈ L2(Ω), then the minimization

problem (4.12) has a solution in Y.

Proof: For any f ∈ Y, denote by Γ(f) = {(x, f(x)), 0 < x < a} (the graph of f in Ω),

χ1 = H(y− f(x)) and χ2 = 1−H(y− f(x)) the characteristic functions of two disjoints
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sets E1, E2 in Ω above and below the curve Γ(f), (with E1 ∪ E2 ∪ Γ(f) = Ω). Then we

can write problem (4.12) as

inf
f∈Y

Ẽ(f) =
µ

2

∫ a

0

|f ′(x)|2dx +

2∑

i=1

λi

∫

Ω

(
I(x, y)− ci(χi)

)2

χi dxdy, (4.14)

where ci(χi) := (
∫

Ω
I(x, y)χi dxdy)/(

∫
Ω
χi dxdy).

Since Ẽ(0) = λ1

∫
Ω

(I−IΩ)2dxdy <∞, (IΩ is the mean of I in Ω), the infimum is finite

and we can construct a minimizing sequence fk ∈ Y, (i.e. limk→∞ Ẽ(fk) = inff∈Y Ẽ(f)),

such that Ẽ(fk) ≤ B for all k.

By General Sobolev Inequality, the space H1((0, a)) consists of 1
2

th-Hölder continuous

functions. (In fact, since we are in one dimension, fk are absolutely continuous on (0, a),

see [29], pp.246). Since Ẽ(fk) ≤ B, ||fk||C0, 12 ([0,a])
≤ C, for some C > 0. Thus (see [31],

pp.138), there is a subsequence, still denoted as fk, and a 1
2

th-Hölder continuous function

f0 such that fk → f0 uniformly on [0, a], and

sup
x∈(0,a)

|fk(x)− f0(x)|+ sup
x,y∈(0,a)
x6=y

|(fk(x)− f0(x))− (fk(y)− f0(y))|
|x− y|1/2 → 0, (4.15)

as k →∞.

Since fk ∈ H1((0, a)), the usual derivative of fk exists a.e. Then, for a.e. x ∈ (0, a) :

limk→∞ f ′k(x) = limk→∞
(

limh→0
fk(x+h)−fk(x)

h

)

= limh→0

(
limk→∞

fk(x+h)−fk(x)
h

)

= f ′0(x),

where we are able to interchange the order of the limits because the limit exists with respect

to each h and k, and in addition, fk are absolutely continuous and satisfy (4.15).

Clearly f ′0 ∈ L2((0, a)). Therefore we have shown that there exists f0 ∈ Y such that
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fk → f0 uniformly on [0, a] and f ′k → f ′0 a.e. on (0, a). This clearly implies
∫ a

0
|f ′|2 ≤

lim infk→∞
∫ a

0
|f ′k|2.

Denote χ1,k = H(y − fk(x)), χ1,0 = H(y − f0(x)), χ2,k = 1 − H(y − fk(x)), and

χ2,0 = 1−H(y−f0(x)). Then, fk → f0 uniformly on [0, a] impliesχi,k → χi,0 pointwise in

Ω, for i = 1, 2. Clearly ci(χi,k)→ ci(χi,0) as k →∞, (just apply Dominated Convergence

theorem). Therefore, we have

Ẽ(f0) ≤ lim inf
k→∞

Ẽ(fk),

i.e. f0 is a minimizer to (4.12). �

Formally solving problem (4.12) yields the following evolution equation for f in the

Gradient Descent direction of Ẽ:





∂f
∂t

= µf ′′(x) + λ1

∫ b
0

(I(x, y)− c1)2δε(y − f(x))dy

−λ2

∫ b
0

(I(x, y)− c2)2δε(y − f(x))dy, x ∈ [0, a],

f ′(0) = f ′(a) = 0.

(4.16)

where δε := d
dz
Hε, the derivative of the approximated Heaviside function.

We solve equation (4.16) using the fixed-point method given in the last section, where

the discretization in time is:





fn+1−fn
4t = µ(fn(x))′′ + λ1

∫ b
0

(I(x, y)− c1)2δε(y − fn(x))dy

−λ2

∫ b
0

(I(x, y)− c2)2δε(y − fn(x))dy, x ∈ [0, a],

(fn+1)′(0) = (fn+1)′(a) = 0.

(4.17)

Notice that the two fitting terms that are functions of the x-variable are integrals in the

y-direction. In our numerical computation, for each x, we compute the integral using the

approximated δε. We initialize f 0 by a constant, and as in the two-dimensional case, we
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Figure 4.6: Segmentation result of 1D modified Chan-Vese model. The parameters are
µ = 1.5 ·max2, λ1 = 1.0, λ2 = 0.1 (where max=maximum intensity value of image I).

take4t = 0.1 and ε = 4x = 4y = 1 pixel.

4.4.2 Numerical Results

We test the 1D modified model with the same image and are able to detect more accurately

the edge, see Figure 4.6. However, on the right side of the image where the true edge is

barely visible, the computed segmentation still misses the true edge. This is one known

short coming in computer vision when compared to the human eyes.

Another advantage of the 1D modified Chan-Vese model is the ability to detect the

wave-front edge in images that have texture patterns. In Figure 4.7 we show an example

of segmentation by this 1D model. For these types of streak-camera images, the original

Chan-Vese model would fail to detect the desired edge.

Remark on regularization by minimal length

We have also considered for our 1D Modified Chan-Vese model regularization by min-
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Figure 4.7: Segmentation result of 1D modified Chan-Vese model. The parameters are
µ = 0.2 ·max2, λ1 = 1.0, λ2 = 2.0 (where max=maximum intensity value of image I).

Figure 4.8: Segmentation result of 1D modified Chan-Vese model. The parameters are
µ = 0.5 ·max2, λ1 = 0.8, λ2 = 2.75 (where max=maximum intensity value of image I).
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Figure 4.9: Segmentation result of 1D modified Chan-Vese model with minimal length reg-
ularization. The parameters are µ = 0.4·max2, λ1 = 0.1, λ2 = 0.8 (wheremax=maximum
intensity value of image I).

imal length, in which case the regularizing term is

∫ 1

0

√
1 + |f ′|2dx.

Then the associated PDE has the term

f ′′

(1 + |f ′|2)3/2

in place of f ′′. A segmentation result is shown in Figure 4.9. Comparing to that in Figure

4.8, the contour tends to be straight line segments. This is expected since the penalty is on

the length of the graph of f.As a result, the contour misses much of the edge to be detected.

Therefore, we conclude that the H1 regularization as chosen is better for our application

than minimal length regularization.

4.5 Conclusions

We have examined and applied the Chan-Vese ”Active Contour Without Edges” segmen-

tation model to our problem of detecting the detonation wave edge in streak-camera im-
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ages. We have studied the drawbacks of the Chan-Vese model in our application and have

made modifications to the model by reducing it from a two dimensional problem to a one

dimensional problem. The modified 1D version performs much faster and yields more sat-

isfactory results, especially when texture patterns are present in the image. Moreover, the

strong regularization on f prevents the contour from breaking, hence we are able to detect

the edge in images with three different regions of different gray scale such as that in Figure

4.8. However, at regions in the image where the sharpness of the edge is not well-resolved

(but can still be seen by the human eyes) the 1D version also fails to detect the edge.

Finally, we would like to mention that the idea of using of the graph of a function to

detect an edge in two dimensional image can be generalized to detect a surface in three

dimension. In this case, the function f(x, y) is defined on a two dimensional domain, and

its graph {(x, y, f(x, y))} is a hypersurface in three dimension.
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Appendix

Lemma For every u ∈ Ln/(n−1)(Ω) and for every ~p ∈ Ln(Ω)n with div~p ∈ Ln(Ω), we can

define a distribution on Ω, denoted ~p ·Du, via the formula

〈~p ·Du, ϕ〉 = −
∫

Ω

(udiv~p)ϕdx−
∫

Ω

u(~p · ∇ϕ)dx, ∀ϕ ∈ D(Ω). (18)

Furthermore, the mapping (u, ~p)→ ~p·Du is bilinear weakly continuous fromLn/(n−1)(Ω)×

X into D′(Ω), the space of distributions on Ω, where

X = {~p ∈ Ln(Ω)n, div~p ∈ Ln(Ω)}, (19)

which is a Banach Space with the natural norm

||~p||X = ||~p||n + ||div~p||n. (20)

Proof: The right-hand side of (18) clearly makes sense for u, ~p, ϕ in the hypotheses. More-

over, for fixed u and ~p, this expression depends linearly and continously on ϕ under the

norm || · ||C1(Ω̄). Hence ~p ·Du is defined as a distribution (and coincides with the function

~p(x) · ∇u(x) if ~p and u are smooth enough).

For ϕ fixed, if um → u in Ln/(n−1)(Ω) and ~pm → ~p in X, then by Hölder’s Inequality,

−
∫

Ω

(umdiv~pm)ϕdx−
∫

Ω

um(~pm · ∇ϕ)dx −→ −
∫

Ω

(udiv~p)ϕdx−
∫

Ω

u(~p · ∇ϕ)dx,

This establishes the continuity of the mapping (u, ~p)→ ~p ·Du. �

144



Lemma Under the assumptions of Lemma 1 and if moreover u ∈ BV (Ω) and ~p ∈ L∞(Ω)n,

then ~p ·Du is a bounded signed measure with

∫

Ω

|~p ·Du| ≤ ||~p||∞ ·
∫

Ω

|Du|, (21)

and the following generalized Green’s formula holds

∫

Ω

~p ·Du =

∫

Γ

u(~p · ν)dHn−1 −
∫

Ω

udiv(~p)dx, (22)

Proof: First recall thatBV (Ω) ⊂ Ln/(n−1)(Ω) (by Poincaré’s inequality), and ~p ·Dumakes

sense by Lemma 1. For (21), let ~p and u be fixed. Let ~pext denote the function obtained by

extending ~p by 0 outside Ω. Let ~pm ∈ C(Ω̄)n be an approximating sequence for ~p obtained

by mollification of the function ~pext and restriction (of the mollified functions) to Ω. Then

||~pm||C(Ω̄)n ≤ ||~p||L∞(Ω)n ,

~pm(x)→ ~p(x) a.e. in Ω,

div~pm → div~p in Lnloc(Ω).

If ϕ ∈ D(Ω), then by (18) and these convergence results, we have

∫

Ω

(~pm ·Du)ϕdx→ 〈~p ·Du, ϕ〉, as m→∞,

and,

∣∣∣∣
∫

Ω

(~pm ·Du)ϕdx

∣∣∣∣ ≤ ||~pm||C(Ω̄)n ||ϕ||C(Ω̄)

∫

Ω

|Du|

≤ ||~p||L∞(Ω)n ||ϕ||C(Ω̄)

∫

Ω

|Du|
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so that

|〈~p ·Du, ϕ〉| ≤ ||~p||L∞(Ω)n ||ϕ||C(Ω̄)

∫

Ω

|Du|,

for all ϕ ∈ D(Ω), and (21) is proved.

A detailed proof for (22) can be found in ([8], pp. 315-317). �

Theorem The space GV (Ω) is isometrically isomorphic toW−1,∞(Ω) under the dual norm

|| · ||W−1,∞ to the norm || · ||W 1,1
0

=
∫

Ω
|∇u|dx.

Proof: (This proof is provided by the second author of [40])

We first recall a definition. Two normed spaces X ,Y are said to be isometrically iso-

morphic if there is a bijective linear operator L : X → Y such that ||L(x)||Y = ||x||X for

all x ∈ X .

Let P : W 1,1
0 → (L1(Ω))2 be a linear operator defined by Pu = ∇u for all u ∈

W 1,1
0 . Denote by W the range of P. Then W is a closed subspace of (L1(Ω))2, since W 1,1

0

is a Banach space. Since ||Pu||(L1(Ω))2 =
∫

Ω
|∇u|dx := ||u||W 1,1

0
, P is an isometric

isomorphism from W 1,1
0 (Ω) to W.

Suppose L ∈ W−1,∞. Define L∗ : W → R by L∗(Pu) = L(u) (this is well defined

since P is an isometric isomorphism). Then L∗ ∈ W ′ and ||L∗||W ′ = ||L||W−1,∞. By the

Hahn-Banach Extension theorem ([2], pp. 6), there is a norm preserving extension of L∗,

(still denoted by L∗), to all of (L1(Ω))2.

By the Riesz Representation theorem ([2], pp. 47), the dual of (L1(Ω))2 is identified

with (L∞(Ω))2. Hence, there exists ~g ∈ (L∞(Ω))2 such that L∗(~u) =
∫

Ω
(~u · ~g)dx, for all

~u ∈ (L1(Ω))2. Therefore, for all u ∈ W 1,1
0 (Ω),we have L(u) = L∗(Pu) =

∫
Ω

(∇u·~g)dx =

−
∫

Ω
udiv(~g)dx. Moreover,

||L||W−1,∞ = ||L∗||W ′ = ||L∗||(L1(Ω)2)′ = ||~g||L∞(Ω)2 = ||
√

(g1)2 + (g2)2||∞. (23)
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On the other hand, for any ~g such that L(u) =
∫

Ω
(∇u · ~g)dx for all u ∈ W 1,1

0 , clearly

|L(u)| ≤ ||~g||L∞(Ω)2

∫
Ω
|∇u|dx.Therefore, ||L||W−1,∞ := inf{||~g||L∞(Ω)2} = min{||~g||L∞(Ω)2},

over all such ~g. The infimum is attained at ~g in (23).

Now, suppose T ∈ D′(Ω) is defined by T = −div(~g), for some ~g ∈ L∞(Ω)2,

(i.e. T (φ) =
∫

Ω
(~g · ∇φ)dx for any φ ∈ D(Ω)). Then L ∈ W−1,∞(Ω) characterized

by L(u) =
∫

Ω
(∇u · ~g)dx is an extension of T to W 1,1

0 (Ω). Moreover, this extension is

unique: let u ∈ W 1,1
0 (Ω) and {φk}k ∈ D(Ω) such that ||φk − u||W 1,1

0
→ 0 as k → ∞.

Observe that |T (φk) − T (φj)| ≤ |
∫

Ω
(~g · φk) − (~g · φj)dx| ≤

∫
|~g · ∇(φk − φj)|dx ≤

||~g||L∞(Ω)2 ||φk − φj||W 1,1
0
→ 0 as k, j → ∞. Therefore {T (φk)}k is a Cauchy sequence

in R, and so converges to a limit which we denote by L(u), (since it is clear that if

{ϕk}k ∈ D(Ω) with ||ϕk − u||W 1,1
0
→ 0 then T (φk) − T (ϕk) → 0). Therefore, the func-

tional L thus defined is uniquely identified with T. And we have just shown that GV (Ω)

is isometrically isomorphic toW−1,∞ in the dual norm ||·||−1,∞ as defined above. �
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[52] S. OSHER, A. SOLÉ, AND L. VESE, Image decomposition and restoration using

total variation minimization and the H−1 norm, Multi. Model. Simul., Vol. 1 No. 3 : pp.

349-370, 2003.

[53] P. PERONA AND J. MALIK, Scale-space and edge detection using anisotropic dif-

fusion, IEEE Transactions on PAMI, 12 (7): pp. 629-639, 1990.

[54] P.T. ROCKAFELLAR, Convex Analysis, Princeton Univ Press, Princeton, NJ, 1970.

[55] S. ROUDENKO, Noise and Texture Detection in Image Processing, Preprint, 2004.

[56] L.I. RUDIN AND S. OSHER, Total variation based image restoration with free local

constraints, Proceedings of IEEE ICIP-94, Vol. 1: pp. 31-35, 1994.

153



[57] L. RUDIN, S. OSHER, AND E. FATEMI, Nonlinear total variation based noise re-

moval algorithms, Phys. D, 60: pp. 259-268, 1992.

[58] G. RUSSO AND P. SMEREKA, A remark on computing distance functions, J. Comp.

Phys., 163: pp. 51-67, 2000.

[59] D.M. STRONG AND T.F. CHAN, Exact solutions to total variation regularization

problems, UCLA CAM Report 96-41, October 1996.

[60] R. TEMAM, Dual variational principles in mechanics and physics, in ”Semi-Infinite

Programming and Applications,” (A.V. Fiacco & K.O. Kortanec, Eds.), Lecture Notes

in Economics and Mathematical Systems 215, Springer-Verlag, Berlin, 1983.

[61] R. TEMAM AND G. STRANG, Functions of Bounded Deformation, Archive for

Rational Mechanics and Analysis, 75 (1): pp. 7-21, 1980.

[62] E. TADMOR, S. NEZZAR, AND L. VESE, A multiscale image representation using

hierarchical (BV, L2) decompositions, Multiscale Modeling & Simulation 2(4) : pp.

554-579, 2004.

[63] J.-L. STARCK, M. ELAD, AND D.L. DONOHO, Image Decomposition: Separation

of Texture from Piece-Wise Smooth Content, SPIE annual meeting, 3-8 August 2003,

San Diego, California, USA.

[64] L. VESE, A study in the BV space of a denoising-deblurring variational problem,

Appl. Math. Optm., 44 : pp. 131-161, 2001.

[65] L. VESE, S. OSHER, Modeling Textures with Total variation Minimization and Os-

cillating patterns in Image Processing, Journal of Scientific Computing, 19(1-3) : pp.

553-572, 2003.

154



[66] L. VESE AND S. OSHER, Image denoising and decomposition with total variation

minimization and oscillatory functions, J. Math. Imaging Vision, 20: pp. 7-18, 2004.

[67] W.P. ZIEMER, Weakly Differentiable Functions: Sobolev Spaces and Functions of

Bounded Variation, Springer-Verlag, 1989.

155


