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Abstract. A nonlocal quadratic functional of weighted differences is examined. The weights
are based on image features and represent the affinity between different pixels in the image. By
prescribing different formulas for the weights, one can generalize many local and nonlocal linear de-
noising algorithms, including the nonlocal means filter and the bilateral filter. In this framework one
can easily show that continuous iterations of the generalized filter obey certain global characteristics
and converge to a constant solution. The linear operator associated with the Euler-Lagrange equa-
tion of the functional is closely related to the graph Laplacian. We can thus interpret the steepest
descent for minimizing the functional as a nonlocal diffusion process. This formulation allows a con-
venient framework for nonlocal variational minimizations, including variational denoising, Bregman
iterations and the recently proposed inverse-scale-space.

It is also demonstrated how the steepest descent flow can be used for segmentation. Following
kernel based methods in machine learning, the generalized diffusion process is used to propagate
sporadic initial user’s information to the entire image. Unlike classical variational segmentation
methods the process is not explicitly based on a curve length energy and thus can cope well with
highly non-convex shapes and corners. Reasonable robustness to noise is still achieved.
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1. Introduction. Evolutions based on partial differential equations (PDE’s)
have shown to provide very effective tools in image processing and computer vision.
For some recent theory and applications see [3, 47, 46, 19] and the references therein.
Here we will try to give a unified approach to both denoising and segmentation tasks
using nonlocal functionals and their respective nonlocal evolutions. In this paper we
focus on the simpler case of quadratic functionals and linear evolutions.

This study relates to many image processing disciplines and mathematical meth-
ods, some of which are not necessarily related to PDE’s: spectral graph theory [20, 42],
segmentation by seeded region growing [1, 65], graph-based segmentation [52, 48, 60],
the Beltrami flow on Riemannian manifolds [34, 54, 33], relations between the graph
Laplacian and the Laplace-Beltrami and other operators [6, 44] and more.

More specifically, the study was inspired by some recent studies on diffusion ge-
ometries [21, 44, 56], denoising by non-local means [10] and interactive segmentation
[8, 50, 38].

We summarize below only the most relevant results which will be used later in
the paper.

1.1. Spectral Graph Theory. Our framework can be viewed as a continuous
generalization of graphs and relates to concepts from spectral graph theory [20, 42].
A fundamental operator used in this field is the graph Laplacian.

Let G = (V,E) be a connected undirected weighted graph with (a finite set
of) vertices (nodes) V and edges E. To each edge ekl ∈ E between nodes k and
l a corresponding weight wkl ∈ E is defined. The weights are non-negative and
symmetric: wkl ≥ 0, wkl = wlk. We assume that a discrete function u is defined
on the nodes of the graph and denote by u(k) ∈ V the value of u at node k. The
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(weighted) graph Laplacian is

∆G(u(k)) :=
∑

l∈Nk

wkl(u(l) − u(k)), k, l ∈ V, (1.1)

where l ∈ Nk is the set of nodes with edges connected to k. Note that we define here
the Laplacian with an opposite sign to the usual graph theoretic definition so it will
coincide with the continuous definition.

The weight can be viewed as the inverse square distance between nodes. For
example, in a standard two dimensional grid with grid size ∆x, by assigning wkl =

1
(∆x)2 to the four nearest neighbors of each node and zero otherwise we get that

(1.1) reduces to the familiar discretized approximation of the Laplacian: ∆(u(k)) ≈
1

(∆x)2 (
∑

l∈Nk
u(l) − 4u(k)).

1.2. Nonlocal Means. In [10] Buades-Coll-Morel suggested the following non-
local filter for image denoising:

NL(u)(x) =
1

c(x)

∫

Ω

e−da(u(x),u(y))/h2

u(y)dy (1.2)

where

da(u(x), u(y)) =

∫

Ω

Ga(t)|u(x+ t) − u(y + t)|2dt (1.3)

Ga is a Gaussian with standard deviation a, and c(x) is a normalization factor:

c(x) =

∫

Ω

e−da(u(x),u(y))/h2

dy. (1.4)

The corresponding discrete formulation is:

NL(u)(i) =
∑

j

α(i, j)u(j)

where

α(i, j) =
1

c(i)
e−‖u(Bi)−v(Bj)‖2

2,a/h2

u(Bi) = (u(k) : k ∈ Bi), Bi is a small ball (patch, in general) around pixel i.
This method emerged as a generalization of the Yaroslavsky filter [62] and patch

based methods, proposed for texture synthesis by [22]. In [11] the asymptotic rela-
tion of neighborhood filters to Perona-Malik type PDE’s [49] is shown and a linear
correction to avoid staircasing is suggested. In [39] a fast algorithm was designed for
computing the fully nonlocal version. The study of [32] presented a statistical analysis
of the problem and suggested to use an adaptive window approach which minimizes
a local risk measure. The studies [39] and [32] both conclude that a more careful
selection of the pixels which are to be considered in the averaging can improve the
performance. This will be our conclusion also. Our iterative process will in effect
produce an adaptive window implicitly, although each iteration uses a simple fixed
window.
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Remark on the normalization: . The normalization using (1.4) does not guaran-
tee that the mean value of the filtered image u is the same as the mean value of the
input image. For white Gaussian noise (with mean zero) this property is not desired.
Also, normalizing in this manner introduces some bias from the original distance be-
tween points with many similar regions (c(x) high) to more rare and singular points
(c(x) low). Dividing by c(x) tends to diminish this distinction. Moreover, the nor-
malization breaks down the symmetry of the similarity between points in the image.
Although da(u(x), u(y)) = da(u(y), u(x)) the final similarity measure (after normal-
ization) between points x and y is not the same as between points y and x. Thus,
simply iterating Eq. (1.2) is not strictly a diffusion process. In fact it can be viewed
as taking steps in Jacobi’s method (see more details in Appendix D). We will show a
different normalization, very standard in iterative parabolic processes, which retains
symmetric similarities between points, ensures the preservation of the mean value and
does not tend to blur singular regions. We believe this may explain, in part, why our
proposed iterative process outperforms the original filter.

1.2.1. A variational viewpoint. In [35] Kindermann-Osher-Jones interpreted
the NL-means and neighborhood filters in general as regularizations based on nonlocal
functionals in the general form:

JKOJ(u) :=

∫

Ω×Ω

g

( |u(x) − u(y)|2
h2

)

w(|x− y|)dxdy, (1.5)

where the Yaroslavsky functional is

JY ar(u) :=

∫

Ω×Ω

(

1 − exp(
−|u(x) − u(y)|2

h2
)

)

w(|x− y|)dxdy,

and the NL-means functional is

JBCM (u) :=

∫

Ω×Ω

(

1 − exp(
−da(u(x), u(y))

h2
)

)

w(|x− y|)dxdy.

Filtering is obtained by solving a minimization problem using the above functionals.
In the above cases w(|x − y|) is a simple symmetric window and g(·) determines the
characteristics of the regularizer. The main problem is that in general these type of
functionals are not convex.

We follow this approach, simplifying the functional to a quadratic one by changing
the roles of g and w.

1.3. Graph-based segmentation algorithms.

1.3.1. Supervised and interactive segmentation. Boykov et al. [8] pro-
posed an interactive segmentation algorithm in which the user gives initial indica-
tions on the object to be segmented and the background with additional feedbacks
to correct possible errors in the segmentation. The method is based on representing
the image as a weighted graph and using a graph cut algorithm [9, 36] to solve the
segmentation problem. Improvements and extensions to the method were proposed
in [38, 50, 59]. We will show how our proposed nonlocal evolution can be used to per-
form segmentation with initial user inputs (supervised). The algorithm can be easily
extended to an interactive algorithm (where feedbacks on the results are given).
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1.3.2. Algorithms using the graph Laplacian. In [52] Shi and Malik sug-
gested to threshold the second smallest eigenvector of the graph Laplacian to approx-
imate the normalized cuts criterion. Weiss [60] suggested to use a combination of the
smallest eigenvectors and has shown the connection to the algorithm of [48]. Partially
labelled data was incorporated to the algorithm as constraints in [64]. Grady et al
[29, 28] used foreground-background marks, similar to [8], and solved the Laplace
equation with the marks as constraints. A more general machine learning approach
with kernel methods is presented in [37] and [6]. These kernels are adapted to the
given data structure and are able to generalize well information of a training set to a
much larger data set, or as in our case, infer from partially labelled data (regarding
points belonging to the object of background) to the entire image. We will use these
techniques to obtain a nonlocal segmentation algorithm.

1.3.3. Main contributions of the paper. A general quadratic variational
framework is presented for image and signal regularization. It consists of a prepro-
cessing stage, where affinities between different regions in the image are established,
and a regularizing stage (using a descent flow or by solving a minimization problem).
In particular we show how the nonlocal means filter can be generalized in this way,
introducing a consistent simplifying nonlocal procedure which produces superior re-
sults than the original method. We also show how the same evolution can be used for
both tasks of denoising and segmentation, by simply changing the initial conditions.

2. The Regularizing Functional. In this paper the following nonlocal func-
tional is examined:

J(u) :=
1

4

∫

Ω×Ω

(u(x) − u(y))2w(x, y)dxdy, (2.1)

where Ω ∈ R
n, x = (x1, . . . , xn) ∈ Ω and y = (y1, . . . , yn) ∈ Ω. For images we have

n = 2. The weight function w(x, y) ∈ Ω × Ω is positive: w(x, y) ≥ 0 and symmetric:
w(x, y) = w(y, x). For image processing tasks the weight function is based on image
features and can be understood as the proximity between two points x and y, based
on features in their neighborhood. The way to obtain such functions, along with a
few examples, is detailed below. A main difference from the functional (1.5) is the
role of w(x, y) which is much more significant in our case. It basically determines the
type of regularization. We will show that this linear and simple framework still allows
relatively complicated image-processing tasks, due to its non-local nature.

The corresponding Euler-Lagrange descent flow is:

ut(x) = −J ′(u)(x) = −
∫

Ω

(u(x) − u(y))w(x, y)dy. (2.2)

Let us define the following linear operator:

Lu(x) =

∫

Ω

(u(y) − u(x))w(x, y)dy. (2.3)

We assume our initial condition is the input image f . Then a steepest descent based
on (2.2) can be written as

ut(x) = Lu(x), ut=0 = f(x). (2.4)

We show below that the operator L has many properties which are similar to the
Laplacian, or more precisely to the elliptic operator: div (c(x)∇) with the symmetric
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matrix c(x) > 0. Note that L can be viewed as a natural continuous generalization of
the graph Laplacian. Therefore, one may interpret (2.4) as a nonlocal weighted linear
diffusion equation.

2.1. Variational Denoising. In the usual way, one can add a convex fidelity
term to the convex functional J . For the L2 fidelity, the denoised image u is the
minimizer of

E(u, f) = J(u) +
λ

2
‖u− f‖2

2, (2.5)

and u satisfies the Euler-Lagrange equation

−Lu+ λ(u− f) = 0. (2.6)

As commonly done, one can also view this as a constrained problem:

u := arg min J(u), s.t. ‖u− f‖2
2 = |Ω|σ2

n, (2.7)

where σ2
n is the variance of an additive noise in a noisy image f . Then λ is viewed as

a Lagrange multiplier and one can compute the constrained problem by initializing
e.g. with u|t=0 = f , λ = 1 and iterating:

ut = Lu+ λ(f − u), (2.8)

λ =
1

|Ω|σ2
n

∫

Ω

(u− f)Ludx, (2.9)

using the gradient projection method, as in [51].

2.2. Multichannel signals. Let f(x) := (f1, f2, . . . fM )(x) be a M channel
signal. A multi-valued affinity function is used to compute w(x, y) based on f (where
w(x, y) is the same for all channels) . Let u(x) := (u1, u2, . . . uM )(x) be the regularized
signal. The regularizing functional is

Jmc(u) :=
1

4

M
∑

i=1

∫

Ω×Ω

(ui(x) − ui(y))2w(x, y)dxdy, (2.10)

The multi-channel evolution for each channel ui is

ui
t(x) =

∫

Ω

(ui(y) − ui(x))w(x, y)dy, ui|t=0 = f i. (2.11)

See a Fourier analysis of the model and connections to general parabolic equations
in Appendix A, extension of the model to Bregman iterations [45] and inverse-scale-
space [13] in Appendix B and a nonlocal L1 functional in Appendix C.

2.3. Properties of L. In the following we show several basic properties of the
linear operator L, which will then help establish some results regarding the flow (2.4)
and the variational problem (2.5).

Proposition 2.1. The operator L defined by Eq. (2.3) admits the following
properties:

(a) If u(x) ≡ const then Lu(x) ≡ 0. For w(x, y) > 0, ∀x, y ∈ Ω, if Lu(x) ≡ 0
then u(x) ≡ const.
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(b) Let u(x0) ≥ u(x), ∀x ∈ Ω, then Lu(x0) ≤ 0. Similarly for the minimum, let
u(x1) ≤ u(x), ∀x ∈ Ω, then Lu(x1) ≥ 0.

(c) −L is a positive semidefinite operator, that is 〈−Lu(x), u(x)〉 ≥ 0, where 〈·, ·〉
denotes the L2 inner product.

(d)
∫

Ω
Lu(x) = 0.

Proof. The first part of Property (a) is immediate. For the second part it is easy
to see that for a given point x we have Lu(x) = 0 if for all y ∈ Ω either u(x) = u(y)
or w(x, y) = 0. Since w(x, y) > 0 we get that u is a constant. Actually one can obtain
a weaker condition than a strictly positive w(x, y). This will be shown later in the
proof of Lemma 2.2 where the weaker condition (2.12) is used.

Property (b) is straightforward since w(x, y) ≥ 0.
Property (c) can be validated (using the symmetry w(x, y) = w(y, x)) by:

〈−Lu(x), u(x)〉 =
∫

Ω×Ω
(u(x) − u(y))w(x, y)u(x)dydx

= 1
2

∫

Ω×Ω
[(u(x) − u(y))u(x)w(x, y)+

+(u(y) − u(x))u(y)w(y, x)]dydx
= 1

2

∫

Ω×Ω
(u(x) − u(y))2w(x, y)dydx ≥ 0.

Property (d) is easily seen by

∫

Ω

Lu(x) =
1

2

∫

Ω×Ω

[(u(x) − u(y))w(x, y) + (u(y) − u(x))w(y, x)]dydx = 0.

Let us further require a technical condition on the weight function. Although
w(x, y) can have zero values, we shall assume a certain level of connectivity, such
that there will not be any disjoint regions where no information is exchanged between
them throughout the evolution. We consider the following condition:

−L has a zero eigenvalue of multiplicity 1. (2.12)

This condition is equivalent to stating that −L has only a constant function in its
null-space. In graphs, this condition is equivalent to a connected graph, when the
linear operator is the graph Laplacian [42]. We can establish a similar relation in our
case:

Lemma 2.2. Condition (2.12) holds if and only if for any two points x, y there
exists a sequence: z1, . . . , zk such that w(x, z1)w(z1, z2)w(zk, y) > 0 (that is, every
element in the sequence is strictly positive).

Proof. We begin by assuming the sequence exists and showing that the only
eigenvector is a constant. First, we notice that if Lu = 0, then for any three points
x, y, z where w(x, z) > 0, w(z, y) > 0 we have u(x) = u(z) = u(y). Extending this
to larger sequences we have that if Lu = 0 and a sequence exists for x, y, as defined
above, then u(x) = u(y). Let us assume there exists an eigenvector v for the zero
eigenvalue which is not a constant. Then Lv = 0 and since it is not a constant there
must be x, y ∈ Ω where v(x) 6= v(y). We reach a contradiction as we assume that
between any x, y there exists a sequence.

The other direction can also be proved by contradiction. We assume there exist
two points x, y for which no sequence can be established. Thus for any z where
w(x, z) > 0 we have w(z, y) = 0 (or else we get a sequence). We can extend this
argument and say that all points which have a sequence to x do not have a sequence
to y. Let us define by Ωx the region containing all points with a sequence to x and by
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Ωy the region containing all points with a sequence to y. Surely Ωx ∩ Ωy = ∅ and we
can construct the following function v(z) = k1 if z ∈ Ωx, k2 if z ∈ Ωy, 0 otherwise,
where k1 6= k2 are two constants. We get that Lv = 0, thus the zero eigenvalue has a
multiplicity greater than 1.

We can now establish several properties of the flow (2.4).
Proposition 2.3. The flow (2.4) admits the following properties:
(i) The mean value is preserved,

1

|Ω|

∫

Ω

u(x, t)dx =
1

|Ω|

∫

Ω

f(x)dx, ∀t ≥ 0.

(ii) The extremum principle holds,

min
x

(f(x)) ≤ u(x, t) ≤ max
x

(f(x)), ∀x ∈ Ω, ∀t ≥ 0.

(iii) For w(x, y) which admits condition (2.12), the solution converges to a con-
stant,

u(x, t→ ∞) ≡ const =

∫

Ω

f(x)dx.

(iv) The following estimate holds:

1

2

d

dt
‖u(x, t)‖2

L2 ≤ 0.

Proof. (i) can be shown by computing the time derivative of the mean value and
using Property (d):

d

dt

( 1

|Ω|

∫

Ω

u(x)dx
)

=
1

|Ω|

∫

Ω

Lu(x)dx = 0.

(ii) is validated by Property (b) as any point x where u(x) is maximal is non-increasing
with time, and, similarly, any point x where u(x) is minimal is non-decreasing with
time.

Let us first validate (iv). Using Property (c) we can easily obtain:

1

2

d

dt
‖u(x, t)‖2

L2 = 〈u(x), ut(x)〉 = 〈u(x), Lu(x)〉 ≤ 0.

To prove (iii) we can use the estimate of (iv). It can be shown that the estimate is
strictly negative unless Lu(x) ≡ 0. Then we use condition (2.12) which dictates that
the only steady state solution ut = Lu = 0 is a constant.

Note that from properties (iv) and (i) it follows that d
dt var(u(t)) ≤ 0, where

var(u) is the (empirical) variance of u:

var(u) :=
1

|Ω|

∫

Ω

(

u(x) −
∫

Ω

u(y)dy

)2

dx.

Similar results can be obtained for the variational formulation, Eq. (2.5).
Proposition 2.4. The minimizer uλ of (2.5) admits the following properties:
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(i) The mean value is preserved,

1

|Ω|

∫

Ω

uλ(x)dx =
1

|Ω|

∫

Ω

f(x)dx, ∀λ ≥ 0.

(ii) The extremum principle holds,

min
x

(f(x)) ≤ uλ(x) ≤ max
x

(f(x)), ∀x ∈ Ω, ∀λ ≥ 0.

(iii) For w(x, y) which admits condition (2.12), the solution converges to a con-
stant as λ→ 0,

lim
λ→∞

uλ(x) ≡ const =

∫

Ω

f(x)dx.

(iv) The following estimate holds:

1

2

d

dλ
‖f − uλ‖2

L2 ≤ 0.

Proof. (i) can be shown by integrating the E-L equation (2.6), using Property
(d). One can prove (ii) by contradiction: Let us assume maxx(u(x)) > maxx(f(x)).
Denoting x0 ∈ {x : u(x) = maxx(u(x))}, we see that −Lu(x0) ≥ 0 and λ(u(x0) −
f(x0)) > 0, thus the E-L equation is not satisfied. To validate (iv), we can compute the

derivative with respect to λ of the E-L equation (2.6) to obtain: f −uλ = (λ−L)duλ

dλ .
Then, using the positive semidefiniteness of −L (Property (c)), we have

1

2

d

dλ
‖f − uλ‖2

L2 = 〈f − uλ,−du
λ

dλ
〉

= −λ‖du
λ

dλ
‖2
2 − 〈−Ldu

λ

dλ
,
duλ

dλ
〉 ≤ 0.

To prove (iii) we can use (iv) and for λ = 0 we have shown in the previous proposition
that the solution of the E-L equation with no fidelity term is a constant.

2.4. Weights based on affinity functions. We now explain and formulate
the weights w(x, y) which are based on affinity functions. The weights determine the
type of regularization induced by the functional J(u).

The basic affinity structure is of similarity between image features. Every data
point x ∈ R

2 is assigned with a feature vector Ff (x). It stands for image features
such as gray level value, edge indicator, dominant direction, dominant frequency, etc.
We denote by | · | the magnitude of the vector. The region Ωw(x) ⊆ Ω stands for a
neighborhood around x where the weights are non-zero. Ωw(x) should be symmetric,
such that y ∈ Ωw(x) iff x ∈ Ωw(y).

Let us define the following general weight function based on affinities:

w(x, y) =
{ g(Ff (x), Ff (y)) y ∈ Ωw(x),

0 otherwise,
(2.13)

where g(s1, s2) is a similarity function with the following properties:
(a) Positive, g(s1, s2) > 0.
(b) Symmetric, g(s1, s2) = g(s2, s1).
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(c) Bounded, g(s1, s2) ≤M <∞.
(d) Maximal at equality, g(s1, s1) ≥ g(s1, s2), ∀s1, s2.

For features in a suitable Banach space (a complete normed space), equipped with
the norm ‖ · ‖B , a typical similarity function is

g(s1, s2) = e−(‖s1−s2‖B/h)p

, (2.14)

where h is a soft threshold parameter which determines the norm values that are
considered similar. The power p ≥ 1 is often set to p = 2 when the Euclidian norm is
used .

2.5. Weights examples. Below are some weight functions examples. The first
ones are commonly used in image segmentation. We add the nonlocal Yaroslavsky
[62] and BCM [10] affinities, which may be useful for some applications.

Intensity, local:

g(Ff (x), Ff (y)) = e−(|Ff (x)−Ff (y)|/h)2 ,
Ff (x) = f(x),
Ωw(x) = {y ∈ Ω : |y − x| ≤ ∆x},

(2.15)

where ∆x is the grid size (for images usually ∆x = 1). This results in a 4 nearest
neighbors discretization.

Intensity, weighted , semi-local:

g(Ff (x), Ff (y)) = e−(|Ff (x)−Ff (y)|/h)2e−|x−y|2/(2σ2
d),

Ff (x) = f(x),
Ωw(x) = {y ∈ Ω : |y − x| ≤ r},

(2.16)

where σd controls the spatial decay and r is the window radius (r should be in the
order of σd).

For textures, let K1(x), . . . ,KM (x) be M linear filters of different directions and
frequencies. Let vi := u ∗ Ki, where ∗ denotes convolution. The weights can be
computed by (see also [52, 57]):

g(Ff (x), Ff (y)) = e−(|Ff (x)−Ff (y)|/h)2 ,
Ff (x) = (v1, . . . , vM )(x),
Ωw(x) = {y ∈ Ω : |y − x| ≤ r},

(2.17)

The nonlocal version of Yaroslavsky [62] affinity (in its weighted form) is very
similar to (2.15) except that the neighborhood Ωw(x) contains the entire image,

g(Ff (x), Ff (y)) = e−(|Ff (x)−Ff (y)|/h)2 ,
Ff (x) = f(x),
Ωw(x) = Ω,

(2.18)

NL-means [10] affinity:

g(Ff (x), Ff (y)) = e−(‖Ff (x)−Ff (y)‖2,a/h)2 ,
Ff (x)(u) = f(x) ∈ Bx,

where Bx is a patch centered at x,
Ωw(x) = Ω,

(2.19)
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Note that (2.18) can be viewed as a special case of (2.19) by taking Bx to be a one
pixel patch. One can also modify (2.19) to a semi-local version by restricting the
neighborhood: Ωw(x) = {y ∈ Ω : |y − x| ≤ r}. Also, in a similar way to (2.16), a
penalty can be introduced to account for pixels which are further from x. This can
be done by setting g in (2.19) to

g(Ff (x), Ff (y)) = e−(‖Ff (x)−Ff (y)‖2,a/h)2e−|x−y|2/(2σ2
d).

Some remarks: .
• The bilateral filter [58] affinity (gray level) is equivalent to (2.16). The SUSAN

filter [53] has also a similar structure to (2.16) (in this case the power in the
exponent of g can be larger than 2). See [5] and [23] for relations between the
bilateral filter and anisotropic diffusions as well as to other methods which
can be viewed as emerging from a Bayesian framework. The latter suggests
that statistical image processing can also be accommodated to the above
formalism.

• Each of the filters can be approximated (up to a normalization factor) by
several iterations of the flow (2.4), when its corresponding affinity is used
(e.g. (2.19) for NL-means).

• Certainly, many other denoising schemes (and affinities suggested for segmen-
tation) can be written in the above form.

3. Discretization. The equations are best discretized using the data structure
of a graph, where the pixels are the nodes and w(x, y) is represented by the graph
weights. One should make the weights sparse enough, so the complexity of the algo-
rithm would be linear. This constraint is usually not very limiting since in most cases
if a large window is used many connections have very low weight values which can
be ignored (set to zero). If there are many connections with high weight values we
suggest to sample them (taking randomly only part of them). The iterative process
can usually compensate for this sampling (a broad discussion on that topic is beyond
the scope of this paper).

Let uk denote the value of a pixel k in the image (1 ≤ k ≤ N), wkl is the sparsely
discrete version of w(x, y). We use the neighbors set notation l ∈ Nk defined as
l ∈ Nk := {l : wkl > 0}. The flow (2.4) is implemented by the explicit in time forward
Euler approximation

un+1
k = un

k + ∆t
∑

l∈Nk

wkl(u
n
l − un

k ), (3.1)

where un
k = uk(n∆t).

All the coefficients on the right side are nonnegative if

1 ≥ ∆t
∑

l∈Nk

wkl. (3.2)

This is the well known CFL restriction on the time step ∆t. This leads to maximum
norm stability, in fact a maximum principle, for this approximation to (2.4).

The approximation for (2.8) is

un+1
k = un

k + ∆t
∑

l∈Nk

wkl(u
n
l − un

k ) + λ∆t(fk − un
k ) (3.3)
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and the analogous time step restriction is

1 ≥ ∆t(
∑

l∈Nk

wkl + λ).

3.1. Computing weights for nonlocal means. We present two approxima-
tions of w(x, y) to a sparse discrete version wkl. First, we present the semi-local one,
which appears to be more useful for denoising. The second algorithm is fully nonlocal
and is intended for nonlocal segmentation.

3.1.1. Semi-local version.

Algorithm. For each pixel k:
1. Compute the similarity of all the patches in the window [we used 5× 5 patch
Bx and 11×11 window Ωw]. Construct Nk by taking the m most similar and
the four nearest neighbors of the pixel [we used m = 5].

2. Compute the weights wkl, l ∈ Nk using (2.19) and set to zero all other
connections (wkl = 0, l /∈ Nk).

3. Set wlk = wkl, l ∈ Nk.
Some remarks. In Step 1 taking the four nearest neighbors ensures connectivity

of wkl (condition (2.12) is satisfied) and increases the regularity of the process. It may
happen that l is not among the m closest nodes to k, but k is in the m closest nodes to
l. In this case we add the connections wkl and wlk. We allow up to m additional such
connections for each node. Thus, the maximum number of connections is 2m+4. We
have found that m can be very small and produce very good results. In fact enlarging
m can decrease performance. This may be understood in a similar manner to the
experimental results that increasing the size of the window decreases performance.
We use m = 5. For example, the weights computed for the Cameraman image had
on average 10.6 connections for each pixel.

CFL. As w(x, y) is bounded by 1, the CFL condition (3.2) can be achieved by
setting ∆t = 1

2m+4 . Usually when adding a fidelity term one need not change the size
of the time step and still have a stable flow in practice (for λ < 1).

3.1.2. Computational complexity. The complexity of computing the weights
using the semi-local algorithm is N × Windowsize × (Patchsize + logm). As an
example, for 11 × 11 window with a patch of 5 × 5 and m = 5 (we can approximate
logm = m

2 ) we need 121 × (25 + 2.5) ≈ 3300 operations per pixel. Most of the
computation time is in this part. For denoising, only a few tens of iterations are
usually needed. In the Cameraman example we evolve about 30 iterations with 10.6
nodes per pixel (a total of 318 operations per pixel). Using iterations we actually gain
much larger effective support at a very low computational cost. Compare this with a
fixed support of a 41 × 41 window in the original algorithm, which has less support
than 30 iterations of a 11 × 11 window. The computations are considerably larger:
1681 × 25 = 42025 operations per pixel. Moreover, in our approach the effective
support is very selective (data driven), which we believe significantly contributes to
the overall improved performance.

3.1.3. Fast approximation for the fully nonlocal version. This method
uses similar ideas to the ones presented in [39]. It is simpler and faster but not as
accurate. Still, reasonable denoising performance is achieved (better than the original
fully nonlocal version).

The main idea is that for the nonlocal version some fast global computations can
be made that help remove many non relevant patches. in [39] various image features
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were used. As the similarity between patches is based on a distance, one can use a
more formal approach of approximating nearest neighbors by similarity hashing, see
e.g. [27]. See also a projection approach aimed directly at the fast computations of
similarity patches in [30].

Algorithm.
1. Compute the mean and the standard deviation of all patches in the image.

Create a two dimensional bin table such that all patches in a bin are within
a specific range of mean and standard deviation from each other. Both types
of bins are spaced in h/2 increments.

2. To construct the set Nk: For each pixel k we consider the 9 bins around it
(3 × 3 window in the table, this ensures that patches which are very similar
are taken into account). Pick randomly 3m patches from these bins, check
their similarity to the patch of pixel k and take the most similar m of them.
Add to Nk also the four nearest neighbors (to ensure connectivity).

3. Compute wkl as in the local algorithm.

f NL-SS: u f − u

ROF: u f − u

ISS: u f − u

Fig. 3.1. MRI of a mouse brain (no synthetic noise added). Top left: input image. Filtered
result (middle) and residual (right) are shown for three different methods, from top to bottom:
Proposed nonlocal scale-space Eq. (2.4) with BCM weights (Eq. (2.19)). [8 iterations, h = 20];
ROF [51]; ISS based on ROF [13]. [we thank CCB UCLA and the Beckman Institute at Caltech for
the image].
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4. Denoising Experiments. Our nonlocal regularization framework, presented
above, is quite general and can have many variations. There are two main goals in
our experiments: first we would like to find a suitable setting which applies well to
most image denoising tasks. Then we show that this method is superior than several
other methods. We focus here only on the BCM weights, Eq. (2.19), which are more
advanced and can serve well for many applications. We first summarize our main
findings and then go into a more detailed discussion and explanation regarding the
figures.

Our main conclusions can be summarized as follows:

• A semi-local search window Ωw(x) = {y ∈ Ω : |y − x| ≤ r} performs better
than a fully nonlocal one Ωw(x) = Ω (at least when no preprocessing is done
to remove non-relevant regions in the search window, as in [39]).

• The steepest descent flow (nonlocal scale-space), Eq. (2.4), performs better
than the variational minimization, Eq. (2.5), for the same regularizer J(u)
and variance of residual.

• The proposed flow performs better (both visually and in terms of SNR) than
the original NL-means filter [10] as well as several well-known local PDE-
based regularizations [51, 2, 49, 13].

In Fig. 3.1 a noisy MRI image is processed. Both the nonlocal scale-space (NL-
SS) and the inverse-scale-space (ISS) perform well visually and do not smooth out
fine-scale details, as compared to ROF (second row). As the noise is part of the
original image one cannot compute the SNR. The rest of the images were degraded
synthetically by white Gaussian noise (in these cases we also measure and compare
the SNR). The clean and noisy images are in Fig. 4.1. We first did an extensive
comparison of the nonlocal variations (we show for comparison also the filtering using
ROF and ISS). The results, in Figs. 4.2 and 4.3, clearly indicate that the semi-local
versions are better than the fully nonlocal. Also, the best nonlocal algorithm is the
nonlocal scale-space, Eq. (2.4). We currently cannot justify convincingly why the
nonlocal variational denoising is inferior. A similar trend was found in experiments
with other images. In Fig. 4.4 we compare more closely the NL-scale-space and the
original NL-means. One can see in the residual part f − u, right side, that less edges
and details of the sails are eroded. Also less texture is smoothed out in the sea part
(bottom). Note that the comparison is for the same amount of filtering, that is the
variance of the residual is the same and is equivalent to that of the noise. This is not
the best result that can be achieved (for both cases), but it is chosen automatically
and it gives rather good results. One can achieve in this example somewhat better
SNR when the filtering is a little weaker, that is when var(f−u) ≈ 0.9σ2. This is true
for both methods, in any case our proposed denoising performs consistently better for
different residual variances (the residual variance can be considered as an alternative
scale parameter, see [26] for a broader discussion along with some analysis of the SNR
behavior).

In Fig. 4.5 we show the improved performance of the nonlocal (linear) scale-
space, Eq. (2.4), over traditional local nonlinear scale-spaces [49, 2]. As can be
seen in the residual part, thin lines are less eroded. Compared to [49] (bottom left),
there is also no sporadic enhancement of points. In Fig. 4.6 the measures var(u(t))
and var(f − u(t)) are shown as a function of time. It is shown empirically that
var(f − u(t)) is monotonically increasing with time in general and the algorithm can
be stopped according to the discrepancy principle: var(f − u) = σ2. Fig. 4.7 depicts
the interesting phenomenon that when the image is not very periodic, the optimal
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window size should be quite small (around 11 × 11) for both the original NL-means
and the proposed iterative method. The trial was done using the following window
sizes: 7, 9, 11, 13, 15, 21, 31, 41. In all cases we kept constant the variance of the
residual: var(f − u) = σ2.

g f

Fig. 4.1. Test images. Clean image g (left), noisy image f . Top: Cameraman σ = 20,
SNR=9.89. Second row: Sailboat σ = 20, SNR=4.40. Bottom row: Zebra, σ = 30, SNR=4.19.
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NL-means (original) NL-SS (nonlocal)

NL-means (original, semi-local) NL-SS (semi-local)

NL-var (semi-local) ROF

ISS

Fig. 4.2. Cameraman image filtering result u. Top row: NL-means (nonlocal), SNR=14.59,
by nonlocal scale-space (Eq. (2.4)), SNR=15.93. Second row: NL-means (11 × 11 window),
SNR=16.43, proposed nonlocal scale-space (11 × 11 window), SNR=17.25. Third row: proposed
nonlocal variational denoising (Eq. (2.7)), SNR=16.32, ROF [51], SNR=15.76. Bottom row: ISS
(relaxed) based on ROF [13], SNR=16.42. For all methods var(f − u) = σ2.
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NL-means (original) NL-SS (nonlocal)

NL-means (original, semi-local) NL-SS (semi-local)

NL-var (semi-local) ROF

ISS

Fig. 4.3. Cameraman image, corresponding residual parts f − u.
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NL-means (original): u f − u

NL-SS : u f − u

Fig. 4.4. Top: original NL-means algorithm, SNR=11.62. Bottom: NL scale-space,
SNR=12.71. For both methods the semi-local versions is used, window 11 × 11, patch 5 × 5,
var(f − u) = σ2.
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NL-SS (semilocal): u f − u

TV-flow: u f − u

Perona-Malik: u f − u

Fig. 4.5. Comparison of NL-linear scale-space with two local nonlinear scale spaces. Top:
NL-SS (semi-local), SNR=12.03. Middle row: TV-flow, SNR=10.36. Bottom row: Perona-Malik
(kpm = σ

√
2), SNR=10.37. For all methods var(f − u) = σ2.
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Fig. 4.6. Variance of u and (f −u) as a function of time (iterations)of the nonlocal scale-space
process (Cameraman image). Although monotonicity of var(f − u) is not guaranteed, in practice
it is increasing with time for most input images, thus a discrepancy principle can be used as the
stopping criterion (var(f − u(t)) = σ2).
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Fig. 4.7. SNR as a function of the window size (for the Cameraman and Sailboat images).
For both the original NL-means and the NL scale-space a rather small (semi-local) neighborhood is
preferred for many natural images.

5. Supervised Segmentation Algorithm. In this section a nonlocal segmen-
tation algorithm is outlined based on methods that are frequently used in the field of
classification and machine learning. A generic two class kernel-based classification is:
given n labelled points (xi, gi) ∈ R

d ×G, G = {−1,+1}. Generalize the labels to the
entire domain by

u(x) = sign

(

n
∑

i=1

giK(x, xi) + b

)

,

where K(x, y) is a kernel (usually data driven).
A very simple choice of the kernel is a Gaussian function, or the Green’s function

of linear diffusion. Here we use the nonlocal family of Green’s functions generated by
L. Similar ideas using the graph-Laplacian were proposed e.g. in [52, 60, 29, 37, 8].

Our motivation and analysis is continuous rather than discrete. We show how
some intuition can be gained by analyzing the weighted diffusion (heat) equation.
The segmentation of a step signal is analyzed. We expect that farther analysis in this
spirit of important special cases may give better understanding on the advantages and
limitations of such methods. An interesting connection is shown between denoising
and segmentation, where the same flow is used for both tasks, and only the initial
conditions are different. We first present the algorithm.

Let f be the input image and w(x, y) the corresponding weights. Let ΩO
0 be an

initial set which is part of the object to be segmented. Let ΩB
0 be an initial set which
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is part of the background. ΩO
0 and ΩB

0 are disjoint (ΩO
0 ∩ΩB

0 = ∅) and not necessarily
connected. In our algorithm these regions are defined by the user, who marks them
for a given image, specifying the object to be segmented. The supervised (but not
interactive) algorithm is:

1. Initialize

u0 :=







1, x ∈ ΩO
0

−1, x ∈ ΩB
0

0, otherwise

2. Evolve for a duration T the flow

ut(x) = Lu(x), ut=0 = u0(x). (5.1)

3. Define ΩO, the set of nodes approximating the Object, by:
ΩO := {x ∈ ΩO : u(x, T ) > 0}, and the Background by the complement:
ΩB = Ω − ΩO.

Note that the only difference between (2.4) and (5.1) is in the initial conditions: both
rely on the image f and the affinities to compute w(x, y), however (5.1) evolves the
initial user marks and not the input image.

5.1. Multiple objects. For multiple objects we generalize the algorithm using
a multichannel flow. Let Ω1

0,Ω
2
0 . . .Ω

M
0 be M disjoint sets of nodes which are part of

M regions to be segmented (including the background). This data is defined by the
user. The multiple objects segmentation algorithm is:

1. Initialize a M channel signal ui, i = 1, . . . ,M as follows

ui
0 :=

{

1, x ∈ Ωi
0

0, otherwise

2. Evolve for a duration T the flow

ui
t = Lui(x), ui

t=0 = ui
0(x), i = 1, . . . ,M. (5.2)

3. Define Ωi, the set approximating region i, by:
Ωi := {x ∈ Ω : i = arg maxj{uj(x, T )}}.

Note that the above algorithm can be related also to image colorization, where a
gray-scale image is colored by user-provided coloring examples (see an explanation of
the problem and a highly effective solution in [63]). We recently became aware of the
fact that similar ideas were mentioned by Szlam in [55].

5.2. Motivation and Analysis. Our motivation and analysis are both based
on the (local) linear weighted diffusion equation:

ut(x) = div (c(x)∇u), u|t=0 = u0, (5.3)

where c(x) is a spatially varying diffusion coefficient. The algorithm is then extended
to the “nonlocal diffusion” flow, Eq. (5.1), where w(x, y) replaces the role of c(x).

5.2.1. Physical motivation: pool with a barrier. We would like to illustrate
the segmentation problem by a simple physical problem which may give more intuition
regarding the algorithm.

The model consists of a pool with water at a certain constant temperature T0.
Inside the pool there is a thin barrier that separates the pool into two parts. The
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Fig. 5.1. Physical motivation for the segmentation algorithm. Illustration of a pool with a
barrier.

goal is to locate the barrier (see the illustration in Fig. 5.1). We are given that the
conductance of heat of the barrier is much lower than that of water. A simple solution
to the problem is to pour cold water on one side of the pool, the left for instance, and
pour hot water on the other side, wait a few moments, and use the following decision
rule: any region with temperature above T0 is to the right of the barrier, any region
with temperature below T0 is to the left of the barrier.

To model this problem we use the diffusion (heat) equation with spatially varying
diffusion (conductance) coefficient. For simplicity we assume a unit diffusion coeffi-
cient c(x, y) = 1 everywhere except at the barrier and c(x, y) = ε at the barrier. More
details on the physical problem can be seen in [25].

5.2.2. Analytic solution. The general solution of Eq. (5.3) is of the form:

u(x, t) =

∫

Ω

K(y, x; t)u0(y)dy, (5.4)

where K(y, x; t) is a non-stationary Green’s function.
Let us first write a solution for the one dimensional case where c(x) is piecewise

constant. The case can be viewed as a conductance problem for n-layer composite
slabs with a constant conductivity in each layer. See [41] Ch. 9 for a detailed formal
solution of the general problem. In our case we assume perfect thermal conductivity
with continuity of both the temperature and flux on the boundaries of the inner layers.
Neumann boundary conditions are assumed for the two outer layers. We denote by
xk, 0 ≤ k ≤ n, the n + 1 boundaries of the n layers, where xk < xk+1 and x0, xn

coincide with the left and right boundaries of the domain, respectively. u0k is the
value of u0 in layer k: u0k(x) := u0(x), x ∈ [xk−1, xk], and similarly for uk(x, t), ck.
The solution for each layer uk(x, t), 1 ≤ k ≤ n, is:

uk(x, t) =

∞
∑

i=1

ψk(µi, x)

Ni
e−µ2

i tũ0i, (5.5)

where Ni is a normalization factor

Ni :=

n
∑

k=1

∫ xk

xk−1

ψ2
k(µi, x)dx,

ũ0i is defined as

ũ0i :=
n
∑

k=1

∫ xk

xk−1

ψk(µi, x)u0k(x)dx,
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and µi, ψk(µi, x) are the eigenvalues and eigenfunctions, respectively, solving

d2ψk(µi, x)

(dx)2
+
µi

ck
ψk(µi, x) = 0.

5.2.3. Step edge - an approximate solution. In order to gain some more
intuition on the behavior of the solution, we would like to analyze a simple but
important case of the segmentation of a step signal.

Our setting is as follows. Let f(x) be a one dimensional step signal: f(x) :=

1 if x > 0, 0 otherwise . Let c(x) = e−(|∇f |/k)2 . In this case we get

c(x) =
{

0 x = 0,
1 otherwise.

This trivially decouples the domain into two separate regions with no connection
between them and our algorithm will give a perfect segmentation. However this
result is not very helpful, since in a discrete setting c(x) will not attain zero at x = 0.
Therefore we would like to analyze the discrete setting with a spatial resolution h.
We can assume the conductivity is defined between two consecutive grid points and
estimate ci+1/2 := e−(|fi+1−fi|/(kh))2 . To gain symmetry around zero, we shift the

problem by 1
2 to have:

ci =
{ ε i = 0,

1 otherwise,

where ε = e−(1/(kh))2 (we assume kh � 1). We can model it continuously by the
following piecewise constant conductivity:

c(x) =
{

ε x ∈ (−h
2 ,

h
2 ),

1 otherwise.

Clearly, we can obtain an analytic solution of the problem using (5.5). However,
we prefer to present an alternative way in this special case, which may better describe
the characteristics of the solution. For simplicity we assume an unbounded domain
x ∈ R. We add the superscripts −,+, ε to denote the negative, positive and center
regions, respectively, such that:

u− := u(x), x ≤ −h
2
; u+ := u(x), x ≥ h

2
; uε := u(x), x ∈ (−h

2
,
h

2
),

and similarly for the flux J(x) := c(x)ux in each region:

J−(x) := c−(x)u−x = u−x ; J+(x) := c+(x)u+
x = u+

x ; Jε(x) := cε(x)uε
x = εuε

x.

We use the hypothesis of continuity in the temperature and flux at the boundary of
each layer:

u+(h
2 ) = uε(h

2 ), u−(−h
2 ) = uε(−h

2 ),
J+(h

2 ) = Jε(h
2 ), J−(−h

2 ) = Jε(−h
2 ).

Moreover, we assume h is small (a thin slab) so that the gradient of uε can be ap-
proximated by a linear function and the flux by a constant: Jε(−h

2 ) = Jε(h
2 ). We can

thus obtain the following simplified boundary conditions relating u+ to u−:

(i) u+
x (h

2 ) = u−x (−h
2 )

(ii)
u+( h

2
)−u−(−h

2
)

h = 1
εu

+
x (h

2 ).
(5.6)
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Let us examine the case of a Green’s function at the positive side, that is u0 =
δ(x − x0), x0 >

h
2 . As the problem is symmetric, a similar analysis will hold for the

negative part. We can have a good approximation of the solution for u+ using the
method of images. For the case of two media where c(x) = 1, x ≥ h

2 ; ε, x < h
2 the

solution for u+ can be computed by assuming a homogeneous medium and adding a

mirror image source Aδ(x+x0−h) where A = 1−√
ε

1+
√

ε
. The solution for x < h

2 is in the

order of 1−A = 2
√

ε
1+

√
ε
� 1. With a third medium at x < −h

2 , as in our case, there will

be feedbacks in the order of 1−A which are small, compared with u+, as A� 1−A
for small ε. u− is approximated by using (5.6) and the relation u+(h

2 ) � u−(−h
2 ) for

ε small enough. The problem simplifies to a semi-infinite slab at x ∈ (−∞,−h
2 ) given

the following flux at the boundary:

J0(t) = J−(−h
2
, t) =

ε

h
u+(

h

2
, t).

A solution is obtained using Duhamel’s theorem (see e.g. [16], Ch. 2), which for a
semi-infinite slab originating at x = 0 yields

u(x) = 2

∫ t

0

J0(t− τ)gσ(τ)(x)dτ.

We can thus have the following approximate solution of the Green’s function for
x0 >

h
2 :

u+(x, t) ≈ gσ(t)(x− x0) +Agσ(t)(x+ x0 − h)

u−(x, t) ≈ 2ε(1+A)
h

∫ t

0
gσ(t−τ)(x0 − h

2 )gσ(τ)(x+ h
2 )dτ,

(5.7)

where gσ(t) is a one dimensional Gaussian: gσ(t)(x) = 1√
2πσ

e−x2/(2σ2) and σ(t) =
√

2t.

In Fig. 5.2 the approximate solution of (5.7) is shown and compared to a simulated
solution. A good agreement is shown between both solutions. In Fig. 5.3 some steps
in the evolution are shown. It is clear that for small ε the segmentation is very robust
and does not rely on the specific stopping time or specific location of the marks (we
remind that for a wrong segmentation to happen the magnitude of u− of one mark
should be larger than the magnitude of u+ of the other mark). A specific example of
evolving both marks is depicted in Fig. 5.4. The case of a two dimensional step edge
is shown in Fig. 5.5. Here the image is quite noisy and ε is not very small. Still we
get a clear distinction between the sides. The case of a noisy circle, with points inside
and outside the circle, is shown in Fig. 5.6. An example of the nonlocal flow, where
the weights are based on the (fully nonlocal) BCM affinity (2.19), is given in Fig.
5.7. One can clearly see the nonlocal support of the Green’s function after only 30
iterations and that the dominant regions have similar feature as the initial condition.

5.2.4. Remark: curve length and noise sensitivity. The method does not
take into account curve length, as done in most of the variational segmentation al-
gorithms ([43, 31, 17, 18] and their extensions). Therefore it is less robust against
noise, however it may segment better highly non-convex shapes (with long bound-
aries) and does not tend to smooth corners. If curve shortening is desired for certain
applications, it can be gained implicitly by denoising the input image f beforehand,
using [51] for instance. Post-processing is also possible by applying curve-smoothing
methods (such as mean-curvature-flow) to the segmentation result.
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Fig. 5.2. Comparing the approximate analytic solution, Eq. (5.7), to simulation results. From
left: the simulated and analytic solutions superimposed, enlargement of the negative side, difference
between the solutions: E = usimulated − uanalytic: positive side, negative side (right). [x0 = 5.5,

t = 100, k = 3, h = 1, ε = e−(1/(kh))2 ].
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Fig. 5.3. Example of the evolution in time of the approximate analytic solution, Eq. (5.7), at
times t = 10, 100, 400 (from left to right, respectively). [x0 = 14.5, other parameters as above].

6. Segmentation Experiments. Below are some experiments testing the su-
pervised segmentation algorithm. First, we make some experiments which are local
and approximate the above discussion and analysis regarding linear weighted diffu-
sion (Eq. (5.3)). In this case an edge which induces low diffusivity can indeed isolate
regions only if it has considerable support. Edges with small support which are due
to noise or sporadic small outliers have little effect. Outliers take their values ac-
cording to the dominant value in the region which surrounds them (as some “labeling
information” does penetrate even with low diffusivity). This most often makes the
correct assignment of the regions to Object and Background. Next, we show a more
advanced segmentation using the BCM weights. We also use here the fully nonlocal
version, demonstrating that in this case the labelling information is not constrained
by the spatial location of the initial marks. Certainly, the degree of localization of
the weights and thus the entire process can be fully controlled by the user and will
vary according to the specific application.

In Figs. 5.8 - 5.12 the experiments are done with the simple affinity (2.15), so

that w(x, y) = e−(|f(x)−f(y)|/h)2 is evaluated only at the 4 nearest neighbors. In Fig.
5.8 two regions with an edgy boundary and outliers are separated. This corresponds
to the pool with a barrier problem discussed above. In Fig. 5.9 we show that “leaks in
the barrier”, represented by local blurs near the shared boundary of the two regions,
are handled well.

In Fig. 5.10 a polygon is segmented, keeping the corners. In Fig. 5.11 we show
that the algorithm is quite robust to the user data (marks), as long as they are correct.

In Fig. 5.12 a horse silhouette image is processed with additive white noise and
some spots both inside and outside the object. The segmentation process can perform
with this moderate levels of noise, corners and fine details are correctly segmented.

In Fig. 5.13 we show a typical case where the algorithm can fail. The second
problem is illustrated in Fig. 5.13, the background marks are very uneven and do not
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Fig. 5.4. Example of the segmentation algorithm using the approximate analytic solution. The
user marks an object point at x = 16 and a background point at x = −10. The corresponding initial
condition is u0(x) = −δ(x + 10) + δ(x − 16). The evolution is for the times t = 10, 100, 400 (from
left to right, respectively). [k = 3, h = 1].
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Fig. 5.5. Example of a Green’s function, the input image is a noisy step. From left: input
f , light point marks the location of the function at t = 0 (superimposed on f with a low contrast),
Green’s function at t = 40.

surround the object. This does not mean a failure in all cases, but the results then
depend much more strongly on the specific parameters (h, stopping time) noise level
etc. We interpret this result as though the marks of the object are“closer” to the right
part of the background than the background mark on the left. For a fully nonlocal
algorithm, this type of failure will not happen as only features similarities determine
the evolution and not spatial distance. A different type of failure would happen if the
marks are not given correctly. See our report [25] for an example.

Figs. 5.14 - 5.15 show experiments with NL-means metric. We use the fully
nonlocal scheme here. In this case a single segment can contain many objects which
are very far apart, but have the same features. The image contains three main types
of objects, in Fig. 5.14 the dark part of the cells is not marked as either object
or background. The ambiguity is reflected by the fact that those regions stay gray
(second row), meaning the value is very close to zero. Apparently the values are
slightly positive and the thresholding operation at the end classifies them as part of
the object. If the dark regions are to be marked as background, as done in Fig. 5.15,
the final classification changes accordingly. Note that very small and local marks are
needed for the algorithm to give a good classification of the different objects.

7. Discussion and Conclusion. It was shown in this paper how various denois-
ing methods can be realized using a nonlocal weighted quadratic functional. Specif-
ically, the nonlocal means algorithm [10] can be generalized in various manners (as
a scale-space, convex variational problem or as inverse scale space [13]). Our current
experiments indicate that for images the nonlocal (forward) scale-space approach per-
forms best. It is also the fastest to compute. The computation complexity is similar
to the original algorithm (for the same window and patch sizes), as most of the pro-
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Fig. 5.6. Example of a Green’s function, the input image is a noisy circle. Top, from left:
input f , location of the function at t = 0 (inside the circle), Green’s function at t = 40. Bottom,
from left: location of the function at t = 0 (outside the circle), Green’s function at t = 40.

cessing time is devoted to computing the weights.
The method consistently outperforms the original nonlocal means algorithm. At

this point we cannot claim to fully understand the reasons for that. Three major
differences between the methods can account for the improved performance: we use a
different normalization which keeps symmetric similarities and does not tend to blur
rare and singular regions; we use very sparse weights (about 10 on average for each
pixel), which are chosen selectively; the process is iterative - allowing more complex
interaction between the pixels and extended support of the averaging, which is data-
driven (and not predetermined). As was shown here experimentally (see Fig. 4.7),
simply extending the support by using a larger window (or the entire image, in the
extreme case) usually degrades the performance, unless the image is highly periodic.

The current framework is spatially varying but still linear. Several generaliza-
tions to a nonlinear framework are possible. One alternative is to use a L1-based
functional (as suggested in Appendix C), which still retains a convex framework. An-
other possibility is to follow the (local) nonlinear diffusion mechanism [49] and update
the weights at each iteration. Thus w(x, y) would depend on the evolved image u and
not on the input image f . This can increase the computational complexity and also
may raise some stability issues. A nonlinear framework may add robustness when
the weights which are calculated according to the input image are not very reliable
(due to high noise) and some strong connections contain outliers. One may use the
proposed convex regularizer for applications other than denoising or segmentation.
For example, a nonlocal generalization of variational inpainting [4] can be suggested.

Additionally, it was demonstrated how nonlocal supervised segmentation can be
performed, following ideas of classification by kernel based methods. The main idea
is to extend the user marks (“labels”) of object and background to the entire image
by using the image adaptive Green’s function as the kernel. This translates to simply
diffusing the marks (and thresholding at the end).
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Fig. 5.7. Example of Green’s function based on NL-means. Top: input image. Second row:
location of two functions at t = 0. Third row: Green’s functions after 30 iterations. Fourth row:
mesh plots.
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Input image User marks: Object Background
O (light), B (dark)

Fig. 5.8. Edgy step with outliers.

Input image User marks: Object Background

Fig. 5.9. Edgy step with two blurry regions on the edge.

Input image User marks: Object Background
O (light), B (dark)

Fig. 5.10. Polygon with outliers.

Input image User marks: Object Background

Fig. 5.11. Polygon as previous figure. Different marks given by the user (for the same objective).
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Input image User marks: O (light), B (dark)

u, Iter 10 Iter 100

u, Iter 1000 Iter 5000

Object Background

Fig. 5.12. Horse silhouette, with spots in both object and background, white Gaussian noise
is added (σ = 15). 4-neighbor scheme. In the second and third rows, the advancement of the
information with the iterations is illustrated (depicting values above 0.001 in white and below −0.001
in black).
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Input image User marks: O (light), B (dark)

Object Background

Fig. 5.13. Failure example: Marks of the background are too sparse and uneven.

Input image User marks: O (light), B (dark)

u, Iter 8 Iter 70

Object Background

Fig. 5.14. Segmenting with the nonlocal flow, based on NL-means. One background mark is
given. u is shown in the range [−0.001, 0.001], values over / under are saturated to white / black,
respectively. Object is defined by u > 0.
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Input image User marks: O (light), B (dark)

u, Iter 8 Iter 70

Object Background

Fig. 5.15. Two background marks are given.
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Appendix A. Fourier Analysis. It is instructive to compare equation (2.4)
with standard linear parabolic equations. For example, suppose w(x, y) = w(|x− y|),
(which is definitely not recommended for practical calculations). For simplicity, we
let Ω be all of R

N . We now have

ut = −
∫

(u(x) − u(y))w(|x− y|)dy.

Let ŵ(ξ) =
∫

R
e−(ix·ξ)w(|x|)dx be the Fourier transform of w. The evolution equation

becomes

ût = û(ξ)[ŵ(ξ) − ŵ(0)].

Because w(x) = w(|x|), we have

ŵ(ξ) − ŵ(0) = −
∫

(ξ − x)2

2
w(|x|)dx+O(|ξ|4).

So

L(u) ≈ 1

2

N
∑

i,j=1

aij
∂2

∂xi∂xj
(u)

with aij = 1
2

∫

RN xixjw(|x|)dx. This is a symmetric parabolic equation. For example
if

w(x, y) =
δ(x− y − h) + δ(x− y + h)

2h2
=
δ(|x− y| − h)

2h2
, ∈ R

1

then ŵ(ξ) = cos (hξ)
h2 and ŵ(ξ) − ŵ(0) = − ξ2

2 + O(h2ξ4) so L(u) ≈ 1
2

∂2

∂x2 . Smoothing
out this w by, for example, using

ŵσ(ξ) = cos(hξ)
e−σh2|ξ|2

h2

(which means convolving w with a Gaussian of variance σh2) leads us to ŵσ(ξ) −
ŵσ(i) = ξ2

(

− 1
2 − σ

)

so L(u) ≈
(

1
2 + σ

)

∂2

∂x2 .

A.1. Link with more general parabolic equations. Consider the parabolic
equation

ut =

N
∑

j=1

∂

∂xi
(aij(x)uxj

) = Mu

to be solved in Ω ⊂ Rn, aij is a positive definite symmetric matrix, with ∂u
∂n = 0 on

∂Ω. Then

< −Mu(x), u(x) >=

∫

RN

N
∑

i,j=1

aij(x)uxi
uxj

.
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Compare this with

< −Lu(x), u(x) > =
1

2

∫ ∫

(u(x) − u(y))2w(x, y)dxdy

≈ 1

2

∫ N
∑

i,j=1

bij(x)uxi
uxj

where

bij = bij(x) =

∫

Ω

w(x, y)(yi − xi)(yj − xj)dy.

So we can expect to associate L with M up to quadratic terms by defining

aij =
1

2

∫

Ω

w(x, y)(yi − xi)(yj − xj)dy.

Appendix B. Bregman Iteration and Inverse Scale Space.

In [13],[15] we developed an inverse scale space (ISS) and relaxed inverse scale
space approach to denoising. It was based on the continuous limit of Bregman itera-
tions devised in [45], not only for denoising but for blind deconvolution [40] and other
reconstruction tasks [61],[7] as well as being a useful theoretical device to obtain sharp
estimates in standard reconstruction methods [14]. Briefly, to reconstruct an image
from a given data f we begin with the variational problem

u1 = arg min
u

(J(u) + λH(u, f))

(see [45] for more details). This leads to the sequence

uk = arg min
u

(J(u) − J(uk−1)− < u− uk−1, pk−1 > +λH(u, f))

k = 1, 2, . . . , with u0 = 0 and J(0) = p0 = 0, for λ > 0, where pk−1 = p(uk−1)
and p(u) is an element of the subgradient of J(u). Under reasonable hypotheses it
follows that uk → ũ the minimizer of H(u, f) monotonically, but, more importantly,
the Bregman distance between uk and g, g a ”denoised version of ũ”, which means
J(g) <∞, decreases until uk gets too close to ũ. See [45] for the precise results.

The Bregman distance is defined by

D(g, u) = J(g) − J(u)− < g − u, p(u) > .

For J(u) defined by (2.1), we have

D(g, u) = 1
4

∫

Ω×Ω
((g(x) − u(x)) − (g(y) − u(y)))2w(x, y)dxdy

= J(g − u).

The inverse scale space equation associated with (2.5) is

− Lut = (f − u)

or
ut = (−L)−1(f − u)

with u(0) = 0 and the normalization
∫

u =
∫

f = 0 is required.
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Solving this involves inverting L and evaluating (L−1) at every time step, which
is computationally nontrivial.

Instead we use the relaxed inverse scale space approximation [13]:

∂u

∂t
= L(u) + λ(f − u+ v)

∂v

∂t
= α(f − u)

for λ, α > 0, α ≤ λ
4 with initial data u(0) = v(0) = 0.

Appendix C. L1 functional. We may also consider the following functional
which can be interpreted as a weighted non-local total-variation:

J1(u) :=
1

2

∫

Ω×Ω

|u(x) − u(y)|w(x, y)dxdy, (C.1)

with the the corresponding steepest descent:

ut(x) = −J ′
1(u)(x) =

∫

Ω

sign(u(y) − u(x))w(x, y)dy. (C.2)

The non-local analogue of this framework to ROF [51] is then

E1(u, f) = J1(u) +
λ

2
‖f − u‖2

2. (C.3)

For more details on extending the nonlocal framework from a linear to a convex one
see [24].

Appendix D. Iterating NL-means. In [12] and also in [55] the NL-means
algorithm is applied iteratively. We can formulate this as:

uk+1(x) =

∫

Ω

uk(y)w(x, y)
∫

Ω
w(x, ŷ)dŷ

dy,

where w(x, y) = e−da(u(x),u(y))/h2

and da(·, ·) is defined in (1.3). This can be under-
stood as an analogous to Jacobi’s iterative method for solving

Lu(x) =

∫

Ω

(u(y) − u(x))w(x, y)dy = 0,

where we initialize with f . Naturally, the final solution as k → ∞ is not of interest
(as it is simply a constant) and one iterates only a limited number of times. This
type of iterations induce large “time steps” and the accurate amount of filtering may
be somewhat hard to control.

Our approach in contrast is a gradient descent one (for minimizing J(u)), which
can be written iteratively as:

uk+1(x) = uk(x) + ∆t

∫

Ω

(uk(y) − uk(x))w(x, y)dy,

with f as initial condition.
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