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Abstract

We prove a weak upper bound on the coarsening rate of the discrete-in-space version of
an ill-posed, nonlinear diffusion equation. The continuum version of the equation violates
parabolicity and lacks a complete well-posedness theory. In particular, numerical simula-
tions indicate very sensitive dependence on initial data. Nevertheless, models based on its
discrete-in-space version, which we study, are widely used in a number of applications, in-
cluding population dynamics (chemotactic movement of bacteria), granular flow (formation
of shear bands), and computer vision (image denoising and segmentation). Our bounds have
implications for all three applications.

1 Introduction.

We prove a weak upper bound on the coarsening rate of a finite difference approximation
of an ill-posed nonlinear parabolic partial differential equation (PDE) in one and two space
dimensions. This finite difference approximation arises in the study of population dynamics,
where it describes a class of reinforced random walks on a lattice, and in granular flow, where
it is a simplified one dimensional model for the formation of shear bands by anti-plane shear in
a granular medium. The scheme also has strong connections to a PDE and discrete algorithm
introduced by Perona and Malik for image denoising. Our results apply to the Perona-Malik
method in one space dimension.

Our proof relies on a method introduced by Kohn and Otto in [14] for proving weak
upper bounds on the coarsening rates of energy driven systems. Given a system length scale
L and energy E, their method requires only a dissipation inequality between dL

dt and dE
dt and

a pointwise isoperimetric inequality relating L to E. These inequalities are combined with
an ODE argument to prove a time-averaged lower bound on the energy that is conceptually
equivalent to an upper bound on the coarsening rate. Kohn and Otto first applied the method to
Cahn-Hilliard models for the coarsening of an equal-volume fraction binary mixture [14], and
it has more recently been applied to both mean-field [8] and phase-field [9] models of phase
separation, in addition to multicomponent phase separation [16], Mullins-Sekerka evolution
of a binary mixture in the small volume fraction regime [7], epitaxial growth [15], and thin
film droplets [18].

Although we follow the method of proof outlined in [14], the problem studied here re-
quires new arguments to prove the isoperimetric inequality. In addition, the discrete setting
distinguishes it from previous examples in a substantial way. The system’s coarsening rate
depends on the minimal length scale h (the grid cell width for the finite difference scheme)
– numerical experiments show that the coarsening slows to a halt as h → 0 [25]. Any good
bound on the system’s coarsening rate must reflect this dependence. We further remark that
while the system studied here may be derived as a finite difference scheme for a PDE, our
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primary interest is the discrete system itself, not the PDE. As is discussed in sections 1.2-
1.3, the system is interesting in its own right, making it the subject of much recent research
[10, 11, 19, 25].

We present results for one and two space dimensions, but for clarity, we limit discussion
in the first few sections to the one dimensional result. The remainder of Section 1 describes
the coarsening behavior observed in numerical experiments with the one dimensional scheme
(Sections 1.1-1.3), and then explains the overall method of proof and states our main theorem
(Section 1.4) in one dimension. Section 2 is devoted to establishing some fundamental prop-
erties of the scheme under study. One of the main ingredients of the proof of our main result,
a decay relation that results from the gradient flow structure of the system, is established in
Section 3. Section 4 is devoted to the second, more interesting, ingredient: an interpolation
inequality. Section 5 then presents the proof of our main theorem in one space dimension by
pulling together the results of the previous two sections. Numerical experiments corroborat-
ing our estimates follow in Section 6. Finally, Section 7 shows how to extend the interpolation
inequality of Section 4 to two space dimensions. This in turn allows us to generalize our main
theorem from Section 1.4 to two dimensions.

1.1 The Scheme.

We will start by considering the one dimensional system

dvi

dt
= D+

h D−
h (R(vi)) i = 0, ...N −1 (1)

where
D+

h vi =
vi+1 − vi

h
, (2)

D−
h vi =

vi − vi−1
h

, (3)

and h = 1
N . To make sense of (1) when i = 0 or i = N −1, we set

vi = v j j = i mod N when i 6= 0, ...N −1. (4)

This system has a non-increasing energy,

E(v) =
N−1

∑
i=1

f (vi)h, (5)

where
f (s) =

Z s

0
R(ξ)dξ. (6)

Requiring (4) ensures that the dynamics of (1) leave the total mass,

µ := 1
N ∑

i

vi, (7)

unchanged.
For convex functions f , (1) is a convergent (as h → 0) finite differences approximation of

the parabolic PDE
vt = (R(v))xx (8)

on the interval [0,1] with periodic boundary conditions. Such systems are well-understood;
this paper is concerned instead with a special class of non-convex functions f that are convex
on some interval [v, v̂) and concave on (v̂,∞). We also assume that R(s) = f ′(s) is bounded on
[v,∞) with

R(v) < R(s) for all s ∈ [v,∞). (9)
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We allow v to take on the value −∞, in which case we require

lim
s→−∞

R(s) = α (10)

with
−∞ < α < R(s) for all s ∈ R.

We will often refer to the example

R(s) =
s

1+ s2 , (11)

with primitive
f (s) =

1
2 log

(

1+ s2) (12)

for x ∈ [0,∞). In this case, v = 0 and v̂ = 1.
Writing (1) in the form

d
dt

vi = D+
h

(

R′ (ξ)D−
h vi
)

,

where ξ is between vi−1 and vi, and similarly rewriting (8),

vt =
(

R′ (v)vx
)

x

shows that R′ acts as diffusive flux. The switch of convexity in f corresponds to a maximum
of R and a zero crossing of R′. If v is restricted so that v < v̂, then (1) is parabolic, but for
v > v̂, R′(v) < 0 and the model behaves as a backwards diffusion equation. Figure 1 shows f ,
R, and R′ for f given by (12).

1.2 Applications of (1).
Using f defined by (12), system (1) describes a reinforced random walk on a lattice and is
used to model the movement of biological organisms affected by some external field that is
in turn affected by the organisms’ presence [11, 19]. Examples of such organisms are ants,
which often follow ant trails, and the bacteria Myxcoccus Xanthus, which glides along a
substance produced by the bacteria. Denoting population density by v, (1) arises for external
fields proportional to the number of entities present.

The dynamics of (8) share many qualitative features with an ill-posed nonlinear PDE that
arises in image processing [21, 22] and granular flow [25, 24]:

ut = (R(ux))x . (13)

These similarities are expected, since (8) may be derived from (13) by letting v = ux and
taking a spatial derivative of (13). For functions f such as (12), which have the additional
properties of being nonnegative and even with

f (0) = 0,

(13) is a one-dimensional restriction of

ut = ∇ · (R(|∇u|)∇u) , (14)

which was introduced by Perona and Malik to denoise digital images represented by the func-
tion u [21, 22]. Intending to smooth noisy regions of the image without blurring edges (object
boundaries), they required that f , the primitive of R, satisfy exactly the conditions discussed
above.
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Equation (13) has also been studied as a simplified one-dimensional model for the forma-
tion of shear bands in a granular medium [25]. In this case, f is defined by

f (s) = sinαsinφ log
∣

∣

∣

∣

cosφ+ s+
√

1+2scosφ+ s2
∣

∣

∣

∣

+ cosα
√

1+2scosφ+ s2, (15)

with 0 < α < π
2 and 0 ≤ φ ≤ π. This choice for f has v = −∞ and

v̂ = − sin(α−φ)

sinα
.

See [25] for an explanation of the parameters α and φ in relation to granular flow. Figure 2
includes a comparison of (12) with (15) for α = π

4 and φ = π
8 .

Much attention has been devoted to the ill-posed equations such as (8) and especially
(13). In particular, there is a lot of recent effort that concerns developing an existence theory
[13, 12, 26, 5]. Another topic of research has been appropriately regularized versions of the
PDEs [6, 3, 2, 4, 1, 17]. But some work regarding the two PDEs has actually focused on
discretizations like (1) and the similar discretization of (13),

d
dt

ui = D−
h

(

R(D+
h ui)

)

. (16)

We may derive (1) from (16) by letting

vi = D+
h ui (17)

and applying D+
h to (16). Although the limiting behavior of (1) and (16) as h → 0 is unclear

for non-convex f (see [10] for a particular scaling limit), the schemes have nonetheless been
studied in relation to each of the above mentioned applications. In image processing, the
discretization is actually more important than the intended PDE model, as applications of the
model on digital images involve only discretizations of (13). In population dynamics, (1) may
be thought of as an example of a reinforced random walk on a lattice. The authors of [24, 25],
pointed out that discrete models like (1) are of interest in of granular flow, which is inherently
discrete with minimum length scales determined by the grain sizes.

1.3 Coarsening behavior.

System (1) may be derived as a gradient descent of (5) in the discrete H−1 norm (See the
proof of Lemma 3 in this paper),

‖ vi ‖H−1 :=
{

sup
φ

1
N

N

∑
i=0

(vi −µ)φi,
1
N

N

∑
i=1

[(φi+1 −φi)N]2 ≤ 1
}

. (18)

As with all gradient descents, the energy landscape drives the system’s dynamics as the vi

evolve towards a minimum of (5). The absolute minimum of (5) for a given set of initial data
is determined entirely by µ, the initial data’s mean value. If

µ ≤ v̂, (19)

where v̂ is the boundary between the convex and concave regions of f , then E is minimized
when vi = µ for all i. If

µ > v̂, (20)
the concave region of f causes the least energy state to have all but one of the vi < v̂ leaving
the remaining v j to be as large as is necessary to conserve the total mass of the initial data.

Remembering that dv
dt = 0 at the energy minimum, one may use (1) and the structure of R

to find the energy minimum when (20) holds. If v j = v+ > µ is the single remaining spike,
then vi = v− < µ for all i 6= j, with

R(v+) = R(v−). (21)

4



Conservation of mass implies
v+ +(N −1)v− = Nµ. (22)

These two conditions suffice to solve for v+ and v− given µ. If f is given by (12), then (21)
implies

v+ =
1

v−
.

Combining with (22) gives

v± =
Nµ±

√

(Nµ)2 −4(N −1)

2 .

The gradient descent structure of (1) drives the vi to this energy minimum and may be stopped
only by the possible interference of a saddle point or local minimum corresponding to another
stationary state of (1).

If the initial data of (1) satisfy (19) the energy minimization is expressed as a typical
parabolic smoothing of the initial data. If (20) holds, then the energy minimization creates a
more interesting dynamic. In this case, the conserved total mass of the data quickly aggregate
to K << N of the vi, forming what may be aptly described as spikes. These spikes do not
move, but their sizes do change. Gradually some spikes disappear while the remaining ones
grow as the system converges to the energy minimum where a single v j contains most of
the mass (see Figure 3). The distance between spikes establishes a system length scale that
coarsens, much like length scales in phase change models like the Allen-Cahn and the Cahn-
Hilliard equations. The other steady state solutions of (1) may stop the coarsening process,
but such interference is rare, since the single spike solution is the only stable steady state
solution for initial data satisfying (20). A complete study of all steady state solutions of (1),
including an investigation of stability, may be found in [19] and [25].

Though the initial aggregation of system mass to spikes occurs rapidly, the dynamics slow
as the number of spikes decrease. The authors of [25] used numerical simulations of (1) to
measure this coarsening rate and observed that the number of spikes scale like

K ∼
(

N
t

)− 1
3
. (23)

Despite a remarkable correlation with the data (See [25] or Section 6 of this paper), ours is
the first proof concerning this rate.

The physical meaning of the coarsening process of (1) depends on the particular applica-
tion. For granular flow, where the energy function given by (15), the coarsening corresponds
to a decrease in the number of shear bands in the granular medium (see Figure 5). When
considering f given by (12), the coarsening represents an aggregation of biological organisms
into population centers. For the nonlinearities used in image processing, our analysis applies
only to entirely nonnegative data (and may be easily modified for entirely non-positive data).
Since we study the signal’s discrete derivative, we are examining the coarsening of the terraces
produced by the Perona-Malik method along a single edge (see Figure 4). This coarsening
corresponds to a simplification of the processed image. At early stages the image is close
to the original, perhaps noisy image, while at later stages, fine structures (including noise)
disappear and only the larger features remain. An accurate understanding of the coarsening
speed of (16) might be used to estimate the computation time needed to process an image up
to a desired state of complexity.

1.4 Our main result and method of proof.

We present bounds on the coarsening rate in one and two space dimensions. First, we prove
the following time averaged lower bound on the energy of the one dimensional scheme (1):
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Theorem 1. Suppose v ≤ vi(0) for 1 ≤ i ≤ N,

v̂ < µ =
1
N ∑

i
vi, (24)

and vi(0) > v̂ for at most N
2 values of i. Then there exists a universal constant CI < ∞ such

that
1
T

Z T

0
E2dt ≥ 3

1
3 C

4
3
I

[

(

N2T
)− 1

3

]2
(25)

for T ≥
√

3
CI

NL(0)3. The constant CI is provided by the interpolation estimate (32).

Remark. Theorem 1 may be generalized to bounds on more than the time average of E 2.
Combining Lemma 4 of this paper with Lemma 3 of [14] gives

1
T

Z T

0
EθrL−(1−θ)rdt ≥C

[

(

N2T
)− 1

3

]r

for any 0 ≤ θ ≤ 1 and r satisfying r < 3, rθ > 1 and (1− θ)r < 2. We restrict discussion to
(25) only to simplify presentation.

Theorem 1 applies to large time behavior of (1), since K << N (and is certainly less than
N
2 ) after a transient initial period where the vi rapidly separate into spikes and background.
Our discussion of the system dynamics suggest that an appropriate measure of length scale is
L̃ = 1

K , where K is the number of spikes in the system. Since f is an increasing function of v,
on [v,∞), the K spikes dominate the system energy, E (5):

E ∼ K,

that is
E ∼ 1

L̃
, (26)

thus connecting (25), a bound on E, with the system length scale.
Given a system energy E and length scale L, Kohn and Otto introduced in [14] a method

for proving time averaged bounds like (25). Their method requires two ingredients connecting
E with L: a decay estimate that typically arises from the model’s gradient descent structure
and an interpolation estimate analogous to (26). Armed with these estimates, one applies an
ODE argument like Lemma 3 in [14] or Lemma 4.2 in [18] to prove the time-averaged bound.

Although L̃ = 1
K provides an intuitive measure of length scale, there is no clear decay

estimate relating E with K. Instead we pick

L =‖ vi ‖H−1 , (27)

which is similar to length scales used in [14, 15, 18]. Since (1) is a gradient descent of E with
respect to the discrete H−1 norm, the system’s decay estimate,

∣

∣L̇
∣

∣≤
(

−Ė
) 1

2 ,

follows easily from arguments presented in [14]. To check that L is a valid measure of length
scale, we provide numerical evidence in Section 6 that L ∼ 1

K .
The system’s interpolation estimate,

EL ≥ C
N

,
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is more difficult to derive. The discrete setting of this problem requires arguments different
from those used in other proofs of coarsening rate bounds [8, 9, 14, 15, 16, 18]; in particular,
the dependence of the dynamics on the system size, N, distinguishes the system studied here.
Although the decay estimate relating E with L does not depend N, the interpolation estimate
does, and the coarsening rate reflects this dependence, precisely as observed in [25].

As discussed in [14], the methods used here will not provide a lower bound on the coars-
ening rate of (1). Proving a suitable lower bound would likely be more difficult, since the
dynamics of (1) may be slowed by a variety of factors, including the interference of local
minima and saddle points of the energy; hence there is in fact no lower bound in the naive
sense. On the other hand, a system can not coarsen any faster than its energy landscape allows.

2 Preliminaries.

We consider only initial data satisfying vi(0) ≥ v. The following lemma shows that the vi

retain this lower bound at all later times.

Lemma 1. Suppose vi solves (1) for t ∈ [0,T ) and satisfies

vi(0) ≥ v

for i = 0, ...,N −1. Then, vi exists for all t ≥ 0 and

vi(t) ≥ v

for i = 0, ...,N −1 all t ≥ 0.

Proof. First note that standard ODE existence theory provides for the existence of vi solving
(1) on some time interval finite [0,T ). Pick ε > 0 and let vε

i solve

dvε

dt
= =

R(vi+1 (t))−2R(vi (t))+R(vi−1 (t))
h2 + ε (28a)

vε
i (0) = vi(0) (28b)

for i = 0, ...,N −1. For small enough ε, continuous dependence of ODEs on parameters (See
for example Theorem 2 in Section 2.3 of [20]) ensures the existence of such a vε

i with vε
i (t)→

vi(t) as ε → 0 for each i and all t ∈ [0,T ). Suppose vε
i (t) ≥ v for each i and all nonnegative

t ≤ t∗, and that
v j(t∗) = v

for some j. Then

dvε
j

dt
=

1
h2 (R(v j+1)+R(v j−1)−2R(v))+ ε ≥ ε > 0.

We thus have
vε

i (t) > v

for each i and all t ∈ [0,T ], which is a contradiction: We must have that vε
j(t∗) > v. Taking

ε → 0 proves
vi(t) ≥ v

for all t ≥ 0. Conservation of mass then implies that the vi remain bounded, and we apply the
maximal interval of existence theory for ODEs (see for example Theorem 3 in Section 2.4 of
[20]) to complete the proof.

We next separate the vi into spikes and background. We call vi a spike if vi > v̂, where v̂ is the
parabolicity threshold discussed above. By selecting v̂ as the dividing value, we ensure that
the number of spikes does not increase:
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Lemma 2. If
vi(t0) ≤ v̂

for some i and some t0 ≥ 0, then
vi(t) ≤ v̂

for all t ≥ t0.

Proof. Apply the argument from Lemma 1, but now use the fact that R achieves its maximum
at v = v̂, so

d
dt

vi(t) ≤ 0

whenever vi(t) = v̂.

3 Decay relation.

Lemma 3.
∣

∣L̇
∣

∣≤
(

−Ė
) 1

2 . (29)

Proof. Our selected length scale (18) allows a simple application of the proof of Lemma 2 in
[14] to this discrete setting. We provide the details only for the reader’s benefit. From (5), we
have

−Ė = −
N−1

∑
i=0

R(vi)v̇ih = −
N−1

∑
i=0

R(vi)D
+
h D−

h (R(vi))h.

Summing by parts and using the boundary condition (4) gives

−Ė =
N−1

∑
i=0

[

D−
h (R(vi))

]2
h. (30)

Pick t1, t2 with 0 ≤ t1 < t2 and let ξ be the optimal test function in the definition of L(t2) (see
(18) and (27)) so that

L(t2) = ‖v(t2)‖H−1 =
N−1

∑
i=0

(vi (t2)−µ)ξih

and
N−1

∑
i=0

∣

∣D+
h ξi
∣

∣

2
h ≤ 1.

Then we have

L(t2)−L(t1) ≤
N−1

∑
i=0

(vi (t2)− vi (t1))ξih

=
Z t2

t1

N−1

∑
i=0

v̇iξihdt

=
Z t2

t1

N−1

∑
i=0

D+
h D−

h (R(vi))ξihdt

= −
Z t2

t1

N−1

∑
i=0

D−
h (R(vi))D−

h ξihdt

≤
Z t2

t1

(

N−1

∑
i=0

∣

∣D−
h (R(vi))

∣

∣

2
h

)
1
2

dt.
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Repeating the above with ξ′i optimal in the definition of L(t1) gives

|L(t2)−L(t1)| ≤
Z t2

t1

(

N−1

∑
i=0

∣

∣D−
h (R(vi))

∣

∣

2
h

) 1
2

dt. (31)

Combining (31) with (30) shows that L is an absolutely continuous function of t satisfying
(29).

4 An interpolation estimate.

In this section, we establish the second ingredient necessary for applying Kohn and Otto’s
technique to our problem: We need an interpolation inequality between our energy (5) and
our length scale quantity (27). The following lemma establishes the required inequality in
one space dimension; we present the two dimensional version in Section 7.1.
Lemma 4.

EL ≥ C
N

(32)

for some C > 0 that depends only on µ.

Proof.
Suppose there are K spikes, that is K indices i where vi > v̂. Assume that K ≤ N

2 . Note that
since f is a nonnegative function with f (v) ≥ f (v̂) for v ≥ v̂,

E ≥ K
N

f (v̂) . (33)

Hence, to reach the desired conclusion, we only need to show that L ≥C/K for some constant
C. To that end, let l be the largest integer with

N = 2Kl + J (34)

for any J ∈ N (using N to denote the set of natural numbers). Notice

J ≤ N
2 , (35)

otherwise
2Kl = N − J <

N
2

so
2K(2l) < N,

contradicting the requirement that l be the largest integer satisfying (34).
We now associate the vi with grid points on the unit interval by setting xi =

i
N for 0≤ i < N.

Defining I j = [x jl ,x( j+1)l) for 0 ≤ j ≤ 2K gives 2K intervals within [0,1), each containing l
grid points. Construct g(x) on [0,1] by setting

g(x) = −min((x− x jl),(x( j+1)l − x))

on each I j that does not have a spike, letting g(x) = 0 everywhere else. Note that since there
are 2K intervals I j, at least K of them do not have a spike. Defining

gi = N
Z xi+1

xi

g(x)dx, (36)

determines a grid function with

‖ gi ‖2
H1= N ∑

i
(gi+1 −gi)

2 ≤ Kl
N

=
N − J

2N
. (37)
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Pick any interval I j∗ on which gi 6= 0 (i.e. one of the intervals that contain no spikes) and let
2λ = l. Suppose λ ∈ N, so that the minimum of g(x) on I j∗ occurs at a grid point. Then

1
N ∑

i∈I j∗
|gi| =

2
N

(

λ−1

∑
i=1

i
N

+
λ

2N

)

=
2

N2

(

λ(λ−1)

2 +
λ
2

)

=
λ2

N2 =

(

N − J
4KN

)2
.

If λ is not an integer (l is odd), then the minimum of g(x) on I j∗ occurs halfway between two
grid points, and

1
N ∑

i∈I j∗
|gi|=

2
N2

(

(λ−1)((λ−1)−1)

2 +
λ−1

2

)

+
1
N

(

2λ−1
2N

+
1

4N

)

=
1

N2

(

λ2 −λ+
3
4

)

.

Noting that

f (y) =
y2

3 − y+
3
4 ≥ 0

for all y, we see
λ2 −λ+

3
4 ≥ 2

3λ2

and thus
1
N ∑

i∈I j∗
|gi| ≥

2
3

(

N − J
4KN

)2
, (38)

which holds for both odd and even l.
Finally, wherever gi is nonzero, vi −µ ≤ v̂−µ < 0 due to assumption (24). Using

φi =
gi

‖ gi ‖H−1

in the definition of L, (38) implies

‖ gi ‖H1 L ≥ 1
N ∑

i
gi (vi −µ)

=
1
N

2K

∑
j=1

∑
i∈I j

|vi −µ| |gi|

≥ K (µ− v̂)
N ∑

i∈I j∗
|gi|

≥ (µ− v̂)
6K

(

N − J
2N

)2
.

Using (35) and (37) gives

L ≥ (µ− v̂)
6K

(

N − J
2N

)
3
2
≥ (µ− v̂)

48K
.

5 Proof of Theorem 1.

The remainder of the proof relies on Lemma 3 in [14]. We present the relevant details for the
reader’s benefit, paying particular attention to this problem’s dependence on N. Suppose

L(T ) > 2L(0). (39)
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From Lemma 3, we have
(

L̇
)2 ≤−Ė.

For this system, Ė(t) < 0 until a steady state is reached so we may write t as a function of the
energy. As in [14] we use the lower case ’e’ when referring to the energy as an independent
variable. Using this notation

(

dL
de

)2
(

−Ė
)

≤ 1,

so
Z T

0
E2dt ≥

Z T

0
e2
(

dL
de

)2(

−de
dt

)

dt =

Z E(0)

E(T)
e2
(

dL
de

)2
de. (40)

Since
∣

∣

∣

∣

Z E(0)

E(T )

dL
de

de

∣

∣

∣

∣

2
≤

Z E(0)

E(T )
e2
(

dL
de

)2
de

Z E(0)

E(T )
e−2de,

(40) implies
Z T

0
E2dt ≥

(

1
E(T )

− 1
E(0)

)−1
(L(T )−L(0))2 ≥ E(T )(L(T )−L(0))2 . (41)

Suppose L(T ) ≥ 2L(0). Lemma 4 and condition (39) then imply

Z T

0
E2dt ≥

(

CI

N

)2 1
E(T )

. (42)

Defining

h(T ) =

Z T

0
E2dt,

(42) may be rewritten as

h(T ) ≥
(

CI

N

)2
(

h′(T )
)− 1

2 . (43)

Grönwall’s inequality [20] gives

h(T ) ≥
[

3
(

CI

N

)4
T

]
1
3

(44)

which is the same as (25).
Now consider T with L(T ) < 2L(0). In this case, (32) gives

h′(T ) = E2(T ) ≥C (NL(T ))−2 ≥C (NL(0))−2 .

Grönwall’s inequality now gives

h(T ) ≥
(

N
CI

L(0)

)−2
T. (45)

As long as T >
√

3
CI

NL(0) , then
(

N
C L(0)

)−2
T ≥

[

3
(

CI
N

)4
T

]
1
3

and the theorem follows.
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6 Numerical evidence.

We next demonstrate the actual coarsening rate of (1), by discretizing in time and solving
numerically. In particular, we show a dependence of the coarsening rate on N, as our upper
bound indicates. We use f defined by (12) in all examples and remark that similar results are
discussed in [25] for f given by (15).

Let
F(vn

i ) =
R
(

vn
i+1
)

−2R(vn
i )+R

(

vn
i−1
)

h2 . (46)

We first consider the Forward Euler Scheme,

vn+1
i − vn

i

τ
= F (vn

i ) . (47)

To demonstrate the coarsening rate of (47), we use a perturbation of vi = 3 for initial data:

vi(0) = 3+10−6 sin
(

πi
N

)

. (48)

Notice that in a system with N grid points, K = N for (48), since v̂ = 1 for f given by (12).
Figure 6 shows a plot K

N versus N2t for the solution of (47)with N = 200,300, ...,1400,1500.
After a transient initial period, the coarsening strongly corresponds with the predicted power
law

(

N2t
)− 1

3 . Our analysis does not include the early time dynamics, since our results only
hold for the later times when K ≤ N

2 . Figure 7 shows a plot of LN versus N2t. Its correspon-
dence with with the power law

(

N2t
)

1
3 supports our claim that L ∼ 1

K . The quantity L as given
by the H−1 norm (18) was computed using the following equivalent characterization:

‖v‖2
H−1 =

1
N ∑

j

(

D+
h w j

)2 where D+
h D−

h w = v with periodic b.c. (49)

The explicit scheme (47) has a strict time stepping restriction of k ∼ h2 which encourages
using an implicit method like the Midpoint Scheme

vn+1
i − vn

i

τ
= F

(

vn
i + vn+1

i

2

)

. (50)

Figure 8 shows results for the implicit scheme, where time steps are not taken larger than
10h2. Significant slowdown in the coarsening may be seen, especially for large N. We use
Newton’s Method to solve (50) at each time step, using explicit time stepping to provide an
initial guess for the Newton iterations. To ensure rapid convergence of the iterations, we
use an adaptive time step – reducing the time step when many iterations are required, and
increasing when only 0-5 iterations are required. We use the Sherman-Morrison Formula [23]
and the tridiagonal matrix solver in LAPACK to solve the linear systems for each Newton
iteration. Typically smaller time steps are required only at the beginning stages of evolution.

Unfortunately, though (50) has no stability restrictions on τ, large time steps cause errors
that slow the coarsening rate. This slow down effect is easily demonstrated by fixing N and
solving (50) to a fixed time t∗ for a range of maximal time steps. We did so for N = 200 and
t∗ = 10. Figure 9 shows a plot of K at t = 10 as a function of the maximum time step used in
computation. This slow-down of the dynamics should be of interest to the image processing
community, for which the length scale is more important than the actual time, which is in fact
artificial for most image processing applications. In particular, these results suggest that while
implicit time stepping may remove time step restrictions, little real gain in processing speed
might be made.
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7 Two dimensions.

We easily generalize (1) to two dimensions by considering a system vi, j, i, j = 0, ...,N − 1
satisfying

v̇i, j = D+
1,hD−

1,h(R(vi, j))+D+
2,hD−

2,h(R(vi, j)) (51)

with the rules
vi, j = vi mod N, j mod N for i, j 6= 0, ...,N −1 (52)

and
vi, j ≥ v. (53)

Here, D+
i,h and D−

i,h are the forward and backward difference quotient operators, respectively,
in the i-th coordinate direction. This system is a standard centered differencing discretization
of

vt = ∆(R(v)) (54)

with periodic boundary conditions. Although (51) has no relation to the Perona-Malik method
for image denoising or to shearing in granular materials, it is a natural generalization of the
reinforced random walk model to a two dimensional lattice, and has been studied in [11, 19].
The behavior of (51) is very similar to (1), with mass aggregating in spikes that coarsen with
time. System (51) has

E (vi, j) =
N−1

∑
i, j=0

f (vi, j)h2 (55)

for an energy. Condition (52) ensures that

µ := 1
N2

N

∑
i, j=1

vi, j (56)

does not change.
We generalize the definition of L to this two dimensional lattice:

L(vi, j) =‖ vi, j ‖H−1 := sup
{

1
N2

N−1

∑
i, j=0

(vi, j −µ)ξi, j,
N−1

∑
i, j=0

[

(ξi+1, j −ξi, j)
2 +(ξi, j+1 −ξi, j)

2
]

≤ 1
}

.

(57)
In this case, we expect L ∼ 1√

K
where K is again the number of vi, j > v̂. Lemmas 1-3 all hold

for (51), however the interpolation inequality is different.

7.1 An interpolation estimate.

Lemma 5. Let vi, j solve (51) with (52) and (53) holding. For L defined by (57) and E defined
by (55),

EL2 ≥ C
N2

for some C > 0 that depends only on µ.

Proof.
Let Q denote the periodic unit square in R

2. We associate the system vi, j with a grid on Q by
letting xi =

i
N and y j = j

N . Assume we have K spikes where vi, j > v̂ and that 2K ≤ N2. Divide
Q into 2K squares Qν with side length 1√

2K
and let l = N√

2K
. Let p be the largest integer with

l = p+ r

for some nonnegative r < 1. Note that
r <

l
2 , (58)

13



otherwise
l ≥ p+

l
2 ,

thus implying l ≥ 2p which contradicts the assumption on p.
One may think of l2 as an estimate on the number of grid points in each of the Qν, bearing

in mind that unless
√

2K is an integer that divides N exactly, some of the Qν will contain more
grid points than others. To establish uniformity of sub-squares, we define Q̂ν to be the square
contained strictly within Qν containing exactly p× p grid points with one of those grid points
exactly on the bottom left-hand corner of Q̂ν. Note that each Qν contains a Q̂ν, so there are
exactly 2K squares Q̂ν.

Construct g(x) on Q by setting

g(x,y) = −dist(∂Q̂ν)

on each Q̂ν that does not have a spike, letting g(x) = 0 everywhere else. Note that at least K
of the Q̂ν do not have a spike. Defining

gi, j = N2
Z xi+1

xi

Z y j+1

y j

g(x,y)dxdy, (59)

determines a grid function with
‖ gi, j ‖2

H1≤ 1. (60)

Pick any Q̂ν on which gi, j 6= 0 and assume for simplicity that p is even (the odd case is similar).
Using C as a “universal”constant, we compute

1
N2 ∑

i, j∈Q̂ν

∣

∣gi, j
∣

∣≥ C
N3

p
2

∑
j=1

j2 =
Cp
N3

(

p2

2 +
3p
2 +1

)

≥C
( p

N

)3
.

Using (58) gives
p = l− r ≥ l

2 ,

so
1

N2 ∑
i, j∈Q̂ν

∣

∣gi, j
∣

∣≥C

(

l
N

)3
=

C

2K
√

2K
. (61)

Finally, wherever gi is nonzero, vi−µ ≤ v̂−µ < 0 by assumption on µ. The estimates (60) and
(61) show

L ≥ 1
N2 ∑

i, j

gi, j (vi, j −µ)

=
1

N2 ∑̂
Qν

∑
i, j∈Q̂ν

∣

∣vi, j −µ
∣

∣

∣

∣gi, j
∣

∣

≥ K (µ− v̂)
N2 ∑

i, j∈Q̂ν

∣

∣gi, j
∣

∣

≥ C (µ− v̂)√
K

.

We complete the proof by combining this lower bound on L with the observation

E ≥ K
f (v̂)
N2 .
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7.2 Final result in two dimensions.

Theorem 2. Suppose v ≤ vi, j(0) for 1 ≤ i, j ≤ N,

v̂ < µ =
1

N2

N

∑
i, j=1

vi, j, (62)

and vi, j(0) > v̂ for at most N2
2 ordered pairs (i, j). Then for each σ ∈ (1,2], there exist univer-

sal constants C1 (σ) ,C2 (σ) < ∞ such that for all 0 < T0 ≤ T,

1
T −T0

Z T

T0
Eσdt ≥C1 (σ)

[

(

N2 (T −T0)
)− 1

2

]σ
(63)

for (T −T0) ≥C2 (σ)N2L(T0)
4 . If 1 < σ < 2, (63) also holds forT0 = 0.

Proof. The proof can be obtained by following the proof of Lemma 4.2 in [18] for the
case α = 2. We do not provide the details here because of their similarities with the proof of
Theorem 1,

7.3 Numerical evidence for the 2D case.

We use Forward Euler time stepping (47) to solve (51). Although we observed a stability
restriction on the explicit scheme of about τ ≤ h2

4 , standard implicit schemes provide little
speed-up, due to the computation required by repeated Newton iterations and the slow down
of coarsening caused by large time steps (see Section 6).

We evolve an N ×N system with N = 2n ×10 for 1 ≤ n ≤ 6. Figure 10 shows K
N2 versus

Nt compared with the power law
(

N2t
)− 1

2 . Each simulation has the same initial condition,

vi, j(0) = 3+10−6 sin
(

iπ
N

)

sin
(

jπ
N

)

. (64)

The results match our proved bound (63).

8 Conclusion.

We proved a rigorous, weak upper bound on the coarsening rate for the discrete in space
version of an ill-posed nonlinear diffusion equation that appears in applied contexts as varied
as population dynamics, granular flow, and image processing. Despite the lack of a complete
continuum theory, the discrete version we analyzed remains in widespread use in these areas.
From an applied perspective, coarsening of the solutions is one of the primary features of
interest. Moreover, our numerical experiments indicate that not only are the upper bounds
we establish attained, but they are in fact generically observed. We therefore hope that our
analysis will be directly relevant to applications of these equations.

The lack of a complete continuum theory for the PDEs we deal with forced us to base our
analysis on the discrete-in-space version of the PDEs. It would be interesting to see whether
our results can be extended to the notions of solution developed for these ill-posed PDEs
in recent literature (e.g. [5, 26]), or for regularized versions of these PDEs, such as those
proposed and analyzed in [1, 2, 3, 4, 6, 17].

Acknowledgments. We thank Bob Kohn for recommending this problem, and for his advice
and encouragement throughout the paper’s development. We also thank Felix Otto and Dejan
Slepčev for helpful comments.
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Figure 3: The dynamics of (1) for N = 200 and vi(0) = 3+ηi with a random perturbation |ηi| ≤
10−5. The vi quickly aggregate to spikes that decrease in number until a single spike contains most
of the mass.
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Figure 4: Perona-Malik equation. The dynamics of (16) for N = 200 and f given by (12).
Thicker lines denote later stages of the evolution.
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Figure 5: Shear bands in granular flow. The dynamics of (16) for N = 200 and f given by (15).
Thicker lines denote later stages of the evolution.
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Figure 6: After an initial transient period, the jump density, K
N corresponds closely with the proved

coarsening bound (25).
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Figure 7: The length scale behaves like L ∼ 1
K , supporting our claim that (27) defines a valid

measure of length scale.
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Figure 8: Evolving length scale (top) and jump density (bottom) for the implicit scheme (50).
Although implicit schemes have no time step restriction for stability, the coarsening rate badly
reflects the error caused by larger time steps.

21



10-4 10-2

τmax

101

102

K

t = 10

O(τ1/3)

Figure 9: Coarsening slow-down. Although implicit schemes have no time step requirements for
stability, errors due to large time steps have a significant effect on the coarsening rate. Using the
initial data given by (48), we set N = 200 and plot K at t = 10 as a function of the maximal time
step used in (50) (this is the time step used except at the earliest stages of evolution, where τ may
be smaller to ensure convergence of the Newton iterations).
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for the two-dimensional system (51).
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