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Summary. This survey paper discusses some recent developments in variational
image segmentation and active contours models. Our focus will be on region-
based models implemented via level-set techniques, typified by the Chan–Vese (CV)
model [11]. The CV algorithm can be interpreted as a level-set implementation of the
piecewise constant Mumford–Shah segmentation model and has been quite widely
used.

We will first present the basic CV algorithm and an extension to piecewise
smooth approximations. We also discuss a recent development in convexifying the
CV model to guarantee convergence to a global minimizer. Next, we discuss ex-
tensions to handle multi-channel images, including a vector-valued CV model [9],
texture segmentation [10], object tracking in video [41], image registration [40], and
a logic segmentation framework [49]. Then we discuss multiphase extensions to han-
dle segmentation into an arbitrary number of regions, including the method of Vese
and Chan [61] and recent developments of memory efficiency algorithms such as the
piecewise constant level set method (PCLSM) of Tai et al. [36] and the multi-layer
method of Chung and Vese [13].

Finally, we discuss numerically efficient methods that attempt to compute the
optimal segmentation much faster than the original gradient-descent PDE-based
method. These methods include the direct pointwise optimization method of Song
and Chan [55], an operator-splitting method by Gibou and Fedkiw [26], and a thresh-
old dynamics method by Esedoglu and Tsai [19].
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1 Introduction

Image segmentation is the process of partitioning an image into regions. Each
region has a consistent trait throughout that is different from other regions
in the image. Some common traits that have been captured are intensity,
color, and texture. Once a decision is made on the desired traits, various
segmentation methods are available to reach this goal.

This paper will focus on variational image segmentation and active-contour
models and algorithms, which share the common feature that they define
optimal segmentation as a minimizer of an objective function that generally
depends on the given image and the traits that are used to identify the different
segmented regions. The Euler–Lagrange equation of these models can often
be described using a partial differential equation, which is iterated until it
reaches steady state.

A contour is introduced into the image and is evolved until steady state
thereby dividing the image into regions, see Figure 1. A very powerful and
popular method for representing the contour is the level-set method originally
developed by Osher and Sethian [45], which represents the contour implicitly
as a particular (usually the zero) level of a (level-set) function. The main ad-
vantage of this representation is that topological changes, such as merging and
pinching off of contours can be captured naturally through smooth changes
to the level-set function.

In this paper, we will focus primarily on region-based (rather than edge-
based) segmentation models. A prototypical example, and the primary one
we will discuss in this paper, is the Chan–Vese “Active Contour Without
Edges” model [11], which seeks the desired segmentation as the best piece-
wise constant approximation to a given image. The Chan–Vese model can
be interpreted as a level-set implementation of the piecewise-constant special
case of the more general Mumford–Shah segmentation model [43].

Due to its simplicity and robustness, the Chan–Vese model has become
quite popular and has been adopted in many applications. As a result, a
number of generalizations have been developed to improve both its applicabil-
ity and efficiency. A natural generalization is multi-channel images. Initially,
a vector valued method was used with an application in texture segmenta-
tion [10]. This was followed by an important conceptual generalization to a

Initial Curve Evolution Detected Object

Fig. 1. Evolution of a contour around objects.
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logic framework allowing the user to use any logical combination of informa-
tion in each channel to obtain the desired segmentation. Further extensions
include object tracking in video sequences in the presence of clutter, regis-
tration of images to identify key objects, and color segmentation that can
identify an object in an image with an arbitrary combination of colors.

Another direction of generalization to the basic Chan–Vese model is to
multiphase models, which allow the segmentation of the image into arbitrary
(> 2) regions. A natural, but inefficient, generalization is to use one level-set
function for each phase, taking care to avoid overlap and uncovered regions.
Various attempts have been made to improve on this basic approach. The
multiphase method of Vese and Chan [61] only needs log2 n level-set func-
tions to represent n regions, without any need to avoid overlap and uncovered
regions, drastically improving the efficiency. More recently, Tai et al. [36] and
Chung and Vese [13] have developed novel level-set methods that use only one
level-set function to represent an arbitrary number of regions. We will review
these methods in this paper.

A final direction of generalization is to improve the computational effi-
ciency of these variation segmentation models. The typical approach of gra-
dient flow (i.e., marching the Euler–Lagrange PDE to steady state) usually
takes a long time to converge. A variety of methods have been developed to
speed this up. One approach is to treat the models as a discrete optimization
problem whose solution is the association of each pixel to a particular region.
Song and Chan [55] proposed a direct optimization algorithm, which has the
surprising property that for noiseless two-phase images the optimal solution
can be provably obtained with only one sweep over the pixels. Gibou and
Fedkiw [26] use an operator-splitting approach of treating the data term and
the regularization (or curvature) term of the Euler–Lagrange equation in two
separate steps, each of which can be computed very efficiently. Finally, Ese-
doglu and Tsai [19] use a threshold dynamics approach to obtain an efficient
implementation. These methods will be discussed further in the paper.

The outline of the paper is as follows. Active-contour methods, and in
particular the Chan–Vese model, are introduced in Section 2. In Section 3, we
discuss multi-channel generalizations and in Section 4 we discuss multiphase
generalizations. In Section 5, we discuss efficient implementations. Conclusions
and possible directions for future research are given in Section 6.

2 Active Contours Methods

There are various schemes to deform the contour to the edges of an object.
A quick summary and references for active contours using edge-detection al-
gorithms are give below. For the rest of the paper we address active contours
without edges, as written by Chan and Vese [11].
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2.1 Classic Active Contours

A classic approach to active contour models is to use the gradient of the image
u0 to locate the edges of the object. Typically, an edge function is used that is
positive inside homogeneous regions and strictly zero on the edges. Using this
edge detection function, a functional is minimized with respect to contour C,

inf E(C) =

∫

C

|C′(s)|2ds+ λ

∫

C

g(|∇u0(C(s))|)2ds, (1)

where g is an edge-detection function. This model is by Caselles, Kimmel, and
Sapiro and similar work by Kass, Witkin, and Terzopolous [8, 30]. The model
cannot handle automatic topology changes of the contour, and depends on the
parameterization of the curve.

In problems of curve evolution, including snakes and active contours, the
level-set method of Osher and Sethian [45] has been used extensively, be-
cause it allows for automatic topology changes, cusps and corners; moreover,
the computations are made on a fixed rectangular grid. Using this approach,
geometric active-contour models, using a stopping edge-function, have been
proposed in [7], and also in [38]. These models are based on the theory of curve
evolution and geometric flows. The evolving curve moves by mean curvature,
but with an extra factor in the speed, the stopping edge-function. Therefore,
the curve stops on the edges, where the edge-function vanishes. An example
of edge-functions used is given by:

g(|∇u0|) =
1

1 + |∇(Gσ ∗ u0)|2
,

where g is a positive and decreasing function, such that limt→∞ g(t) = 0. The

image u0 is first convolved with the GaussianGσ(x, y) = σ−1/2 exp−|x2+y|2|/4σ,
especially for the cases where u0 is noisy. In practice, g is never zero on the
edges, and therefore the evolving curve may not stop on the desired boundary.
To overcome this problem, a new model has been proposed in [8], as a prob-
lem of geodesic computation in a Riemann space, according to the metric g.
This gives an added term that increases the attraction of the evolving curve
towards the boundary of the object, and is of special help when the boundary
has high variations on its gradient values. For another related approach, see
also [31].

These models use the gradient of a smoother version of the image u0,
to detect edges. If the image is noisy, the smoothing in the edge-function
has to be strong, thus blurring edge features, or a pre-processing has to be
implemented, to remove the noise.

2.2 Active Contours without Edges

The Chan–Vese active-contour model without edges proposed in [11] does not
use the stopping edge-function g to find the boundary. The stopping term is
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based on Mumford–Shah [43] segmentation techniques. The equation for the
Mumford–Shah in (u,C) is obtained by minimizing the functional:

E(u,C) =

∫

Ω

(u − u0)
2dx+ µ length(C).

While the functional itself is elegant, in practice it is difficult to find a
solution as the functional is non-convex, and has an unknown C. Various
solutions have been proposed. One solution uses region growing, minimiz-
ing the Mumford–Shah functional using greedy algorithms [39, 32]. Elliptical
approximations embed the contour C in a 2D phase-field function [1]. The
Mumford–Shah functional has also been calculated using a statistical frame-
work [67].

Let Ω be a bounded open subset of R
2, with ∂Ω the boundary. Let u0 be

a given image such that u0 : Ω → R. Let C(s) : [0, 1] → R
2 be a piecewise

parameterized C1 curve.
We choose a method with the following form:

inf
c+,c−,C

F (c+, c−, C),

where

F (c+, c−, C) = µ|C| + λ+

∫

in(C)

|u0 − c+|2dx

+ λ−
∫

out(C)

|u0 − c−|2dx,

(2)

where |C| denotes the length of C, c+ and c− are constant unknowns repre-
senting the “average” value of u0 inside and outside the curve, respectively.
The parameters µ > 0, and λ+, λ− > 0, are weights for the regularizing term
and the fitting term, respectively.

Minimizing the fitting error in (2), the model approximates the image u0

with a piecewise-constant function, taking only two values, namely c+ and c−,
and with one edge C, the boundary between these two constant regions. The
object to be detected will be given by one of the regions, and the curve C will
be the boundary of the object. The additional length term is a regularizing
term, and has a scaling role. If µ is large, only larger objects are detected,
while for small µ, objects of smaller size are also detected. Because the model
does not make use of a stopping edge-function based on the gradient, it can
detect edges both with and without a gradient as can be seen in Figure 2. It
is well known that (2) can be viewed as a special case of the Mumford–Shah
segmentation [43].

We rewrite the original model (2) in the level-set formulation. Let the
evolving curve C be embedded as the zero level set of a Lipschitz continuous
function φ, i.e., C(φ) = {(x, y) ∈ Ω : φ(x, y) = 0}, with φ having opposite
signs on each side of C. Following [66] and [11], the energy can be written as:
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Initial Image Contour of Segmented Image

Fig. 2. The Chan–Vese algorithm is able to segment the image without edges.

F (c+, c−, φ) = µ|C(φ)| + λ+

∫

φ≥0

|u0(x, y) − c+|2dxdy

+ λ−
∫

φ<0

|u0(x, y) − c−|2dxdy.

Minimizing F (c+, c−, φ) with respect to the constants c+ and c−, for a fixed
φ, yield the following expressions for c+ and c−, function of φ:

{

c+ = average(u0) on φ ≥ 0,
c− = average(u0) on φ < 0.

Minimizing the energy F (c+, c−, φ) with respect to φ, for fixed c+ and c−,
using a gradient descent method, yields the associated Euler–Lagrange equa-
tion for φ, governed by the mean curvature and the error terms (see [11] for
more details).

∂φ

∂t
= δǫ

[

µ∇ ·
( ∇φ

|∇φ|

)

− λ+(u0 − c+)2 + λ−(u0 − c−)2
]

(3)

in Ω, and with the Neumann boundary conditions.
Using a level-set formulation with this model allows the initial contour to

find any number of objects from an initial contour anywhere in the image. For
general information, one may consult [44] and [51].

2.3 Piecewise Smooth Segmentation

Thus far, we have described objects that are assumed to have constant inten-
sity. The piecewise smooth extension allows for two possible situations. One
motivation is an algorithm that can simultaneously denoise and segment an
image. A second situation occurs when an object’s intensity changes gradu-
ally. The general Mumford–Shah piecewise smooth functional [43] is defined
as:
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Fig. 3. A nebula is segmented using a single contour, giving intensity values, which
are the same as in the original image.

inf
u,Γ

Ems(u, Γ [u0]) =

∫

Ω

|u− u0|
2dx+ µ

∫

Ω/Γ

|∇u|2dx+ ν|Γ |,

where µ and ν are positive constants. This allows for a varying intensity of
the object, while keeping the boundaries constant. A two-phase function is
defined with level set φ as follows:

u(x) = u+(x)H(φ(x)) + u−(x)(1 −H(φ(x))).

Here u+ and u− are C1 functions up to the boundary at φ = 0. Corresponding
Euler–Lagrange equations are as follows:

µ2(u+ − u0) = ∆u+ on φ > 0,
∂u+

∂n
| = 0 on φ = 0,

µ2(u− − u0) = ∆u− on φ > 0,
∂u−

∂n
| = 0 on φ = 0.

Denoising is done in the homogeneous region, while leaving the boundary
φ = 0 unchanged. In Figure 3 the correct features are captured within a
single object segmentation.

2.4 Global Minima Via Convexification

The variational formulation in the Chan–Vese model is non-convex and a
typical gradient-descent implementation is not guaranteed to converge to the
global minimum and can get stuck in local minima. A typical case is where the
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contour is stuck at the outer boundary of an object with an interior hole. Var-
ious tricks can be devised to improve the global convergence. One technique,
which is used in the original paper [11], is to modify the delta function in the
Euler–Lagrange equation so that it is nonzero everywhere. This corresponds
to allowing contours to be initiated everywhere in the image, enhancing the
chance of capturing the global minimum. Another idea is to initialize the op-
timization with a large number of small close contours uniformly distributed
in the image, which has a similar effect.

A more novel, and fundamentally different, approach has been proposed
more recently in [21, 22]. The basic idea is to convexify the objective function
by taking advantage of the implicit geometric properties of the variational
models. Using an auxillary variable u, the Chan–Vese model can be recast in
the following convex minimization problem:

min
c−,c+∈R

min
0≤u(x)≤1

∫

D

|∇u|dx+ λ

∫

D

[(c+ − u0)
2 − (c− − u0)

2]u(x)dx.

It is proved in [21, 22] that if (c+, c−, u(x)) is a solution of above minimization
problem, then for almost every µ ∈ (0, 1), the triplet (c+, c−, χx:u(x)≥µ(x)) is
a global minimizer of the Chan–Vese model. Since the above minimization
problem is convex, it admits many efficient implementations and thus this
approach allows an efficient computation of the global minimization of the
Chan–Vese model.

3 Multi-Channel Extensions in Chan–Vese Model

The Chan–Vese model described above is very flexible. This flexibility lends
itself to expanding it in a variety of ways. Initially it was expanded to vector-
valued systems. This allowed for combining multiple images simultaneous to
segment the images and identify the key object. We introduce the generalized
models below.

3.1 Vector-Valued Models

In this chapter, the Chan–Vese method [11] is extended to vector-valued im-
ages. An example of the vector-valued object detector can be seen in Figure 4.
Each channel has a different piece missing, but when the two channels are com-
bined, the complete object is detected. Another example where this algorithm
is of particular interest is an occlusion occurring in one channel, while a second
channel, complete yet noisier, is available. Another example is RGB images,
where intensity detectors and channel-by-channel boundary detectors fail.

Let u0,i be the ith channel of an image on Ω, with i = 1, ..., N channels,
and C the evolving curve. Each channel would contain the same image with
some differences, for instance different wavelengths at which the image was
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Initial Final Initial Final

Channel 1 Channel 2

Fig. 4. Each channel has a different part of the same triangle missing. The vector-
valued algorithm can detect the full triangle.

taken, color images, etc. Let c+ = (c+1 , ..., c
+
N ) and c− = (c−1 , ..., c

−
N ) be two

unknown constant vectors.
The extension of the Chan–Vese model to the vector case is:

F (c+, c−, φ) = µ · Length(C) +

∫

inside(C)

1

N

N
∑

i=1

λ+
i |u0,i(x, y) − c+i |

2dxdy

+

∫

outside(C)

1

N

N
∑

i=1

λ−i |u0,i(x, y) − c−i |
2dxdy,

where λ+
i > 0 and λ−i > 0 are parameters for each channel.

As in the scalar case, the model looks for the best vector-valued approx-
imation taking only two values, the constant vectors c+ and c−. The active
contour C is the boundary between these two regions. The energy balances
the length of the contours in the image, with the fitting of u0, averaged over all
channels. In this form, when the contour C surrounds the objects, our model
can detect edges present in at least one of the channels, and not necessarily in
all channels. We can associate this property with the syntax “OR”. Likewise
we can imagine a system using the intersection of two objects. We will return
to this boolean logic framework later in the paper.

An example can be found in multi-spectral images. In Figure 5, we have an
airplane imaged from mid-wave and long-wave infrared channels. One chan-
nel is very noisy, making it very difficult to detect the edges of the entire
airplane, while the other, less noisy, has a partial occlusion of the airplane.
Each channel is insufficient for determination of the complete contour. How-
ever, in combination, most of the features are detected.

The vector-valued Chan–Vese model can also be used on color images.
By dividing the image into red, green, and blue (RGB) channels, one can
detect objects normally undetectable when the color image is transformed
to a scalar intensity image. An example of this can be seen in Figure 6. We
can see the “stop-light” in the RGB image, while the scalar intensity image
has the bottom object missing. Channel-by-channel detection would also be
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Channel 1 with occlusion Channel 2 Objects and Averages

Fig. 5. While the first channel has little noise, but has an occlusion in it, the second
channel is very noisy. From these two pictures, we try to detect as much of the
airplane as possible. The parameters are as follows: µ = 0.001 · 2552, λ+

1 = λ−
1 = 1,

λ+

2 = λ−
2 = 0.55. In this example, we first performed a renormalization of the

channels to [0, 255].

RGB Picture Intensity Picture Red Green Blue

Recovered object contours combined in RGB mode

Fig. 6. We give here an example of a color image that has three objects of differ-
ent colors, while the corresponding gray scale image only shows two of them. The
boundary of all the circles is found, while in the gray-scale image the boundary of
one of the circles would never be detected. Note that, since this image does not
have gradient edges, a gradient-based algorithm would not be able to find the three
objects. The parameters are as follows: µ = 0.06 · 2552, λ+

i
= λ−

i
= 1, for i = 1, 2, 3.

insufficient in this case, since features of the image are not complete in any
single channel. Our model, however, detects all three features easily. Also note,
in this particular example, the algorithm detects edges without gradient.
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3.2 Texture Segmentation using Vector-Valued Models

There are several problems specific to texture segmentation. When the tex-
tures have the same intensities, it is very difficult for the standard segmen-
tation models to tell them apart. Another problem inherent in textured seg-
mentation is that it is often difficult to pick out the boundary between two
textures because there is no sharp difference between them. Finally, any tex-
ture segmentation algorithm should be robust to noise, since texture has small
patterns that are “noise”-like.

We do not assume any apriori knowledge or statistical information on the
type of textures, or on the type of intensity, or on the location of boundaries.
The proposed model described in detail in [10] is general, and can be applied
in many situations.

For the texture discrimination, we propose to use Gabor [24] functions,
having properties similar to those of early visual channels, being localized
in space and frequency domains [23, 15]. The Gabor functions are convolved
with the original textured image to obtain different channels. Some of these
channels will be the input of the multi-channel active-contour algorithm.

For other possible transforms instead of the Gabor transform, for tex-
ture discrimination, such as wavelets, for example [28]. This paper is related
to many other works on active contours and texture segmentation, such as
[46], (already mentioned above), [57, 56, 60, 52, 32]. Additional related pa-
pers are [37, 34, 6, 48]. Other related works on segmentation, edge-preserving
smoothing, and vector-valued images (e.g., multi-channels, color, etc), are
[16, 32, 50, 53, 54, 67].

Using all of the channels for segmentation is impractical. Some of the im-
ages are redundant while others add noise and obscure detection. At this point
we divide our model into two parts: “supervised” texture segmentation, when
the user chooses the “best” Gabor transforms, to be used as input channels;
and “unsupervised” texture segmentation, where the Gabor transforms to be
used are chosen by a dynamic automatic criterion.

The case of supervised texture segmentation allows one to use fewest num-
ber of transforms in order to segment the image, and as a result it does a very
good job, with optimal computational efficiency. The case of unsupervised
texture segmentation is similar to the work of [29, 64]. The criterion that we
used for the automatic choice of the Gabor transforms is based on the follow-
ing: we want the images to have the highest intensity differences relative to
the mean of the image. Thus for each transformed channel i we calculate the
following:

si = |c+i − c−i |.

The si is calculated for each channel. Only n (n < 45) channels, corresponding
to the first n largest values of si, are used in our active contour model as
inputs, at the initial time. We recalculated the si at later iterations choosing
the n largest values again. This allows for better choices of the channels as
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Original Final Gabor Transforms

Fig. 7. Supervised model with three different Gabor transforms as input channels.
Parameters: λi = 1, µ = 4000, γi = .3. The boundary of the full square is found,
and the binary segmentation is represented by “gray” and “black” (“black” if φ ≥ 0,
and “gray” if φ < 0).

the contour is refined closer to the desired object. This criterion does a good
job of picking out automatically the “best” channels.

In Figure 7, there is a square in the middle of the image, but it is very hard
to distinguish it. The Gabor transforms contrast the square, with the outside
texture, and the active-contour model has no problem detecting the edges of
the square. In Figures 8, we have used the unsupervised criteria for choosing
the Gabor transforms. The segmentation is done well, with the criteria set for
unsupervised segmentation.

3.3 Logic Operations on Region-Based Active Contours

The Chan–Vese method of active contours without edges is a region-based
method. This is a significant benefit, as it is especially important when finding
logical combinations of objects.

Rather than comparing contrast of the object, it compares the fitting errors
of each channel. The model does not care that each channel has different
intensity values, instead it wants a contour that will minimize the fitting
errors based on the average value for each channel.

To set up the logical framework we define two separate logic variables, zini
and zouti , to denote whether a point (x, y) is in C or not:

zini (ui0, x, y, C) =

{

0 if (x, y) ∈ C and (x, y) inside the object in channel i,
1 otherwise;

zouti (ui0, x, y, C) =

{

1 if (x, y) /∈ C and (x, y) is inside the object in channel i,
0 otherwise.

A natural way to define zini and zouti for the Chan–Vese model is as follows:

zini (ui0, x, y, C) =
|ui0(x, y) − ci+|

2

max(x,y)∈ui
0
ui0

,

zouti (ui0, x, y, C) =
|ui0(x, y) − ci−|

2

max(x,y)∈ui
0
ui0

. (4)
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Original Final

Gabor Transforms

Fig. 8. Unsupervised texture segmentation with only four active transforms. It is
successful in segmenting the zebras and disregarding the stripes.

Note that we use “0” as the “true” value, and “1” as the “false” value,
which is the reverse of the usual convention. This is more convenient because
our framework is based on a minimizing of an objective function and thus we
want the 0 value to correspond to “true”.

For the complement of the object in channel i we define:

zin
′

i = 1 − zini

zout
′

i = 1 − zouti (5)

Following the structure of logic operators, we now want to define a truth
table for the logic model the the variables described above. We treat the points
inside C separately from those outside C.

Continuing with the two-channel example A1 ∪ A2, we define it in truth
table form. The truth table needs to reflect the union of zini and the inter-
section of zouti . For the point (x, y) ∈ C the variable zini is defined. If the
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A1 A2 −→ Union of objects in A1 and A2

A1 A2 −→
Intersection of the outside
of object in A1 and A2

Fig. 9. Logic operations inside and outside the object. The upper triple of images
shows that the union of the inside (black) region gives the union of the 2 objects
in A1 and A2. The bottom triple shows that the intersection of the outside (black)
region gives the complement to the union of two objects.

point (x, y) ∈ C is in the object in either channel, the logic model returns
0, otherwise it returns 1—this reflects the union of the inside of the object.
If (x, y) ∈ Ω\C, the variable zouti is defined. The logic model returns 0 if
(x, y) is not in the object in either channel, otherwise it will return 1, - this
represents the intersection of the outside of the object. The column marked
A1 ∪A2 relates this information. The logic operations A1 ∩A2 and A1 ∩ ¬A2

are calculated in a similar fashion. For intersection of objects, we take the
intersection of the inside of objects and the union of the outside of objects.
For negation we substitute z′i for zi as shown in (5).

For the union and intersection function of logic variables we choose:

fz1∪z2 = (z1 · z2)
1
2 fz1∩z2 = 1 − ((1 − z1)(1 − z2))

1
2 .

The square roots of the products are taken to keep them of the same order
as the original scalar model. Combining the interpolation functions for union
of inside the objects, and intersection outside the objects we get the union of
objects:

fA1∪A2
(x, y) =

√

zin1 (x, y)zin2 (x, y)) + 1 −
√

(1 − zout1 (x, y))(1 − zout2 (x, y)).

Likewise, to get the intersection of objects, we combine the intersection of
the inside with the union of the outside, resulting in the following objective
function for the intersection of objects:
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fA1∩A2
(x, y) = 1 −

√

(1 − zin1 (x, y))(1 − zin2 (x, y)) +
√

zout1 (x, y)zout2 (x, y)).

In the above, we have used the interpolation functions to directly derive the
objective functions corresponding to a given logical expression. Even though
we have by-passed the corresponding truth table, it can be easily verified that
the resulting objection functions do interpolate the function values given in
the truth table. The functional may be written using the level-set formulation
as described in Section 2. Now we can rewrite the functional F for a general
f(zin1 , z

out
1 , . . .) using the level-set function φ.

The objective function for the variational model is:

F (φ, c+, c−) = µ|C(φ)|

+λ[

∫

Ω

fin(z
in
1 , ..z

in
n )H(φ) + fout(z

out
1 , . . . , zoutn )(1 −H(φ))dx].

Derivation of the Euler–Lagrange equation is similar to that of the scalar
model and yields the following differential equation (with Neumann boundary
conditions):

∂φ

∂t
= δ(φ)

[

µ∇ ·
( ∇φ

|∇φ|

)

− λ(fin(zin1 , . . . , z
in
n ) − fout(z

out
1 , . . . , zoutn ))

]

,

which at steady state gives the solution.
For example, for the two logic models presented earlier, the corresponding

Euler–Lagrange equations are:

∂φA1∪...∪An

∂t
=

δǫ(φ)
[

µ∇·
( ∇φ

|∇φ|

)

− λ((

n
∏

i=1

(zini ))
1
n + 1 − (

n
∏

i=1

(1 − (zouti )))
1
n )

]

,

∂φA1∩...∩An

∂t
=

δǫ(φ)
[

µ∇·
( ∇φ

|∇φ|

)

− λ(1 − (

n
∏

i=1

(1 − zini ))
1
n + (

n
∏

i=1

zouti )
1
n )

]

.

Even though the form is complicated, the implementation is very similar
to that of the scalar model that is in (3). The details for this scheme can be
found in [11, 49]. In this section, we show some examples of the performance
of the logical active-contour models described in Section 3.

We show a real life example in Figure 10 with two brain images. ¡They are
two MRIs of the brain taken in a time sequence, each with a synthetic tumor
placed in a different spot. Using logic operation A1 ∩ ¬A2, the tumor in the
first image may be extracted, i.e., the logic operations find the object in the
first image that is different from the second. The reverse is also true. Using
the logic model that describes ¬A1 ∩ A2, the model finds the object in the
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Channels ¬A1 ∩ A2 A1 ∩ ¬A2

Fig. 10. Region-based logic model on a MRI scan of the brain. The first channel A1,
has a synthetic brain tumor in one place; in the second image the synthetic brain
tumor is in a different place. The images are registered. By design we want to find
the tumor that is in A1 and not A2, A1 ∩ ¬A2. Likewise we want to find the tumor
in A2 that is not in A1 and ¬A1 ∩ A2.

second image that is not in the first. This happens to be a very complicated
example as there are a lot of features and textures. Not only does the model
find the tumor, but using logic operations gives the user the capability to
define more precisely how information from the different channels are to be
combined in order to obtain a desired segmentation, as well as the freedom to
use all possible logical combinations using a systematic framework.

In practical terms, the logic framework allows for a single solution global
minimum as the union or intersection of the object depending on the model
chosen. The vector-valued function depends on the initial contour for the final
output, giving either union or intersection of the objects.

3.4 Target Tracking in Video

In this section, we show how the Chan–Vese segmentation model can be ex-
tended to track deforming objects in video sequences. This methodology was
developed by Moelich [40, 41]. Since the Chan–Vese algorithm finds an opti-
mal piecewise-constant approximation to an image, this algorithm works best
in tracking objects that have nearly uniform intensity. The main idea is to se-
quentially segment the frames of a video sequence by using the final partition
from one frame as the initial partition of the next.
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Fig. 11. Results of tracking an object using a modified version of the Chan–Vese
algorithm.

An estimate of each initial contour, which is based on a number of previous
frames, can also be used. This, however, is not necessary unless the frame-
to-frame motion is large compared to the size of the object. Figure 11 shows
sample frames from the complete sequence. Note that the algorithm is able
to capture much information about the person being tracked, including gait
and posture.

Some important modifications are made to the basic Chan–Vese model to
adapt it to tracking objects. The first is to use a local background model,
where the background is isolated to the region outside, but close to the con-
tour. Second, reintializing the distance function maintains a local minima.
Furthermore, once the desired object is identified, the segmentation should
occur in the region of interest surrounding the object to maintain a “global”
minima.

This method can fail when the estimated position of the object in a frame
is far from its true position. This can happen when the frame-to-frame mo-
tion of the object is large relative to the size of the object. In this case, the
segmentation contour is not in contact with the object and can either begin
to isolate a similar nearby object, or vanish. Little can be done if it begins
to segment another similar object. If the contour vanishes, however, it can be
successively enlarged until it finds the desired object. The image in Figure 12
is the completed segmentation of a frame. This contour is used as the initial
contour of the next frame. Due to camera motion, the contour misses the ob-
ject in the second frame. Since the estimated intensity for the object is not
within the contour, the contour shrinks until it vanishes. When this happens,
the algorithm successively enlarges the contour until it contacts the object, in
which case the algorithm is able to isolate it.

The use of the level-set framework makes “enlarging” the segmentation
contour trivial. Recall that the segmentation contour is implicitly defined as
the zero level set of a higher-dimensional function ϕ, where ϕ < 0 inside
the contour and ϕ > 0 outside of the contour. Enlarging the segmentation
contour is the same as “lowering” the level set ϕ. By continually reinitializing
the distance function, the value of |∇ϕ| is approximately equal 1 near the
contour (zero level set). To increase the size of the contour by a fractional
amount f , we can simply modify ϕ as follows:
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Fig. 12. Illustration of how algorithm handles position errors. The child moved far
from frame to frame, by enlarging the contour the child is found in the following
image.

Fig. 13. Tracking in presence of background clutter and poor contrast.

ϕnew = ϕ old − f d/2, (6)

where d is an estimate of the diameter of the contour, which is made before
the segmentation is applied. We used the larger of the height and width of
the contour in the image as the estimate of the diameter.

Figure 13 gives an example sequence that was produced by this algorithm,
tracking the car successfully in a highly cluttered environment.

3.5 Color Segmentation

The Chan–Vese segmentation model was originally developed to segment
piecewise constant images. This algorithm was extended to isolate regions
of constant color with the vector-valued models. We described a method for
isolating objects that are composed of more than one color. This methodology
was developed by Moelich [42].

An object of interest is often composed of a small number of different
colors. For example, the cat in Figure 14 is composed of the colors black and
white. A piecewise constant segmentation algorithm that is based on intensity
alone, would not be able to isolate the entire cat as a single object.
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Fig. 14. A black and white cat and output of color logic model.

This segmentation model assumes some apriori knowledge about the colors
of the object to be isolated. This can be introduced to the algorithm, for
example, by “clicking” on the desired colors in a graphical display. Given a
color image I : Ω → R

3 and a set of colors c = (c1, . . . , cn), the prototype color
logic model uses OR and AND framework described in the previous section
to find a contour C that minimizes the energy

E(C; c) = λin

∫

Ωin

Fin(I(x); c)

+ λout

∫

Ωout

Fout(I(x); c) + µ length (C),

(7)

where

Fin(I(x); c) = (

n
∏

i=1

ki ‖ I(x) − ci ‖ )1/n, (8)

Fout(I(x); c) = 1 − (

n
∏

i=1

ki ‖ I(x) − ci ‖ )1/n, (9)

and where λin, λout, and µ are design parameters, and Ωin and Ωout are the
regions interior and exterior to the contour C, respectively. The values of ki
are chosen to normalize the quantities ‖ I(x)− ci ‖ and to ensure that they lie
in the unit interval.

Figure 15 shows three additional segmentations that were produced by
this model. In each case, two to six different colors were chosen before the
segmentation.

The models for the two regions, given by (8) and (9) above, are effective
for many images. When the colors in the background are similar to the colors
in the object, then an independent background model can be used. In this
case, the model for the background in (9) is replaced by

Fout(I(x); c
out) = (

m
∏

j=1

kj ‖ I(x) − cout,j ‖ )1/m, (10)
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Fig. 15. Additional example of color logic model.

Fig. 16. Illustration of improved background model. Choosing three colors (left) or
two colors (right) with first background model, and choosing three object colors and
three background colors for improved background model.

where cout is the set of m colors used to describe the exterior region. The two
images on the left of Figure 16 were generated without this new model. In
each of these cases, the segmentation was stopped before completion. In the
image on the left, the colors red, white, and blue were selected from the flag.
Since the color of the clouds behind the flag are nearly white, the algorithm
considers them part of the object, and the segmentation contour grows to
include them. In the middle image, only the colors red and blue were chosen.
In this case the clouds, along with the white strips are excluded. Because of
the regularity term, the thin red strips are also excluded.

The improved background model (10) was applied to the image on the
right of Figure 16. In this case, the colors red, white, and blue were selected
from the flag to define the object model, and additional three colors were
selected from the background to define the background region. The use of in-
dependent models for the object and background regions provides the desired
segmentation.

3.6 Image Registration

An algorithm for the joint segmentation and registration of images. is de-
cribed. Similar to other algorithms that we have discussed, the main idea is
to use information from more than one image to develop a segmentation. We
do not assume that the images are registered, or “lined up.” This algorithm
simultaneously finds both the segmentation and the registration between the
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Image I1 Image I2

Reference

Ωobj
Ωbg

Ω1

obj

Ω1

bg

Ω2

obj
Ω2

bg

g(x; p1) g(x; p2)

Fig. 17. Individual contours are mappings of a reference contours.

images. This approach was created by Yezzi, Zöllei, and Kapur [65], and fur-
ther developed by Moelich [41]. Our description focuses on the case of two
images; however, the same method can be applied to a larger number of im-
ages.

Consider two, possibly unregistered images, I1 : Ω → R and I2 : Ω → R.
Let {Ω1

obj , Ω
1
gb} denote the segmentation of the image I1 and let {Ω2

obj, Ω
2
gb}

denote the segmentation of image I2. These two segmentations are viewed as
the mapping of a reference segmentation {Ωobj , Ωgb} under a parameterized
mapping g. Figure 17 illustrates this relationship, where p1 and p2 represent
two sets of parameters for the mapping g.

The segmentation and registration p = (p1, p2) are found by minimizing a
segmentation energy that is defined as

E(Ωobj , Ωbg; p) = Eobj(Ωobj ; p) + Ebg(Ωbg ; p) + µ|∂Ωobj |, (11)

where

Eobj(Ωobj ; p) =

∫

Ωobj

λobj Fobj(x; p) dx, (12)

Ebg(Ωbg; p) =

∫

Ωbg

λbg Fbg(x; p) dx. (13)

The expressions for the region descriptors Fobj(x; p) and Fbg(x; p) depend
upon which segmentation models are used.

There are many valid choices for the mapping g, but for many applications
a simple Euclidean transformation g(x; p) = MRx+ T is adequate, where

M =

[

m 0
0 m

]

, R =

[

cos∆θ -sin∆θ
sin∆θ cos∆θ

]

, and T =

[

∆x
da∆y

]

.

The parameters of the transformation are given by p = (∆x,∆y,∆θ,m ),
where ∆x and ∆y are translation, ∆θ is rotation about the center, and m is
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magnification. When p = (0, 0, 0, 1), the transformation g( · ; p) is the identity
map.

The segmentation energy (11) depends on both the partition of the image
and on the registration parameters. This energy can be minimized by “inter-
leaving” the processes of segmentation and registration, as suggested in [65].
During each iteration of the algorithm, the segmentation, i.e., the level-set
function ϕ, is first held constant while the estimates of the registration pa-
rameters are improved, then these parameters are held fixed while the level-set
function ϕ is evolved.

The registration parameters are improved by using a gradient-descent line
search. The direction of the search is found by taking numerical derivatives
of the energy Eobj(Ωobj ; p) with respect to the components of p = (p1, p2).
Since p1 and p2 are independent, it is useful to update each set of parameters
separately. Also, since translation, rotation, and magnification have different
scales, it is useful to have different time steps for these components.

The segmentation is improved by making a small evolution of the level-set
function by numerically integrating

∂ϕ

∂t
= δε(ϕ) (λobj Fobj(x; p) − λbg Fbg(x; p) + µ div(

∇ϕ

|∇ϕ|
)) in Ω, (14)

∂ϕ

∂n
= 0 on ∂Ω, (15)

ϕ(x, 0) = ϕk in Ω (16)

for a few steps. The energy decreases with each iteration. The process of
alternatively improving the registration and segmentation continues until the
algorithm converges.

When the initial estimate of the registration parameters are poor, an ini-
tial registration phase can be used to put the segmentation contours in con-
tact with the object of interest in each image. This initial registration phase
assumes that an apriori estimate of the average intensities of the object of
interest is known. The initial phase can be applied to either, or both images.
For sake of discussion, we assume that the initial guess for p1 is known to be
reasonable, but that the error in the initial guess for p2 can be large. It is
further assumed, in this case, that the average intensity of Ω1

obj is an estimate

for ĉ2obj , of the intensity of Ω2
obj .

The estimate ĉ2obj is used to construct an initial registration phase energy

Eψ(C2) =
1

m

∫

C2

ψm(x) ds, (17)

where ψ(x) is the distance from x to the intensity of interest in I2 and where
C2 = ∂Ω2

obj is the segmentation contour. The value of m can be taken as
either 1 or 2. A value of m = 1 usually gives a faster convergence, although
using m = 2 gives better behavior near the minima.
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Fig. 18. Typical behavior of the algorithm. Initial contour (top), end of initial
registration phase (middle), and final segmentation (bottom).

A gradient descent is used to minimize the energy Eψ of the initial reg-
istration phase. The values of ∆x and ∆y, which are registration parameters
for the image, are updated using the following equations:

∂∆x

dt
= −

∂Eψ
∂x

= −

∫

C2

ψm−1 ∂ψ(x)

∂x
ds,

∂∆y

dt
= −

∂Eψ
∂y

= −

∫

C2

ψm−1 ∂ψ(x)

∂y
ds .

(18)

Figure 18 illustrates the typical behavior of the complete algorithm. In this
example, the piecewise constant Chan–Vese segmentation model is used. The
images in the left and right columns, respectively, were taken from slightly
different perspectives, at sightly different times. The estimates of the registra-
tion parameters are reasonable for the image on the left, but not for the image
on the right. The initial registration phase is used to drive the contour in the
image on the right toward the object of interest. Once the initial phase en-
ergy is minimized, the phase changes and joint segmentation and registration
is used to both isolate the object and determine the registration parameters.
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Fig. 19. Logical AND model restricts the segmentation. Initial contour (top) and
logical AND (bottom).

Fig. 20. Logical OR model combines information. Initial contour (top) and final
segmentation (bottom).

Figure 19 illustrates how the logical AND model can be used. The image
of the person on the left is used as a template to restrict the segmentation of
the image of the person on the right. The initial contours are shown in the
top row, and the final contours are shown on the bottom. Note the the person
in the background is ignored.

In Figure 20, the logical OR model is used to reconstruct an image from
two incomplete images.
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Fig. 21. A physical representation of the difference in region segmentation between
one and two level sets. The number of regions possible is 2m where m is the number
of level sets, here m = 1, 2.

4 Multi-Phase Extensions

Several multi-phase algorithm extensions are described below. The original
one developed by Chan and Vese [61] adds a new contour to add new regions.
For n contours one would be able to develop algorithms for 2m regions. This
can be bulky to program. Further work has been done on multiphase methods
to increase their efficiency and ease of programming. A recursive method was
introduced by [25] that segments the image in a hierarchical way. First into
two regions, then segmenting each region into two new regions, and so on.
Piecewise constant method by [36] motivated by island dynamics for modeling
epitaxial growth is used for memory efficiency. A multi-layer method by [13]
uses different ranges of a function for different regions, however, nested regions
and triple junctions require more than one function. Binary methods were
introduced by [35] and [55], which require no Delta or Heaviside functions,
obtain direct optimization, for faster implementation.

4.1 Multi-Phase Active Contours without edges

In the previous sections we have discussed segmentation for a single object. We
now show the multi-phase extensions that have been suggested by [62]. The
initial multi-phase algorithm follows the natural extension of the piecewise
constant Mumford–Shah functional, as shown below:

inf
u,Γ

Ems[u, Γ, u0] =

N
∑

i=1

∫

Ωi

|u0 − ci|
2 + µ|Γ |,
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Fig. 22. The image of the brain with initial contours are in section (upper row)
and the final output split into 4 different regions (lower row).

where Γ ′
is are the connected components of Ω \Γ and u = ci on Γi. Rewriting

this in level-set form, we see that for m level sets there are n = 2m phases
that partition the image into n regions

u = c11H(φ1)H(φ2) + c12H(φ1)(1 −H(φ2))

+ c21(1 −H(φ1))H(φ2) + c21(1 −H(φ1))(1 −H(φ2)).

The Mumford–Shah segmentation becomes:

E4[c, Φ|u0] =

∫

Ω

|u0(x) − c211H(φ1)H(φ2)dx

+

∫

Ω

|u0(x) − c12|
2H(φ1)(1 −H(φ2))dx

+

∫

Ω

|u0(x) − c21|
2(1 −H(φ1))H(φ2)dx

+

∫

Ω

|u0(x) − c22|
2(1 −H(φ1))(1 −H(φ2))dx

+ µ

∫

Ω

|∇H(φx)| + |∇H(φ2)|dx.

Minimizing the Mumford–Shah equation leads to the Euler–Lagrange
equation, fixing Φ and minimizing c, then the reverse:
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Fig. 23. A synthetic image with a noisy t-junction is segmented using two level
sets [61].

cij(t) = average of u0 on (2i− 1)φ1 > 0, (2j − 1)φ2 > 0, i, j = 1, 2

∂φ1

∂t
= δ(φ1) [µ∇(

∇φ1

|∇φ1|
− ((|u0 − c11|

2 − (u0 − c12)2)H(φ2)

−((u0 − c21)
2 − (u0 − c22)

2)(1 −H(φ2)))],

∂φ2

∂t
= δ(φ2) [µ∇(

∇φ2

|∇φ2|
− ((|u0 − c11|

2 − (u0 − c12)
2)H(φ1)

−((u0 − c21)
2 − (u0 − c22)

2)(1 −H(φ1)))].

The equations are effected by mean curvatures and jumps of data energy
terms across the boundary. We show two examples in Figure 22, and t-junction
example shows the robustness of the methods in Figure 23, the equations for
which can be found in [62].

4.2 Piecewise Constant Level-Set Method (PCLSM)

The motivation of this model is the same as the one shown above, but to
accomplish this in a single level sets. The multi-region segmentation model is
defined using a single function φ is to assume that φ is a piecewise constant
function taking the values:

φ = i in Ωi, i = 1, 2, ..., n.

The discontinuities of φ give curves that separate the regions [36]. Using this
definition of regions the minimization problem for image u0 is:
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min
c,φ,K(φ)=0

F (c, φ) =

∫

Ω

|u− u0|
2dx+ β

n
∑

i=1

∫

Ω

|∇ψi|dx,

where the function ψi and the constraint are:

ψi =
1

αi
Πn
k=1,k 6=i(φ− k) and αi = Πn

k=1,k 6=i(i− k),

K(φ) = Πn
i=1(φ− i)

and u is defined by

u =

n
∑

i=1

ciψi.

For details on calculating the minimum see [36, 12]. Updating the constant
values is very ill-posed, a small perturbation in φ can yield a large jump in c,
putting some constraints. The benefit of this algorithm is that it can segment
very noisy images, as can be seen in Figure 24. Even though the star is very
noisy, PCLSM is able to segment the image.

Further work has been done that minimizes only the level-set function,
not the constant values, and both gradient-descent and Newton’s method
are used to solve the Euler–Lagrange differential equations [58]. An example
is shown for a two-phase image segmentation. A landscape that has some
complicated shapes is segmented using both Newton’s method and gradient-
descent method in Figure 25.

4.3 Multi-Layer Active Contours without Edges

The multi-layer method uses a single φ with layers. The idea was inspired by
multilayer techniques for modeling epitaxial growth [5]. The minimization de-
scribed is non-convex, non-unique, and works locally, but the implementation
is simple and the results are good.

Below we show the energy equation for a single function φ with m levels
l1 < l2 < ... < lm. This will split the image intom+1 regions with the following
boundaries:

Rm = x ∈ Ω; lm−1 < φ(x) < lm

The energy functional for this layering is as follows:
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(a) (b)

(c) (d)

Fig. 24. (a) Observed image u0 (SNR about 10.6). (b) Initial level set φ, (c) Different
phases using PCLSM where φ = 1∨2∨3∨4 are depicted as bright regions. (d) View
of φ at convergence. for further details see [36].

Fig. 25. From left to right: observed image, segmentation using Newton’s method,
and segmentation using gradient descent.
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Fig. 26. Segmentation of a noisy real blood cells image using one level-set function
and two levels, for further details see [13].

inf
c1,...cm+1,φ

F (c1, c2, ...cm+1, φ) =

∫

Ω

|f(x) − c1|
2H(l1 − φ(x))dx

+

m
∑

i=2

∫

Ω

|f(x) − ci|
2H(φ(x) − li)dx

+

∫

Ω

|f(x) − cm+1|
2H(φ(x) − lm)dx

+ µ

m
∑

i=1

∫

Ω

|∇H(φ− li)|dx.

The Euler–Lagrange equations are as follows:

c1(t) =

∫

Ω f(x)H(l1 − φ(x, t))dx
∫

Ω
H(l1 − φ(x, t))dx

,

ci(t) =

∫

Ω f(x)H(φ(x, t) − li−1)H(li − φ(x, t))dx
∫

Ω H(φ(x, t) − li−1)H(li − φ(x, t))dx
,

cm+1(t) =

∫

Ω |f(x) − c1|
2H(l1 − φ(x, t))dx

∫

Ω H(φ(x, t) − lm)dx
.

For further algorithmic development see [13]. In Figure 26 a noisy image
of a red blood cell is segmented.

5 Fast Algorithms

The image processing techniques described above are very promising, but they
could be somewhat slow even on simple images, because the model iterates
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until it comes to a stable solution. Ways to speed up the algorithms have
therefore been discussed in a number of papers.

5.1 Direct Optimization

One solution by [44] is to solve the partial differential equation in a narrow
band, close to where the level set is zero. Another possibility proposed by [62]
is to simply use implicit methods and take large steps. Multigrid methods
have been developed [59]. New ideas that have been developed over the last
several years include operator splitting by [26], direct optimization [19, 55],
and threshold dynamics.

One approach that has been developed is to use the level-set function,
without solving any differential equations. For problems that are formulated
using level sets φ and can be written in the form:

min
φ
F (H(φ)),

the values of the objective function F are calculated directly. F does not
need to be differentiable, which allows an extra degree of freedom in picking
a model. The values of the level set is not needed, just the sign. Instead
of evolving the differential equation, one can calculate the original objective
function, then note the changes to the objective function if the sign of the level-
set function is changed for the particular pixel. The algorithm follows three
straightforward steps. It is initialized and objective function F is calculated
for the initial partition of φ > 0 and φ < 0. For each point, x in the image, if
the energy F decreases, then change φ(x) to −φ(x). Continuing to recalculate
F through the image until the energy F remains unchanged.

The requirements of this algorithm are satisfied by the Chan–Vese model.
The algorithm for the Chan–Vese model follows the three-step process de-
scribed above. When a local change to φ(x) occurs, the global values of the
energy can be changed with a local calculation. For two-phase images it is
proven in [55] that this algorithm converges in one sweep independently of
the sweep order. It was further proven by [20] that this holds for images with
small noise. In Figure 5.1, the convergence occurs in four steps.

5.2 Operator Splitting

Another fast method that was developed by Gabou and Fedkiw [26] also uses
only the sign of the level-set function rather than the value. It splits the
curvature from the data-fidelity term. First, it calculates the Euler–Lagrange
equation without the length term. This allows the method to take large time
steps. The length term is handled by a separate step.

• Discarding the length term in the Euler–Lagrange equation, let

V (x) =
∂φ

∂t
= −λ1(u− c1)

2 + λ2(u− c2)
2
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Fig. 27. A synthetic noisy image is segmented in four iterations, which are
shown. [55].

• If V (x)φ(x) < 0 then φ(x) = −φ(x).
• There is an anisotropic diffusion step which then handles noise.

This method takes large time steps and so it converges quickly. Finally,
there is a decrease in energy at each time step.

5.3 Threshold Dynamics

More recently, work has been done by Esedoglu and Tsai [19], which uses
threshold dynamics. This is motivated by a phase-field version of the two-
phase piecewise constant Mumford–Shah model. This yields the following
gradient-descent equation for u:

ut = 2ǫ∆u−
1

ǫ
|W ′(u) − 2λ[u(c1 − f)2 + (u− 1)(c2 − f)2)],

where W (ψ) = ψ2(1 − ψ)2.
Using the method developed by Merriman, Bence, and Osher (MBO) [2],

the method alternates between a linear parabolic partial differential equation
and thresholding:

• Let v(x) = S(δt)un(x), where S(δt) is the propagator of the linear equation

wt = ∆w − 2λ[w(c1 − f)2 + (w − 1)(c2 − f)2].
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• Set
un+1(x) =

{

0 if v(x) ∈ (−∞, 1
2 ),1 if v(x) ∈ (1

2 ,∞).

This method is fast because the first step is calculated quickly using an fast
Fourier transform, and the second step is a threshold. A higher-order scheme
has been developed in [18].
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