SOLVING THE CHAN-VESE MODEL BY A MULTIPHASE LEVEL
SET ALGORITHM BASED ON THE TOPOLOGICAL DERIVATIVE
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Abstract. In this work, we specifically solve the Chan-Vese active contour model by multiphase
level set methods. We first develop a fast algorithm based on calculating the variational energy of the
Chan-Vese model without the length term. We check whether the energy decreases or not when we
move a point to another segmented region. Then we draw a connection between this algorithm and the
topological derivative, a concept emerged from the shape optimization field. Furthermore, to include
the length term of the Chan-Vese model, a preprocessing step is taken by using nonlinear diffusion.
Numerical experiments have demonstrated the efficiency and the robustness of our algorithm.
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1. Introduction. Image segmentation, an important problem in image analysis,
is to partition a given image into disjoint regions, such that the regions correspond to
the objects in the image. There are a wide variety of approaches to the segmentation
problem. One of the popular approaches is active contour models or snakes, first
introduced by Terzopoulos et al. [27, 26]. The basic idea is to start with a curve
around the object to be detected, the curve moves towards to its interior normal and
has to stop on the boundary of the object. The main drawbacks of the orginal snakes
are their sensitivity to initial condtions and the difficulties associated with topological
transformations. Caselles et al. [5] thus introduced the first level set formulation for
the geometric active contour model in a non-variational setting (see also Malladi et
al. [18]) and later in a variational form [6] (cf. Kachenassamy et al. [13]). A major
advantage of the level set approach [21] is the ability to handle complex topological
changes automatically. However, all above active contour models are depending on
the gradient of the given image to stop the evolution of the curve. Therefore these
models can only detect objects with edges defined by a gradient.

Based on the Mumford-Shah functional [19] for segmentation, Chan and Vese
[7, 28] proposed a new level set model for active contours to detect objects whose
boundaries are not necessarily defined by a gradient. In this paper, we will focus on
solving this model. We denote the given image f : D — R, where D € R? is an open
and bounded set. We let €2, an open subset of D, to be the detected objects. Thus
we write the boundary of the detected objects as 0{2. The Chan-Vese model is to
minimize the following variational functional,

F(Q,c1,c2) = min /Q(f—cl)de—l—/

,C1,C2 D\Q

(f — c2)? dx—I—u/ ds, (1.1)

o0

where pr > 0 is the so called length parameter chosen by the user. To solve this
minimization problem (1.1), the level set method [21] is used. A level set function
¢(x) is represented by the region ) as follows,
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Thus the minimization functional (1.1) can be reformulated in terms of the level set
function ¢(x) as

F(¢,c1,c2) = ¢min fD (f —c1)’H(¢) dz + fp (f —c2)?(1 = H(¢)) dx
5C1,C2
+u [ [VH(¢)|dz,
where H(z) is the heaviside function. This minimization problem is solved by taking

the Euler-Lagrange equations and update the level set function ¢(z) by the gradient
descent method,

(1.2)

Vo
¢ =—0(d)((f — 1)’ = (f —e2)* =V - =), (1.3)
Vol
where §(z) is the delta function and the constants ¢; and co are updated at each
iteration by

_ o fHG@)dx [, (- H(6()) du
[pH(o(@))de >~ [, (1— H(¢(x)))dz

The main drawback of solving this nonlinear parabolic PDE (1.3) is the computation
expense due to the numerical stability constraint, i.e., the CFL condition.

To overcome the difficulty of solving the nonlinear PDE, Gibou and Fedkiw made
an observation of (1.3) that only the zero level set of the function ¢(z) is important.
So they neglect the term 6(¢) and replace the length term by a nonlinear diffusion
preprocessing step. Thus they end up to solve the following ODE

pr=—(f—a)? +(f — )’ (1.5)

where ¢; and ¢y are updated according to (1.4). This converges very fast since a large
time step can be taken. They also draw a connection between (1.5) and the k-means
procedure (cf. [17]). However, in our work, we will link (1.3) with the topological
derivative, which has been studied in our previous work [12] to the application of
structural optimal design. So this paper can also be considered as a series work of
different applications of the topological derivative.

Independently, Song and Chan [25] take a different approach to solve the Chan-
Vese model. They go straightforward to the variational energy (1.1) or (1.2) without
the length term. They compute the difference of the energy functional when they
move a pixel z from inside the zero level set to outside (or vice versa). If the energy
does not decrease, the pixel is kept inside; otherwise, it’s favorable to move the pixel
outside. To move a pixel cross the zero level set, they just simply replace ¢(x) by
—¢(x). This algorithm converges within a few iterations.

Based on [25], in Section 2 we introduce a fast algorithm by calculating a varia-
tional energy under the the multiphase level set framework. Therefore we are able to
deal with complex images with triple junctions, multiple layers and etc. Two simple
examples are shown to demonstrate the robustness and the efficiency of our fast algo-
rithm. In Section 3, we make a connection between the idea behind this fast algorithm
and the concept of the topological derivative. Furthermore, by applying topological
derivative on the level set method (cf. [4, 12]), we make a link to the work in [25]. In
addition, we take a preprocessing step (cf. [25]) to include the length term. In Section
4, we present more numerical examples to illustrate how our algorithm works in more
complicated applications, which include noisy images and medical images. They all
converge in less than 3 iterations.

C1 (14)



Last but not the least, we want to mention a series of paper on image segmenta-
tion by different kinds of PDE based level set methods, such as the multilayer level
set approach [8, 9] and piecewise constant level set methods [16, 15]. It would be
interesting to compare our algorithm with theirs regarding to the speed, the quality
of segmented results and the sensitivity to initial conditions and noise. This could be
our future work.

2. Our Fast Algorithm.

2.1. The Two Level Set Framework. To segment images with multiple ob-
jects and/or junctions, we can easily generalize the above single level set method to
a multiphase level set method [28]. Particularly here we use a two level set method
with the functions denoted as ¢ and ¢5. Thus we can segment any image up to four
disjoint ”color” regions, given by Q11 := {¢1 > 0,¢2 > 0}, Q12 := {¢1 > 0, P < 0},
Qo1 :={d1 < 0,¢2 > 0} and Qog := {1 < 0,2 < 0}. Thus we define the associated
energy functional without the length term as the following

F(¢1,62,6) = min_ [ (f —ci1)?H(¢1)H(¢2) dx
1,92,C
+  [p (f = c12)?H(p1)(1 — H(¢)) da 2.1)
+ [ (f —c21)*(1 = H(¢1))H(do) dx
+  Jp (f —e22)?(1 = H(¢n))(1 — H(¢2)) da,
where the four constants ci11, ¢12, co1 and ¢ are computed as the following
P Jp FH(¢p1)H(¢2) dz Cro — Jp FH(¢1)(1—H(¢2)) da
W= T, H(¢)H(¢2) da 127 T H(¢) (A= H($2)) dz (2.2)
_ Jp f(A-H(¢1))H(¢2)dz _ Jp FO—H($1))(1—H(¢2)) d= '

€21 = T A—H($1 ) H(¢a) dz © 22 = [ (I—H(¢:1)(1—H(¢3)) dz *

2.2. The Algorithm. The idea of our fast algorithm is that for any pixel zo €
D, we consider the variation of the energy functional (2.1) corresponding to move xg
to any of the other three regions except the one xg belongs to. If the energy does not
decrease, we keep xg at the current region; otherwise, we move zq to the one decreases
most.

For the sake of clarity, we can write F(¢1,d2,C) in terms of the four regions
F(211,Q12,21,92). This notation will be used in this subsection. We denote the
number of pixels in the region of Q17 as mjj, correspondingly the number of pixels
in the region of 15, Q91 and Qoo as mqo, Moy and moy. We further assume that the
area of a pixel occupies, i.e., the are of a grid, is 1. Then the constants defined in
(2.2) can be rewritten as

— an fd= — lez fdz

1= —p o G127 T
(2.3)

— f921 fdw — szz fdz

C21 =~ 22 = —

We consider the case of moving the pixel zg € 211 to the region 15. Denote the
average of the new regions 211 — z and €15 + x correspondingly as ¢1; and ¢12, we
have

¢ — fﬂn*wo fde = 11 — f(zo)—c11

11 = 1 = cn =1
(2.4)

P Joppeg Fdr 1o + LE)=c12

12 miz+1 12 miz2+1 °



Then the variation of energy functional (2.1) from this action is computed below,
F(Q1 — w0, Q2 + 20, Qa1, Q22) — F(Qu11, Q12, Qo1, Qa2)

= fﬂu—xo (f B 611)2 dr — fQu (f - cll)2 dz

+fQ12+xn (f - 512)2 dx — lez (f - 012)2 dx

(2.5)
xr (& 2
- fﬂu*fﬂo ('f o 611)2 da — % fﬂll Cll 2 dx
+ St (F = c12)? da — % Ja,, (f —c12) )2 dx

= —a(f(zo) — en)? + o2 (f(zo) — c12)?.

Similarly, we can obtain the variations of the energy functional (2.1) from moving xg
to the other two regions, 291 or Q95. They are

F(Qu — o, D12, Qo1 + Zo, Q22) - F(Qu, 2, Q217922)

= —ant(fleo) —en)? + 5285 (f(20) — e21)?,

F(Qll — Zo, QlZa Q217 QQ2 + -TO) - F(Qlla Q127 Q217 Q22)

= _mTllil (f(l'o) - 011)2 + m?;il (f(l'()) — 022)2.

Thus for the pixel zy € 211, we first find the smallest value among the following

four values : o (f(zo) — c11)?, 2 (f (o) — c12)?, o (f (o) — c21)? and

222 (f (o) — ¢22)?. Then we move g to the corresponding region, denote it as €2;;.
If this corresponding region €);; is not the original one €2, then we need to change
o1(x0) and ¢ao(xg) based on the sign of these both level set functions represented
by Q;;. For example, if ¢ = 1 and j = 2 then we just replace ¢2(x) by —¢2(z0).
Furthermore, we need to update the constants c1; and ¢;; following (2.4). Until now
we can advance to the next pixel in some prescribed order. For example, in our
numerical experiments, we sweep the pixels row by row. One iteration is finished
when we have swept all the pixels in the image once. Usually less than 3 iterations

are needed before the energy F' remains unchanged.

2.3. Examples. In Figure 2.1 and Figure 2.2, two simple examples are presented
to demonstrate the efficiency and the robustness of our fast algorithm compared with
the results from multiphase PDE based level set methods [28].

In Figure 2.1, the first row shows the initial condition used for the both ap-
proaches. The second row shows our result which converges after only one iteration.
The third row shows the result obtained from the PDE based method. This result
is computed over 500 iterations and it gets stuck in a local minimum. From the
first two images at the second row we observe that the square is split into two re-
gions Q17 and §215. This is because an optimal solution obtained from our algorithm
does not allow any of the four regions to be empty. For example, if ;5 is empty,
i.e., mia = 0, then according to (2.5), the energy functional F' at the new shape
(Q1 — zo, Q12 + g, Q21,Qa2) is less than the energy functional F' at the old shape
(9117912,921,922). Therefore the shape (911,912,921,922) with an empty region
Q15 can not be an optimal solution. However this argument does not affect the seg-
mented result, see the last image at the second row.
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Fic. 2.1. A simple example of triple junction. The first row: the initial condition. The second
row: the result from our algorithm. The third row: the result from PDE based level set methods.
Left: the zero level set of ¢1; Middle: the zero level set of ¢2; Right: segmented regions.

Figure 2.2 shows four different initial conditions used for our both approaches.
Our fast algorithm converges correctly within 2 iterations for the first three initial
conditions but the bottom right initial condition. In that case, our algorithm gets
stuck at the outer circle. This is simply because three initial regions (211, Q12 and
Q1) all belong to the black background. However, none of the four initial conditions
works for the PDE based method. They all converge to the same local minimum
trapped at the outer circle. This is because that the PDE based level set method
evolves level sets mainly near the zero level set. When a pixel is far away from the
zero level set, it is not likely to cross over it. We will comment on this more in the
next section after we introduce the concept of the topological derivative.

Remark 1 Strictly speaking, our fast algorithm does not use the level set evolu-
tion. More precisely, we only use the level set method to formulate our problem.

Remark 2 Since the level set function values and the constants are updated along
with the sweeping procedure, the sweeping order should matter. This is usually an issue
of Gauss Seidel iteration. However in our case, it is easier to just choose a different
initial condition than a different sweeping order.

3. The Connection to the Topological Derivative. Let us go back to (1.4),
where both constants ¢; and co are correspondingly defined as the average of the
image f inside or outside the subset 2. Therefore we can rewrite the minimization
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Fic. 2.2. Four different initial conditions used for comparisons between our fast algorithm and
multiphase PDE based level set methods.

problem (1.1) or (1.2) as

(f — c2())? dm+u/ ds, (3.1)

Q

F(Q):min/ﬂ(f—cl(Q))?dm—k/

D\ o9
T dx
where again, ¢1(Q) = f&f? fd‘i and ¢5(Q) = ffD\Qifdx'
2 D\Q

Originally, the Chan-Vese model (1.1) or (1.2) is defined as a minimization prob-
lem determined by the shape of 2 and two constants ¢; and c;. Now with this new
form (3.1), the active contour model becomes a pure shape optimization problem,
where a huge literature [20, 24, 2, 1] can be accessed from the shape optimization
field. Particularly in our work, the concept of the topological derivative [23, 10, 3] is
employed to explain why our algorithm works efficiently and robustly.

3.1. The Topological Derivative. The idea of the topological derivative is to
create a small ball B, , with center x and radius p inside/outside the domain Q and
then consider the variation of the objective functional F with respect to the volume
of this small ball. For x € Q, the topological derivative dzF(2)(z) is defined as the
limit (if it exists)

dr F(Q)() = Tim L o) = F ()

L) Z T 0Y 3.2
2 1B, 9 (3.2)

where Q, , = Q — B(p, z). Thus to minimize the energy functional F, a hole should
be created at the point x if the topological derivative is negative. This is clearly the
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same idea as our fast algorithm, which now can be considered as a discrete application
of the topological derivative.

The above definition of the topological derivative is based on two regions €2 and
D\ Q. Nevertheless it can be generalized to multiple regions as the following. For
x € Qq1, if we create a small hole of B, , and add it to the region €)1, then with the
notation of

Joy, - B fdedy JB(p,my (F—c11) dz
o= e ma T T T e 53
o = Jopepee fid L [ a2 de '
N [Qu2]+mp2
the topological derivative of this perturbation is computed as follows,
lim an*B(p,z) (f - Cll)l)2d'rdy - lel (f - C11)2d$dy
p—0 P2
4 lim f912+3(p7x) (f - c’f2)2dwdy - wi (f — c12)*dady
p—0 7Tp2
(Js(p,e) (f=c11) da)?
— lim Jon—Biow) (f —en)?dady — —Pg— = Jo,, (f —c11)*dedy
p—0 7TP2
2 (J5(pw (f—c12) dx)?
+ Tim Jors B(pm) (f — C12)?dady — =255 — Jo,, (f = c12)*dzdy
p—0 wp?
_(f(x) - 011)2 + (f(l‘o) - 012)27 if |Q12| > 0;
—(f(z) = en)?, if [Q12] = 0.
(3.4)

Similarly, we obtain the topological derivative of creating a hole centered at x in
Q11 and add it to Q91 or Qg5. Comparing (3.4) with the expressions (2.5) and (2.6)
in Section 2.2., we see indeed that our fast algorithm is based on a discrete definition
of the topological derivative. The rigorous definition given here uses a hole with the
area mp? and p — 0, while the discrete definition replaces that by a grid with the area
equals 1.

3.2. A Connection to the Work of Gibou and Fedkiw. To draw a connec-
tion between the topological derivative and the work in [11], we will go back to the
single level set framework again. Following the analysis of (3.4), we obtain the topo-
logical derivative of the objective functional F' with the shape functional 2 for zy € Q
is —(f(xo) — c1)? + (f(z0) — c2)? and for xg € D\ Qis (f(zo) — c1)? — (f(wo) — c2)*
Based on these, to minimize the objective functional F, we know (cf. [4, 12]):

o If ¢(z0) >0, and —(f(wo) — c1)® + (f(z0) — c2)? > 0, then it is not favorable
to generate a hole at o which means the value of ¢ should not decrease.
o If ¢(xg) > 0 and —(f(wo) — c1)? + (f(z0) — c2)? < 0, then the value of ¢
should decrease since it is favorable to generate holes.
o If ¢(x0) < 0 and (f(zo) —c1)? — (f(x0) — c2)? > 0, then it’s not favorable to
create hole and thus the value of ¢(x,t) should not increase.
o If ¢(zg) < 0 and (f(wo) — 1) — (f(zg) — c2)? < 0, then it’s favorable to
create a hole which means the value of ¢ should increase.
Then to obtain the minimizer of the objective functional (3.1) (equivalent to (1.1) and
(1.2)) without the length term, we choose to solve the ODE (1.5), which satisfies the
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above requirements. For more details, see [4, 12]. This leads to Gibou and Fedkiw’s
work in [11]. To solve (1.5), we can take a large time step. Or, we can just update
the level set function ¢(z) by the sign of —(f(x) — c1)? + (f(x) — c2)? as follows,

¢n+1(x):{ 1 leflse— (f(x) = er(¢"(@))* + (f(2) = ea(¢"()))* > 0 55)

This method updates ¢ by so called the Jordan iteration compared with the the Gauss
Seidel iteration used by our fast algorithm. The method of updating ¢ by the Jordan
iteration converges within a few iterations because whether a pixel x outside or inside
the zero level set of ¢ is solely determined by the distance between the value of f(x)
and ¢; or cg, see also [25]. This analogy can be trivially extended to the multiphase
level set framework we use here. Thus it also explains why our algorithm based on
the Gauss Seidel iteration converges so fast.

Up to now, we have linked [11] and [25] together through the topological deriva-
tive. And we mention here that those PDE based level set methods solved in [7, 28,
8, 9] can be considered as level set approaches based on shape derivatives [24]. As
pointed out in [2, 1], the level set approach based on the shape sensitivity may get
stuck at shapes with fewer holes than the optimal geometry in some applications to
structure designs. This is also the case in image segmentation. Thus in the numerical
experiments of those work mentioned above, initial conditions with many small circles
are used. However, our algorithm together with [11, 25] do not have this problem.
The advantage of applying the topological derivative on the level set method is the
ability to create holes even far away from the zero level set.

3.3. The Length Term. By far, we have not mentioned how to deal with
the length term. It is necessary particularly for noisy images or images with edges
not defined by a gradient. To include the length term, special attentions are paid in
[25, 11]. The authors of [25] apply several iterations of the PDE-based algorithm (1.3)
to the obtained optimal solution from their fast algorithm. And the authors of [11]
choose a preprocessing step on the given image f and then apply their algorithm to
this processed image. The idea of this preprocessing step is to use isotropic nonlinear
diffusion [22] for denoising images while still keeping the image edges intact. The
nonlinear equation they solve is

Ii(x,t) = V- (g(IVI)VI), (3.6)

where I(z,t) defines the image and ¢ is an edge-stopping function such that lim g(s) :I
§—00
0, i.e., diffusion stops at the location of large gradients.
The reason why they treat the length term different are not given in their work.
Now based on the topological derivative, we know it is because the topological deriva-
tive of the objective functional F(Q2) = |0Q| does not exist. In fact,

. 9B, | . pNTt
O Bl T

In our work, we also take the preprocessing step to re-introduce the notion of the
scale term. Following [11], we choose g(s) = v/(1 + s?/K?), where v is a parameter
controlling the length scale and K is fixed as 7. We use the Alternative Direction
Explicit (ADE) technique to solve (3.6), see [14]. We only conduct a few iterations of
(3.6) since our intention is not to denoise but to segment the image f.
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4. More Numerical Examples. First in Figure 4.1, we show two segmentation
results from a noise free image and the same image with an added Gaussian noise.
The preprocessing step is taken for the noisy image with v = 1 and 5 ADE iterations.
The convergence of the fast algorithm for the both images is within 2 iterations. We
note that our algorithm plus the preprocessing step is not sensitive to the noise. Even
though the right triangle does not have a sharp contrast with the background and
noise, the optimal solution still finds it correctly.

rv

20 0 60 80 100

Fic. 4.1. Segmentation of a noise free image and a noisy image. Left: the initial condition;
Middle: zero level sets of ¢p1 and ¢2 ; Right: the segmented result.

Then in Figure 4.2 we present a tricky example to show that our fast algorithm
is sometimes sensitive to initial conditions. The synthetic image in Figure 4.2 is
composed of 5 piecewise constant parts with the gray value of the outer 3/4 circle is
exactly the mean of the gray value of the left square and the gray value of the center
square besides the inner circle. Therefore it is very likely that the optimal solution
does not distinct the center square from the 3/4 circle. See the bottom images.

We conclude our paper by showing how our algorithm works on medical images
in the next three figures. For each image, a preprocessing step is taken and the fast
algorithm converges within 2 iterations. We notice that the zero level sets of ¢; and
¢2 overlap sometimes since there is no restriction on the length of both interfaces.
Nevertheless, the segmented results are still good. see Figure 4.3, Figure 4.4 and
Figure 4.5.
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Fic. 4.4. Segmentation of a brain data. Top left: the initial condition; Top right: the zero level
set of ¢1; Bottom left: the zero level set of ¢o2; Bottom right: the segmented result. v = 2.0, 5 ADE
iterations are solved.
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F1c. 4.5. Segmentation of a brain data. Top left: the initial condition; Top right: the zero level
set of ¢1; Bottom left: the zero level set of ¢o2; Bottom right: the segmented result. v = 1.0, 5 ADE
iterations are solved.
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