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Abstract. We examine weighted nonlocal convex functionals. The weights
determine the affinities between different regions in the image and are
computed according to image features. The L1 energy of this type can be
viewed as a nonlocal extension of total-variation. Thus we obtain non-
local versions of ROF, TV-flow, Bregman iterations and inverse-scale-
space (based on nonlocal ROF). Constructing the weights using patch
distances, similarly to the nonlocal-means of Buades-Coll-Morel results
in very robust and powerful regularizations. The flows and minimizations
are computed efficiently by extending some recently proposed graph-cuts
techniques. Numerical results which illustrate the performance of such
models are presented.

1 Introduction

The application of partial differential equations and variational methods to image
and signal processing have shown to be very effective, allowing high quality
regularization procedures. The energy functionals are well understood and a
rigorous theory can often be established regarding their properties. There are,
however, some limitations to functionals such as total variation [20]. These type
of functionals are based solely on derivatives which are local features of the
signal. Moreover, it is hard to adapt the process to more specific tasks or encode
a priori information (without introducing additional energy terms). In this paper
we aim to extend the variational framework to a nonlocal one and allow much
more flexibility in the regularization, yet keeping a simple convex framework.

Our approach can be viewed as a continuous generalization of graphs and
relates to concepts from spectral graph theory [9, 18]. A fundamental linear op-
erator used in this field is the graph Laplacian. We give a more general nonlinear
convex viewpoint and suggest a large family of operators which may be used. As
the weights are computed according to noisy data they may have outliers which
can be well handled by L1-based regularizations. Our present study may be seen
also as a generalization of an early work [8] regarding digital TV.
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The use of spectral graph theory for image segmentation was suggested by
Shi and Malik [21] and influenced many studies (e.g. [23, 25, 14]). A harmonic
analysis viewpoint for general high dimensional applications is given in [10].

In [4] the following nonlocal filter, referred to as nonlocal means, was sug-
gested for image denoising:

NL(u)(x) =
1

c(x)

∫

Ω

e−da(u(x),u(y))/2h2

u(y)dy (1)

where

da(u(x), u(y)) =

∫

Ω

Ga(t)|u(x + t)− u(y + t)|2dt (2)

Ga is a Gaussian with standard deviation a, and c(x) is a normalization factor:

c(x) =
∫

Ω
e−da(u(x),u(y))/h2

dy. A variational understanding of the filter was first
presented in [15] as a nonconvex functional and later in [13] as a convex quadratic
functional. The work of [22] was the first to show how nonlocal means can be
understood within the diffusion geometry framework of [10]. In our numerical
experiments the weights of the functional are computed according to Eq. (2).

We first present the regularizing functonials before describing the numerical
algorithms. In paper we focus on TV-based regularization and we show how
such an optimization can be performed using a graph-cut based approach [3,
16]. In [12], the authors show how to solve classical ROF [20] minimization
problem using graph-cuts. This method is shown to be very fast. In this paper
we extend this approach to the proposed non-local model. We also describe how
one can compute a Total Variation flow [1] and its non-local extension.

2 The Regularizing Functional

We begin by defining the following general convex nonlocal functional:

J(u) :=
1

2

∫

Ω×Ω

φ(|u(x)− u(y)|)w(x, y)dxdy, (3)

where Ω ∈ R
n, x = (x1, . . . , xn) ∈ Ω and y = (y1, . . . , yn) ∈ Ω. For images we

have n = 2. The function φ is convex, positive and we assume φ(0) = 0. For
L1 type functionals we further assume lims→∞ φ(s)/s = 1. The weight function
w(x, y) ∈ Ω × Ω is positive: w(x, y) ≥ 0 and symmetric: w(x, y) = w(y, x). For
image processing tasks the weight function is based on image features and can
be understood as the proximity between two points x and y, based on features in
their neighborhood. For more details on the way to obtain such functions along
with a few examples see [13].

Let p(u) be a subgradient element of J :

p(u)(x) ∈ J ′(u)(x) =

∫

Ω

φ′(|u(x)− u(y)|) u(x)− u(y)

|u(x)− u(y)|w(x, y)dy. (4)



In [13] the quadratic form was investigated φ(s) = 1
2s2, with the correspond-

ing linear operator L:

Lu(x) = −p(u)(x)|φ(s)= 1

2
s2 =

∫

Ω

(u(y)− u(x))w(x, y)dy. (5)

We first define a flow for minimizing the general energy J(u). Taking the
input image f as the initial condition, a steepest descent for the functional
defined in (3) is

ut(x) = −p(u)(x), ut=0 = f(x). (6)

For φ(s) = s the flow may be interpreted as a nonlocal TV flow [1].

2.1 Variational Denoising

In the usual way, one can add a convex fidelity term to the convex functional J .
For the L2 fidelity, the denoised image u is the minimizer of

E(u, f) = J(u) +
λ

2
‖u− f‖22, (7)

and u satisfies the Euler-Lagrange equation

p(u) + λ(u− f) = 0. (8)

Eq. (3) with φ(s) = s will be referred to as NL-ROF for the rest of this paper.
As commonly done, one can also view this as a constrained problem:

u := arg minJ(u), s.t. ‖u− f‖22 = |Ω|σ2
n, (9)

where σ2
n is the variance of an additive noise in a noisy image f . Then λ is

viewed as a Lagrange multiplier and one can compute the constrained problem
by initializing e.g. with u|t=0 = f , λ = 1 and iterating:

ut = −p(u) + λ(f − u), (10)

λ =
1

|Ω|σ2
n

∫

Ω

(f − u)p(u)dx, (11)

using the gradient projection method, as in [20]. We also propose a dichotomic
approach for computing λ in section 3.

2.2 Bregman Iteration and Inverse Scale Space

In [5],[7] we developed an inverse scale space (ISS) and relaxed inverse scale
space approach to denoising. It was based on the continuous limit of Bregman
iterations devised in [19], not only for denoising but for blind deconvolution [17]
and other reconstruction tasks [24],[2] as well as being a useful theoretical device
to obtain sharp estimates in standard reconstruction methods [6].



Briefly, to reconstruct an image from a given data f we begin with the vari-
ational problem

u1 = arg min
u

(J(u) + λH(u, f))

(see [19] for more details). This leads to the sequence

uk = arg min
u

(J(u)− J(uk−1)− < u− uk−1, pk−1 > +λH(u, f))

k = 1, 2, . . . , with u0 = 0 and J(0) = p0 = 0, for λ > 0, where pk−1 = p(uk−1).
Under reasonable hypotheses it follows that uk → ũ the minimizer of H(u, f)
monotonically, but, more importantly, the Bregman distance between uk and g,
g a ”denoised version of ũ”, which means J(g) <∞, decreases until uk gets too
close to ũ. See [19] for the precise results.

The Bregman distance is defined by

D(g, u) = J(g)− J(u)− < g − u, p(u) > .

For J(u) defined by (3) with φ(s) = s, we have

D(g, u) = 1
2

∫

Ω×Ω

(

|g(x)− g(y)| − (g(x)−g(y))(u(x)−u(y))
|u(x)−u(y)|

)

w(x, y)dxdy

The inverse scale space equation associated with (7) is

d

dt
p(u) = (f − u)

with u(0) = 0 and the normalization
∫

u =
∫

f = 0 is required.
Solving this involves inverting p and evaluating it at every time step, which

is computationally nontrivial.
Instead we use the relaxed inverse scale space approximation [5]:

∂u

∂t
= −p(u) + λ(f − u + v)

∂v

∂t
= α(f − u)

for λ, α > 0, α ≤ λ
4 with initial data u(0) = v(0) = 0.

2.3 Preliminary analysis

In the discussion below we require the following condition

The associated linear operator − L has a zero eigenvalue of multiplicity 1.
(12)

Where L is defined in (5). This condition ensures connected weights (in a similar
manner to graphs [9]):

Lemma 1. Condition (12) holds if and only if for any two points x, y there
exists a sequence: z1, . . . , zk such that w(x, z1)w(z1, z2)w(zk, y) > 0 (that is,
every element in the sequence is strictly positive).



For a proof see [13]. We analyze the simpler case of strictly convex functionals.
Thus φ(s) is strictly convex in s, the subgradient is unique and p(0) ≡ 0. Many
of the following results, however, can be extended to the general convex case.

Proposition 1 The operator p(u) as defined in Eq. (4) with strictly convex φ
and satisfying condition (12) admits the following properties:

(a) u ≡ const iff p(u) ≡ 0.
(b) For any maximal point u(x0) ≥ u(x), ∀x ∈ Ω, p(u)(x0) ≥ 0. Similarly for

any minimal point u(x1) ≤ u(x), ∀x ∈ Ω, p(u)(x1) ≤ 0.
(c) p(u) is a positive semidefinite operator, that is 〈p(u), u〉 ≥ 0.
(d)

∫

Ω
p(u)(x)dx = 0.

Proof. The first part of Property (a) is valid since for any constant u we have
s = |u(x)− u(y)| ≡ 0. We get p(u ≡ const) = p(0) = 0. For the second part it is
easy to see that for a given point x we have p(u)(x) = 0 if for all y ∈ Ω either
u(x) = u(y) or w(x, y) = 0. Using the connectivity condition (12) we reach the
conclusion u(x) = u(y), ∀x, y (or else we get a contradiction p(u) 6= 0, for more
details see the proof of Lemma 1).

Property (b) is seen using φ′(s)
s ≥ 0, w(x, y) ≥ 0.

Property (c) can be validated (relying on the symmetry w(x, y) = w(y, x)

and φ′(s)
s ≥ 0) by:

〈p(u), u〉 =
∫

Ω×Ω
φ′(|u(x)− u(y)|) u(x)−u(y)

|u(x)−u(y)|w(x, y)u(x)dydx

= 1
2

∫

Ω×Ω
[(u(x)− u(y))u(x)φ′(|u(x)−u(y)|)

|u(x)−u(y)| w(x, y)+

+(u(y)− u(x))u(y)φ′(|u(y)−u(x)|)
|u(y)−u(x)| w(y, x)]dydx

= 1
2

∫

Ω×Ω
(u(x)− u(y))2 φ′(|u(x)−u(y)|)

|u(x)−u(y)| w(x, y)dydx ≥ 0.

Property (d) is shown by

∫

Ω
p(u)(x)dx = 1

2

∫

Ω×Ω
[(u(x)− u(y))φ′(|u(x)−u(y)|)

|u(x)−u(y)| w(x, y)+

(u(y)− u(x))φ′(|u(y)−u(x)|)
|u(y)−u(x)| w(y, x)]dydx = 0.

2

2.4 Basic properties of the flow

We would like to establish some results regarding the flow (6). We examine the
strictly convex case φ(s) =

√
s2 + ε2 − ε. Thus

p(u)(x) =

∫

Ω

u(x)− u(y)
√

(u(x)− u(y))2 + ε2
w(x, y)dy. (13)

We assume condition (12) is satisfied, thus we can use the properties of Propo-
sition 1.



Proposition 2 The flow (6) with p(u) satisfying the conditions of Proposition
1 admits the following properties:

(i) The mean value is preserved, 1
|Ω|

∫

Ω
u(x, t)dx = 1

|Ω|

∫

Ω
f(x)dx, ∀t ≥ 0.

(ii) The extremum principle holds, minx(f(x)) ≤ u(x, t) ≤ maxx(f(x)), ∀x ∈
Ω, ∀t ≥ 0.

(iii) The solution converges to a constant, u(x, t→∞) ≡ const =
∫

Ω
f(x)dx.

(iv) The following estimate holds: 1
2

d
dt‖u(x, t)‖2L2 ≤ 0.

Proof. (i) can be shown by computing the time derivative of the mean value and
using Property (d):

d

dt

( 1

|Ω|

∫

Ω

u(x)dx
)

= − 1

|Ω|

∫

Ω

p(u)(x)dx = 0.

(ii) is validated by Property (b) as any point x where u(x) is maximal is non-
increasing with time, and, similarly, any point x where u(x) is minimal is non-
decreasing with time.

Let us first validate (iv). Using Property (c) we obtain:

1

2

d

dt
‖u(x, t)‖2L2 = 〈u, ut〉 = −〈u, p(u)〉 ≤ 0.

To prove (iii) we can use the estimate of (iv). It can be shown that the estimate
is strictly negative unless p(u) ≡ 0. Then we use property (a) to show that the
only steady state solution ut = −p(u) = 0 is a constant. 2

2.5 Basic properties of the variational problem

Similar results can be obtained for the variational formulation, Eq. (7).

Proposition 3 The minimizer uλ of (7) with J(u) satisfying the conditions of
Proposition 1 admits the following properties:

(i) The mean value is preserved, 1
|Ω|

∫

Ω
uλ(x)dx = 1

|Ω|

∫

Ω
f(x)dx, ∀λ ≥ 0.

(ii) The extremum principle holds, minx(f(x)) ≤ uλ(x) ≤ maxx(f(x)), ∀x ∈
Ω, ∀λ ≥ 0.

(iii) The solution converges to a constant as λ → 0, limλ→0 uλ(x) ≡ const =
∫

Ω
f(x)dx.

(iv) The following estimate holds: 1
2

d
dλ‖f − uλ‖2L2 ≤ 0.

Proof. (i) can be shown by integrating the E-L equation (8), using Property (d).
One can prove (ii) by contradiction: Let us assume maxx(u(x)) > maxx(f(x)).
Denoting x0 ∈ {x : u(x) = maxx(u(x))}, using Property (b) we have that
p(u)(x0) ≥ 0, also in this case λ(u(x0) − f(x0)) > 0, thus the E-L equation is
not satisfied. To validate (iv), we can compute the derivative of the E-L equation



(8) with respect to λ to obtain: f − uλ = (p′ + λ)duλ

dλ , where p′(u) = J ′′(u) is
the Hessian of J , which is positive semidefinite for convex functions. Hence:

1
2

d
dλ‖f − uλ‖2L2 = 〈f − uλ,−duλ

dλ 〉 = −λ‖duλ

dλ ‖22 − 〈p′ duλ

dλ , duλ

dλ 〉 ≤ 0.

To prove (iii) we can use (iv) and (i) where for λ = 0 we have shown in the
previous proposition that the solution of the E-L equation with no fidelity term
is a constant. 2

3 Fast minimization based on graph cuts

In this section we briefly describe the algorithms we have to optimize this new
functional. They are defined in a discrete setting and rely on graph-cuts tech-
niques [3, 16].

First, assume that images are defined on a discrete lattice S which is to be
seen as a discretization of the continuous domain Ω. The value of the image
u at a site s ∈ S is denoted by us, and we assume that us takes value in the
linearly ordered discrete set L = J0, δ, . . . L − 1 − δ, L − 1K, where δ > 0 is
a quantization step. The discrete version of the L2 fidelity with any image g
writes as:

∑

s(us − gs)
2 . The grid is endowed with a neighboring relationship.

Let us denote by s ∼ t the neighborhood relationship between two adjacent sites
s and t. In this paper we only need to consider pairwise interactions, and such a
clique is referred to as (s, t) where s ∼ t. Now the discrete version Jd of J given
by Eq. (3) is:

Jd(u) =
1

2

∑

(s,t)

wstφ(|us − ut|) .

In this paper we focus on the TV case, where φ(s) = s. We show in the sequel that
both variational denoising and flow computation can be obtained by minimizing
a sequence of energies of the form:

Ed(u, g) =
λ

2

∑

s

(us − gs)
2 +

1

2

∑

(s,t)

wst|us − ut| .

This formulation fits exactly in the framework proposed by Darbon and Sigelle
in [12] to optimize TV-based energies with convex data fidelity. The algorithm is
based on maximum-flow techniques. Its main characteristic is that it computes
an exact minimizer (wrt. the quantization step) and is very fast. We now describe
how to solve the variational denoising problem and how to compute the flow.

Minimization for Variational Denoising

We assume that the variance of the noise σ is known. For any fixed λ, let
us denote by u? a global minimizer of Ed(·, f). Our goal is to find the optimal
value of the Lagrange multiplier λ? so that we have

∑

s(u
?
s − fs)

2 = |S|σ2,
where |S| denote the cardinal of S. Assume we have an upper bound M on λ,
i.e., 0 ≤ λ? ≤ M . Such a bound can be obtained using the technique described
in [11]. Then the value λ? can be find with the precision ε using the following
dichotomic approach:



1. Set λm ← 0 and λM = M

2. Set λ = (λm + λM )/2 and compute u?

– if
∑

s(u
?
s − fs)

2 ≤ |S|σ2 set λM = λ

– else set λm = λ

3. if λM − λm > ε then go to 2, else return λ.

This algorithm performs O(− log2(ε)) energy minimizations.

Flow computation

To compute the flow, we generate a series of images {un} that are obtained
by minimizing the following series of energies:

un+1 = arg min
u

1

2

∑

s

(us − un
s )

2
+4tJd(u) ,

where we start with u0 = f and 4t is a time step. It is easily seen that the
Euler-Lagrange equations of the above functionals correspond to the discrete
version of the flow given by equation (6). For denoising purposes we stop the
flow as soon as we have

∑

s(u
n
s − fs)

2 ≥ |S|σ2.

4 Experimental results

Below we present some experiments for image denoising. We first describe how
the weights were computed.

Computing the weights: There are many ways to choose the appropriate
functional and weights. In our experiment we focused on a general denoiser for
white noise based on a nonlocal TV-type energy. In this case, one may want
to have the following basic guidelines for the weights: uniform high weights for
smooth regions (strong denosing); low weights near random texture (reduced
denosing); for edges and lines - higher weights for regions which on average are
closer to the center pixel value (to reduce contrast loss).

To construct weights which approximate these guidelines we can use L2 dis-
tances between patches, as done in [4]:

w(x, y) = e−da(f(x),f(y))/2h2

, (14)

where da(·, ·) is defined in (2). A semilocal neighborhood of 11 × 11 pixels was
used as the search window around each pixel (which apparently gives better
results than using larger windows or a completely nonlocal domain, see [13]).
The patches that were compared were of size 5 × 5 pixels. The parameter h
was fixed according to the noise level to h =

√
2σ so constant regions would

have approximately uniform weights with a value close to 1. A small set of the
maximal weights is used, as in [13], with an average of about 10 connections per
pixel.



Comments on the experiments: Fig. 1 depicts the original cameraman image
and its noisy version corrupted by a white Gaussian additive noise (σ = 20),
along with results for different methods: namely, original ROF model [20], NL-
ROF, Eq. (7) with φ(s) = s and NL-means [4]. For each method the residual
image f − u is shown. In terms of SNR, NL-ROF performs better than the two
other methods. For NL-ROF the result is very sharp. Both NL-ROF and NL-
means preserve very well the contrast and lose very little details (of the camera),
as seen clearly in the residual part. However, NL-ROF tends to produce some
staircase effects (most noticeable in the face).

Fig. 2 depicts an original MRI image and its noisy version corrupted by a
white Gaussian additive noise (σ = 10). Results using ROF, NL-ROF and the
NL-TV-flow, Eq. (6) with φ(s) = s, are shown. Both nonlocal variations are
better than the original ROF model. The NL-TV-flow turns out to perform
slightly better than its variational minimization with L2 square fidelity. This
behavior was also noticed for the quadratic regularizer, φ(s) = 1

2s2, in [13].
Note that one can compute the flow using standard regularized Euler-Lagrange
equation, Eq. (13). In this case we observed less staircasing than the pure TV-
flow, as might be expected. The SNR in that case is 17.42 (ε = 1).

f u: ROF NL-ROF NL-means

g f − u: ROF NL-ROF NL-means

Fig. 1. Cameraman (head part), σ = 20. Top (from left): noisy image (SNR=12.53),
ROF (SNR=17.12), Nonlocal ROF (SNR=18.03), NL-means (SNR=17.23). Bottom:
clean image and residual parts. For all filtered images the variance of the residual
equals the variance of the noise.



g f

ROF: u f − u

NL-ROF: u f − u

NL-TV-flow: u f − u

Fig. 2. MRI image, σ = 10. Top (from left): clean and noisy image (SNR=12.70).
From second to fourth rows the filtered image u (left) and the residual part f − u

of ROF (SNR=16.16), Nonlocal ROF (SNR=16.90), Nonlocal-TV-flow (SNR=17.16),
respectively. For all filtered images the variance of the residual equals the variance of
the noise.



5 Conclusion

We have proposed a non local convex regularization framework along with an
efficient graph-cut based algorithm for its numerical solution. In essence, we
suggest to separate the problem into two parts: the first is feature extraction
(computed once and represented by the weights w(x, y)), and the second is a
more standard regularization procedure. Thus we are able to embed complex
feature information into a classical functional. Very mild assumptions on the
weights are required. This approach allows us to use classical convex theory and
its numerical algorithms.

In this paper L2 distances between patches have been used to compute the
weights as in [4, 13]. We proposed fast numerical solutions for the nonlocal TV
case (L1-type regularization φ(s) = s). In a forthcoming paper we will study
alternative methods for computing the weights which take into account both: the
type of images and the convex regularizer. Moreover we will present a graph-cut
based numerical scheme for the general convex case.
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