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Abstract. This paper is concerned itself with the analysis of the two-
phase Mumford-Shah model also known as the active contour without
edges model introduced by Chan and Vese. It consists of approximating
an observed image by a piecewise constant image which can take only
two values. First we show that this model with the L1-norm as data
fidelity yields a contrast invariant filter which is a well known property of
morphological filters. Then we consider a discrete version of the original
problem. We show that an inclusion property holds for the minimizers.
The latter is used to design an efficient graph-cut based algorithm which
computes an exact minimizer. Some preliminary results are presented.

1 Introduction

The Mumford-Shah functional is a well-known model for image segmentation
but its minimization is also a difficult task [2, 26]. Many models based on this
functional have been proposed [12, 31]. Most of them consist of assuming that
the segmented image is piecewise constant [26]. In particular the active contour
without edges (ACWE) model, described by Chan and Vese in [12], consists of
approximating an image with another image which can take only two values
with an additional smoothness constraint. The latter is still difficult to opti-
mize exactly. In this paper we shed new light on the analysis of the two-phase
Mumford-Shah model (or ACWE) along with a new algorithm which computes
an exact global minimizer.

Assume v is an observed image defined on Ω, a subset of IR2 which takes
values in IR. We intend to approximate v with an image which can take only two
values µ0 or µ1. Let us denote by Ω1 the set of the pixels of the image u that
takes the value µ1, i.e., Ω1 = {x ∈ Ω |u(x) = µ1}. The energy E associated to
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the two-phase Mumford-Shah segmentation model is defined as follows :

E(Ω1, µ0, µ1|v) = β Per (Ω1) (1)

+
∫

Ω\Ω1

f(µ0, v(x))dx

+
∫

Ω1

f(µ1, v(x))dx ,

where Per(A) stands for the perimeter of the set A and where β is a weighted
positive coefficient. Generally we have that f(µ1, v(x)) = f(µ1 − v(x)) and f is
a convex function. For instance, f may be a power of a norm, i.e, f(·) = ‖ · ‖p

with p ≥ 1.

Most of the available algorithms which minimize energy (1) either solve a sys-
tem of coupled partial differential equations or perform alternate minimizations
first for Ω1, then for (µ0, µ1), and iterate until convergence to a local minimizer.
The second optimization for (µ1, µ2) is not an issue [12]. However, the first one
is difficult since it is a non-convex minimization problem [11]. For this one, the
most popular methods rely on a level set formulation [12, 27, 31]. We refer the
reader to [30] and the recent work of [23] for efficient level set based optimiza-
tion. Nonetheless if one assume that the two values µ0 and µ1 are fixed, then
one can compute a global minimizer by following the work of [11]. It consists in
mapping the original non-convex problem into a convex one via the use of the
Total Variation. Thus the problem reduces to perform an energy minimization
with the Total Variation as the smoothness term. Many algorithms have been
devoted to perform this minimization. Such an approach has also been applied
in [7] to solve the active contour model.

If the support Ω is discretized then minimization over Ω1 can be performed
efficiently and exactly using graph-cut techniques [6, 20, 25] (See section 4). How-
ever, a straightforward application of these approaches to optimize over (Ω1, µ0)
(or equivalently over (Ω1, µ1)) fails. This is one of the goals of this paper.

The main contributions of this paper are the following: first we show that if
the data fidelity is modelled via the L1 norm, i.e, f(·) = | · |, then minimization
of the energy (1) defines a filter invariant by a change of contrast. The latter
is a well known property of morphological filter [22, 29] Then, we consider a
discrete version of the two-phase Mumford-Shah model. We show an inclusion
property of the minimizers of this discrete energy. The latter is used to propose
an efficient algorithm which computes an exact minimizer. To our knowledge
these results are new. The structure of this paper is as follows. In Section 2 we
show the morphological behavior of the model using a L1 data fidelity term.
In Section 3 we describe some optimality results. The latter are used to design
our new minimization algorithm that is presented in Section 4 along with some
preliminary numerical results. Finally, we draw some conclusions in Section 5.
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2 A Morphological Property

In this Section, we assume that data fidelity f is the L1 norm, i.e, f(·) = | · | .
Besides we suppose that images take values in I = [0, L], with L <∞ rather than
IR. We show that under these assumptions the ACWE model yields a contrast
invariant filter. The approach followed here is similar to the one proposed in [15]
to show that the Total Variation minimization with the L1 data fidelity term
yields a morphological filter. We first introduce the notion of change of contrast
before proving the morphological property.

First we define the lower level set uλ, of an image u with level λ ∈ I, as follows
uλ(x) = 1lu(x)≤λ ∀x ∈ Ω. We follow the work of Guichard and Morel [22] and
define a continous change of contrast as any continuous non-decreasing function.
We now introduce a lemma proved in [21].

Lemma 1 Assume that g is a continuous change of contrast and u is a real
function defined on Ω. The following holds for almost all λ:

∃µ, (g(u))λ = uµ .

In other words, after a change of contrast the structure of the level lines remains
the same, only their associated gray levels change. In the sequel, equalities are
given for almost all λ. We now reformulate the energy on the level sets of the
two variables µ0 and µ1. First note that for any (a, b) ∈ IR2 we have |a − b| =∫
IR
|aλ − bλ|dλ. Using the latter equality we get:

E(Ω1, µ0, µ1|v) = βPer(Ω1) (2)

+
∫

Ω\Ω1

{∫
I

|µλ
0 − vλ

s |dλ
}

+
∫

Ω1

{∫
I

|µλ
1 − vλ

s |dλ
}

.

By interchanging the integral we have:

E(Ω1, µ0, µ1|v) =
∫

I


β

L
P (Ω1) +

∫
Ω\Ω1

|µλ
0 − v(x)λ|dx+

∫
Ω1

|µλ
1 − v(x)λ|dx︸ ︷︷ ︸

Eλ(u,µλ
0 ,µλ

1 |vλ)

 dλ.

(3)
Finally, we have the reformulation of the whole energy as an integral over gray
level values of binary energies associated to each level set:

E(u, µ0, µ1|v) =
∫

I

Eλ(u, µλ
0 , µ

λ
1 |vλ)dλ . (4)

The next proposition states the contrast invariant property of the ACWE-model
with L1 data fidelity.
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Theorem 1 Let v be an observed image and g be a continuous change of con-
trast. Besides assume (û, µ̂0, µ̂1) is a global minimizer of E(·, ·, ·|v). Then (û, g(µ̂0), g(µ̂1))
is a global minimizer of E(·, ·, ·|g(v)) .

Proof: Due to the decomposition of the energy on the level sets given by Eq. 4,
it is enough to show that for any level λ ∈ I, a minimizer for E(·, ·, ·|g(v)λ) is
(û, g(µ̂0)λ, g(µ̂1)λ). Lemma 1 yeilds the existence of µ such that vµ = g(v)λ .
A minimizer for Eµ(·, ·, ·|vµ) is (û, µ̂0

µ, µ̂1
µ). Since we have µ̂i = g(µ̂i)λ, for

i ∈ {1, 2} we can state that (û, g(µ̂0)λ, g(µ̂1)µ) is a minimizer for Eµ(·, ·, ·|g(v)λ).
This concludes the proof. �

In other words, the ACWE model with L1 data fidelity seen as a filter, com-
mutes with any change of contrast. A direct consequence of the latter proposition
is that optimal values of µ0 and µ1 necessarily belong the set of gray level values
which are present in the observed image. To our knowledge this theoretical result
is new.

3 An Inclusion Property

In this section, we first discretize the energy defined by Eq. (1). Then we present
our main result which describe the behavior of the set Ω1 of minimizers with
respect to the gray levels variables µ0 and µ1.

3.1 Discretization and reformulation

For the rest of this paper we assume the following. An image u is defined on
a discrete lattice S endowed with a neighborhood system N . We consider a
neighborhood defined by the C-connectivity (C ∈ {4, 8}). Two neighboring sites
s and t are referred to as s ∼ t. We denote by us the value of the pixel at
site s ∈ S. Moreover we assume that pixels take value in the discrete set
{0, δ, . . . , L − δ, L} where δ > 0 is a positive quantization step. Now the set
Ω1 is a subset of the discrete lattice S. We define the binary image u as the
characteristic function of the set Ω \Ω1, i.e., we have:

∀s ∈ S us =
(
χΩ\Ω1

)
s

=

{
0 if s /∈ Ω \Ω1

1 if s ∈ Ω \Ω1 .

We approximate locally the perimeter of a set as justified by Boykov et al.
in [4]. Only pairwise interaction are considered:

Per(Ω1) = Per(Ω \Ω1) =
∑
(s,t)

wst |us − ut| ,

where the coefficients wst are positive constants. The discretization of the data
fidelity term f is straightforward. A discrete form of the energy given by Eq. (1)
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is thus:

E(u, µ0, µ1) = β
∑
(s,t)

wst|us − ut| (5)

+
∑
s∈S

(1− us) {f(µ1, vs)− f(µ0, vs)}

+
∑
s∈S

f(µ0, vs) .

Now we introduce the new variable K which measures the difference between
the two labels µ0 and µ1, i.e:

µ1 = µ0 +K . (6)

Without loss of generality we can assume that µ1 ≥ µ0 and thus K ≥ 0. Instead
of considering the energy E(u, µ0, µ1), we work on the energy E(u, µ0,K) defined
as follows:

E(u, µ0,K) = β
∑
(s,t)

wst|us − ut| (7)

+
∑
s∈S

us {f(µ0, vs)− f(µ0 +K, vs)}

+
∑
s∈S

f(µ0 +K, vs) .

Now assume that K is fixed to some value and define the restricted energy
Ek(u, µ0) as Ek(u, µ0) = E(u, µ0,K). In the next Subsection, we give an inclu-
sion property for the energy argmin

u
Ek(u, ·).

3.2 An inclusion lemma

We first introduce the notion of convexity for a function along with a useful
equivalence.

Definition 1 Let f be a one-dimensional function f : IR 7→ IR. This function if
said convex if it satisfies one of the two equivalent propositions:

a) ∀x∀y ∀θ ∈ [0, 1] f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)
b) ∀x ∀y ≥ x ∀d ≥ 0 d ≤ (y − x) f(x) + f(y) ≥ f(x+ d) + f(y − d) .

The proof of the latter equivalence is given in [14]. We endow the space of binary
images with the following partial order:

a � b iff as ≤ bs ∀s ∈ S .

We are now ready to formulate our inclusion property.
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Theorem 2 Assume µ̂0 ≤ µ̃0. Let us defined the binary images û and ũ as
minimizers of EK(·, µ̂0) and EK(·, µ̃0) respectively, i.e:

û ∈ min{u|EK(u, µ̂0)} ,

ũ ∈ min{u|EK(u, µ̃0)} .

Then we have the following inclusion:

û � ũ . (8)

Proof: The proof is an adaptation of the one proposed in [16]. First note that
if a and b are two binary variables then we have the following equality |a− b| =
a + b − 2ab. So starting from the energy defined by Eq. (7), the local posterior
energy of EK(us, µ0|vs, ut, t ∼ s) at the site s rewrites as:

EK(us, µ0|vs, ut, t ∼ s) = φs(µ0)us + ψs(µ0),

where
φs(µ0) = β

∑
t∼s

wst(1− 2ut) + f(µ0, vs)− f(µ0 +K, vs) , (9)

and
ψs(µ0) = β

∑
t∼s

wstut + f(µ0 +K, vs) .

Thus the Gibbs local conditional posterior probability [32] is

P (us = 1|Ns, µ0) =
exp−φs(µ0)

1 + exp−φs(µ0)
=

1
1 + expφs(µ0)

.

The rest of the proof relies on coupled Markov chains [28, 18]. One can create
two Gibbsian samplers of the two posterior distributions for the two level µ̂0 and
µ̃0. It is shown in [16] that if φs(µ0) is a non-increasing function with respect to
µ0 and if φs(µ0) does not depend on us, then one can devise a coupled Markov
chain [28, 18] such that the two distributions are sampled while the inclusion
property given by the inequality (8) is preserved. The same result holds using a
simulated annealing procedure [19], and thus we get two global minimizers for
the two posterior distribtion with the desired inclusion property.

Let us prove that the above assumptions are satisfied. It is easily seen that
ψs(µ0) does not depend on us. Thus, it remains to show that φs(·) is a non-
increasing function. The part β

∑
t∼s wst(1 − 2ut) in Eq. (9) satisfies the non-

increasing assumption since it does not depend on µ0. Thus, it only remains to
show that for all µ0, µ̄0 such that µ0 ≥ µ̄0, we have

f(µ0)− f(µ0 +K) ≥ f(µ̄0)− f(µ̄0 +K) .

This is equivalent to

f(µ0) + f(µ̄0 +K) ≥ f(µ̄0) + f(µ0 +K) .
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And the latter corresponds to the convexity of the function f as described in
Definition 1-b) with K ≥ 0 as defined by Eq. (6). This concludes the proof. �

A similar inclusion property has been shown for models involving the Total
Variation with convex data fidelity [9, 16, 24, 33]. Proofs in these papers can also
be adapted to show Theorem 2. To our knowledge, this inclusion for the discrete
binary Mumford-Shah is an original contribution. In the next Section we show
how to use this inclusion property to compute a global minimizer.

4 Exact Optimization and Result

This section is devoted to the design of a fast and exact global minimizer of the
ACWE-model. It takes benefit from the inclusion property of Lemma 2.

A direct minimization fo the energy E(u, µ0, µ1) defined by Eq. (5) is a diffi-
cult problem. Here we propose an algorithm which computes a global optimizer
by solving a family of simpler problems. Assume the two values µ0 and K are
set to some fixed values and we desire to find min{u|EK(u, µ0)}. Although this
problem is still a non-convex one however it can be solved exactly in variational
framework following the work of Chan et al. in [10].

Another approach consists of noticing that finding a global minimizer of
E(·, µ0,K) corresponds to computing a Maximum a posteriori estimator of an
Ising model [32]. This combinatorial problem can be efficiently computed via
tools borrowed from graph theory as originally proposed by Greig et al. in [20].
This approach consists of building a graph such that its minimum cost cut (or
equivalently its maximum flow [1]) yields an optimal binary configuration which
minimizes the energy. Since this seminal work, many graph construction has been
devised along with some efficient algorithm to perform the minimum cut. In this
paper, we use the graph construction of [25] and the minimum cut algorithm
described in [5]. It is shown in [5] that using this latter approach yields a quasi-
linear algorithm with respect to the number of pixels, although the worst case
complexity of the maximum flow algorithm of [5] is exponentiel. We refer to
reader to [1, 13] for poynomial maximum-flow algorithms.

A direct algorithm using this minimum cut approach consist of minimizing
the energy for all possible values of the couple (µ0,K) and to keep the couple
which gives the lowest energy. We now present two improvements to get better
performance.

When K is fixed to some value, we can apply lemma 2 in order to reduce the
size of the problem (and thus the size of the graph to build). Indeed, assume that
û and ū are two global minimizers associated to the two levels µ̂0 and µ̄0 such
that µ̂0 ≤ µ̄0. Then due to Lemma 2 we have ∀s ûs = 1 ⇒ ūs = 1. Consequently,
at the level µ̄0 it is useless to put into the graph construction a pixel whose
value is 1 at the level µ̂0 (since we already know its value.) Thus we perform a
traversal on the discrete set {0, δ, . . . , L − δ, L} from the lowest to the highest
level, and we keep track of pixels which are already set to 1. This procedure
allows for building smaller graphs.
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However a much better improvement can be achieved. Instead of keeping
track of pixels which can change their values, we keep track of the connected
components of the pixels which can change their value (i.e., pixels whose value
is 0). Due to the pairwise Markovian nature of the interaction in the energy (7),
optimization of this energy restricted over two disjoint connected components
can be performed independently as shown in [16]. The latter procedure yields
much smaller graph constructions in practice. Both the tracking of pixels and
the connected components updates can be efficiently implemented using Tarjan’s
Union-Find algorithm [13]. The pseudo-code of the algorithm is described on
Figure 1.

∀s ∈ S ûs ← 0
f o r (K = 0; K < L; + + K)

Reset connected component map
f o r (µ0 = 0; (µ0 + K) < L; + + µ0 )

u′ ← argmin
u

EK(u, µ0)

i f (EK(u′, µ0) < EK(û, µ0))
û← u′

update connected component map
return û

Fig. 1. Inclusion-based minimization algorithm.

For the experiments, we have used 4-connectivity, set wst = 1 for all interac-
tions, and set the parameters L = 255 and δ = 1. The data fidelity is modelled
by the L1-norm.

Figure 2 depicts the original image cameraman and squirrel along with the
optimal results for β = 10 and a L1 data fidelity. Using these parameters the
optimal values are µ0 = 14 and µ1 = 159

Figure 3 depicts the original image squirrel with the optimal results for differ-
ent values of the perimeter regularization coefficient β = 10, 20, 30. For β = 10,
we obtain µ0 = 64 and µ1 = 129 while we get µ0 = 67 and µ1 = 130 for both
β = 20 and β = 30. As expected, the higher β is the more the border of the
segmented regions are smooth. Small regions that are observed for low β dis-
appear as the regularization becomes stronger. Note that the result for β = 30
depicted in Figure 3 presents some blocky region. This behavior is due to the fact
that 4-connectivity is used. It can be easily corrected by using better perimeter
numerical schemes for perimeter approximation such as those presented in [3,
17].

The complexity of the direct algorithm is Θ(L2 · T (n,m)) where T (n,m) is
the time required to compute a minimum-cut on a graph of n nodes and m edges.
Recall that we are using the algorithm proposed by Boykov and Kolmogorov [5]
that have a quasi-linear time complexity in practice. For our experiments n is
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(a) (b)

Fig. 2. Original image of cameraman is depicted in (a) while the optimal minimizer
for the ACWE model with L1-norm as data fidelity and with β = 10 is shown in (b).

the number of pixels and m = O(4n) since we are using 4-connectivity. The
worst case complexity for the inclusion-based algorithm is the one of the direct
algorithm. Indeed, the worst case for the inclusion based algorithm happens when
no inclusion are present during the optimization process. For instance, a worst
case happens when the optimal result is a constant image whose all pixels take
the value (L−1). However, for natural images this scenario is highly improbable.
Time results (on a 3GHz Pentium IV) of the two minimization algorithms for the
ACWE model with L1 data fidelity, on different size of the image cameraman,
and with different weighted coefficient β, are presented in Table 1. As one can
see, both algorithms have a small dependence with the weighted coefficient β. In
practice, both of them have a quasi-linear behavior with respect to the number
of pixels. The same kind of results were obtained for the squirrel image. The gain
we obtain using the inclusion-based algorithm compared to the direct approach
varies from about 3 (for 322 size image) to about 4 (for 2562 size images). Further
studies need to be done to understand this behavior.

5 Conclusion

We have presented new results on the analysis of the binary Mumford-Shah
model. In particular we have shown that it yields a contrast invariant filter if
L1 data fidelity is used. Besides, we have shown an inclusion of the minimizers.
The latter has been used to propose an efficient algorithm which computes an
exact minimizer.
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(a) (b)

(c) (d)

Fig. 3. Original image of squirrel is depicted in (a) while the optimal minimizer for
the ACWE model with L1-norm as data fidelity for β = 10, 25 and 30 are respectively
shown in (b), (c) and (d).

Comparisons with non optimal schemes such as the ones described in [7, 8,
12] remain to be done. This will be presented in a forthcoming paper along with
another algorithm which also takes benefit from the inclusion property of the
minimizers.
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Table 1. Time results in seconds (on a 3GHz Pentium IV) of the direct (inside paren-
theses) and inclusion-based algorithms for different weight coefficient β and different
size of the image cameraman.

Size β = 5 β = 10 β = 15

322 4.16 (13.1) 4.4 (13.8) 4.8 (14.6)
642 17.1 (54.3) 17.8 (57.5) 18.5 (60.7)
1282 72.57(243.3) 77.2 (254.6) 81.1 (268.4)
2562 364.8 (1813.4) 382.2 (1851.7) 414.3 (2081.6)
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