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Abstract— Motion camouflage is a sly technique found
in nature and employed by bats and hoverflies. We analyze
the pursuit-evader system by introducing strategies for
both players for capturing its prey and escaping its preda-
tor. Analytical bounds for feedback laws and sufficient
conditions for initial cost and intial conditions are found to
guarantee either capture or evasion in finite time. We also
have numerical implementation satisfying the inequalities.
Moreover, the steering laws are implemented in a testbed
to check feasibility in a real environment.

INTRODUCTION

Motion camouflage is a sly technique that allows
a pursuer to approach a prey while appearing to
remain stationary from the viewpoint of the prey. To
accomplish this, the pursuer follows a way such that
it always lies on the line that connects the pursuer
and fixed point. If the pursuer is approaching the prey,
the only visual signal to the pursuers approach is its
threatening. The prey identifies no movement away
from the direction of the fixed point. The fixed point
could be an existing sight in the framework or the
initial position of the pursuer. There is some clue of
motion camouflage observed in nature; for instance, it
has been suggested that bats use motion camouflage to
minimize the time to capture of a moving prey. In [9],
[1], the experimental data suggests motion camouflage
interactions between hoverflies.

In this work, we extend the work of Justh and Krish-
naprasad [4] on steering laws for motion camouflage. An
earlier study of the mathematics of motion camoulfage
by Glendinning [2]. We analyze the interaction of both
the pursuer and evader when the strategies are present.
In [4], feedback laws are derived from a cost function
based on the ratio of change of the baseline vector
corresponding on the positions of the pursuer and evader.
In addition, analytical studies show bounds on the gain
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to guarantee capture at some time. Here we analyze
the bounds on the gains for both the strategies of the
players in the pursuit and evasion cases. Moreover, we
also have numerical simulations to verify the analytical
bounds as well as testbed simulations for the steering
laws to demonstrate its feasibility in a real environment.

I. MODELING EQUATIONS

The equations of motion for the players are the
following [4],[8], and the references therein:

ṙp = xp,

ẋp = ypup,

ẏp = −xpup. (1)

and

ṙe = νxe,

ẋe = νyeue,

ẏe = −νxeue. (2)

where rp and re are the position of the pursuer and
evader, respectively. The corresponding unit tangent
vectors are xp and xe while the unit normal vectors
are denoted yp and ye. In addition, the controls up and
ue are the curvatures of rp and re, respectively. The
systems of equations (1) and (2) are so-called Frenet-
Serret equations. The derivation of these equations can
be found in [5].

In the work of Justh and Krishnaprasad [4], the control
law up is a motion camouflage feedback which forces
the pursuer to be in the same constant bearing as the
evader.

Definition 1.1: Motion camouflage with respect to the
point at infinity is

r = λr̄

where
r = rp − re,

r̄ is a unit vector, and λ ∈ R.
The cost function associated with the motion camou-

flage is

Γ(t) =
d
dt |r|
|dr
dt |

, (3)



which is the ratio of the rate of change of the baseline
vector r and the absolute rate of change of the baseline
vector. Moreover, because d

dt |r| =
r
|r| · ṙ we have that

Γ(t) =
r

|r|
· ṙ

|ṙ|
(4)

Then, by differentiating (4) w.r.t. the trajectories (1) and
(2) and using

ṙ⊥ = yp − νye,

˙̇r = ypup − ν2yeue,

ṙ⊥ · yp = 1− ν(xp · xe),
and

ṙ⊥ · ye = (xp · xe)− ν

we have

Γ̇ =
|ṙ|
|r|

[
1
|ṙ|2

(
r

|r|
· ṙ⊥

)2
]

(5)

+
|ṙ|
|r|

[
1
|ṙ|2

(
r

|r|
· ṙ⊥

)]
(1− ν (xp · xe))up

+
|ṙ|
|r|

[
1
|ṙ|2

(
r

|r|
· ṙ⊥

)]
(ν − (xp · xe)) ν2ue

A. Control feedback for evasion

In this section, we present a motion camouflage
strategy for the evader for an evader-evadee system. In
[4], the authors studied the pursuer’s motion camouflage
strategy for a pursuer-pursee system analytically and
numerically. In both of these cases, only the evader
and pursuer use strategies for capture or evasion of its
oblivious adversaries. So this is not truly game. For a
pursuit-evasion game, we must include strategies of both
players. Thus, this motivates us to study first motion
camouflage strategy for the evader; i.e. the evader con-
ceals its motion from the evadee while maintaining or
elongating the baseline vector |r|.

The motion camouflage strategy is

ue = β

(
r

|r|
· ṙ⊥

)
(6)

where β > 0. Note that the strategy for the pursuer
has a negative gain −µ for sufficiently large µ. In our
evader-evadee system, we assume that up is bounded
and continuous on some interval.

Theorem 1.1: Consider the systems (1) and(2) with
the cost function (4) and control law (6) along with the
following assumptions:

• 0 < ν < 1
• up is continuous and bounded on some interval
• Γ0 < 1
• |r(0)| > 0.

Then for ε, ε0 > 0 where ε = min(ε0, 1 − Γ2
0) there

exists t∗ ∈ [0, T ] such that Γ(t∗) > 1 + ε; i.e. motion
camouflage is attainable in finite time.

Proof: We wish to show that at some time t∗ for
which Γ(t∗) ≥ 1− ε. In order to find a bound, we solve
the equation from (5), (6),

Γ̇ ≥ c0(1− Γ2) + c1

√
1− Γ2

where

c0 =
1− ν

|r|
+

β(ν − 1)ν2

1 + ν
(7)

and

c1 =
min(up)(ν − 1)

1 + ν
.

Then let 1 − Γ2 > ε where ε = min(ε0, 1 − Γ2
0) and

ε0 > 0 is how close we choose Γ is to 1. It follows that

Γ̇ ≥ c2(1− Γ2)

where c2 = c0 − c1√
ε
. Thus, solving the equation above,

Γ(t) ≥ tanh(tanh−1 Γ0 − c2t). (8)

It follows that whenever c2 = ( 1
2 ln( 2−ε

ε )−tanh−1 Γ0)
t we

have that Γ(t) ≥ 1− ε. Equation (7) implies that

β ≤ c0(1 + ν)
(ν − 1)ν2

+
1 + ν

ν2|r|
∀ |r| > r0 (9)

where r0 > 0 and r0 < |r(0)|. The bound in (8) is valid
∀ |r| > r0 ⇔ ∀ t ≤ |r(0)|−r0

1+ν . It follows that c2 ≥
(1+ν)( 1

2 ln( 2−ε
ε )−tanh−1 Γ0)

|r(0)|−r0
. Thus, if T = |r(0)|−r0

1+ν , then
motion camouflage is attained at some time t∗ ∈ [0, T ].

Remark. Our proof is in the spirit of Justh and Krish-
naprasad [4].

B. Pursuit-Evasion Games

In this section, we study the interaction of the players
in a pursuit-evasion game, that is, when both control
feedback strategies are present. Let the strategies be

up = −µ

(
r

|r|
· ṙ⊥

)
(10)

and

ue = β

(
r

|r|
· ṙ⊥

)
(11)

where β, µ ≥ 0. In the following theorem, we find some
sufficient conditions for the pursuer to capture the evader
while maintaining motion camouflage.

Theorem 1.2: Consider the systems (1) and(2) with
the cost function (4) and control laws, (10) and (11),
along with the following assumptions:

• 0 < ν < 1



• Γ0 < 1
• |r(0)| > 0.

Then for ε, ε0 > 0 where ε = min(ε0, 1 − Γ2
0) there

exists c̃2 such that Γ̇ ≤ −c̃2(1 − Γ2) and t∗ ∈ [0, T ]
such that Γ(t∗) < −1 + ε. Moreover, the gains from
both strategies satisfy the inequality µ ≥ β.

Proof: We show that there exist t∗ such that
Γ(t∗) > −1+ε. Here ε = min(ε0, 1−Γ2

0) and ε0 > 0 is
how close we choose Γ is to −1. Note that when Γ = −1
we have the baseline vector r in pure contraction regime
from (3). From (5), we have

Γ̇ ≤ −(1− Γ2)
[

µ
|ṙ| (1− ν(xp · xe))− |ṙ|

|r|

]
+
√

1− Γ2
∣∣∣β(ν−(xp·xe))

|ṙ|

(
r
|r| · ṙ

⊥
)∣∣∣ .

By using the bounds 1− ν ≤ |ṙ| ≤ 1 + ν,

Γ̇ ≤ −(1− Γ2)
[

µ(1−ν)
1+ν − 1+ν

|r|

]
+
√

1− Γ2
[

βν2(1+ν)2

(1−v)2

]
.

Now let

c̃0 =
[
µ(1− ν)

1 + ν
− 1 + ν

|r|

]
(12)

and

c̃1 =
[
βν2(1 + ν)2

(1− v)2

]
(13)

so that

Γ̇ ≤ −c̃0(1− Γ2) + c̃1

√
1− Γ2.

For (1− Γ2) > ε, the equation above reduces to

Γ̇ ≤ −c̃2(1− Γ2) (14)

where

c̃2 = c̃0 −
c̃1√
ε
≥ 0. (15)

From (12) and (13), we have

µ ≥
(

1 + ν

1− ν

) (
1 + ν

r0
+ c̃0

)
(16)

and

β ≥ (1− ν)2

ν2(1 + ν)2
c̃1 (17)

for some c̃0 > 0 and c̃1 > 0 satisfying (15) and some
r̃0 > 0. In fact, we have

µ ≥
(

1 + ν

1− ν

) (
1 + ν

r̃0
+

c̃1√
ε

)
≥ β

ν2(1 + v)2√
ε(1− ν)2

which implies that µ ≥ β. Solving the equation (14),
we get Γ(t) ≤ tanh(tanhΓ0 − c̃2t). This equation
is valid for t ∈ [0, T ] where T = |r(0)|−r̃0

1+ν . Thus,
Γ(t∗) ≤ −1 + ε for some time t∗ ∈ [0, T ] if c̃0

Fig. 1. Vehicles at UCLA Applied Math Lab

and c̃1 in (15) are chosen sufficiently large so that

c̃2 ≥
(1+ν)(− 1

2 ln( 2−ε
ε )+tanh−1 Γ0)

|r(0)|−r0
.

In consequence, we have the following result for eva-
sion.

Theorem 1.3: Consider the systems (1) and(2) with
the cost function (4) and control laws, (10) and (11),
along with the following assumptions:

• 0 < ν < 1
• Γ0 < 1
• |r(0)| > 0.

Then for ε, ε0 > 0 where ε = min(ε0, 1−Γ2
0) there exists

ĉ2 such that Γ̇ ≥ ĉ2(1 − Γ2) and t∗ ∈ [0, T ] such that
Γ(t∗) > 1− ε. Moreover, the gains from both strategies
satisfy the inequality β > µ.

Proof: See the proof of Theorem 1.2. Here β and
µ must satisfy the inequalities

β ≤
(

ĉ0 −
1− ν

r̂0

) (
1 + ν

(ν − 1)ν2

)
(18)

and

µ ≤ ĉ1

(
1 + ν

1− ν

)
(19)

for some ĉ0, ĉ1, r̂0 > 0. In addition, for sufficiently large
r̂0, one can show β > µ.

II. TESTBED ADAPTATION

In order to demonstrate its feasibility in a real environ-
ment, we implement one of the steering laws introduced
in [4] onto the UCLA Applied Math Lab micro-car
testbed [3]. The testbed is comprised of two major
components, a tracking system and car-like vehicles
(Fig. 1). The tracking system provides real-time location
and heading information, which is sent to the vehicles
wirelessly at 30Hz. The vehicle is an ordinary rear-
wheel-drive vehicle. A tiny servo integrated into the
vehicle’s chassis allows 51 (left 25, center, and right
25) degrees of steering freedom. Table.I shows some
physical parameters of the vehicles. See the paper [7]
for more details on the construction of the testbed.



Dimension(L × W × H) (7× 3.5× 7) cm
Weight 68 g
Minimum Turning Radius 15 ∼ 20 cm
Steering Range −25◦ ∼ 25◦

Speed Range 30 ∼ 90 cm/s

TABLE I
PHYSICAL PARAMETERS OF THE VEHICLES

A. Control Law Adaptation

We implement the MCPG curvature law (10)

up = −µ

(
r

|r|
· ṙ⊥

)
which does not require the adversary vehicle’s steering
program. Thus the vehicles without sensor in micro-car
testbed are used in our implementation. Recall that up is
the curvature control of the pursuer and µ is assumed to
be sufficiently large so that the evader’s steering program
can be neglected.

Currently, the testbed overhead tracking system only
provides the position and the heading angle, the angle
between the vehicle’s direction of motion and x-axis of
the testbed. By equation

ṙ⊥ = yp − νye,

the MCPG steering law becomes

up = −µ (cos θp − ν cos θe)

where θp is the angle between r and yp, θe is the
angle between r and ye. Then, the angles θp and θe

can be easily calculated from the vehicles’ headings. To
map the curvature control up into the vehicle’s desired
steering angle, we model our vehicle as a simple car
as in [6]. The steering angle φp of a simple car and its
corresponding turning radius (ρ) satisfies the following
relation:

ρ =
L

tanφp
(20)

where L represents the distance between the vehicle’s
front and rear wheels. For the vehicles in the testbed
L = 4cm. Then the steering angle of a pursuer can be
calculated as

φp = tan−1 (L/ρ)
= tan−1 (Lup)
= tan−1 [Lµ (ν cos θe − cos θp)] (21)

Recall that the vehicle’s wheels have limited turning
range; see Table.I. Thus, the constrained steering angle
is defined as

φc
p =

 −25◦ if φp ≤ −25◦

φp if − 25◦ < φp < 25◦

25◦ if φp ≥ 25◦.
(22)

Note that φp, as specified in (21), steers a vehicle
towards its target while maintaining motion camouflage.
Then, symmetrically −φp steers away its target while
maintaining motion camouflage. Thus

φe = − tan−1 [Lβ (ν cos θp − cos θe)] (23)

Note that we would also constrain φe in the same fashion
as in (22). In addition, the MCPG steering law also
assumes that the pursuer moves at unit speed, while the
evader moves at a constant speed ν < 1. Moreover,
to maintain coherence with the players’ speed, all the
parameters with length dimension are scaled according
to the actual vehicular speed. For instance, if the vehicle
actually moves at 40 cm/s, L would be scaled down to
0.1.

III. EXPERIMENTAL RESULTS

A. Testbed Simulations

We performed several experiments with two vehi-
cles for three cases: (a) pursuer-pursuee, (b) evader-
evadee, and (c) pursuer-evader, where the pursuee and
evadee are neutral agents that follow some arbitrary
controls. The parameters used in the simulations are:
L = 0.067, µ = 15, β = 15, and ν = 0.75. For the cases
a and b, with ν < 1 the simulation always results in the
capture of the evader or pursuee. From the vehicular
trajectory plots (Figs. 2, 3, and 4), we can clearly see
that the baseline vector r is able to maintain its initial
orientation with only minor deviations. We attribute
these deviations to the sundial mechanical conditions of
the vehicles and noise in the vehicular heading estimate,
which has a maximum error of approximately ±2.5◦.

B. Computer Simulations

The numerical simulations were utilized to study
the behavior of pursuer-pursuee, evader-evadee, and
pursuer-evader systems with individual agents under the
control laws (10), (11), or a constant steering control.
The codes are run in Matlab using the forth-order
Runge-Kutta method for solving (1) and (2). In all
numerical examples, the evader speed is ν = .9 while
the pursuer moves at a unit speed. Figure 5 illustrates the
behavior of a pursuer-pursuee system where the steering
law of the pursuer is the motion camouflage proportional
guidance (MCPG) with µ satisfying the inequalities
provided (and similar to those in (9)) in [4]. The pursuee
trajectory is determined by the control law ue = 0,
corresponding to straight line motion, and ue = c where
c is positive constant, corresponding to circular motion.
Similarly, we implement the evader-evadee system in
Fig. 6 with the evader’s control law ue given by (11)
with β = 13.2 satisfying the bounds (9). The cost
function Γ(t) is plotted for the trajectories in Figs. 5
and 6. In Fig. 5(left), Γ(t) tends to -1 from an initial



Fig. 2. The trajectories of a pursuer-pursuee pair. The round dots
represent the pursuee, as the square dots represent the pursuer. Top:
the pursuee traverses a circle; Bottom: the pursuee traverses a straight
line.

value Γ(t0) > −1; motion camouflage is sustained in
the pursuit. The cost function Γ(t) corresponding to the
evasion illustrated in the former figure is plotted and
oscillates in the range [0,1] until it stabilizes about 1.
Since Γ(t) = 1 corresponds to the lengthening of |r| at
time t, we can deduce that choosing control ue preserves
motion camoulfage while conferring an evader the ad-
ditional advantage of increasing the distance between it
and a potential pursuer.

In Figs. 7 and 8, we simulate several games in which
both pursuer and evader control laws, (10) and (11)
respectively, are implemented simultaneously. In Figure
7, the trajectories of the agents are presented for various
initial conditions and values of the parameters µ and β
satisfying (16), (17), (18), and (19). We observe that the
values of these parameters, as well as initial conditions
such as Γ(0) and |r|, determine the success of pursuer
and evader control strategies. Figure 8 contains the plots
of the cost function Γ(t) versus time for the games
presented in Figure 7. As one can see, the value of Γ
tends to approach either 1 or -1, corresponding to the
instances where pursuit or evasion prevail respectively.
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Fig. 3. The trajectories of a evader-evadee pair. The round dots
represent the evadee, as the square dots represent the evader. Top: the
evadee traverses a circle; Bottom: the evadee traverses a line.

 

Fig. 4. The above figures show the trajectories of a pursuer-evader
pair. The round dots represent the evader, as the square dots represent
the pursuer. Top: the pursuer and the evader are positioned close-
by while facing opposite directions initially; Bottom: the pursuer and
the evader are positioned relatively far away while facing each other
initially.



Fig. 5. Trajectories for pursuer-pursuee model with µ = 500 in
MCPG law and the pursuee’s steering law ue = 0 (left) and ue = c,
constant (right)

Fig. 6. Trajectories for evader-evadee model with the evadee’s
steering law up = 0 (left) and up = c, constant (right)
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