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Abstract

In the past decade, information theory has been studied
extensively in medical imaging. In particular, image match-
ing by maximizing mutual information has been shown to
yield good results in multi-modal image registration. How-
ever, there has been few rigorous studies to date that in-
vestigate the statistical aspect of the resulting deforma-
tion fields. Different regularization techniques have been
proposed, sometimes generating deformations very differ-
ent from one another. In this paper, we apply informa-
tion theory to quantifying the magnitude of deformations.
We examine the statistical distributions of Jacobian maps
in the logarithmic space, and develop a new framework
for constructing log-unbiased image registration methods.
The proposed framework yields both theoretically and in-
tuitively correct deformation maps, and is compatible with
large-deformation models. In the results section, we tested
the proposed method using pairs of synthetic binary images,
two-dimensional serial MRI images, and three-dimensional
serial MRI volumes. We compared our results to those
computed using the viscous fluid registration method, and
demonstrated that the proposed method is advantageous
when recovering voxel-wise local tissue change.

Index Terms
Nonlinear image registration, information theory, mutual

information, log-unbiased deformation, biomedical imag-
ing.

1. Introduction

Non-linear image registration is a well-established field
in medical imaging with many applications in functional
and anatomic brain mapping, image-guided surgery, and
multimodality image fusion [1, 7, 18]. The goal of image

registration is to align, or spatially normalize, one image
to another. In multi-subject studies, this serves to reduce
subject-specific anatomic differences by deforming individ-
ual images onto a population average brain template.

The deformations that map each anatomy onto a com-
mon standard space can be analyzed voxel-wise to make
inferences about relative volume differences between the
individuals and the template, or statistical differences in
anatomy between populations. Similarly, in longitudinal
studies it is possible to visualize structural brain changes
that occur over time by deforming subjects’ baseline scans
onto their subsequent scans, and using the deformation map
to quantify local changes. This general area of compu-
tational anatomy has become known as tensor-based mor-
phometry [6, 15, 16].

To construct a deformation that is one-to-one and dif-
ferentiable [3, 11, 9], we must impose a regularizing con-
straint. Thus, the problem of image registration is often cast
as a minimization problem with a combined cost functional
consisting of an image matching functional and a regular-
izing constraint on the deformation. Common choices of
image matching functional include squared intensity differ-
ence, cross correlation [4], and (normalized) mutual infor-
mation or other divergence-based or information-theoretic
measures [5, 8, 14], while choices of regularization usually
involve differential operators inspired by thin-plate spline
theory, elasticity theory, fluid dynamics and the Euler-
Poincare equations [11, 17].

2. Theory

2.1. Global Preservation of Density Maps

In this paper, we study smooth deformations ~h that map
computational domain Ω bijectively onto itself. Let us as-
sume, without loss of generality, that the volume of this do-
main is 1, i.e., |Ω| = 1. The inverse map of ~h is denoted
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as ~h−1 and the Jacobian matrix of ~h as D~h. The Jacobian
map can thus be defined as the determinant of the Jacobian
matrix |D~h|.

In volumetric studies, the determinant of the Jacobian
matrix (density) applied to any given deformation ~h is an
important quantity, encoding the voxelwise volume change.
As ~h (and ~h−1) is bijective and thus globally volume pre-
serving, we have the following preservation of global den-
sity: ∫

Ω

|D~h(ξ)|dξ =
∫

Ω

d~y = 1,
∫

Ω

|D~h−1(ξ)|dξ =
∫

Ω

d~x = 1.
(1)

Given global preservation of density maps, we can associate
three probability density functions to ~h, ~h−1, and the iden-
tity map (id):

Ph(·) = |D~h(·)|,
Ph−1(·) = |D~h−1(·)|,

Pid(·) = 1.

(2)

Differentiating the identity ~h−1(~h(~x)) = ~x on both sides
and setting ~y = ~h(~x), we obtain

D~h−1(~y) ·D~h(~x) = id, (3)

and hence,
|D~h−1(~y)| · |D~h(~x)| = 1. (4)

By identifying deformations with their corresponding
global density maps, we can now apply information theory
to quantifying the magnitude of deformations. In our ap-
proach, we choose the symmetric Kullback-Leibler (sKL)
distance:

sKL(Ph, Pid) = KL(Pid, Ph) + KL(Ph, Pid) (5)

to measure the magnitude of any deformation ~h. Here KL,
the Kullback-Leibler distance between two probability den-
sity functions X and Y , is defined as

KL(X,Y ) =
∫

Ω

X log
X

Y
d~x ≥ 0. (6)

To motivate this approach, notice that the first part of sKL
measure is simply integrating the log-density over the entire
computational image domain:

∫

Ω

log |D~h(~x)|d~x = −
∫

Ω

log
1

|D~h(~x)|
d~x

= −
∫

Ω

Pid log
Pid

Ph
d~x

= −KL(Pid, Ph) ≤ 0.

(7)

(a) (b)

(a) (b)

(c) (d)

Figure 1. Circle-to-Ellipse example. (a) image T ; (b) image S;
(c) image T is deformed to image S using Christensen’s model;
(d) image T is deformed to image S using the proposed model.
Blue, yellow and red contours represent the boundaries of objects
in T , S, and deformed T , respectively. Note that for both methods,
yellow contour is essentially invisible due to a very close match.
However, the resulting grid of the proposed method is visually
more regular.

To attach geometric meaning to the second term, we notice
that the KL distance has skew-symmetry with respect to ~h
and its inverse

KL(Pid, Ph−1) = −
∫

Ω

log |D~h−1(~y)|d~y

=
∫

Ω

(
log |D~h(~x)|)|D~h(~x)|d~x

=
∫

Ω

Ph log
Ph

Pid
d~x

= KL(Ph, Pid),

(8)

where the second equality was obtained using a change of
variables, ~y = ~h(~x). Similarly, we have

KL(Pid, Ph) = KL(Ph−1 , Pid). (9)

2.2. Unbiased Deformation in the Logarithmic
Space

Before developing formulations to construct unbiased
deformations in the logarithmic space, we generalize equa-
tion (7) to the case of mapping regions of interest (ROI). As-
suming we have a priori knowledge that one ROI is mapped
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(a) (b)

(a) (b)

Figure 2. Circle-to-Ellipse example. Jacobian map of the defor-
mation using (a) Christensen’s model and (b) the proposed model.
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Figure 3. Circle-to-Ellipse example. Histograms of Jacobian val-
ues of the deformations inside the ellipse for Christensen’s model
and the proposed model.

to another, we would like to recover a mapping that is un-
biased in the logarithmic space. Intuitively, without further
knowledge other than overall ROI matching, the resulting
Jacobian map should take a constant value inside the ROI.
This can be achieved using the proposed formulations. In-
deed, given any deformation ~g mapping domain A in the
source (with volume a) to domain B in the target (with vol-
ume b), we have the following

1
a

∫

A

log |D~g(~x)|d~x ≤ log
b

a
, (10)

with equality obtained if and only if the Jacobian map of ~g
takes a constant value (i.e., b/a). This generalization can
be shown by observing that the logarithmic mapping is a
convex mapping:

∑
n

log(xi) ≤ n log(x̄); x̄ =
1
n

∑
n

xi. (11)

With the above generalization, one can see that, assuming
the only constraint being an ROI deformation from A to
B, the unbiased mapping under the logarithmic operation
yields an evenly distributed Jacobian field, which is also
intuitively correct (as there is no reason to assume non-
uniformity of the Jacobian field).

Given equation (7) and its generalization, we now pro-
pose to quantify the distance between any given deforma-
tion and the identity map by computing the symmetric KL
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Figure 4. Circle-to-Ellipse example. (a) Standard deviation of Ja-
cobian values inside the ellipse per iteration. (b) Symmetric KL
distance. For Christensen’s model (dashed blue), both standard
deviation and symmetric KL distance increase while for the pro-
posed model (solid red), both standard deviation and symmetric
KL distance stabilize.

distance through their density functions. Due to the above
mentioned skew-symmetry, this distance takes the follow-
ing several equivalent forms:

sKL(Ph, Pid) = sKL(Ph−1 , Pid)
= KL(Ph, Pid) + KL(Ph−1 , Pid)
= KL(Ph, Pid) + KL(Pid, Ph)

= KL(Pid, Ph−1) + KL(Pid, Ph)
= KL(Pid, Ph−1) + KL(Ph−1 , Pid)

=
∫

Ω

(|D~h(~x)| − 1
)
log |D~h(~x)|d~x

=
∫

Ω

(|D~h−1(~y)| − 1
)
log |D~h−1(~y)|d~y.

(12)

To see why minimizing equation (12) leads to unbiased de-
formation in the logarithmic space, we observe that the in-
tegrand is always non-negative, and only evaluates to zero
when ~h is volume-preserving everywhere (Jacobian of ~h is
1 everywhere). Thus, by treating it as a cost, we recover
zero-change by minimizing this cost when we compare im-
ages differing only in noise. Also, this approach is unbiased
for mapping ROIs in the logarithmic space, due to the in-
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Figure 5. Serial MRI example. (a) image T ; (b) image S; (c) image
T is deformed to image S using Christensen’s model; (d) image T
is deformed to image S using the proposed model.

(a) (b)

(a) (b)

Figure 6. Serial MRI example. Results obtained with (a) Chris-
tensen’s model and (b) the proposed model. Blue, yellow and red
contours represent the boundaries of ventricles in T , S, and de-
formed T , respectively. Note that for both methods, yellow con-
tour is essentially invisible due to a very close match. However,
the resulting grid of the proposed method is visually more regular.

equality in (10).

3. Implementation
Let us denote the template image as T (~x) and the study

image as S(~x) defined on the spatial domain Ω. We solve

(a) (b)

(a) (b)

Figure 7. Serial MRI example. Jacobian map of the deformation
using (a) Christensen’s model and (b) the proposed model.
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Figure 8. Serial MRI example. Histograms of Jacobian values of
the deformations inside ventricles for Christensen’s model and the
proposed model.

for deformation ~h, such that T ◦ ~h matches S, while min-
imizing the symmetric KL distance in equation (12). The
deformation ~h is usually expressed at each voxel in terms
of the displacement vector ~u from the original position:
~h(~x) = ~x − ~u(~x). In this paper, we will use the sum of
the squared differences (SSD) to measure the accuracy of
matching between the deformed template and the study:

SSD(T, S, ~u) =
1
2

∫

Ω

|T (~x− ~u)− S(~x)|2 d~x, (13)

which is also known as a Gaussian sensor model. To nu-
merically implement our approach, we propose to minimize
a combined cost function

C = SSD + λ(sKL). (14)

This can be achieved using incremental updating along the
gradient descent of the corresponding Euler-Lagrange equa-
tion. Hence, we obtain the ith component of the force field:

fi(~x, ~u(~x, t)) = −[T (~x− ~u)− S(~x)]
∂T

∂xi

∣∣∣∣
~x−~u

−λ
∑

j

∂

∂xj

[(
1 + log |D~h(~x)| − 1

|D~h(~x)|
)
Coij(~x)

]
,

(
D~h(~x)

)−1 =

(
Coij(~x)

)T

|D~h(~x)|
,

(15)
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Figure 9. Serial MRI example. (a) Standard deviation of Jaco-
bian values inside the ventricle per iteration. (b) Symmetric KL
distance. For Christensen’s model (dashed blue), both standard
deviation and symmetric KL distance increase while for the pro-
posed model (solid red), both standard deviation and symmetric
KL distance stabilize.

where Coij is the matrix cofactor of the (i, j)-th component
of the Jacobian matrix D~h.

In this paper, we follow the approach in [5] solving the
viscous fluid model [3]. Of note, in [3], the authors used the
sum of the squared differences (SSD) as a cost functional
for minimization (no control over the distribution of the Ja-
cobian values was employed). Given the velocity field ~v,
the following partial differential equation can be solved to
obtain the displacement field ~u:

∂~u

∂t
= ~v − ~v · ~∇~u. (16)

The instantaneous velocity as in [5] is obtained by convolv-
ing ~f with Gaussian kernel Gσ of variance σ:

~v = Gσ ∗ (−~f(~x, ~u)). (17)

4. Results and Discussion
In this section, we implemented and tested the pro-

posed nonlinear registration model. The deformation fields
were computed using adaptive time stepping, with maximal
change in displacement of 0.1 allowed in each iteration. In
order to obtain a fair comparison between the proposed and
the viscous fluid method, re-gridding was not employed.
Re-gridding is essentially a memoryless procedure, as how
images are matched after each re-gridding is independent of
the deformation before the re-gridding, rendering the com-
parison of final Jacobian fields and cost functionals prob-
lematic. Moreover, the strategy of re-gridding, through the
relaxation of deformation over time, is less rigorous from a
theoretical standpoint.

In order to gain more insight into the effect of the sym-
metric KL distance term in (12), we first consider match-
ing two binary synthetic images. In Figures 1 through 4,
we show the results of deforming a disk into an ellipse
(both 128 by 128; λ = 500 in (15)). As seen in Fig-
ure 1(c,d), both the fluid registration (Christensen’s) model
and the proposed model generated a close match between
the deformed image and the study. Here, optimal match-
ing was considered achieved once the overall cost func-
tional stopped decreasing. However, as seen in Figures 2
and 3, the proposed method more evenly distributes defor-
mation inside and outside an ellipse (resulting from the con-
vex property of the logarithmic mapping in inequality (10)).
Note the vertical stretching of the grid in the center of the
ellipse for the proposed method, which is a consequence of
uniform distribution of Jacobian values. On the other hand,
using Christensen’s model, grid does not uniformly adjust
to object’s volume change; this is especially noticeable in
the center of the ellipse. Figure 4(a) plots the standard de-
viation of the Jacobian field inside the ellipse as a function
of iteration number. For Christensen’s model, the standard
deviation inside the ellipse increased with the number of it-
erations, while the proposed method yielded an optimized
standard deviation as more iterations were computed. The
proposed symmetric KL distance also increased for Chris-
tensen’s method, while it was minimized for the proposed
method as shown in Figure 4(b).

In Figures 5 through 9, we show the results of matching
a pair of 2D slices from a set of Serial MRI images (each of
size 226 by 256; λ = 400 in (15)), where visually signif-
icant ventricle enlargement is present. Both Christensen’s
method and the proposed model generated a close match
between the deformed image and the study (Figure 5(a-d)).
Here, there is no reason to not evenly distribute Jacobian
field inside the ventricles, as realized using the proposed
method. In contrast, Christensen’s method generated a den-
sity map with extreme values along the ventricular bound-
ary. Indeed, given the overall longitudinal ventricular di-
latation, we argue that the corresponding density change
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(a) (b) (c) (d)

(a) (b) (c) (d)

Figure 10. 3D Serial MRI example. Rows depict slices in axial (row 1), sagittal (row 2), and coronal (row 3) planes. Columns depict (a)
T ; (b) S; (c) T deformed using Christensen’s model; (d) T deformed using the proposed model.

map should be constant inside the ventricle. As seen in
Figure 9, both the standard deviation inside the ventricle
and the symmetric KL distance increased for Christensen’s
method, while these quantities stabilized for the proposed
method.

In the last numerical example (Figures 10 through 12),
we tested the proposed model using two 3D Serial MRI vol-
umes obtained from a patient with right-side temporal atro-
phy (6 years apart; each of size 112x128x128; λ = 500). In
this example, the same conclusions were reached, demon-
strating both the numerical and theoretical advantages of
our method. In particular, in Figure 11(b), right temporal
atrophy (RT) and ventricular enlargement (V) are easily vi-
sualized in the Jacobian map generated using the proposed
method, while Christensen’s method generated a very noisy
map (Figure 11(a)).

5. Future Directions
This paper introduces a new framework for the construc-

tion of diffeomorphic maps that yield theoretically and in-

tuitively correct Jacobian statistics. Similar concept can be
applicable to constructing joint registration and segmenta-
tion algorithms, with the latter based on Jacobian values.
To this end, we are currently investigating a level set method
[13, 12] based implementation [2] that would alow us to si-
multaneously register serial images and identify regions of
atrophy/expansion.

The idea of employing symmetric KL distance in non-
linear image registration presented in this work is also
closely related to other scientific fields. For example, op-
timization problems involving Jacobian operator are com-
monly encountered in grid generation [10] and in con-
tinuum mechanics and computational physics, where the
Hencky tensor arises in modeling very large deformations.
However, we believe that the logarithmic transform has not
been formally introduced in the grid generation literature
and may also be useful there.
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(a) (b)

Figure 11. 3D Serial MRI example. Jacobian map overlaid with
the deformed volume for Christensen’s model (column a) and the
proposed model (column b). Rows depict slices in axial (rows 1
and 2), sagittal (row 3), and coronal (row 4) planes. Right temporal
atrophy (RT) and ventricular enlargement (V) are easily visualized
in the Jacobian map generated using the proposed method, while
Christensen’s method generated a very noisy map.
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Figure 12. 3D Serial MRI example. (a) Standard deviation of Ja-
cobian values inside the ventricle per iteration. (b) Symmetric KL
distance.
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