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Abstract of the Dissertation

Image inpainting using a modified

Cahn-Hilliard equation

by

Alan Gillette

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2006

Professor Andrea Bertozzi, Chair

Image inpainting is the process of filling in missing parts of damaged images

based on information gleaned from surrounding areas. We propose a model for

inpainting binary images using a modified Cahn-Hilliard equation, and develop

very efficient numerical techniques for its solution. The Cahn-Hilliard equation

is fourth order, and nicely allows for isophote directions to be matched at the

boundary of inpainting regions. Our model has two scales, the diffuse interface

scale, ε, on which it can accomplish topological transitions, and the feature scale

of the image.

We show via simulations that a dynamic two step method involving the dif-

fuse interface scale allows us to connect regions across large inpainting domains.

For the model problem of stripe inpainting, we show that this issue is related to

a bifurcation structure with respect to the diffuse interface scale ε. Future direc-

tions for this model will account for grayscale inpainting, and may incorporate

wavelet methods.
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CHAPTER 1

Introduction

1.1 The origins of inpainting

The story of inpainting begins in the art world. For centuries, people have been

keenly interested in repairing missing sections of oil paintings, and doing so in a

way that renders the restoration as imperceptible as possible. However, differ-

ences of opinion regarding the best way to accomplish the retouching have been

present from art restoration’s inception.

Inpainting of artworks began as early as the Renaissance. Much of the existing

artwork for this period came from the Roman era, and was badly in need of repair.

These crucifixions and sundry religious scenes were restored by 14th century

artists who softened the Roman style to their own tastes, often inpainting blue

skies in a blank region where a gold coloring had previously lay.

But by no means were these Renaissance artists exceptional in their decision

to use tastes from their own era in the restoration of art from earlier periods.

In fact, this was to become the rule, as each generation had its own viewing

public it was held accountable to, and as well, its own mechanical advances that

it wished to employ. In this way, art restoration has always remained dependent

on popular thought and economic concerns (for an excellent introduction to the

history of painting restoration and its problems, please see [Wal04]).
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By the 20th century, many art restorers began to suggest that large missing

portions of an image should be inpainted with a “neutral” tone. In practice, the

immediate problem was that few could agree what “neutral” tone was, and how

context changed its definition. It soon became clear that even the most carefully

chosen flat tone for a damaged region could exhibit magnet-like behavior with

respect to the eye of the viewer, calling attention to the very problem it hoped

to disguise.

However, in a more recent adaptation of this method, damaged regions of

paintings have been inpainted with a delicate construction of fine, parallel lines

of a single color. Done in the appropriate manner, this method seems to add a

component to the texture of a region that makes the inpainting believable to an

untrained eye, even from only a few yards away.

For the art restorer, this discussion has touched upon only a minute portion

of the spectrum of concerns that must go into the repair of a painting. For the

mathematician, however, it gives us clear insight to the truth that there is no one

“best” way to perform inpainting.

1.2 Automated inpainting prior to 2000

Starting in the 1980s, a few general methods for inpainting came into wide use.

Stochastic inpainting methods used statistics generated by portions of the ex-

isting image to find probabilities of what should exist in the missing inpainting

regions. Examples of this are simulated annealing and neural net inpainting

schemes, among others. Other methods focussed on edge detection and scale-

space filtering. The chief example of this in the years prior to 2000 is anisotropic

diffusion.
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In 1984, Geman and Geman [GG84] used simulated annealing to accomplish

inpainting tasks. The simulated annealing algorithm provides a way to search

for a fairly good minimum value of a cost function, when finding a precise global

minimum may be extremely difficult. An excellent introduction to simulated

annealing can be found in Kirkpatrick, Gellatt, and Vecchi [KJV82]. Geman

and Geman used a statistical cost function that, when used in conjunction with

simulated annealing, maximized the most probable state of the image under a

Gibbs distribution.

In 1992, Perona and Malik [PM90] introduced the idea of anisotropic diffusion

to inpainting. They showed that this method could be seen as a gradient descent

on an energy, and that it could be applied to multiscale image segmentation. The

important point was that they found a way to encourage intra-region smoothing

in preference to interregion smoothing [PM90]. That is, sharp edges were left

mostly intact by their algorithm.

It should be noted that the scale-space filtering that Perona and Malik used

built upon earlier work by Rosenfeld and Thurston [RT71], as well as Yuille and

Poggio [YP86], among others.

1.3 Partial differential equation based inpainting:

2000-2006

The work of Bertalmio et. al. [BSC00] introduced image inpainting as a new

research area of digital image processing. Their model is based on nonlinear

partial differential equations, and is designed to imitate the techniques of museum

artists who specialize in restoration. In particular, Bertalmio et. al. elucidated

the principle that good inpainting algorithms should propagate sharp edges in
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surrounding areas into the damaged parts that need to be filled in. This can be

done for instance by connecting contours of constant grayscale image intensity

(called isophotes) to each other across the inpainting region, so that gray levels

at the edge of the the damaged region get extended to the interior continuously.

They also imposed the direction of isophotes as a boundary condition at the edge

of the inpainting domain.

The isophote direction is defined as

∇⊥u(x, y) = (− ∂

∂y
,

∂

∂x
)u(x, y), (1.1)

where u(x, y) is the image data (grayscale value) at a point (x, y) in the two-

dimensional picture. Image data from the boundary of the inpainting region is

then propagated a short distance into the inpainting region along these isophotes.

The PDE to solve is then

∂u

∂t
+∇⊥u · ∇∆u = 0. (1.2)

This has the effect of propagating the smoothness operator ∆u into the inpainting

region. Every few steps in the numerical process, an iteration of anisotropic

diffusion is added by calculating

∂u

∂t
= κ(x, y, t)|∇u(x, y, t)|

at all points within the inpainting region. Here, κ(x, y, t) is the curvature of the

two-dimensional surface u(x, y, t) at the point (x, y). This diffusion process allows

the successive isophote lines to curve, if need be, as they are propagated.

In subsequent work with Bertozzi [BBS01], they realized that the nonlinear

PDE introduced in [BSC00] has intimate connections with two dimensional fluid

dynamics the Navier-Stokes equations. Indeed, it turns out that the steady state
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problem originally proposed in [BSC00] is equivalent to the inviscid Euler equa-

tions from incompressible flow, in which the image intensity function plays the

role of the stream function in the fluid problem.

If u(x, y, t) is taken as the grayscale value at a point in the image, then

∆u = w, u|∂D = u0,

v = ∇⊥u,

and the smoothness estimator is evolved according to

∂w

∂t
+ v · ∇w = ν∇ ·

[
g(|∇w|)∇w

]
, (1.3)

where ν is a constant, and g(|∇w|) allows for anisotropic diffusion of u(x, y, t)

within the inpainting region only. (Note – throughout this work, Ω will refer to

the entire image domain, while D will refer to the inpainting region.)

This analogy also shows why diffusion is required in the original inpainting

problem. The natural boundary conditions for inpainting are to match the image

intensity on the boundary of the inpainting region and also the direction of the

isophote lines (~τI) which for the fluid problem is effectively a generalized ‘no-

slip’ boundary condition that requires a Navier-Stokes formulation, introducing

a diffusion term. In practice nonlinear diffusion (as in Perona-Malik [PM90], and

Rudin, Osher, Fatemi [ROF92]) works very well to avoid blurring of edges in the

inpainting.

A different approach to inpainting was proposed by Chan and Shen [CS01a].

They introduced the idea that well-known variational image denoising and seg-

mentation models can be easily adapted to the inpainting task by a simple mod-

ification. They proposed a minimization of

J [u] =

∫
Ω

|∇u| dx +
λ

2

∫
Ω\D

(u− u0)
2 dx, (1.4)
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where λ is a fitting constant or Lagrange multiplier. The Euler-Lagrange equation

of (1.4) is then
∂u

∂t
= ∇ ·

[ ∇u

|∇u|

]
+ λ(u− u0)χΩ\D. (1.5)

By restricting the effects of the fidelity term in these models to only the

complement of the inpainting region, Chan and Shen showed that very good

image completions can be obtained. The principle behind their approach can be

summarized as follows: Variational denoising and segmentation models all have

an underlying notion of what constitutes an image. In the inpainting region, the

models of Chan and Shen reconstruct the missing image features by relying on

these built-in notions.

This first model introduced by Chan and Shen used the total variation based

image denoising model of Rudin, Osher, and Fatemi [ROF92] for the inpainting

purpose. The model can successfully propagate sharp edges into the damaged

domain. However, because the regularization term in this model exacts a penalty

on the length of edges, this technique cannot connect contours across very large

distances. Another caveat to the method is that it does not always keep the

direction of isophotes continuous across the boundary of the inpainting domain.

Subsequently, Kang, Chan, and Shen [CSK02] introduced a new variational

image inpainting model that addressed the shortcomings of the the total variation

based one. The model is motivated by the work of Nitzberg, Mumford, and Shiota

[NMS93], and includes a new regularization term that penalizes not merely the

length of edges in an image, but the integral of the square of curvature along the

edge contours. The energy is given by

J [u] =

∫
D

φ(κ)|∇u| dx, κ = ∇ ·
[ ∇u

|∇u|

]
, (1.6)
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with the resulting Euler-Lagrange equation

∂u

∂t
= ∇ ·

(
φ(κ)

∇u

|∇u|
−

~t

|∇u|
∂(φ′(κ)|∇u|)

∂~t

)
, (1.7)

where ∂
∂~t

is directional derivative in the direction of the tangent (isophote) vector

~t = ∇⊥u
|∇u| . This allows both for isophotes to be connected across large distances,

and their directions to be kept continuous across the edge of the inpainting region.

Following in the footsteps of Chan and Shen, Esedoglu and Shen [ES02]

adapted the Mumford-Shah image segmentation model to the inpainting prob-

lem. They utilized Ambrosio and Tortorelli’s elliptic approximations [AT90] to

the Mumford-Shah functional. Gradient descent for these approximations leads

to parabolic equations with a small parameter ε in them; they represent edges in

the image by transition regions of thickness ε. These equations have the benefit

that the highest order derivatives are linear. They can therefore be solved rather

quickly. However, like the total variation image denoising model, the Mumford-

Shah segmentation model penalizes length of edge contours, and therefore does

not allow for the connection of isophotes across large distances in inpainting ap-

plications.

In order to improve the utility of the Mumford-Shah model in inpainting,

Esedoglu and Shen introduced the Mumford-Shah-Euler image model that, just

like the previous work [CSK02] of Kang, Chan, Shen, penalizes square of the

curvature along an edge contour. Following previous work by March [MD97],

they then used a conjecture of De Giorgi [Gio91] to approximate the resulting

variational problem by elliptic ones. Resulting gradient descent equations are

fourth order, nonlinear parabolic PDEs with a small parameter in them, and

have a striking resemblance to the Cahn-Hilliard equation.

We recall very briefly the two models introduced in [ES02], and their approx-

imations by elliptic functionals. The first one is a very simple modification of
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the Mumford-Shah segmentation model, and has the following form: For a given

image f(x), solve the minimization problem

inf
u(x)∈L2(Ω)

K⊂Ω

∫
Ω\K

|∇u|2 dx + αLength(K) + λ

∫
Ω\D

(f − u)2 dx. (1.8)

Here, the unknown set K is supposed to be a union of curves and approximate the

edges of the given image f(x). The function u(x), which is also an unknown of

the problem, is required to be smooth away from the edge set K by the Dirichlet

energy that appears in the energy. D ⊂ Ω is the user supplied inpainting region.

The last integral in (1.8) represents the fidelity term, and forces the piecewise

smooth function u(x) to remain close in the L2 sense to the given image f(x).

The only difference of (1.8) from the original Mumford-Shah functional is that

the fidelity term is integrated over Ω \D instead of the entire domain Ω.

Energies of the form (1.8) are difficult to handle because part of the mini-

mization is to be carried out over collections of curves in the plane. Ambrosio

and Tortorelli [AT90] introduced elliptic energies that approximate the Mumford-

Shah functional in the sense of Gamma convergence, whose numerical treatments

are consequently much easier. Their approximation, when written for (1.8), takes

the form:

MSε(u, z) =

∫
Ω

z2|∇u|2 + ε|∇z|2 +
(1− z)2

4ε
dx + λ

∫
Ω\D

(f − u)2 dx. (1.9)

Here, the function z is introduced to keep track of the edge set. As the small

parameter ε → 0, these energies have been rigorously proved to converge to (1.8)

in the sense of Gamma convergence. The implication is that any accumulation

point of minimizers of (1.9) has to be a minimizer of (1.8). These approximations

are often called ‘diffuse interface’ approximations because for a fixed value of ε,

the minimizer approximates the sharp interface problem by one in which there
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is an interface of thickness of order ε. Diffuse interface methods are particularly

useful for problems in which topology transitions of the interface are of interest.

Esedoḡlu and Shen [ES02] introduce a variant of energy (1.8) that incorporates

curvature of edge contours into the functional. It has the form:

MSE(u, K) =

∫
Ω\K

|∇u|2 dx +

∫
K

α + βκ2 dσ + λ

∫
Ω\D

(u− f)2 dx. (1.10)

where κ is the curvature of K. Based on a conjecture of E. De Giorgi [Gio91],

and following previous work by March in [DVM02], they consider the following

diffuse interface approximation of (1.10):

MSEε(u, z) =

∫
Ω

z2|∇u|2 + α

(
ε|∇z|2 +

1

ε
W (z)

)
+

β

ε

(
2ε∆z − 1

ε
W ′(z)

)2

dx + λ

∫
Ω\D

(u− f)2 dx. (1.11)

Gradient descent for (1.11) with respect to the L2 inner product is given by the

following system of coupled diffusion equations:

ut = ∇ ·
(
z2∇u

)
+ λ(f − u), (1.12)

and

zt =

(
α +

β

2ε2
W ′′(z)− 4β∆

) (
2ε∆z − 1

4ε
W ′(z)

)
− |∇u|2z. (1.13)

Finally, a different approach to the grayscale inpainting problem has been

tried by Harald Grossauer and Otmar Scherzer [GS03]. In their work on image

inpainting using the Ginzburg-Landau equation, they proposed treating the image

data as complex, where the real part was the actual grayscale value of the image

point, while the imaginary part was constrained to place the boundary of a circle

of radius 1 in the complex plane (see the figure below).
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The Ginzburg-Landau energy is

F (u,∇u) =
1

2

∫
Ω

| − i∇u|2 + α|u|2 +
β

2
|u|4 dx, (1.14)

where α and β are constants (α < 0, β > 0), and u(x, t) is again the phase of

a point of the material under study. The steepest descent method then provides

the Ginzburg-Landau equation,

∂u

∂t
= ∆u +

1

ε2
(1− |u|2)u. (1.15)

The substitution u(x, t) = u1(x, t) + iu2(x, t) is inserted into equation (1.15),

with the initial values of u2(x, t) set to

u2(x, 0) =
√

1− u1(x, 0)2. (1.16)

This leads to a coupled system of equations for u1(x, t) and u2(x, t), which

Grossauer and Scherzer solved by an explicit numerical scheme assuming the

Dirichlet boundary conditions u(x, t)|∂Ω = u(x, 0)|∂Ω (see [GS03]).

In this paper, we consider a simple model that still has many of the desirable

properties of the model introduced in [ES02], but for which there are very fast

computational techniques available. In particular, we show that in the case of

binary images, a slightly modified Cahn-Hilliard equation allows us to get in-

paintings as good as the ones in previous papers, but much more quickly (see

also [BEGar]).

The Cahn-Hilliard equation has some features that make it inherently appeal-

ing for inpainting purposes. The ability to impose boundary conditions for both

the solution u(x) and its derivative ∇u is one of the great advantages of fourth

order models. Indeed, this allows image information generated by the model in

the inpainting region D to match the original image data defined on Ω \ D not

10



Figure 1.1: Image from [She03]. Inpainting problem solved by using the Mumford-Shah

inpainting technique, shown as an example. Note that the isophotes are not smoothly

continued at the boundary of the inpainting region.

only in intensity, but also in isophote directions. That means our model should

edges into the inpainting domain without introducing kinks at the boundary ∂D.

In figure 1.2 one can see how isophotes are not cleanly continued by the

Mumford-Shah inpainting model, which is a second order inpainting method (see

[She03] for more detail on the Mumford-Shah model). A fourth order inpainting

model based on the Cahn-Hilliard equation will address this isophote continuation

problem. Chapters 2 and 4 go into detail on this topic.

Another feature of an inpainting model based on the Cahn-Hilliard equation,

that will be shown in chapter 4, is the potential to inpaint across large gaps. Below

is a figure which shows how a street scene obscured by text can be inpainted using

the method described in [BSC00]. Notice that the vertical poles directly in back

of the horse’s head in the image are not connected. This is a long-range inpainting

connection problem; an example of this will be shown in chapter 4.

1.4 Origins of the Cahn-Hilliard equation

When a mixture of two metallic components is heated, and then rapidly cooled

to a lower temperature, a sudden phase separation can occur. This separation

11



Figure 1.2: Image from [BSC00]. Inpainting problem solved by using the method

described in [BSC00] by Bertalmio et. al.

of the metal alloy (for example, Au-Ni alloys) into two components, via cooling,

is called spinodal decomposition. Understanding the process of this segregation,

as well as finding any steady states that may remain after cooling has been the

subject of much research in the 20th century.

John Cahn and John Hilliard began work on the spinodal decomposition prob-

lem in the late 1950s (see [CH58]). They proposed a chemical model that has the

following energy:

F (c) =

∫ (
f(c) + κ(∇c)2

)
dV, (1.17)

where f(c) is the free-energy density of the material c(x, y, z, t), and κ(∇c)2 is the

additional free-energy density if the material is in a gradient in composition (i.e.,

in a transition between two states cA and cB). Additionally, mass is assumed to

be conserved in this system, giving∫
c dV = C (1.18)

with C being a constant. The boundary conditions are chosen to prohibit the

flow of material into or out of the confined volume,

∂νc = ∂ν

(
f(c) + κ(∇c)2

)
= 0 on dV, (1.19)
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but since ∂νf(c) = f ′(c)∂νc, we have the simplified boundary conditions

∂νc = ∂ν∆u = 0 on dV. (1.20)

Here, ∂ν is taken to mean the directional derivative of c normal to the boundary

dV .

The Cahn-Hilliard equation is then derived in the following manner. First,

µA − µB = ∇F (c) =
∂f

∂c
− 2κ∆c, (1.21)

where µA − µB is the chemical potential difference between the phase states A

and B, and ∇F (c) is the variational derivative of the energy F (c).

Next, the following relation is used:

JB = −JA = M∇(µA − µB), (1.22)

where JA, JB refer to the diffusional flux from the states A and B, respectively,

and M is a constant that represents mobility. Finally, the time rate of change of

the concentration c(x, y, z, t) is equal to the divergence of the flux JB = −JA,

∇ · JB =
∂c

∂t
. (1.23)

Combining equations (1.21), (1.22), and (1.23), one has the well-known Cahn-

Hilliard equation (see [Hil70] for additional details):

∂c

∂t
= M∆(

∂f

∂c
− 2κ∆c). (1.24)

The Cahn-Hilliard equation can also be derived as a gradient flow from an

energy, as has been shown by Fife [Fif00]. Assume the spinodal decomposition

of a two-phase system will minimize the following energy:

E(u) =

∫
Ω

(ε2

2
|∇u(x)|2 + W (u)

)
dx, (1.25)
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where W (u) again is a double-welled potential energy having two minima that

represent the two phases. The ε2

2
|∇u(x)|2 term is added to the energy integral

to allow smooth transitions between the two stable states. In reference to the

original Cahn-Hilliard equation (1.24), notice that f(c) is replaced with W (u)

for equation (1.25). Also, M and κ from equation (1.24) are mapped into the

parameter ε in equation (1.25).

Also note that the integral is assumed (for our purposes) to be taken over a

domain Ω ∈ R2. The boundary conditions mirror our previous discussion:

∂νu = ∂ν∆u = 0. (1.26)

This formulation is turned into a gradient flow by equating

〈∂u

∂t
, v〉H = − 〈∇E(u), v〉H (1.27)

where∇E(u) represents the variational derivative of the energy E(u) with respect

to a particular Hilbert space H of functions,

〈∇E(u), v〉H =
∂

∂t
E(u + tv)|t=0. (1.28)

When v ∈ L2(Ω) or v ∈ Hk(Ω) (k > 0) are used as the Hilbert spaces,

one arrives at nonlocal evolution laws for u(x, t). These have been rejected by

researchers on the argument that the physics dictates that the evolution of u(x, t)

should proceed from local interactions. For an extensive discussion of this, see

[Fif00].

However, when the zero-average subspace of the dual of H1 is used, known as

H−1, the result of the gradient flow is the Cahn-Hilliard equation. In this space

we have that, for v ∈ H−1, ∫
Ω

v dx = 0, (1.29)
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which occurs if and only if, for v = ∆Φ,∫
Ω

Φ dx = 0. (1.30)

The scalar product of H−1 is then defined as

〈v1, v2〉H−1 = 〈∇Φ1,∇Φ2〉L2 , (1.31)

where v1 = ∆Φ1 and v2 = ∆Φ2.

Applying this to equation (1.28),

∂

∂t
E(u + t∆Φ)|t=0 =

∫
Ω

(
W ′(u)− ε2∆u

)
∆Φ dx, (1.32)

which after integration by parts leads to∫
Ω

−∇[W ′(u)− ε2∆u]∇Φ dx, (1.33)

which is now in the form of (1.31). Using equation (1.31) with the term

−∇[W ′(u)− ε2∆u] assuming the role of ∇Φ1,

〈−∇[W ′(u)− ε2∆u],∇Φ〉L2 = 〈−∆[W ′(u)− ε2∆u], v〉H−1 . (1.34)

Within the construct of the gradient flow equation (1.27), we finally arrive at

∂u

∂t
= ∆[W ′(u)− ε2∆u]. (1.35)

By making the substitution t → εt, we obtain the form used throughout the later

chapters of this paper,

∂u

∂t
= −∆[ε∆u− 1

ε
W ′(u)]. (1.36)
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1.5 Solutions of the Cahn-Hilliard equation

Due to the bi-stable potential W (u) in the Cahn-Hilliard energy (1.36), solutions

exhibit a segregation of species. From the gradient term in the energy, a diffuse

interface between the separated states forms. This interface is of O(ε) in size,

and upon taking ε → 0 in equation (1.36), one recovers Mullins-Sekerka interface

dynamics (see [MS63]). Pego in 1989 [Peg89] used matched asymptotics to solve

for the interface. Later, Alikakos, Bates, and Chen in 1994 proved Pego’s interface

solution rigorously [ABC94].

In our work, W (u) in equation (1.36) is taken to be the polynomial W (u) =

u2(u− 1)2, and so W ′(u) = 4u3 − 6u2 + 2u. Thus W ′(u) has 3 zeros, all of which

constitute solutions to the Cahn-Hilliard equation (1.36).

Interestingly, an exact solution (albeit not very exciting) exists. A family of

steady-state solutions can be found of the form

u(x) = a tanh(
±ax

ε
+ b) + c (1.37)

where a, b, and c are constants that depend on the precise form of W ′(u). This

solution consists of two uniform regions, separated by a diffuse interface.

However, the solution of interest for inpainting purposes will often be some

form of three uniform regions separated by two diffuse interfaces. The long term

stability of such solutions is unknown. However we will approach the issues of

existence and uniqueness of such a proposed solution in chapter 2.

The stability of a solution to (1.36) is very much related to the diffuse interface

mobility. In this aspect the Cahn-Hilliard equation shares properties of the Hele-

Shaw model, where the transport of mass across very finely connected regions has

been observed [Gla03] to occur on very slow time scales. It is therefore difficult

to say that a particular solution of the Cahn-Hilliard equation is stable for all
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time. We will investigate the issue of stability in more detail in chapters 2 and

4. The work presented in chapters 4 and 5 shows my empirical investigations of

the modified Cahn-Hilliard equation, of course done under the guidance of Dr.

Bertozzi.

As a final comment, I would like to make clear the roles and responsibilites for

the research presented in this thesis. I personally was responsible for the numeri-

cal simulations and programming, including parameter estimations. I contributed

some parts to the analysis portions presented in chapter 2, but that portion was

for the most part a collaborative effort where Dr. Andrea Bertozzi and Dr. Selim

Esedoglu played major roles in developing the analytical foundations. The nu-

merical schemes explained in chapter 3 were originally developed by Dr. Bertozzi

while she was at Duke University, and later utilized in an early test problem with

the collaboration of Dr. Esedoglu. I have considerably expanded the exposition

of the numerical scheme in chapter 3.
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CHAPTER 2

Analysis

2.1 Proposed model

This chapter cites numerous results from [BEG06]. We consider a binary image

(i.e shape) inpainting model that is a much simplified version of the Esedoḡlu-

Shen model from the chapter 1. The key observation is that the fourth or-

der gradient flow in the Esedoḡlu-Shen model has features in common with the

Cahn-Hilliard equation, which is a much simpler model for which fast solution

techniques are available [BEGar, VR03]. It is therefore natural to ask if a simpler

model can be used directly for inpainting.

Let f(x) be a given binary image, and suppose that D ⊂ Ω is the inpainting

domain. We propose solving the following equation to steady state in order to

construct an inpainted version u(x) of f(x):

ut = −∆

(
ε∆u− 1

ε
W ′(u)

)
+ λ(x)(f − u). (2.1)

where

λ(x) =

 0 if x ∈ D,

λ0 if x ∈ Ω \D

u(x, t) satisfies ∂u
∂ν

= ∂∆u
∂ν

= 0 on ∂Ω, and again W (u) = u2(u− 1)2.

Equation (2.1) is identical to the standard Cahn-Hilliard equation [BF93,

NS84] except for the second term on the right hand side. This term is there to
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keep the solution constructed close to the given image f(x) in the complement of

the inpainting domain, where there is image information available. We mention

here that such phase field models have been used for other applications such as

shape recovery in computer vision [DVM02].

Equation (2.1) is not derived as a gradient flow for an energy; however, it can

be thought of as a superposition of gradient descents for two different energies.

Indeed, the Cahn-Hilliard equation is the gradient flow with respect to the H−1

inner product [TC94] of the following energy, which was discussed in chapter 1:

Eε(u) :=

∫
Ω

(ε

2
|∇u|2 +

1

ε
W (u)

)
dx. (2.2)

This is the energy of Modica-Mortola [MM77], which has been rigorously shown

to approximate the perimeter of sets in the sense of Gamma convergence:

Eε
Γ−−−→ E(u) :=

 Per(Σ) if u(x) = 1Σ(x) for some Σ ⊂ Ω,

+∞ otherwise.

When λ(x) ≡ 0, equation (2.1) thus decreases (2.2); it can also be easily seen

that in this case the solution preserves total image intensity (i.e.
∫

Ω
u(x, t) dx is

constant in t). The dynamics of (2.1) in this case has been studied extensively.

For instance, it is well-known that under (2.1) with λ(x) ≡ 0, arbitrary initial data

form interfaces of thickness approximately ε at a fast time scale; these interfaces

separate regions where the solution is approximately either 0 or 1 (location of

wells for the potential W ). The fact that energy (2.2) is decreased suggests that

the subsequent evolution involves some sort of coarsening of this configuration of

regions. Indeed, as ε → 0, at a slower time scale the interfaces approximate the

solution of the Mullins-Sekerka problem [ABC94, Peg89].

When λ(x) 6≡ 0, equation (2.1) is no longer a gradient descent for (2.2); the

second term in the right hand side of (2.1) is gradient descent with respect to the
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L2 inner product for the pointwise energy:

λ

2

∫
Ω

(u− f)2 dx. (2.3)

Our proposed model (2.1) can thus be thought of as a superposition of gradient

descent with respect to H−1 inner product for (2.2), and gradient descent with

respect to L2 inner-product for (2.3). However, it is not the gradient descent,

either in H−1 or L2 inner product, for the sum of the energies (2.2) and (2.3).

An important distinction of model (2.1) from those of Bertalmio et. al. is

that no explicit boundary conditions are imposed at the boundary ∂D of the

inpainting region D. However, we will show in Section 2.3 that in the limit that

λ0 → ∞, stationary solutions of (2.1) converge to the solution of the following

equation:

−∆

(
ε∆u− 1

ε
W ′(u)

)
= 0 in x ∈ D,

u(x) = f(x) on x ∈ ∂D, and

∇u = ∇f on x ∈ ∂D.

(2.4)

This is proved under the condition that the given function f(x) ∈ C2(Ω). The

fact that (2.1) is fourth order naturally leads to the two boundary conditions (2.4)

in the limit of large λ. We note that this feature is not special to the particular

nonlinear equation considered here, but is due to the highest order term on the

right hand side of (2.1). The rigorous results of sections 2.3 and 2.4 require only

the highest order term to complete the analysis. The rest of the work in those

sections is to show that the lower order terms, which are responsible for the phase

separation, do not adversely affect the results. We therefore expect that solving

equation (2.1) with a very large choice of the constant λ0 will approximate a

solution of (2.4).
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After addressing the case λ → ∞ for f ∈ C2, where we take ε first to be

one, we then consider f a smooth approximation of a binary function, where the

smoothing is on a scale ε, the diffuse interface scale. We show that the same

estimates hold as in the completely smooth case, except that now λ depends on

ε. In practice, we do not find any significant numerical hardship regarding the

large value of λ when ε is small.

2.2 Global existence of weak solutions of the modified

Cahn-Hilliard equation

Before discussing the steady state problem, we show that well-posedness of the

dynamic problem follows from classical methods for the case λ0 = 0.

Consider the time dependent problem on a compact region Ω ⊂ R2 with an

inpainting region D ⊂ Ω,

ut = −∆(ε∆u− 1

ε
W ′(u)) + λ0(f − u)χΩ\D. (2.5)

Following III, 4.2 in [Tem97] for the case λ0 = 0, we define V = {φ ∈ H2(Ω) | ∂φ
∂ν

=

0 on ∂Ω}. We define a weak solution of the evolution equation (2.5) as one

that satisfies

d

dt
〈u, v〉+ 〈ε∆u, ∆v〉 − 〈1

ε
W ′(u), ∆v〉 = 〈λ(x)(f − u), v〉, ∀v ∈ V, (2.6)

where 〈., .〉 specifies the L2 inner product.

We establish the following global existence and uniqueness theorem.

Theorem 1. For every u0 in L2(Ω), and every T > 0, the initial-boundary

value problem (2.6) has a unique solution u which belongs to C([0, T ]; L2(Ω)) ∩

L2(0, T ; V ).
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The proof of existence follows a similar argument as in [Tem97] for λ = 0. We

require an L2 estimate that includes the additional fidelity term. In fact we show

that this gives a global in time bound for u in L2 when λ is sufficiently large.

Lemma 2. Given a weak solution as described above, there exist constants C(ε, λ, f) >

0 and θ(λ, f, ε) so that

1

2

d

dt

∫
Ω

u2 dx ≤ C(ε, λ, f)− θ

∫
Ω/D

u2 dx, (2.7)

for all t ≥ 0. For λ sufficiently large, θ > 0.

This lemma establishes an a priori bound for the L2 norm of the solution u;

this bound is uniform in time for λ sufficiently large. We expect that it would

therefore play an important role in, for example, establishing existence of steady

states for the modified Cahn-Hilliard equation considered in this paper.

Proof: We first reference a standard interpolation inequality:∫
Ω

|∇u|2 dx ≤ δ

∫
Ω

(∆u)2 dx +
C

δ

∫
Ω

u2 dx (2.8)

By the L1 version of Poincare’s inequality, together with the observation that the

domain of integration in the second integral of equation (2.8) can be taken to be

something smaller than Ω (at the expense of larger constants, but no matter):∫
Ω

u2 dx ≤ C

∫
Ω

|∇(u2)| dx + C

∫
Ω\D

u2 dx, (2.9)

where C depends on the size of D compared to Ω. By Hölder’s inequality we also

have that (for some α small enough):∫
Ω

|∇(u2)| dx ≤ |Ω|
1
2

(∫
Ω

u2|∇u|2 dx

) 1
2

≤ α

2

∫
Ω

u2|∇u|2 dx +
C

2α
(2.10)

Putting the last three inequalities together:∫
Ω

|∇u|2 dx ≤ δ

∫
Ω

(∆u)2 dx +
Cα

2δ

∫
Ω

u2|∇u|2 dx +
C

δ

∫
Ω\D

u2 dx +
C

2αδ
(2.11)
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Now computing the rate of change of the L2 norm of the solution, we get that:

1

2

d

dt

∫
Ω

u2 dx = −ε

∫
Ω

(∆u)2 dx +
1

ε

∫
Ω

u∆W ′(u) dx + λ

∫
Ω\D

u(f − u) dx

= −ε

∫
Ω

(∆u)2 dx− 1

ε

∫
Ω

W ′′(u)|∇u|2 dx + λ

∫
Ω\D

u(f − u) dx

(2.12)

where we integrated by parts on the second term in the right hand side.

Using the fact that W ′′(ξ) ≥ γξ2 − C for all ξ, for some constants γ and C,

in (2.12):

1

2

d

dt

∫
Ω

u2 dx ≤ −ε

∫
Ω

(∆u)2dx−γ

ε

∫
Ω

u2|∇u|2 dx+
C

ε

∫
Ω

|∇u|2+λ

∫
Ω\D

u(f−u) dx

(2.13)

We now put everything together as follows: First, writing the last term above as

λ

∫
Ω/D

ufdx− λ

∫
Ω/D

u2dx ≤ λ

2

∫
Ω/D

f 2dx− λ

2

∫
Ω/D

u2dx,

we use inequality (2.9) in order to bound the last term of the inequality above as

follows:

1

2

d

dt

∫
Ω

u2 dx ≤ −ε

∫
Ω

(∆u)2 dx− γ

ε

∫
Ω

u2|∇u|2 dx +
C

ε

∫
Ω

|∇u|2 dx

+
λ

2

∫
Ω\D

f 2 dx +
λ

2

∫
Ω

|∇(u2)| dx− λ

2C

∫
Ω

u2 dx.

Now use inequality (2.10) with α = δ1 to estimate the next to last term in the

inequality above:

1

2

d

dt

∫
Ω

u2 dx ≤ −ε

∫
Ω

(∆u)2dx−γ

ε

∫
Ω

u2|∇u|2 dx+
C

ε

∫
Ω

|∇u|2 dx+
λ

2

∫
Ω\D

f 2 dx

+
λδ1

4

∫
Ω

u2|∇u|2 dx +
Cλ

4δ1

− λ

2C

∫
Ω

u2 dx

Now use inequality (2.11) with α = δ1 and δ = δ2 to estimate the
∫
|∇u|2 dx term

23



in the inequality above as follows:

1

2

d

dt

∫
Ω

u2 dx ≤− ε

∫
Ω

(∆u)2 dx− γ

ε

∫
Ω

u2|∇u|2 dx +
Cδ2

ε

∫
Ω

(∆u)2 dx +
Cδ1

2εδ2

∫
Ω

u2|∇u|2 dx

+
C

2εδ1δ2

+
C

εδ2

∫
Ω\D

u2 dx +
λ

2

∫
Ω\D

f 2 dx +
λδ1

4

∫
Ω

u2|∇u|2 dx

+
Cλ

4δ1

− λ

2C

∫
Ω

u2 dx.

We now try to satisfy the following conditions with our choice of the constants

δ1, δ2, α, and λ:

1. Cδ2
ε

< ε, i.e. δ2 < ε2

C
,

2. Cδ1
2εδ2

+ λδ1
4

< γ
ε
,

3. C
εδ2

< λ
2C

,

To satisfy the first condition, take δ2 = 1
8C

ε2. Then, to satisfy the third, we can

choose any λ ≥ 16C3

ε3 . To satisfy the second, choose δ1 < 4ε2γ
16C2+λε3 . With these

choices, we end up with the following inequality:

1

2

d

dt

∫
Ω

u2 dx ≤ C(ε, λ, f)− θ

∫
Ω

u2 dx

where θ > 0. For any λ, Grönwall’s lemma implies an a priori bound on the L2

norm of u on any finite time interval [0, T ). Moreover, for sufficiently large λ, we

obtain a uniform in time bound on the L2 norm of u(·, t):

∃M > 0 such that ‖u(·, t)‖L2 ≤ M for all t ≥ 0. 2

Remark: In the above analysis, the λ needed to obtain a negative θ depends on

ε and the size of the inpainting region compared to Ω.

Following the remaining arguments in [Tem97] one can establish global exis-

tence and uniqueness of a weak solution to the modified Cahn-Hilliard equation.
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We are not aware of any Lyapunov function for this problem, as in the original

CH model. However, we observe in our numerical simulations that the solution

quickly approaches a steady state as t increases; as we mentioned before, the ex-

istence of such are strongly suggested by the estimate given above. Moreover, the

steady state solution appears to inherit the regularity of the original parabolic

problem. In the next section we show that existence of an H2 solution of the

steady state problem guarantees that the intended boundary conditions for the

inpainting problem are satisfied as λ → ∞. In the analysis, λ depends on ε,

however this dependence is not something that, in practice, causes us hardship

in the computation. We prove this result while noting that convergence of the

time dependent solution to the steady state problem remains unaddressed.

2.3 Fidelity and boundary conditions

The fidelity parameter λ in (2.1) enforces the original image outside of the in-

painting region. One might expect that as λ gets large, the existing region en-

forces some kind of effective boundary conditions on the inpainting region. In

this section we prove this rigorously for the steady state problem. As we men-

tioned earlier, these solutions turn out to approximate a solution of (2.4). Our

results establish rigorously a connection between the inpainting technique used

by Bertalmio et. al. (who prefer to impose boundary conditions at the edge of

the inpainting domain D) and that of Chan et. al. (who prefer to use a fidelity

term, similar to the second term in the right hand side of our model (2.1)). In

this section we consider the case ε = 1, and smooth (grayscale) f . In the next

section we show how to extend these results to binary f and small ε.
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2.3.1 Key estimates

We require the following version of the Poincaré inequality.

Lemma 3. (Poincaré inequality) Let Ω ⊂ RN be a bounded domain with Lipschitz

boundary. There exists a constant C = C(Ω) > 0 such that if v(x) ∈ C1(Ω) with

v = (u− ū)2 for some u ∈ C1(Ω) and ū := 1
|Ω|

∫
Ω

u dx, then∫
Ω

v2 dx ≤ C

∫
Ω

|∇v|2 dx.

Proof: Suppose not. Then there exists a sequence {uj}∞j=1 ⊂ C1(Ω) such that∫
Ω

v2
j dx > j

∫
Ω

|∇vj|2 dx

where vj = (uj− ūj)
2 for some uj ∈ C1(Ω), and vj 6= 0. By normalizing, we make

sure that ∫
Ω

v2
j dx = 1 and ūj :=

1

|Ω|

∫
Ω

uj dx = 0 for all j.

Then, the functions vj are bounded uniformly in L2(Ω) and∫
Ω

|∇vj|2 dx <
1

j
.

By Rellich’s theorem, by passing to a subsequence if necessary, we may assume

that vj converge to some v∞ in the L2(Ω) sense and pointwise a.e.

Let wj(x) := max2{0, uj(x)}. Then:∫
Ω

|∇wj|2 dx ≤
∫

Ω

4
(

max{0, uj(x)}
)2

|∇uj|2 dx ≤
∫

Ω

4u2
j |∇uj|2 dx

= 4

∫
Ω

|∇vj|2 dx −→ 0 as j →∞.

Once again by Rellich, we may assume that the sequence wj converges to some

w∞ in L2(Ω). By lower semicontinuity,∫
Ω

|∇w∞|2 dx ≤ lim inf
j→∞

∫
Ω

|∇wj|2 dx = 0.
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That means w∞ is a constant.

The very same argument applied to w̃j(x) := min2{0, uj(x)} shows that up to

passing to subsequences, we may assume that w̃j → w̃∞ in L2(Ω) and pointwise

a.e., where w̃∞ is a constant.

Thus, for a.e. x ∈ Ω, we have that
√

wj(x) = max{0, uj(x)} converges

to
√

w∞ and
√

w̃j(x) = −min{0, uj(x)} converges to
√

w̃∞. Since uj(x) =

max{0, uj(x)}+ min{0, uj(x)}, we have that

lim
j→∞

uj(x) = C :=
√

w∞ −
√

w̃∞ for a.e. x ∈ Ω.

Moreover, since the sequence {av2
j + b} dominates {(uj −C)4} for some a, b ∈ R,

and {vj} converges in L2, we get that the sequence {uj} converges to the constant

C in L4(Ω). But ūj = 0, so in fact we must have C = 0. This contradicts the

fact
∫

u4
j dx =

∫
v2

j dx = 1.

If necessary, we pass to a further subsequence to ensure that vj converge to

the constant |Ω| 12 pointwise a.e. Then, by definition of vj, we have:

For a.e. x ∈ Ω, either uj(x) → |Ω|
1
4 or uj(x) → −|Ω|

1
4 .

But in fact, we have the following:

Claim: Either uj → |Ω| 14 for a.e. x ∈ Ω, or uj → −|Ω| 14 for a.e. x ∈ Ω.

Proof of Claim: Suppose not. Then there exists a subset Σ of Ω such that |Σ| > 0,

|Ω \ Σ| > 0, and

uj(x) → |Ω|
1
4 for a.e. x ∈ Σ, and uj(x) → −|Ω|

1
4 for a.e. x ∈ Ω \ Σ.

Let η(x) := max{0, x2}, and consider the sequence wj := η(uj). Then wj →

|Ω| 12 1Σ in L2, and∫
Ω

|∇wj|2 dx =

∫
Ω

|η′(uj)|2|∇uj|2 dx ≤
∫

Ω

u2
j |∇uj|2

≤
∫

Ω

|∇vj|2 → 0 as j →∞.
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which is impossible, proving the claim. 2

Returning to the proof of the Lemma, in light of the claim above, we now

assume with no loss of generality that uj → |Ω| 14 for a.e. x ∈ Ω. Since uj are

dominated by 1+vj, and since 1+vj → 1+ |Ω| 12 in L2(Ω), we get that uj → |Ω| 14

in L2(Ω). This contradicts the assumption that ūj = 0 for all j, proving the

lemma. 2

Lemma 4. Let Ω ⊂ RN be a bounded domain with Lipschitz boundary. Let D be

a compactly included subdomain of Ω, also with Lipschitz boundary. There exist

constants C1, C2, and C3 such that if u(x) ∈ C1(Ω), then∫
Ω

u4 dx ≤C1

(
1

|Ω \D|

∫
Ω\D

u dx

)4

+ C2

∫
Ω

u2|∇u|2 dx

+ C3

(
1

|Ω \D|

∫
Ω\D

u dx

)2 ∫
Ω

|∇u|2 dx.

Proof: Define the function v to be:

v(x) :=

(
u(x)− 1

|Ω \D|

∫
Ω\D

u(x) dx

)2

.

The standard Poincaré inequality implies:∫
Ω

v2 dx ≤ C

∫
Ω\D

v2 dx + C

∫
Ω

|∇v|2 dx. (2.14)

On the other hand, Lemma 3 implies:∫
Ω\D

v2 dx ≤ C

∫
Ω\D

|∇v|2 dx. (2.15)

Combining inequalities (2.14) and (2.15) we get:∫
Ω

v2 dx ≤ C

∫
Ω

|∇v|2 dx.

Writing the last inequality in terms of u yields the conclusion of the present

lemma after a few elementary manipulations. 2
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Proposition 1. Let u be an H2 weak solution of the PDE

−∆
(
∆u−W ′(u)

)
+ λ(x)(f − u) = 0,

that is

〈∆u, ∆v〉 − 〈W ′(u, ∆v〉 = 〈λ(x)(f − u), v〉, ∀v ∈ V. (2.16)

where

λ(x) =

 0 if x ∈ D,

λ0 if x ∈ Ω \D

with λ0 ≥ 0. Assume that f ∈ C2(Ω). Then there exists constants C1 and C2

independent of λ0, depending only on f , so that∫
Ω

(
∆u

)2

dx ≤ C1, and∫
Ω\D

(
u− f

)2

dx ≤ C2

λ0

.
(2.17)

Proof: First, we consider a test function v ≡ 1 to obtain∫
Ω\D

u dx =

∫
Ω\D

f dx. (2.18)

where we used the fact λ = 0 in D. Then, taking a test function v = (u− f), we

get

0 =

∫
Ω

−
(
(∆u−∆f)(∆u−W ′(u)) + λ(x)(u− f)2

)
dx

= −
∫

Ω

(
∆u

)2

dx−
∫

Ω

λ(x)(f − u)2 dx + (I) + (II)

(2.19)

where

(I) :=

∫
Ω

W ′(u)∆u dx, and

(II) :=

∫
Ω

(
∆u−W ′(u)

)
∆f dx.
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By first applying integration by parts we have

(I) = −
∫

Ω

W ′′(u)|∇u|2 dx

≤
∫

Ω

−γu2|∇u|2 dx +

∫
Ω

C|∇u|2 dx.

where we used the fact that there exist positive constants γ and C such that

W ′′(ξ) ≥ γξ2 − C for all ξ ∈ R. By (2.18), Lemma 4 applied to u gives:∫
Ω

u2|∇u|2 dx ≥ C

∫
Ω

u4 dx− C

∫
Ω

|∇u|2 dx− C.

Hence,

(I) ≤ −Cγ

∫
Ω

u4 dx + Cγ

∫
Ω

|∇u|2 dx + Cγ. (2.20)

By Hölder’s inequality, ∫
Ω

u4 dx ≥ C

(∫
Ω

u2 dx

)2

. (2.21)

Combining (2.20) and (2.21) and absorbing γ into the constant C, we get

(I) ≤ −C

∫
Ω

u4 dx− C

(∫
Ω

u2 dx

)2

+ C

∫
Ω

|∇u|2 + C. (2.22)

We now use the following standard interpolation inequality∫
Ω

|∇u|2 dx ≤ δ

∫
Ω

(
∆u

)2

dx + C(δ)

∫
Ω

u2 dx.

(where δ > 0 but arbitrarily small) along with (2.22) to obtain the following

estimate:

(I) ≤ δ

∫
Ω

(
∆u

)2

dx− C

∫
Ω

u4 dx− C

(∫
Ω

u2 dx

)2

+ C(δ)

∫
Ω

u2 dx + C. (2.23)

We turn to estimating (II). Since f ∈ C2(Ω), and since |W ′(ξ)| ≤ Cξ3 + C, we

get

(II) ≤ δ

∫
Ω

(
∆u

)2

dx + C

∫
Ω

|u|3 dx + C

≤ δ

∫
Ω

(
∆u

)2

dx + δ

∫
Ω

u4 dx + C.

(2.24)
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Putting together our estimates (2.23) for (I) and (2.24) for (II) together with

(2.19), we get

∫
Ω

(
∆u

)2

dx + λ0

∫
Ω\D

(f − u)2 dx =(I) + (II)

≤ δ

∫
Ω

(
∆u

)2

dx + C(δ)

∫
Ω

u2 dx + C

− (C − δ)

∫
Ω

u4 dx− C

(∫
Ω

u2 dx

)2

.

Choosing δ > 0 small enough, one gets∫
Ω

(
∆u

)2

dx + λ0

∫
Ω\D

(f − u)2 dx ≤ C(δ)

∫
Ω

u2 dx−C
( ∫

Ω

u2 dx
)2

+ C. (2.25)

Let ξ :=
∫

Ω
u2 dx. Then the right hand side of (2.25) is −Cξ2 + C(δ)ξ + C for

some positive constants C. This is a parabola opening downwards, and hence is

bounded from above by a constant. That proves the proposition. 2

2.3.2 Matching isophotes as λ0 becomes large

Of interest is what happens to the solution u(x) for the modified Cahn-Hilliard

equation when λ0 is prescribed very large values. Will u(x) correctly match f(x)

(the existing image) on the boundary of the inpainting domain? In particular,

will the isophote directions be matched? In this section we consider a smooth

function f and show that in regions where f changes significantly, the direction

of isophotes of the solution will match the direction of isophotes of the prescribed

image function. In the next section we extend this result to a binary image with

sharp edges. We first establish the following lemma showing that an H2 steady

state solution is actually in C2,α. This results is necessary to establish a pointwise

bound for the isophotes on the boundary.
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Figure 2.1: Inpainting problem. The isophote vectors are shown.

Lemma 5. Let Ω have a C2,α boundary and let u be an H2 weak solution of the

PDE

−∆
(
∆u−W ′(u)

)
+ λ(x)(f − u) = 0,

where

λ(x) =

 0 if x ∈ D,

λ0 if x ∈ Ω \D

Then u ∈ C2,α(Ω).

Proof: By assumption, we have that λ(x)(f − u) ∈ L2(Ω). Thus

∆
(
∆u−W ′(u)

)
∈ L2(Ω) as well. This means that ∆u−W ′(u) ∈ H2(Ω) [Eva98].

Since u(x, t) is bounded in H2(Ω) by assumption, it has an a priori pointwise

bound, which then implies a pointwise bound on W ′(u). Sobolev embedding im-

plies that u ∈ Cα(Ω) and thus W ′(u) ∈ Cα(Ω) for all 0 ≤ α < 1. This implies

that ∆u ∈ Cα(Ω), and thus by elliptic regularity [GT83], u ∈ C2,α(Ω). 2

Remark: The assumptions on smoothness of the boundary are necessary to invoke

the theory of elliptic regularity. In practice for many imaging applications, Ω is

a square with periodic or reflective boundary conditions. In either of those cases,

the domain can be viewed as a manifold without boundary and thus the Lemma

is applicable. The details of the boundary would only be important for problems
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where the inpainting region includes some of the boundary of the image domain.

As part of the proof, we first prove the continuity of ∇u and then show that

this leads to matching of the isophote directions in regions where ∇f is large

enough. This is sufficient to show continuity of the direction of edges, since they

necessarily imply that ∇f is large. We now show that in regions where the image

intensity changes, the isophote direction of f matches that of u on ∂D. This is

the main theorem for this section.

Theorem 6. Let Ω satisfy the same conditions as in Lemma 5. Consider isophote

directions of f in any region where |∇f | > δ0. The difference of the isophote

vectors at the boundary of the inpainting region ∂(D), between the steady state

solution to the modified Cahn-Hilliard equation u(x), and the known image f(x),

can be made arbitrarily small by choosing λ0 large enough.

Proof: Define g(x) = (u − f)(x). First, we would like to show that ∇g(x)

becomes small pointwise on ∂(Ω \D) as λ0 becomes large. From (2.25) we have

that ∫
Ω

(∆g)2 dx ≤ C1∫
Ω\D

|g(x)|2 dx ≤ C2

λ0

(2.26)

The bounds from 2.26 combined with Sobolev interpolation imply that the H1−µ(Ω\

D) norm of ∇g is small as λ0 → ∞, for 0 < µ < 1
2
. The restriction map

to ∂D (see [Fol95], page 225) implies that ∇g is small in H1/2−µ(∂D). Since

L2(∂D) ⊂ H1/2−µ(∂D) for 0 < µ < 1/2, we have that the L2 norm of ∇g is small

on ∂D. Continuity of ∇g implies a pointwise bound on ∇g on the boundary, in

particular we have a constant η(λ) → 0 as λ → ∞ such that |∇g||∂D ≤ η. Now

we show that this pointwise bound for ∇g implies a bound for the direction of

the isophotes.
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Let ∇⊥u
|∇⊥u| = ~τu (this is the isophote vector). We want to show that |~τu − ~τf |

becomes small on ∂(Ω \D) as λ0 takes increasingly large values. Recall that we

are only interested in those portions of ∂(D) where ∇⊥f > δ0, with δ0 small.

Some straightforward algebra shows∣∣∣~τu − ~τf

∣∣∣ ≤ 2|∇g|
δ0

. (2.27)

Since ∇g is small for large λ0, we have the desired result. The case where ∇⊥f ≤

δ0 is not interesting, for in these regions the image is nearly constant and thus

does not produce any significant edges. This completes the proof of Theorem 6.

2

2.4 Matching of isophotes for binary images: continuity

of the edge direction

The previous analysis considered the modified Cahn-Hilliard equation (2.1) with

ε = 1. In real applications involving binary images, we take ε small as it defines

a diffuse interface thickness. Our previous estimates are for smooth functions f

and in order to apply these ideas, we regularize a binary f at the same scale as the

diffuse interface thickness ε. We state this problem as follows: consider a binary

image function f taking values 0 and 1. Assume a smooth boundary between

regions where f = 0 and f = 1. Using a mollifier, construct fε = Jεf(x).

A simple way to do this is to solve the heat equation on Ω, with Neumann

boundary conditions and initial condition f , until time t = ε2. This gives a

smooth approximation of f in which the edges of the images are smoothed over

a scale of length ε.
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We now solve the inpainting problem by evolving the time dependent equation

ut = −∆

(
ε∆u− 1

ε
W ′(u)

)
+ λ(x)(fε − u). (2.28)

where

λ(x) =

 0 if x ∈ D,

λ0 if x ∈ Ω \D.

Global existence of a weak solution of the above problem follows from the

arguments in section 4. We now consider the steady state problem

−∆

(
ε∆u− 1

ε
W ′(u)

)
+ λ(x)(fε − u) = 0 (2.29)

where

λ(x) =

 0 if x ∈ D,

λ0 if x ∈ Ω \D,

and follow the arguments of the preceding section to show that for sufficiently

large λ0, the steady state solution above has edges matching those of the original

image f . To do this, we show that for a fixed ε, λ can be chosen large enough so

that the isophote directions are nearly parallel on the boundary of D.

We consider the analogous estimates to (2.17) for the case ε 6= 1. Take the

inner produce of the steady state equation with (u− f). We obtain

ε

∫
Ω

(∆u)2 dx +

∫
Ω\D

λ0(f − u)2 =
1

ε

∫
Ω

W ′(u)∆u dx +

∫
Ω

(ε∆u− 1

ε
W ′(u))∆f dx.

(2.30)

This in turn leads to the estimate

ε

∫
Ω

(
∆u

)2

dx + λ0

∫
Ω\D

(f − u)2 dx =(I) + (II)

≤ (ε +
1

ε
)δ

∫
Ω

(
∆u

)2

dx +
1

ε
C(δ)

∫
Ω

u2 dx + C(
1

δ
, ε +

1

ε
)

− 1

ε
(C − δ)

∫
Ω

u4 dx− 1

ε
C

(∫
Ω

u2 dx

)2

.

(2.31)
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Now letting δ become very small, as ε is fixed, we have that

ε

∫
Ω

(
∆u

)2

dx+λ0

∫
Ω\D

(f−u)2 dx ≤ −1

ε
C

( ∫
Ω

u2 dx
)2

+
1

ε
C

∫
Ω

u2 dx+C(ε+
1

ε
).

(2.32)

Once again, the right hand side of the inequality is a parabola that opens down-

ward. Thus:

ε

∫
Ω

(
∆u

)2

dx + λ0

∫
Ω\D

(f − u)2 dx ≤ C(ε +
1

ε
), (2.33)

from which we obtain the bounds∫
Ω

(
∆u

)2

dx ≤ C((ε + 1
ε
)1

ε
), (2.34)∫

Ω\D(f − u)2 dx ≤ C(ε+ 1
ε
) 1

ε

λ0
.

This shows the full relationship between λ0 and ε. It is important to notice that

the constants C( 1
ε2 ) and C(ε + 1

ε
) become very large as ε becomes small. Thus,

for small ε, λ0 must be chosen very large to guarantee continuity of edges using

these estimates.

Using the results of section 2.3, we have that ∇(u − fε)(x) → 0 on ∂D as

λ0 → ∞. Consider now the part of ∂D where |∇fε| > δ0. Since the original

f is binary, this region corresponds to a narrow band around the edges of the

original f . Following the ideas in section 2.4, we see that the isophote vectors

|~τu − ~τJεf | → 0 in this narrow band which defines the diffuse interface between

regions where f = 0 and f = 1. Putting this all together, we consider an original

f taking values 0 and 1 with smooth boundary between the two phases. Assume

that ε is small enough so that τfε is almost parallel to the edge direction of the

original binary f in the region where |∇fε| > δ0. The solution u of the steady

state diffuse interface problem will have edges that line up with those of fε and

thus with the original binary f , provided that λ0 is large enough (depending on

our choice of ε).
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In the above discussion, we implicitly assume a ‘separation of scales’ in the

solution u. If we assume f is a binary image with order one features and curvature

of edges, then the regularized fε is guaranteed to have a separation of scales,

meaning that it consists of regions separated by diffuse interfaces where there

is steep variation (on a spatial scale on order ε) normal to the diffuse interface

and very mild variation tangent to the interface direction. If the solution uε has

the same separation of scales as the regularized data fε, then the result will be

a matching of edges between the data and the solution, for large λ. Note that

the estimates derived above require λ to possibly be very large, depending badly

on ε. In our analysis here we do not prove that a separation of scales occurs

for the solution u in the inpainting region, however the computational results

of chapter 4 illustrate this to be the case. Such a result is beyond the scope of

this thesis but would be interesting to examine in its own right. The original

asymptotic analysis for separation of scales for the plain Cahn-Hilliard equation

was carried out by Pego [Peg89]. The analysis is local and thus should hold in the

interior of the inpainting region where the fidelity term is zero. Our simulations

are observed to follow the same scaling as the original Cahn-Hilliard equation, in

the inpainting region. In chapter 4, we present numerical results illustrating that

separation of scales for u, and thus continuation of edge direction, does occur for

this model. See in particular figures 4.2-4.11.

In addition to having two spatial scales, the original Cahn-Hilliard asymp-

totics shows separation of time scales. There is a short time scale on which phase

separation occurs, and a longer time scale (related to ε) on which the diffuse

interface boundary moves. These same time scales are present in our modified

equation. In the analysis above we consider the steady state problem. In the

numerical examples, λ is chosen large enough so that the ‘fidelity timescale’ is

short compared to the other timescales in the problem associated with the reg-
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ular Cahn-Hilliard dynamics. The timescale associated with the motion of the

interface must be addressed when designing fast algorithms for binary inpainting.

In chapter 8 we make use of this separation of timescales to design a two-step al-

gorithm in which reconnection of shapes is first performed with a large ε, thereby

decreasing the timescale of reconnection. Then we suddenly decrease ε to sharpen

the interface, which also happens on a short timescale as this dynamics is associ-

ated with phase separation rather than interface motion. The need for a two-step

method is further explained by the stripe reconnection examples in the following

section. There we compute bifurcation diagrams for steady states associated with

a single stripe reconnection. For a large gap width, the connected stripe solution

is a separate branch from the branch of solutions that contains the stable solution

for large ε. We explain this in more detail in the following section.

2.5 Bifurcations of the modified Cahn-Hilliard equation

A natural question to ask is whether the steady state solution is unique. Here we

show by numerical examples that multiple solutions exist and can be understood

through a bifurcation analysis. We conducted tests of the modified Cahn-Hilliard

equation

ut = −∆
(
ε∆u− 1

ε
W ′(u)

)
+ λ0(f − u)χΩ\D (2.35)

on a simple stripe geometry. The numerical scheme used is based on convexity

splitting and is discussed in detail in chapter 3 (see also [BEGar, VR03]). Figure

2.2 shows an example where the inpainting domain D is the gray region in frame

(a). Different initial conditions for the dynamic problem (2.35) yield different

steady state solutions as shown in frames (b) and (c). In both examples we take

the same initial condition u0 = f in Ω \D and u0 = 0 in D. However, in the case

of (b) we start with a large ε = 0.8, run the solution to steady state, and use this
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as a new initial condition for a smaller value of ε. In the case (c) we perform a

single simulation with fixed ε small (0.01), starting from u0 given above. We can

not take ε much smaller without having to increase the resolution of the grid. In

practice, the Cahn-Hilliard dynamics is reasonably well-captured with a few grid

points resolving the diffuse interface scale ε [Gla03, VR03]. A much coarser grid

can result in numerical pinning of the interface.

(a) (b) (c)

Figure 2.2: (a) Gray portion denotes the inpainting region D while the black and

white portion denote the background image f . (b) Steady state solution of (2.35)

showing a completed stripe. (c) Steady state solution of (5.7) showing a broken stripe.

In both cases ε = 0.01. In all cases we choose a square of 128×128 grid points, with the

inpainting region having a gap of width 40 grid points. The grid spacing is ∆x = 0.01.

The bifurcation diagrams below in figure 2.3 show how the steady states, for

the modified Cahn-Hilliard equation, change in response to changes in the value

of ε. We consider the stripe problem as above, for different gap widths of 30,

45, and 80. We choose an amplitude for the bifurcation diagrams of the value

of the steady state solution at the center of the inpainting domain D. This is a

useful measure in that a completed stripe will have an amplitude close to one,

whereas a broken stripe will have an amplitude close to zero. Intermediate values

are observed for steady states in which the diffuse interface scale ε is comparable

to the feature size in the problem.

Note that in all figures, only stable steady states are shown, as we use the time
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(a) (b)

(c)

Figure 2.3: Bifurcation diagrams for, (a) gap of 30, (b) gap of 45, (c) gap of 80. The

y-axis shows the steady state height of the midpoint of the stripe, while the x-axis is

the epsilon value. The steady states are shown visually in thumbnails, with an arrow

pointing to their positions on the respective bifurcation diagrams. Only stable steady

states are shown.
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dependent PDE to obtain the steady states. These figures suggest the presence

of an incomplete pitchfork bifurcation. A diagram for this type of bifurcation

is shown in figure 2.4 [Str94] in which stable branches appear as solid lines and

unstable branches appear as dotted lines. Frame (b) shows the classical com-

plete pitchfork bifurcation. Changes in parameters, including, but not limited

to symmetry breaking, can cause a section of the pitchfork to break off into a

stable/unstable pair of solutions, as shown in frames (a) and (c). It is interesting

to compare the diagram in figure 2.4 with the numerically obtained diagrams in

figure 2.3. In frame (a) there is an unbroken stable branch connecting the single

large ε solution to the connected stripe solution for small ε. In contrast, in frames

(b) and (c), the unbroken stable branch connects the single large ε solution to the

broken stripe solution for small ε. In these cases the connected stripe solution

appears as an isolated branch. We conjecture that the isolated branch flips over

to an unstable branch of steady state solutions in all three cases. In frame (a) it

is the broken stripe solution that forms an isolated branch.

(a) (b) (c)

Figure 2.4: Bifurcation diagrams relating to the phenomena shown in figure 2.3.

(a) An incomplete pitchfork bifurcation. (b) A symmetric pitchfork bifurcation. (c)

Another incomplete pitchfork bifurcation.

The bifurcation diagrams above suggest that different approaches will be nec-

essary to obtain the completed stripe solution, depending on the gap width. For

the small gap case, one can simply compute the steady state at large ε and con-

tinuously shrink ε, following the stable branch, to the desired small ε. However
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this approach will clearly not work for the larger gap widths. Instead, we find

that a two-scale approach empirically works well to obtain the continued stripe

solution. We choose, at the outset, a value of ε on the order of the maximum

gap size. For example, choosing ε = .8 as a starting value, we find a unique

steady state solution for a very diffuse scale. Instead of continuously lowering ε,

we abruptly change to the desired small scale value and find empirically that the

continued stripe solution emerges from the dynamics. In summary, our algorithm

for finding the completed stripe solutions is as follows:

1. Choose an initial value of ε nearly equal to the numerical maximum gap

spacing (above ε = .8 was used). Set ∆t = 1, with ∆x = ∆y = .01. The

image size is taken to be 128×128 grid points, each of size ∆x.

2. Run the modified Cahn-Hilliard equation to near steady state (300 itera-

tions) for this value of ε.

3. At 300 iterations, multiply the near steady state solution u(x, y) by a factor

more than 1 so that max[u(x, y)] = 1.0.

4. Still at 300 iterations, switch ε to a value of .01 (approximately the numer-

ical grid spacing value ∆x).

In practice, to obtain the steady state requires less than 30 seconds on a Pentium

4 processor. Figure 2.5 (a), (b), (c), shows an example of such a calculation.
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(a) (b) (c)

Figure 2.5: Disconnected stripe with a gap of 20, at (a) t=0, (b) t=299, after steady

state had been reached for ε = .8, (c) t=500 (produced by switching to ε = .01 at t =

300).
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CHAPTER 3

Numerical Algorithm

In this chapter we demonstrate how to implement Cahn-Hilliard inpainting using

a specific fast solver known as convexity splitting [BEGar, Eyr98, VR03]. How-

ever, other fast solvers might be used with good performance. Convexity split-

ting involves dividing up the energy functional for the equation into two parts

– a convex energy plus a concave energy. The part of the Euler-Lagrange equa-

tion derived from the convex portion is then treated implicitly in the numerical

scheme, while the portion derived from the concave part is treated explicitly.

Under the right conditions, convexity splitting for gradient flow-derived equa-

tions can allow for an unconditionally gradient stable time-discretization scheme,

which means arbitrarily large time steps can be taken. Vollmayr-Lee and Ruten-

berg [VR03] have more recently refined the conditions under which stability is

applicable for the traditional Cahn-Hilliard equation.

This method has been investigated previously for the case of fourth order

partial differential equations by Greer, et al [GBS06]. Elsewhere, Hsiang-Wei Lu

et al [LKK05] and K. Glasner [Gla03] have used convexity splitting to approach

the solution of the Hele-Shaw equation.
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3.1 Convexity splitting algorithm for the modified Cahn-

Hilliard equation

The new modified Cahn-Hilliard equation is not strictly a gradient flow. The

original Cahn-Hilliard equation (1.36) is indeed a gradient flow using an H−1

norm for the energy

E1 =

∫
Ω

ε

2
|∇u|2 +

1

ε
W (u) d~x, (3.1)

while the fidelity term in the modified Cahn-Hilliard equation (2.35) can be de-

rived from a gradient flow under an L2 norm for the energy

E2 = λ0

∫
Ω\D

(f − u)2d~x. (3.2)

This has been discussed in chapter 2. Again, in total, the modified Cahn-Hilliard

equation is neither a gradient flow in H−1 nor L2. However, the idea of convexity

splitting, one for the Cahn-Hilliard energy in equation (3.1) and one for the energy

E2 in equation (3.2), can still be applied to this problem with good results.

For example, one can split E1 as

E1 = E11 − E12 (3.3)

where

E11 =

∫
Ω

ε

2
|∇u|2 +

C1

2
|u|2 d~x, (3.4)

and

E12 =

∫
Ω

−1

ε
W (u) +

C1

2
|u|2 d~x. (3.5)

A possible splitting for E2 is

E2 = E21 − E22 (3.6)
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where

E21 =

∫
Ω\D

C2

2
|u|2 d~x, (3.7)

and

E22 =

∫
Ω\D

−λ0(f − u)2 +
C2

2
|u|2 d~x. (3.8)

For the splittings discussed above, the resulting time-stepping scheme is:

un+1 − un

∆t
= −∇H−1(En+1

11 − En
12) −∇L2(En+1

21 − En
22), (3.9)

where ∇H−1 and ∇L2 represent gradient descent with respect to the H−1 in-

ner product, and L2 inner product, respectively. This translates to a numerical

scheme of the form

un+1(~x)− un(~x)

∂t
+ε∆2un+1(~x)− C1∆un+1(~x) + C2u

n+1(~x)

= ∆(
1

ε
W ′(un(~x))) + λ(~x)(f(~x)− un(~x))

− C1∆un(~x) + C2u
n(~x). (3.10)

The constants C1 and C2 are positive, and need to be chosen large enough so that

the energies E11, E12, E21, and E22 are convex. Thus, C1 should be comparable

to 1
ε
, while C2 should be comparable to λ0 (this can be seen from equations (3.5)

and (3.7) ). Numerical tests have shown that with these choices the scheme (3.10)

becomes unconditionally stable. Equation (3.10) is then solved for un+1(~x), given

un(~x), by way of a two-dimensional Fast-Fourier-Transform method.

3.2 Fourier spectral method used for computation

The one-dimensional discrete Fourier Transform is defined as follows (see, for

example, [Str89], pages 38-40):
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(ui)̂(k) =
N−1∑
i=0

uie
−2πI i

N
k 1

N
, (3.11)

where we have used I to denote the imaginary number i to avoid confusion with

indexes. Notice this definition is for N grid points numbered 0 to N − 1. We will

use equation (3.11) as a starting point to find the discrete Fourier Transform of

our numerical scheme shown in equation (3.10).

We begin with the following definitions:

D+
i ui,j =

ui+1,j − ui,j

h

D−
i ui,j =

ui,j − ui−1,j

D+
j ui,j =

ui,j+1 − ui,j

h

D−
j ui,j =

ui,j − ui,j−1

h
(3.12)

where h is the numerical grid spacing, which we have set to h = 1
N

.

We then form Riemann sums to find the discrete Fourier Transforms of equa-

tion (3.12). For example, for the D+
i ui,j, the discrete Fourier Transform is:

(D+
i ui,j)̂(k) =

N−1∑
i=0

ui+1,j

1
N

e−2πI i
N

k 1

N
−

N−1∑
i=0

ui,j

1
N

e−2πI i
N

k 1

N
(3.13)

and by manipulating the index i, we get:

(D+
i ui,j)̂(k) = (e2πI k

N − 1)
N−1∑
i=1

ui,j

1
N

e−2πI i
N

k 1

N
+ uN,j − u0,j (3.14)

but for the case of a periodic domain, we have that

uN,j = u0,j (3.15)

so that finally we get

(D+
i ui,j)̂(k) =

(e2πI k
N − 1)
1
N

N−1∑
i=1

ui,je
−2πI i

N
k 1

N
(3.16)
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When the second dimension is taken into account, we find:

(D+
i ui,j)̂(k, l) =

(e2πI k
N − 1)
1
N

N−1∑
i=1

N−1∑
j=1

ui,je
−2πI i

N
ke−2πI i

N
l 1

N2
(3.17)

Likewise, we find that:

(D−
i ui,j)̂(k, l) =

(1− e−2πI k
N )

1
N

N−1∑
i=1

N−1∑
j=1

ui,je
−2πI i

N
ke−2πI i

N
l 1

N2

(D+
j ui,j)̂(k, l) =

(e2πI l
N − 1)
1
N

N−1∑
j=1

N−1∑
i=1

ui,je
−2πI i

N
ke−2πI i

N
l 1

N2

(D−
j ui,j)̂(k, l) =

(1− e−2πI l
N )

1
N

N−1∑
j=1

N−1∑
i=1

ui,je
−2πI i

N
ke−2πI i

N
l 1

N2
(3.18)

Continuing,

(D−
i D+

i ui,j)̂(k, l) =
(e−2πI k

N + e2πI k
N − 2)

( 1
N

)2

N−1∑
i=1

N−1∑
j=1

ui,je
−2πI i

N
ke−2πI l

N
l 1

N2

(D−
j D+

j ui,j)̂(k, l) =
(e−2πI l

N + e2πI l
N − 2)

( 1
N

)2

N−1∑
j=1

N−1∑
i=1

ui,je
−2πI i

N
ke−2πI l

N
l 1

N2
(3.19)

and then finally the discrete Laplacian is

(∆i,jui,j )̂ (k, l) =
(e−2πI k

N + e2πI k
N + e−2πI l

N + e2πI l
N − 4)

( 1
N

)2

N−1∑
i=1

N−1∑
j=1

ui,je
−2πI i

N
ke−2πI l

N
l 1

N2
.

(3.20)

Or more simply,

(∆i,jui,j)̂(k, l) = (e−2πI k
N + e2πI k

N + e−2πI l
N + e2πI l

N − 4)N2 fft2(ui,j), (3.21)

and the coefficients of the Laplacian are:

Mk,l = (e−2πI k
N + e2πI k

N + e−2πI l
N + e2πI l

N − 4)

where the MATLAB function “fft2” is used to represent the two-dimensional

discrete Fourier Transform of the matrix ui,j. Note that both k and l run from 0

to N − 1.
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Recall our numerical scheme for the modified Cahn-Hilliard equation above:

un+1(~x)− un(~x)

δt
+ε∆2un+1(~x)− C1∆un+1(~x) + C2u

n+1(~x)

= ∆(
1

ε
W ′(un(~x))) + λ(~x)(f(~x)− un(~x))

− C1∆un(~x) + C2u
n(~x). (3.22)

To evaluate the Laplacian and bi-Laplacian operators numerically, we use the

discrete Fourier spectral method just outlined. We separate the un+1 terms from

the un terms, placing them on separate sides of the equation:

un+1(~x)+ε∆2un+1(~x)− C1∆un+1(~x) + C2u
n+1(~x)

= δt
[
∆(

1

ε
W ′(un(~x))) + λ(~x)(f(~x)− un(~x))

− C1∆un(~x) + C2u
n(~x)

]
+ un(~x). (3.23)

Taking the Fourier Transform of both sides (note that un(~x) is identical to un
i,j

from above), we have that

(1 +εM2
k,l − C1Mk,l + C2)û

n+1(k, l)

= δt
[
Mk,l

(1

ε
W ′(un)

)̂(k, l) +
(
λ(~x)(f(~x)− un(~x))

)̂(k, l)

− C1Mk,lû
n(k, l) + C2û

n(k, l)
]

+ ûn(k, l). (3.24)

Solving for ûn+1, this simplifies to

ûn+1(k, l) =
δtMk,l

[
1
ε

(
(W ′)(un)

)̂(k, l) − C1û
n(k, l)

]
+ δt

[
λ(~x)f(~x) + (C2 − λ(~x))un(~x)

]̂(k, l) + ûn(k, l)

1 + εM2
k,l − C1Mk,l + C2

(3.25)

As the individual discrete Fourier Transforms on the right side of equation

(3.25) are easy to calculate given un, this method rapidly and effectively calculates

the matrix ûn+1. All that remains is then to compute the inverse discrete Fourier

Transform on ûn+1, which is defined to be (see for example [Str89]):
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un+1
i,j =

N−1∑
k=1

N−1∑
l=1

ûn+1(k, l)e2πI k
N

ie2πI l
N

j 1

N2
. (3.26)

In the next chapter, we present some examples in which we indicate precise

values of ∆t, Ci, λ, and ε (see equation (3.10)) used to perform the inpainting.
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CHAPTER 4

Results

The modified Cahn-Hilliard equation lends itself particularly well to the inpaint-

ing of simple binary shapes, such as stripes and circles. Moreover, its applicability

can be extended to achieve inpainting of objects composed of stripes and circles,

i.e., roads or text. Below and on the next page, we show several examples of

the method and its performance. All examples were performed on a Linux desk-

top system using a Pentium 4 processor, and programmed in MATLAB. Further

details can be found in our papers [BEGar], and [BEG06]. Unless otherwise de-

noted, all times are given as number of iterative steps of the numerical algorithm

(i.e., t = 50 means the 50th step of the numerical scheme detailed in chapter 3).

4.1 Inpainting of a double stripe

Above in figure 4.1, we see the two-step process at work to inpaint two stripes.

The gray region in figure 4.1(a) denotes the inpainting region. We begin running

the modified Cahn-Hilliard equation with a large value of ε (= .8), and at t = 50

we reach a steady state. We then switch to a small value of ε (= .01), using the

result from figure 4.1(b) as initial data. The final result is reached at t = 700

and is shown in figure 4.1(c). In this test, ∆t was set to 1, λ = 50, 000, C1 = 300,

and C2 = 150, 000.
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(a) (b) (c)

Figure 4.1: (a) Initial data (inpainting region in gray). (b) Intermediate state at

t = 50. (c) steady state at t = 700. (Gap distance is 30 units, Image domain is

128×128).

4.2 Inpainting of a cross

(a) (b) (c)

Figure 4.2: (a) Initial data of cross (inpainting region in gray). (b) Intermediate state

at t = 300. (c) Steady state at t = 1000. (Image domain is 128×128, stripe width is

20 units, initial gap distance is 50 units).

In figure 4.2(a), the gray region denotes the ”gap”, or region to be inpainted.

As with the stripes, the modified Cahn-Hilliard equation is run to steady state for

a large value of ε (= .8), resulting in figure 4.2(b) at t = 300. This data is then

used as initial data for the modified Cahn-Hilliard equation with ε (= .01) set to

a small value. The final result is a completed cross at t = 1000. The parameters

were set as ∆t = 1, λ = 100, 000, C1 = 300, and C2 = 3λ.
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4.3 Inpainting across large gaps

In figure 4.3, a stripe is bridged across a gap that is 20 times as long as the stripe

is wide.

(a) (b) (c)

Figure 4.3: (a) Initial data (inpainting region in gray). (b) Intermediate state at

t = 499. (c) near steady state at t = 8000. (Gap distance is 100 units, and the stripe

width is 5 units. Image domain is 128×128.)

4.4 Inpainting of a sine wave

Figure 4.4 shows how the modified Cahn-Hilliard equation may be applied to the

inpainting of simple road-like structures. In figure 4.4(a), an incomplete sine wave

is shown. In figure 4.4(b), the sine wave is artificially ”fattened” by expanding

each white point’s area radially by a factor of 3. This is done in order to give the

modified Cahn-Hilliard equation sufficient boundary conditions to do effective

inpainting.

In figure 4.4(c), the gray area represents the inpainting region. The remaining

white and black portions of the image are thus outside the inpainting region, and

essentially held fixed in place by the fidelity term of the modified Cahn-Hilliard

equation (2.35). The two-step method was then used to inpaint the sine wave.
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(a) (b)

(c) (d)

Figure 4.4: Inpainting a sine wave. (Image domain is 128×128).

54



Figure 4.4(d) shows the finished result.

The initial value of ε was taken to be .8, and then at t = 200 this was switched

to a value of ε = .01. The final inpainting result was taken at t = 4000 (which

corresponds to a time of 24 seconds real processing time). The parameters were

set as: λ = 100, 000, ∆t = 1, C1 = 300, and C2 = 3λ.

4.5 Inpainting of a road

(a) (b)

(c) (d)

Figure 4.5: Inpainting of an obscured road. (Image domain is 128×128).

Figure 4.5(a) shows a satellite image of a road passing through a forest in

Washington state. After a simple thresholding of grayscale values, the visible

pieces of the road are shown as the white regions in figure 4.5(b). The gray area

in figure 4.5(b) represents the inpainting region, which was found by creating a

circle about each established point of the road, the radius of which was chosen
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to be the maximum estimated gap length between existing portions of the road.

Note also that each thresholded white point of the road has been expanded

in radius, as was done for the sine wave in figure 4.4(b). In the original satellite

photo, the road actually has an average width of about 1 pixel, making it very

difficult to establish meaningful boundary conditions for the inpainting problem.

In figure 4.5(c), steady state has been reached using the modified Cahn-

Hilliard equation, via the aforementioned two-step process. The result in (c)

is too thick, but if a centerline extraction is performed, and the resulting center-

line overlaid on the initial satellite photo, we arrive at an estimation of the path

of the road through the trees as shown in figure 4.5(d). Note that the result in

figure 4.5(d) does not continue the road to the top of the satellite photo. This is

due to a lack of data for the road in that region, as exemplified by figure 4.5(b).

The initial value for ε was .8, which was switched at t = 100 to ε = .005. The

final result was taken at t = 500 (which corresponds to 6 seconds of processor

time). The parameters were: ∆t = 1, λ = 1, 000, 000, C1 = 30, 000, and C2 = 3λ.

Much more efficient inpainting, akin to what was accomplished for the sine

wave in figure 4.4 could be done, if a smaller inpainting region could be deter-

mined. For example, the reason that figure 4.5(c) displays such a poor repre-

sentation of a road is due to the inpainting region literally being too wide (the

gray portion of figure 4.5(b)). If we could come up with an inpainting region

similar to that in figure 4.4(c), much better approximations to the road could be

accomplished, possibly negating the need for centerline extraction.
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(a)

(b)

Figure 4.6: Recovery of damaged text. (Image domain was 128×128).

(a)

(b)

Figure 4.7: Recovery of damaged text. (Image domain was 256×256).
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4.6 Recovery of text

In figure 4.6(a), several lines obscure some Arabic writing. Using these obstruct-

ing lines as the inpainting region, the modified Cahn-Hilliard two-step scheme

can inpaint the occluded parts of the writing. The initial value for ε was .08. At

t = 100, ε was switched to .01. The program was then run to 1000 time steps. ∆t

was set to 1, the fidelity constant λ was set to 50,000,000, C1 was set to 10,000,

while C2 was set to 3λ. The final inpainting result is shown in figure 4.6(b).

In figure 4.7(a), graffiti is written over the UCLA logo. Using the graffiti as

the inpainting region, the modified Cahn-Hilliard equation inpaints the missing

logo parts by the two-step method. Until t = 50, a large value of ε (= .8) is

used. At t = 50, ε is switched to a small value (= .005). The final result in figure

4.7(b) is the completed logo, looking no worse for wear after its encounter with

graffiti. ∆t was set to 1, the fidelity constant λ was set to 50,000,000, C1 was set

to 15,000, while C2 was set to 3λ.

(a) (b)

Figure 4.8: Recovering obscured text. (Image domain is 256×256).

Figure 4.8 shows another example of how the modified Cahn-Hilliard equation
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can be used to recover obscured text. Figure 4.8(a) shows the text obscured

by lines. This is a common problem for Optical Character Recognition (OCR)

algorithms, with regard to text written on lined paper. Figure 4.8(b) shows the

result after processing by the modified Cahn-Hilliard equation.

The parameters were set as ∆t = 1, λ = 100, 000, 000, C1 = 10, 000, C2 =

3λ, ε = .008, and were kept constant during this particular test. the test was

completed at time t = 800, which corresponds to 2 minutes of processing time.

4.7 Super-resolution

(a)

(b)

(c) (d)

Figure 4.9: Super-resolution of text. Magnification 3X. (Original size 64×64).

The modified Cahn-Hilliard equation can also be used for the purposes of

super-resolution of text. Latin writing is shown in figure 4.9(a), of size 64×64.

Figure 4.9(b) shows the text enlarged by 3X using MATLAB’s ”nearest-neighbor”
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algorithm.

First, the white region of figure 4.9(b) is subsampled to provide initial data

for inpainting. Next, the modified Cahn-Hilliard algorithm runs until t = 40

using a very large fidelity constant, λ = 50, 000, 000, and very small ε (=.005).

After t = 40, λ is set equal to zero, and the ordinary Cahn-Hilliard equation

is allowed to run on the text. This allows for the smoothing of jagged parts of the

text that appeared after magnification (figure 4.9(b)). Figure 4.9(c) and 4.9(d)

show the results at t = 350 and t = 450 respectively (approximately 5 seconds

in real time with the Pentium 4 processor). Throughout this test, C1 was set to

300, C2 was set to 150,000,000, and ε was set to .005. This particular test used

a constant value of ε.

4.8 Comparison with other methods

One of the chief benefits of using the modified Cahn-Hilliard (mCH) equation

to do inpainting are the fast numerical techniques available for its solution. To

quantitatively determine how much faster this makes the modified Cahn-Hilliard

equation than other binary inpainting techniques, a series of comparison tests

were run.

The methods we tested against were the Curvature Driven Diffusion (CDD)

inpainting model of Chan and Shen [CS01b], the Euler’s Elastica (EE) inpainting

model of Chan, Kang, and Shen [CSK02], and the Mumford-Shah-Euler (MSE)

inpainting model of Esedoglu and Shen [ES02].

Each method was tested on two examples – inpainting a 3/4 circle, and in-

painting a disconnected stripe. All tests were run on the same system described

at the start of this chapter (with the exception that the EE method was pro-
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grammed in C++).

3
4 circle Disconnected stripe

Figure 4.10: Inpainting data for comparison tests. Gray color denotes inpainting

regions.

4.9 Graphic results

CDD1 EE1 MSE1 mCH1

CDD2 EE2 MSE2 mCH2

Figure 4.11: Results for the circle inpainting test. 1 – zero initial data assumed in

inpainting region. 2 – random initial data assumed in inpainting region.

Figures 4.11 and 4.12 show the performance of each inpainting method on the

circle and stripe tests, respectively. As can be seen in figure 4.11, CDD requires

random data to begin inpainting the circle (CDD2). The EE method fared well

on the circle test with zero initial data in the inpainting region (EE1), but became

mired when the test was started with random data there (EE2).
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CDD1 EE1 MSE1 mCH1

CDD2 EE2 MSE2 mCH2

Figure 4.12: Results for the stripe inpainting test. 1 – zero initial data assumed in

inpainting region. 2 – random initial data assumed in inpainting region.

The MSE and mCH methods, however, had no strict preference for the initial

data in the inpainting region. Results were the same whether random or zero

initial data was assumed (MSE 1,2, mCH 1,2).

Tables 4.1 and 4.2 show the timing results for each method. These are the

correct times for the graphical results shown in figures 4.11 and 4.12.
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Table 4.1: Comparison tests, inpainting region set to zero data

Method
Inpainting Time (seconds)

Circle Stripe

CDD > 5, 400 > 5, 400

EE* > 18, 000 > 18, 000

MSE 45 24

mCH 24 6

* 30×30 grid used. All others 128×128

Table 4.2: Comparison tests, inpainting region set to random data

Method
Inpainting Time (seconds)

Circle Stripe

CDD > 270 > 270

EE* > 1, 800 > 1, 800

MSE 300 30

mCH 24 5

* 30×30 grid used. All others 128×128
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CHAPTER 5

Future Projects

5.1 Grayscale inpainting using the modified Cahn-Hilliard

equation

The chief aim for this project, moving forward, is to extend the inpainting capa-

bility of the modified Cahn-Hilliard equation to grayscale images. While binary

inpainting can be accomplished handily with our method, grayscale inpainting

presents a serious challenge.

The reason for this lies in the use of the double-well potential W (u) contained

in the Cahn-Hiliard equation. This double-well worked very well when the only

colors of interest were black (one well) and white (the other well). With grayscale

we are now interested in 256 colors.

Toward that end, some experiments have been carried out. One idea is to

adapt W (u) to have more minima. A simple attempt at this was tried with a

W (u) that looked like the following:
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Figure 5.1: A multi-welled W (u) with numerous zeros between x = 0 and x = 1.

The problem with this particular method is that the minima are not equally

spaced relative to each other. This leads to unwanted situations where certain

phase transitions are preferred relative to other more physically natural transi-

tions. As a result, this method only provided very basic grayscale inpainting

capability, of negligible use. An example is shown below.

Figure 5.2: A result showing how the modified Cahn-Hilliard with the addtion of a

multi-welled W (u) performed.

A more sophisticated treatment of the jump from double-well to multiple-

well potentials takes into account the higher dimensions needed to make the

minima equidistant from each other. Eyre [Eyr93], among others, has proposed

the following energy for the multiphase Cahn-Hilliard equation modeling an alloy

composed of m + 1 metals:

F (w) =

∫
Ω

(
Φ(w) +

1

2
tr(∇wT Γ∇w)

)
dx, (5.1)
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with the attendant mass-conservation requirement that

1

|Ω|

∫
Ω

w(x) dx = w̄, (5.2)

where w̄ represents the average of w(x) over Ω, and

w ∈ <m, x ∈ Ω ⊂ <n, t > 0, Γ ∈ <m×m, Φ : <m 7→ <. (5.3)

Equation (5.1) deserves some explanation. The potential Φ(w) now has m+1

wells. The term 1
2
tr(∇wT Γ∇w) models a smooth transition between regions of

different phase, where Γ is a positive-definite matrix, and ”tr” stands for the

trace of a matrix, i.e.,

tr(A) =
m∑

i=1

aii. (5.4)

For the purposes of inpainting, the matrix Γ can be assumed to be completely

symmetric and constant.

The boundary conditions for (5.1) are then

∇w · n|x∈∂Ω = ∇µ · n|x∈∂Ω = 0, (5.5)

and the variational derivative of (5.1) results in a system of m coupled partial

differential equations:

∂w

∂t
= ∆[−Γ∆w +∇wΦ(w)]. (5.6)

More detailed information on the structure of the solutions to the multiphase

Cahn-Hilliard equation can be found in Eyre [Eyr93].

A drawback to the multiphase approach is the increased computational time

needed to compute the solution for grayscale inpainting. For example, for effective

grayscale inpainting, 256 ”phases” must be used. This means that 255 coupled

equations in the form of (5.6) must be solved for each iteration of the inpainting
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process. This may not be computationally feasible, yet experiments should be

attempted to benchmark this method.

Another option might be to use less than the full 256 grayscale colors in the

multiphase method, 16 for example, and check if this reduced grayscale inpainting

gives passably good results. Especially for the purposes of inpainting, this may

be a useful tack.

The work of Scherzer and Grossauer was explained in the introduction of

this thesis [GS03]. They have utilized the solution of the complex Ginzburg-

Landau equation as a method for grayscale inpainting (see pages 9 and 10 of the

introduction for a full explanation). This complex-valued approach was tried for

Cahn-Hilliard inpainting. We began with the modified Cahn-Hilliard equation,

ut = −∆
(
ε∆u− 1

ε
W ′(u)

)
+ λ0(f − u)χΩ\D, (5.7)

and modified it to now account for u(x, t) = u1(x, t) + iu2(x, t):

∂u1

∂t
= −∆

(
ε∆u1 −

4

ε

[
(u1 − 1

2
)((u1 − 1

2
)2 + u2

2 − 1
4
)
])

+ λ0(f − u1)χΩ\D

∂u2

∂t
= −∆

(
ε∆u2 −

4

ε

[
u2((u1 − 1

2
)2 + u2

2 − 1
4
)
])

. (5.8)

As well, we assumed initial values for u2(x, t) of

u2(x, 0) =
√

1− |u1(x, 0)− 1
2
|2. (5.9)

Some explanation for equation (5.8) is in order. This coupled system can be

derived from the energy

E(u1, u2) =

∫
Ω

ε

2
|∇u|2 +

1

ε

[
(u1− 1

2
)2 +u2

2− 1
4

]2

dx+

∫
Ω\D

λ0(f −u1)
2 dx, (5.10)

in the same manner as was demonstrated in chapter 3. However, notice that

W (u) has changed to a W (u1, u2) which seeks to place the value u1 + iu2 on the

perimeter of a circle of radius 1 centered at u1 = 1
2

in the complex u plane.
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The rest of (5.10) is nearly the same as it was for the non-complex system for

u(x, t) studied earlier. The idea here is that now (we hope), multiple values of

u1 between 0 and 1 can serve as minima for the energy (5.10).

There is much room for experimentation here. For example, one might ask

why the imaginary term u2 needs to be included in the ε
2
|∇u|2 term of (5.10).

When it is included, a diffusive term appears in the second equation of (5.8),

which is of questionable benefit.

As well, notice that only the real term u1 is accounted for in the fidelity term

for the energy (5.10). This would seem to be logical, as we are matching the known

image values from outside the inpainting region to u1, but there is an unknown

effect if we were to take f(x) = f1(x) + if2(x) with f2(x) =
√

1− |f1(x)− 1
2
|2.

This is an experiment to try.
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CHAPTER 6

Conclusion

We have shown how the Cahn-Hilliard equation can be modified to achieve fast in-

painting of binary imagery. This modified Cahn-Hilliard equation can be applied

to the inpainting of simple binary shapes, text reparation, road interpolation,

and super-resolution. The two-step process we employ, described at the end of

section II, allows for effective inpainting across large unknown regions. Although

it is generally desired for the end-user to specify the inpainting domain, this

method can be used for interpolating simple roads and other situations where a

user-defined inpainting region is not feasible.

This method assumes zero data in the inpainting region. The two-step process

then channels the solution toward the desired steady state in a repeatable process.

Although at least one undesirable steady state may be possible mathematically,

the method steers away from this by first achieving a very rough but wide-ranging

inpainting, and then using this state as initial data for a subsequent inpainting

with sharp transitions between white and black regions.

In the context of binary image inpainting, the modified Cahn-Hilliard equation

has displayed a considerable decrease in computation time when compared with

other inpainting methods. Fast numerical techniques available for the Cahn-

Hilliard equation also allow for larger data sets to be processed, greatly aiding

the speed of computation.
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