
 1

 
 
 
 
 
 
 

A Multiple Level Set Method for Modeling Grain Boundary 
Evolution of Polycrystalline Materials 

 
 
 

Xinwei Zhang2, Jiun-Shyan Chen1, Stanley Osher3 

 
 
 

5713 Boelter Hall 
Civil & Environmental Engineering Department 
University of California, Los Angeles (UCLA) 

Los Angeles, CA 90095 
 
 

7617F Math Sciences 
Mathematics Department 

University of California, Los Angeles (UCLA) 
Los Angeles, CA 90095 

                                                 
1 Corresponding author, Professor, Civil & Environmental Engineering, University of California at Los 
Angeles, Los Angeles, CA 90095. E-mail: jschen@seas.ucla.edu. 
2 Graduate student. E-mail: xinwei@ucla.edu  
3 Professor of Mathematics, University of California, Los Angeles. Director of Special Projects, Institute 
for Pure and Applied Mathematics (IPAM). E-mail: sjo@math.ucla.edu  



 2

Abstract 
 
In this paper, we model grain boundary evolution based on a multiple level set method. 
Grain boundary migration under a curvature-induced driving force is considered and the 
level set method is employed to deal with the resulting topological changes of grain 
structures. The complexity of using a level set method for modeling grain structure 
evolution is due to its N-phase nature and the associated geometry compatibility 
constraint. We employ a multiple level set method. For computational efficiency a 
localized level set approach is used to advance each level set function associated with 
each grain. Numerical results for both uniform and random grain structures evolution are 
presented and the results are compared with the solutions based on a front tracking 
approach [10]. 
 
Keywords: Level Set; Grain Boundary Migration; Polycrystalline Materials, Moving 
Interface, Microstructure Evolution,  
 
 
1. Introduction 
 
Polycrystalline materials are aggregates of many small grains with different 
crystallographic orientations. Under various driving forces acting the grain boundaries 
the grain boundaries migrate and the microstructure evolves in response to the grain 
boundary driving forces. Grain boundary migration is one of the dominant processes of 
microstructure evolution during grain growth and recrystallization which occurs during 
heat treatment of a polycrystalline material [5, 16, 21]. One of the most important driving 
forces triggering grain boundary migration is due to the curvature of the grain boundary. 
This is also called the capillary force. As a grain boundary migrates, the corresponding 
change of grain size influences the material’s physical and mechanical properties, such as 
strength, toughness, corrosion resistance, electrical conductivity, magnetic susceptibility, 
etc. For example, it has been shown through experiments that the yield strength of a 
polycrystalline material increases with a decrease of the grain size [12]. In this case, grain 
boundaries act as strong obstacles, as demonstrated in the Hall-Petch relation [17, 32]. 
The grain size dependence of creep, such as Coble diffusion creep [13] and Nabarro-
Herring diffusion creep [18] are also observed in experiments. Accurate prediction of 
grain boundary migration processes is essential in the understanding of material 
properties. 
 
In recent years the evolution processes of grain boundary migration and grain growth 
have been studied extensively through computer simulations. Direct computer 
simulations of the grain structure and topological changes can be further classified into 
probabilistic and deterministic approaches. Probabilistic models include the Potts model 
[1, 34] and kinetic lattice Monte Carlo methods [19, 20]. Generally, these are of Monte-
Carlo type and have their basis in the classical spin models of statistical physics. The 
advantage of a Monte-Carlo method is its simplicity and the ease of implementation in 
two and three-dimensional systems. However, in this method the origin of the stochastic 
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aspect is not clear, nor is the relation between the Monte-Carlo time step and the physical 
time. 
 
In deterministic models a precise description of the motion of the grain boundaries is 
needed. It is assumed that the grain boundary migration velocity is proportional to the 
driving force. Front tracking methods [10, 15, 23, 33] and phase field models [14, 22, 25, 
38] use this assumption. Front tracking methods adopt an explicit representation of 
surfaces and/or volumes during the simulation, and phase field and level set methods use 
an  implicit representation of the geometry.  In front tracking (also called vertex models), 
the grain boundaries are discretized and tracked explicitly by piece-wise linear or curved 
segments. The model which uses straight boundaries is simple to implement but it does 
not satisfy the equilibrium requirement at the triple junction. The model where uses 
curved grain boundaries requires some rearrangement or relaxation of microstructure in 
order to satisfy the equilibrium requirement at triple junctions. When a driving force due 
to the gradient of the strain energy density in the grain structure is considered 
discretization of the grain interior is also required. This yields a significant complexity in 
the remeshing process due to the evolution of grain boundaries and topological changes. 
Chen et al. [7, 8, 9, 10, 11, 24,] introduced a double grid method, in which the meshfree 
method is introduced in the discretization and approximation of grain deformation, while 
a finite element method is employed in discretization and approximation of the grain 
boundary kinematics. Nevertheless, finite element remeshing on the grain boundary is 
still required in modeling the topology changes in the grain structures. In general, front 
tracking methods have diffculties in handling topology changes, such as the merging and 
breaking of surfaces, and these problems are substantially magnified in three dimensions. 
 
Phase field models require that an asymptotic analysis be performed to obtain a mapping 
between the parameters of the phase field equations and the sharp interface equations. 
The asymptotics involve expanding the phase field equations in some small parameter 
proportional to the interface width. As a result, the phase field model only reproduces the 
dynamics of the sharp interface equations in the limit where the expansion parameter is 
sufficiently small. Also a refined grid is needed to resolve the interface [26]. 
 
The level set method avoids the aforementioned limitations of front tracking methods and 
phase field models. The level set method was first proposed by Osher and Sethian [29] 
for front propagation with curvature dependent speed. Since then, it has been extended to 
numerous applications with moving interfaces in fluid mechanics, combustion, computer 
animation, image processing, among others, see [30, 41]. In the level set method the 
interface is represented as the zero contour of a level set function which satisfies an 
evolution equation. The physics which governs the motion of the interface motion is 
included naturally in this model. The front tracking method is a Lagrangian description of 
the interface motion, whereas the level set approach is an Eulerian description of the 
interface motion. The numerical solution of the level set function can be solved with a 
standard Eulerian finite difference or finite element methods. Thus topological changes, 
such as merging and breaking of the interfaces can be numerically described with ease, 
and the extension of the method to higher dimensions is straightforward. It has been 
shown that for motion by curvature, the level set method yields the same results as those 
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obtained from approximation of the phase field reaction diffusion equation [29]. A 
superfluous stiffness is required in phase field methods due to a singular perturbation and 
this will lead to incorrect solutions without the use of adaptive grids [26]. This is not an 
issue in the level set method.  
 
The standard level set method is applied to problems with two phases. Methods have 
been proposed to extend the method to multiple phase problems. An attempt has been 
made to apply the level set method to triple junctions in grain structures [26], where a 
separate level set function is assigned to each grain, and each grain boundary moves 
independently according to the given interface speed. Voids and overlaps developed due 
to independent grain boundary motions are corrected by a reassignment step which 
modifies each level set function by a coupling function. In [39], a variational approach 
with Lagrange multiplier method is employed to couple the multiple level set functions at 
triple junction through local and/or global constraints. However, this approach encounters 
computational complexity and stability issues (LBB condition [42]). A binary level set 
method [6] has been proposed to track the evolution of multiple interfaces. For a N -
phase problem, 2

Nlog  level set functions are used in this method. With proper partitioning 
of problem domain and adequately assigning multiple level set functions associated with 
the domain partitioning, triple junctions and topological changes can be represented 
without any voids and overlaps. However, the interface velocity can be incorrect in this 
approach for the problems we discuss here.  
 
In this work, the coupled level set method proposed by [26] is employed. Each grain is 
assigned an independent level set function, and they are evolved and corrected by the 
coupled level set approach at the grain boundaries and triple junctions. A local level set 
method [31] is also introduced to significantly improve the computational efficiency of 
this multiple level set approach.  
 
The layout of this paper is as follows. Grain boundary migration mechanisms under 
curvature-induced driving force are presented in Section 2. The multiple level set method 
and its localization are both briefly reviewed in Section 3. The coupling of multiple level 
set functions is discussed in section 4. Section 5 demonstrates the effectiveness of the 
proposed methods by solving several grain boundary migration problems, and the results 
are compared with use of the front tracking method. Concluding remarks are given in 
Section 6. 
 
 
2. Grain Boundary Migration Mechanisms 
 
Grain boundary migration is the dominant factor that determines the evolution of the 
microstructures of polycrystalline materials in the process of grain growth and 
recrystallization. Consequently, the grain morphology determines their physical, 
mechanical, and electromagnetic properties of polycrystalline materials. Since grain 
boundary migration does not involve the nucleation of new grains, it is the growth of the 
existing grains at the geometry compensation of the other preexisting grains by geometry 
compatibility in the grain structure [37]. As a result, the average size of the grains 
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increases, which is accompanied by a reduction in the total grain boundary energy per 
unit volume. 
 
2.1. Driving forces for grain boundary migration under consideration 
 
Migration of grain boundaries is the motion of the interface between two grains caused 
by a wide variety of driving forces. To yield a stable configuration, the grain boundaries 
evolve to reduce the total free energy, which is accomplished by the reduction of the total 
grain boundary area. The most important driving force triggering grain boundary 
migration is the force proportional to the curvature of the grain boundary. The grain 
boundaries migrate in response to the net driving force acting on the grain boundary. 
 
Let f  be the driving force acting on the grain boundary. A kinetic law that relates the 
driving force to the migration velocity of the grain boundary is given as, 
 
 v fµ=  (1) 
 
where µ  is the grain boundary mobility and is dependent on the temperature T  through 
the relationship 
 

 0

Q
KTM eµ

−
=  (2) 

 
where Q  is the activation enthalpy associated with the motion, K  is the Boltzmann 
constant, and 0M  has a weak dependence on temperature. 
 
The driving force due to the grain boundary curvature can be expressed as 
 
 ( )f γ θ κ= −  (3) 
 
where γ  is the surface tension (the boundary energy per unit area) which is a function of 
the mis-orientation angle θ , and κ  is the curvature of the grain boundary. This driving 
force acts towards its center of curvature, and this grain boundary migration reduces the 
surface energy through the reduction of grain boundary length or area. 
 
2.2. Grain boundary migration topology by an explicit description of geometric 
changes  
 
Grain boundary migration leads to a topological reconstruction of the entire grain 
structure. Here N  represents the number of grains, V  represents the number of vertices 
and E  represents the number of grain boundaries as shown in Fig. 1. The grain structure 
in two-dimensional space obeys the following Euler equation [35]: 
 
 1N V E+ − =  (4) 
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Figure 1. 2-D grain structure 

 
The above geometry rule has to be checked as a convergence criterion in a front tracking 
method. In two-dimensions, a grain structure with more than three grain boundaries 
intersecting at a point is topologically unstable. Thus a topologically stable grain network 
will have only 3 grain boundaries intersecting at triple junction. For explicit simulation of 
grain boundary migration processes, via a  front tracking method, it is necessary to 
clearly define rules governing the topological reconstruction of the grain structure. 
Morral and Ashby [27] identified two types of grain topology transformations, namely 
the interchange of grain neighbors and the disappearance or appearance of a three sided 
grain. These changes were denoted as the T1 and T2 changes.  
 
A T1 change involves the switching of the grain boundaries when two triple junctions 
come very close to each other. This leads to a topological instability in the grain network 
and results in the formation of a new grain boundary. Two grains lose an edge while two 
other grains gain an edge, thus maintaining the total number of edges and grains in the 
grain structure, as shown in Fig. 2. This transformation is called a topological change of 
the first kind. In numerical simulations using a front tracking method the T1 change is 
done by rotating the grain boundary by 900 as shown in Fig. 2, with the length of the new 
grain boundary slightly increased such that the boundary does not undergo a T1 change 
immediately. This is needed for numerical stability. 
 

 
Figure 2. Topological change of the first kind (T1) in front tracking methods 
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A T2 change represents the topological change of a second kind where a three sided grain 
shrinks to a point, as shown in Fig. 3. After this happens, each neighbor of the three sided 
grain loses a side and the total number of grains and edges are each decreased. In front 
tracking methods this three sided grain is replaced by a triple point at the centroid of the 
disappearing grain, and the grain boundary connectivity is updated accordingly. 
 

 
Figure 3. Topological change of the second kind (T2) in front tracking methods 

 
Note that these T1 change and T2 change operations are needed for numerical purposes 
due to the nature of discretization of grain boundaries in front tracking methods. It will be 
shown below that these intricate operations are eliminated in the level set approach when 
topology changes are naturally represented by the evolution of multiple level set 
functions and their interactions. 
 
3. Basic Level Set Equations  
 
The main idea of the level set method is to represent a moving interface ( )tΓ  bounding a 
open region ( )tΩ  in nR  of co-dimension one by a Lipschitz continuous function ( , )tφ x  
which has the following properties 
 

 
( , ) 0 if is inside ( )
( , ) 0 if is at ( )
( , ) 0 if is outside ( )

t t
t t
t t

φ
φ
φ

> Γ
 = Γ
 < Γ

x x
x x
x x

 (5) 

 
Since the interface ( )tΓ  is represented as the zero level set of function ( , )tφ x , the motion 
of ( )tΓ  can be translated into an evolution equation for ( , )tφ x  by taking the time 
derivative of ( , ) 0tφ =x  to yield 
 
 0 given ( , 0)t x tφ φ φ+ ⋅ = =v ∇  (6) 
 
where v  is the interface velocity. The initial conditions of ( , )tφ x  are often defined to be 
the signed distance function to the interface, at least near the interface.  
 
Ideally,  
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( , (0)) if is inside (0)

( ,0) 0 if is at (0)
( , (0)) if is outside (0)

dist

dist
φ

+ Γ Γ
= Γ
− Γ Γ

x x
x x

x x
 (7) 

 
By projecting the velocity v  onto the normal direction of the interface, we have 
 
 0 given ( , 0)t nv x tφ φ φ+ = =∇  (8) 

Where ( )
1

2 2 2
x yφ φ φ= +∇ . 

 
Typically, the interface ( )tΓ  has a prescribed velocity v  which could be a function of 
space variables x , time t , the normal direction of interface, the curvature of interface, or 
some external physics which governs the motion of ( )tΓ .  
 
One of the advantages of the level set method is that some geometric quantities can be 
expressed by using derivates ( , )tφ x . For example, the unit normal n  and curvature κ  of 

( )tΓ  can be computed via the level set function ( , )tφ x  as follows: 
 

 φ
φ

=n ∇
∇

 (9) 

 

 
2 2

2 2 3 2

2
( )

xx y x y xy yy x

x y

φ φ φ φ φ φ φφκ
φ φ φ

  − +
= ⋅ = ⋅ =   + 

n ∇
∇ ∇

∇
 (10) 

 
In this study we consider the curvature as the primary driving force of grain boundary 
migration. The curvature of each grain boundary can be calculated by Eq. (10) (e.g. by 
finite differences) without the explicit discretization along the grain boundary, which is 
required in front tracking methods. The level set equation for grain boundary motion 
induced by curvature is: 
 

 0
t
φ φµγ φ

φ
 ∂

− ⋅ =  ∂  

∇
∇ ∇

∇
 (11) 

 
In this work, a second-order ENO scheme is used for spatial derivative approximation of 
level set equation [43]. For time derivative approximation, a simple forward Euler 
discretization is used. 
 
Numerically, it is desirable to keep the level set function close to a signed distance 
function to the interface. However, it is generally impossible to prevent the level set 
function from deviating from a signed distance function. Also during time integration of 
the level set equation, flat or steep regions often occur near the interface, causing 
numerical errors and inaccurate identification of interfaces. Generally, a reinitialization 
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procedure is needed to reset the level set function to be a signed distance function to the 
interface. In this work, we use the following reinitialization equation for the correction of 
φ  at time *t  [36]: 
 

 
*

*
0( )(1 )S

t
φ φ φ∂

= −
∂

∇  (12) 

 
where 0φ  is the value of *φ  at the beginning of the reinitialization step. The sign function 

0( )S φ  is given by 
 

 
0 0

0 0

0 0

( ) 1 0
( ) 0 0
( ) 1 0

S if
S if
S if

φ φ
φ φ
φ φ

= >
 = =
 = − <

 (13) 

 
From Eq. (12), we can see that *φ  remains unchanged at the interface, and the zero level 
set of 0φ  and *φ  are the same. Away from the interface *φ  will converge to 1φ =∇  
which is the distance function. This algorithm is efficient for numerical implementation 
and it avoids finding the interface using time consuming geometric procedures. 
 
 
4. Multiple Level Set Method for Multiphase Problem 
 
The level set method has been used to track the interfaces between materials with two 
phases. In a typical polycrystalline material, each grain has a different grain orientation 
and thus we have a multiphase problem where the grain boundaries cannot be described 
with a single level set function. Moreover, an implicit geometric representation of triple 
junctions requires special treatment. In this work, the coupled level set method proposed 
in [26] is employed.  
 
4.1 Coupling of multiple level set functions 
 
As in [26], we assign each grain an independent level set function iφ  and first evolve 
each level set function iφ  with Eq. (11) as a predictor p

iφ . Then the coupled level set 
functions are corrected as 
 

 1 ( max )
2

c p p
i i ji j
φ φ φ

≠
= −  (14) 

 
where c

iφ  is the corrector of p
iφ . This predictor-corrector computational procedure is 

illustrated by considering a triple junction obtained from the zero level sets of 3 functions, 
as shown in Fig. 4. In the predictor phase each of the 3 level set functions is evolved 
independently as shown in Fig. 4 (b). In the corrector phase, each of the level set 
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functions is corrected according to Eq. (14) as shown in Fig. 4 (c). The predictor-
corrector procedures for a multiple grain structure evolution are shown in Fig. 5.  
 

 
 

kφ                p
kφ              c

kφ  
      iφ   jφ      p

iφ             p
jφ      c

iφ          c
jφ  

 
         Cross section 
 
 

(a) Top view of level set function evolution 
 

 
 
 
 
 

 
 

 
(b) Cross sectional view of level set functions evolution 

 
Figure 4. Coupling of multiple level set functions around a triple junction 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 5. Coupling of multiple level set functions in multiple grain structure 
 
 
Solving for a level set function only in the region close to the interface reduces the 
operation from 2( )O n  to ( )O nδ , where δ  is the width of the region surrounding the 
interface. This is referred to as the local level set method [31]. Since we assign each grain 

Initial configuration                   Predictor Phase                    Corrector Phase

iφ jφ p
iφ

p
iφ

c
iφ

c
jφ

   (a) Initial grain structure        (b) Predictor phase                   (c) Corrector phase 
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an independent level set function, the standard local level set method can be applied 
directly.  
  
4.2 Imposition of periodic boundary conditions  
 
For a unit cell microstructure to be representative for the macroscopic structure, 
periodicity of grain structure and grain boundary migration in the unit cell needs to be 
considered. The initial grain structure is generated by Voronoi cells with periodic 
boundary conditions. The periodicity in the initial level set function requires 
 
 | |φ φ+ −Γ Γ

=  (15) 

where +Γ  and −Γ  represent the opposite boundaries. 
 
To avoid imposing periodicity as a constraint condition, we consider a layer of ghost cells 
along the periodic boundaries created by copying the geometry and the signed distance 
function of the grains on the opposite sides of the unit cell, as shown in Fig. 6. With this 
ghost cell approach, periodicity can also be imposed in the local calculation. Figure 7 
shows the local level set of the grains near the unit cell boundaries using this ghost cell 
approach. 

 
Figure 6. Ghost cells for the calculation of grain boundary curvature along the unit cell 

boundaries 
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(a) Periodic local level set of a grain intersects with the domain boundaries 

 

  
(b) Periodic local level set of a grain near the domain boundaries 

 
Figure 7. Periodic boundary conditions for construction of local level set 

 
5. Numerical examples 
 
5.1 Fundamental topological changes by the multiple level set method 
 
The grain boundary migration of two unstable grain structures using the multiple level set 
method is examined. A grid size of 100×100 is employed in all of the following 
numerical examples. The grain boundary migration of the first grain structure shown in 
Fig. 8 is modeled by four level set functions, and each function is only computed and 
updated by the local level set approach near the grain boundaries associated with the 
designated grain. In the initial grain configuration, the resultant driving forces at the two 
triple junctions act toward the centers of grains 1 and 2, forcing the two triple junctions to 
move toward each other horizontally. As the two triple junctions coincide, the driving 
force acting on each grain boundary further moves the grain boundaries toward the 
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centers of grains 1 and 2, forcing triple junctions to separate and move vertically as 
shown in Fig. 8. The grain boundaries migrate until they reach a stable configuration, 
where the 3 vertices at each triple junction are in a balanced 120o angle. These topology 
changes of 4 grains and the resulting triple junction evolution is represented entirely by 
the interactions of the zeros of evolving level set functions, without imposing any 
geometric rules. In the second grain structure shown in Fig. 9, 4 level set functions are 
again employed. According to the initial grain configuration, the resultant driving forces 
at the three triple junctions act toward the centroid of the center grain. As such, the center 
grain shrinks to a point, and the vertices at the triple junction are in the balanced 120o 
angle. The T1 and T2 topology changes in this example are again naturally represented 
by the interaction of level set functions.  
 
 

 
(i)    (ii)    (iii) 

 
(iv)    (v)    (vi) 

Figure. 8. Topological change of the first kind (T1) by multiple level set method 

1 

2 
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(i)    (ii)    (iii) 

 
(iv)    (v)    (vi) 

Figure. 9. Topological change of the second kind (T2) by multiple level set method 
 
5.2 Uniform grain growth with geometric imperfection 
 
In this example, abnormal grain growth is studied by introducing a geometric 
imperfection in an otherwise perfect grain structure of uniform hexagonal grains, as 
shown in Fig. 10(i). The imperfection is created by introducing two eight sided grains, 
two seven sided grains and six five sided grains in the uniform hexagonal grain structure. 
The presence of geometrical imperfections in the grain structure triggers the evolution of 
the grain boundaries.  
 
The grains with less than six edges generate larger driving forces towards the center of 
the grains, compared to that of the adjacent grains with more than six edges. Thus the 
grains with less than six edges continue to shrink while the ones with more than six edges 
continue to grow. A grid size of 200×200 is employed, and numerical stability requires a 

time step restriction of 2 2

2 2 1t
x y
µγ µγ 

∆ + < ∆ ∆ 
 for a forward Euler time approximation. The 

progressive evolution of grain boundaries is shown in Fig. 10. Since the local level set 
method is employed for each grain, the coupling of multiple level set functions is indeed 
localized.  
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(i)      (ii) 

 

  
(iii)      (iv) 

 

  
(v)      (vi) 
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(vii)      (viii) 

 

  
(ix)      (x) 

 

  
(xi)      (xii) 

Figure. 10. Evolution of a uniform grain structure with geometric imperfection 
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5.3 Random grain growth 
 
The growth of a random grain structure with 100 grains shown in Fig. 11 is modeled. A 
total of 100 level set functions are assigned with one to each grain. The grid size and time 
step as of the previous numerical example are again used. As shown in Fig. 11 (ii), the 
grains with fewer than six edges in the initial configuration shrink quickly while the ones 
with more than six edges keep growing. As the grain boundaries migrate, the average 
grain size increases and is accompanied by a reduction of total grain boundary energy. 
The reduction of total grain number during the evolution process causes the 
corresponding number of level set functions and the amount of reinitiation processes to 
be reduced proportionately. Any front tracking method would require remeshing and 
adaptivity in response to the grain structure topology changes, consuming considerable 
computational effort. Note that the curved grain boundaries are naturally represented by 
the level set approach, whereas in a front tracking approach, higher order approximation 
functions are required for the representation of grain boundary kinematic variables and 
grain boundary geometries.  
 

  
(i)      (ii) 

 

  
(iii)      (iv) 
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(v)      (vi) 

 

  
(vii)      (viii) 

 

  
(ix)      (x) 
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(xi)      (xii) 

Figure. 11. Evolution of a random grain structure 
 
 
 
5.4 Comparison with front tracking method 
 
In this section, we compared our simulation results based on our multiple level set 
method with that of the front tacking method [7, 8]. Although similar results are obtained 
with the two methods in the uniform grain with imperfection, as shown in Fig. 12, some 
differences can be seen in the random grain structure evolution case as shown in Fig. 13. 
This is due to the errors associated with ad hoc rules of topological changes employed in 
the front tracking method. As marked with open circles in the initial grain structure of Fig. 
13, the triple junctions within those circles are very close to each other in the initial grain 
structures. Thus, due to the pre-set minimum length of grain boundaries in front tracking 
method, the T1 changes are invoked prematurely, leading to some errors in the predicted 
grain structure evolution process. These kind of computational errors are avoided in the 
proposed multiple level set method. 
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Figure. 12. Uniform grain growth modeled by multiple level set method and front 

tracking method [7, 8] 
 

 
Figure. 13. Random grain growth modeled by multiple level set method and front 

tracking method [7, 8] 
 
 
6. Conclusions 
 
In this work, a multiple level set method for modeling grain boundary migration in 
polycrystalline materials has been presented. For grain boundary migration under 
curvature induced driving forces, the multiple level set method can naturally handle 
topological changes without the ad hoc geometric rules that are required in the front 
tracking methods. We also show that the curved grain boundaries can be naturally 
represented with the level set method, noting that the higher order functions are required 

Level set method

Front tracking 
method 

Level set method

Front tracking 
method 
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in the approximation of grain kinematics variables and grain boundary geometry using 
front tracking methods. A ghost cell approach for imposing periodic boundary conditions 
has been introduced without solving a constrained problem with a Lagrange multiplier 
method or a penalty method. In order to improve the computational efficiency, a local 
level set method has been used. Numerical results for both uniform and random grain 
structures have been presented, and they compared favorably with the solutions based on 
front tracking method. This framework can be easily extended to 3-D grain growth 
simulation. Additional driving forces, such as the grain boundary migration due to strain 
energy difference between anisotropic grains, will be included in future work. 
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