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Abstract

We study a class of swarming problems wherein particles evolve dynamically via

pairwise interaction potentials and a velocity selection mechanism. In biology,

a swarming system is used to describes the natural aggregation of animals. Via

model simulations, we find that such a system undergoes various changes of state

as a function of the self-propulsion and interaction potential parameters. While

these patterns exhibit different scalability properties, we apply a fundamental the-

ory, called H-stability , from statistical mechanics to investigate such a difference.

A phase diagram is derived to predict whether the system may scale well or col-

lapse when the number of particles increases. To further analyze the system, we

utilize a procedure which, in a definitive way, connects a class of individual-based

models to their continuum formulations and determine criteria for the validity of

the latter. The results show that H-stability of the interaction potential also plays

a fundamental role in determining the validity of the continuum approximation.

We then perform a linear stability analysis of the continuum model and compare

the results to the simulations of the individual-based one. Using the knowledge

gained from natural swarms as building blocks, we design control algorithms for

artificial swarms by adapting our swarming model to testbed vehicles. We prove

that the vehicles under the adapted algorithms can aggregate at least locally

and demonstrate that they retain certain scalability properties from the original

model. Testbed experiments show that such algorithms perform well for various

tasks with reasonable number of vehicles.
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Chapter 1

Introduction

The abundant morphological features of animal groups have inspired numerous

real-life applications and motivated interdisciplinary investigations. One of the

most intriguing phenomena is the complex collective behavior out of rather simple

individual responses. The implication in engineering is that, instead of a sophis-

ticated robot, one may design a network of much simpler robots to achieve a

complex mission. The idea leads to the recent development of so called “artificial

swarms”. In biology, certain swarming patterns are strikingly similar across var-

ious species and scales. Figure 1.1 shows an example, in which similar “milling

patterns” are observed in fish schools (left) and marching ants (right). Such

patterns lead scientists to speculate that certain collective behavior in animals

may be a physical consequence of their dynamics, instead of a conscious bio-

logical decision [76]. Identifying such group-level phenomena as a consequence

of individual-level dynamics is important in biology because it helps appropri-

ately interpret collective animal behavior. It is also an interesting problem in

physics because a swarming system is an extension of a classical many-particle

system, which has been of interest in physics for decades with numerous theories

derived. Unlike a classical many-particle system, a swarming system consist of

self-propelling particles and thus, is sometimes referred as an “active Brownian

system” [21, 23, 24, 25] if noise is also involved. The self-propulsion adds addi-

tional parameters to the many-particle system and may completely change the

dynamics. Moreover, biological interactions can also be different from the con-

ventional form of physical interactions adopted in classical many-particle systems.
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Figure 1.1: The mill formations. Left: A photo of a big eye Trevally school, c©
2006 Norbert Wu, http://www.norbertwu.com/ . Right: A sketch of the mill for-
mation by ants in Schneirla’s book “Army Ants, a Study in Social Organization”
[83]. Reprint of Fig. 12.4 on page 283 in T. C. Schneirla, “Army Ants, a Study
in Social Organization”, Copyright (1971) by W. H. Freeman.

The difference may give rise to certain unique patterns that are only observed in

systems of organisms but not in classical many-particle systems.

While it is speculated that swarms exhibit different pattern formations based

on changes of individuals’ responses toward surrounding conditions, a common

way to examine such connection is through modeling. Various swarming models

have been proposed and applied with a certain extent of success. These models

can be divided into two major categories: kinematic models and dynamic ones. In

Chapter 2, we explain the difference between these two classes of swarming models

and briefly review the origin and the evolution of each class. In Chapter 3, a self-

propelling, interacting, many-particle model is constructed based on individual

dynamic movement rules. By simulating this particular individual-based model,

we present various swarming patterns, including the frequently observed milling

patterns shown in Fig. 1.1. Statistical results are given to illustrate the state
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transition among these patterns. In Chapter 4, we apply a classical theory in

statistical mechanics, called “H-stability”, to investigate the scalability of our

model. An H-stability phase diagram is derived as a result, and the corresponding

H-stability regimes for the patterns in Chapter 3 are discussed.

The first three chapters of this thesis consider discrete models for swarms,

based on individual-based formulas. Individual-based models have direct control

of each particle’s rules of motion and are especially useful for small size aggre-

gates while larger discrete systems are more appropriate for statistical studies. In

contrast to individual-based models, there are models that ignore the identity of

individuals and instead view the swarm as a density field while formulating the

particle movement through density fluxes. Such models are called “continuum

models”. Because of the greatly reduced degrees of freedom, continuum models

present a powerful tool for theoretical analysis, especially for analyzing the sta-

bility of various morphologies and emergent patterns. However, most continuum

models, especially dynamic ones, are based on heuristic arguments rather than

derived from convincing individual rules, and thus, it is difficult to link the an-

alytical results to individual behavior. In Chapter 5, we systematically derive a

continuum model from our individual-based model by utilizing a classical pro-

cedure in statistical mechanics. The validity of such a derivation is numerically

verified and discussed. We also investigate the effect of H-stability after it is re-

vealed that H-stability plays an important role on the validity of the derivation.

In the regime where the validity of the continuum model is verified, I present a

linear stability analysis for a homogeneous solution of the model and compare the

theoretically predicted quantities to simulated results.

In Chapter 6, the history of artificial swarms is briefly reviewed. In Chapter 7,

we apply our swarming model to devise a control algorithm for the Multi-Vehicle
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Wireless Testbed (MVWT) at Cal-Tech. Simple tasks such as target searching and

obstacle avoidance are presented. In Chapter 8, our model is modified to adapt

various mechanical constraints of the testbed vehicles in the UCLA Mathemat-

ics department. Cooperative tasks are experimentally performed with multiple

vehicles chasing a virtual leader and interacting with each other. Because of the

adaption, H-stability of the modified model is re-evaluated and investigated via

computer simulations. We also prove a local convergence theory for the modified

system.

This thesis is a collection of collaborative works under the supervision of Prof.

Bertozzi. For the individual-based model, I contributed to the studies of self-

propulsion-related state transitions, while the interaction-related state transitions

(H-stability) were primarily analyzed by Dr. D’Orsogna with suggestions from

Prof. Chayes. To piece together our derivation of the continuum model, Dr.

Marthaler made his efforts primarily on the locomotory part of the model, and

I worked mostly on the interaction part. Dr. D’Orsogna and I also collaborated

in the linear stability analysis of the continuum model. Additionally, I am re-

sponsible for all numerical simulations of our models presented in the thesis and

further investigate the validity of our continuum derivation. For artificial swarms,

I mainly contributed to the model adaption, analysis, and numerical simulations

of the control algorithm. The testbed vehicle experiments were conducted by Mr.

Nguyen, Mr. Huang, Mr. Hsieh, Mr. Leung, and Mr. Tung.
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Chapter 2

A Brief History of Swarming Models

In this chapter, we review the literature leading to current research development of

swarming models. The kinematic models are introduced first since they appeared

earlier in the literature. The dynamic models appeared later but are directly

connected to our model.

2.1 Population dynamics

The origin of swarming models can be traced back to models of population dynam-

ics in the early 20th century. While physicists had widely adopted mathematical

descriptions for physical systems in the late 19th century, biologists rarely formu-

lated mathematical models for biological systems, apparently due to the greater

complexity involved [87]. Population dynamics, which studies the long-term ex-

pansion and growth of one or more species, was one of the frontiers in ecology that

welcomed abstract mathematical models as a tool of research. The famous Lotka-

Volterra equations, also known as the predator-prey equations [99], describe the

evolution of the population sizes of interactive prey and predator species:

dN1

dt
= α1N1 − λ1N1N2, (2.1)

dN2

dt
= −α2N2 + λ2N1N2, (2.2)

where N1, N2 respectively represent the total number of species 1 (prey) and 2

(predator); α1 is the birth rate of the prey while α2 is the death rate of the preda-

tor; λ1 and λ2 are the death and the growth rates of each species due to predation.
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The fixed points of the equations are (N1, N2) = (0, 0) and (α2/λ2, α1/λ1), the

former a saddle point and the latter a center. Time dependent solutions circulate

the center in the phase space, meaning that the numbers of the prey and predator

oscillate periodically in time.

Spacial variation was later introduced to population dynamics. One example

is the 1937 article “The Wave of Advance of Advantageous Genes” by Fisher

[28]. He considered the spread, by generations, of a mutant gene among a group

of organisms on a 1D habitat. The 1D habitat is initially occupied only by

organisms that contain the original gene. Because of their advantage to survival,

organisms with a particular mutant gene may replace those with the original gene

in the next generation. Let ρ (x, t) be the probability of finding the mutant gene

at position x at time t while ρa (x, t) is that of the original gene. The mutant gene

has a spatial diffusion coefficient κ, and κm is a coefficient of selecting in favor of

the mutant gene for the next generation. The spread of the mutant gene can be

described by the following reaction-diffusion equation

∂ρ

∂t
= κ

∂2ρ

∂x2
+ κmρρa, (2.3)

where t is time, and x is the spatial coordinate. While Fisher recognized that the

model might be oversimplified, the wave length and the spreading speed of the

mutant gene distribution can be analytically related to κ and κm.

A similar concept was adopted by Skellam for studying the spread of oaks in

Britain during the post-glacial period. Unlike what Fisher did in Ref. [28], which

is based on heuristic arguments, Skellam used an individual-based random walk

description to model the dispersal / diffusion process in his 1951 paper “Random

Dispersal in Theoretical Population” [87]. He concluded that the proportion of

the population distributed a distance r away from the origin after t generations
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of spread can be expressed as

∫

|~x|>r
ρ (~x) d~x

ρtot
= exp

(

− r2

tκ2

)

, (2.4)

assuming that the first generation starts at the origin. The population density is

denoted by ρ while ρtot is the total density; κ is the root-mean-square dispersion

distance per generation. Note that the functional form of Eq. (2.4) is the ansatz of

Eq. (2.3). The spreading speed can be approximated as the speed of the advancing

density contour. Skellam used the model to estimate κ for the oaks given their

present distribution and examined some hypotheses regarding their population

spread. For swarming problems, what is more significant is that Skellam claimed:

The results already deduced can be applied equally well to the disper-

sal of small animals such as earthworms and snails.

Figure 2.1 from Skellam’s paper furthermore demonstrates that the spread of

muskrat, Ondatra zibethica L., in central Europe supports his claim.

In general, population problems involve dispersion and reproduction of the

species population when both temporal and spatial dimensions are considered.

In contrast, swarming problems investigate individual or collective density move-

ment of self-propelled agents that aggregate through mutual interactions. The

time scale is usually much shorter than the life cycle of the swarming organisms.

While population dynamics generally explore boundary expansion of an entire

population, swarming problems usually study internal structure and pattern for-

mations inside the group. Thus, swarming problems can be regarded as a class

of population problems that focus on a shorter time scale and a smaller spatial

domain. While Skellam went on to talk about reproduction in Ref. [87], the re-

production is usually negligible on the swarming time scale and thus, neglected.
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Figure 2.1: The spread of muskrat (Ondatra zibethica L.) in central Europe
[87]. Muskrats were introduced to Europe from North America in 1905. The
left figure shows their population distribution during the subsequent years. The
right figure shows that the square root of their distribution area increase linear in
time, as predicted by Eq. (2.4). Reprint from J. G. Skellam, “Random dispersal
in theoretical populations”, Biometrika, 1951, Vol. 38, No. 1-2, pp. 196-218, by
permission of Oxford University Press.

On the other hand, dispersion does play an important role in swarming models,

and the emergent patterns of the density distribution are of interest.

2.2 Kinematic models

Kinematic models are named in contrast to dynamic models. Dynamic models

are also called the “Newtonian models” because they are constructed based on

Newton’s laws of motion. In a dynamic model, forces are formulated and serve as

the rate of momentum changes; in turn, positions change according to velocities,

evaluated from the momenta. On the other hand, kinematic models are based

on more abstract rules. In a kinematic model, velocities are directly formulated

and serve as the changing rate of positions. Kinematic models consist of up to

only the first-order derivatives of positions with respect to time and thus, are also

known as first-order models. In contrast, force or acceleration is the second-order
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derivative of position versus time, and dynamic models are also called second-

order models. Swarming models that directly evolved from population problems

usually belong to the class of kinematic models since kinematic descriptions are

usually adopted to simulate population dynamics, such as the models of Fisher

[28] and of Skellam [87]. As a predecessor to the modern study of swarming

problems, the 1951 paper of Skellam hinted that a random dispersal may not be

enough for certain animals which tend to move toward more favorable conditions

[87]. He suggested that an attraction may be necessary, which later lead to various

aggregation mechanism in swarming models. In his 1980 book, Okubo pointed

out that the delicate balance between “spreading” and “concentrating” is one of

the most important features that separate the animal movements from passive

dispersions such as the spreading of plants and non-organisms. [70].

2.2.1 Aggregation

During the early years, possible mechanisms behind animal aggregation were spec-

ulated. An unrelated work that serves as an inspiration is Conway’s Game of Life,

studied by Gardner in his 1970 paper “Mathematical Games” [30]. It is a game

played on a checkerboard with counters. The counters survive or die according

to the number of neighbors surrounding it. They may also give birth to a new

counter in an empty cell if there are a certain number of occupied cells surround-

ing this cell. Figure 2.2 shows some examples of the evolution histories of such a

game. These are rather simple rules, but the final steady distribution patterns of

the counters are quite fascinating.

Hamilton proposed a graphical model adopting similar rules to those of the

Game of Life in his 1971 paper “Geometry for the Selfish Herd” [38]. For the 1D

version of his model, an isolated prey (frog) is more likely to encounter and to be
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Figure 2.2: Examples of Conway’s Game of Life [30]. The counter distributions
start with the configurations on the left and evolve toward the right until the final
steady configurations are reached. These are examples of five initial occupied cells.
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Figure 2.3: Hamilton’s selfish-herd model [38, 70]. The line segment AB is the
domain of danger of frog c. If by accident, the frog jumps to c′, its domain of dan-
ger is reduced. Reprint of Fig. 7.16 on page 129 of Ch. 7 “The dynamics of animal
grouping” in A. Okubo, (1980) Diffusion and Ecological Problems: Mathematical
Models, with kind permission of Springer-Verlag and Business Media.

attacked by a predator (snake). Therefore, he defined a “domain of danger” for

each frog as the summation of the half lengths of the distances from its closest

neighbors on both sides. The danger of a frog being eaten by the snake is pro-

portional to this domain of danger of the frog. As a result, the frog with a larger

domain of danger also has a higher probability to make a random jump, trying to

improve its situation. Figure 2.3 illustrates this process. After several iterations,

the frogs aggregate as several clusters. The concept for the 2D version of the

model is similar, but the domains of danger become polygons rather than line

segments. It is known that for example, lions usually attack preys from outside

the herd, and the model shows that the prey aggregate in an effort to reduce the

domain of danger of each individual.

While it is plausible that minimizing the danger of being attacked can lead

to aggregation, others speculate that foraging efficiency also encourages aggrega-

tion. Thompson et al. examined such a conjecture in their 1974 paper “Survival

Value of Flocking in Birds” [92]. Their full model is composed of several rather

complicated logic loops that require a lengthy description to detail. The main

idea is that a bird tends to maintain its direction but also has a probability to
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change direction, depending on environmental factors. Additionally, the birds

also have a probability of making social movements, due to interactions, calcu-

lated by a “movement response” ∆xMR. The interaction has an attraction and

a repulsion: a bird is attracted to the birds which have successfully found food

but repelled by the others if their mutual distance becomes less than a threshold.

The mathematical formula are composed of pairwise components

∆xMR,i,j =















0 if ri,j > rc and both birds

searching for prey,

− (ri,j−rc)~ri,j

ri,j
e−

(ri,j−rc)
` otherwise,

(2.5)

and the movement response for bird i in the next iteration is the summation over

the other birds

∆xMR,i =
∑

j

∆xMR, i, j. (2.6)

Here, ~ri,j is the displacement between bird i and bird j, and rc is the threshold

distance. The parameter ` is determined in their paper by fitting the collected

data from earlier experiments. Their results showed that by flocking, birds greatly

reduce the risk of not finding any food for a lengthy period of time, which increases

the chance of survival.

2.2.2 Biased random walks

The selfish herds of Hamilton and the bird flocks of Thompson et al. are basically

extensions of Skellam’s random walk model but with inhomogeneous probabili-

ties of individual movements. Such extensions are regarded as a class of “biased

random walk models” where the random walks take different probabilities under

different conditions. In his 1980 paper “Biased Random Walk Models for Chemo-

taxis and Related Diffusion Approximations” [2], Alt studied a group of models
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in which the inhomogeneity is caused by external stimuli. In contrast to Hamil-

ton and Thompson et al., Alt formulate the random walks as the movement of a

continuum density field, ρ (t, ~x, v̂), which depends not only on time t and position

~x but also on its drift direction v̂. Assuming that the individuals drift at a con-

stant speed v, the random walks are caused by a stochastic probability f (t, ~x, v̂)

for each individual to change direction to v̂. This is similar to the mechanism

used by Thompson et al. for bird flocks. The probability distribution of the drift

direction changing from v̂ to û is denoted by k (t, ~x, v̂, û). The equation of motion

for ρ (t, ~x, v̂) is

∂ρ

∂t
+ v̂ · ~∇~x (vρ) = −fρ +

∫

B
f (t, ~x, û) ρ (t, ~x, û) k (t, ~x, û, v̂) dû, (2.7)

where
∫

B dû is a surface integral over a unit ball. While Alt concentrated on

chemotaxis for the discussion of the turning frequency f and the turn angle dis-

tribution k, it is worth noting that the same idea can also be used for interactions,

where fk defines the interaction kernel.

A more generalized application of the biased random walks was introduced

by Okubo in his 1986 paper “Dynamical Aspects of Animal Grouping: Swarms,

Schools, Flocks, and Herds” [71]. Let ρ be a density field that represents the

distribution of individuals that are allowed to move to adjacent locations. Okubo’s

basic 1D equation is of the form

ρ (x, t+ δt) = kR (x− (1 − Φ) δx, t) ρ (x− δx, t) + k0 (x, t) ρ (x, t) (2.8)

+kL (x+ (1 − Φ) δx, t) ρ (x + δx, t) ,

where x and t are the position coordinate and time with δx and δt denoting

infinitesimal increases in x and t. The probability of particles jumping from x

to x + δx is specified by kR (x + Φδx, t) while kL (x− Φδx, t) is that of jumping
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from x to x − δx, in which Φ ∈ [0, 1]. The probability of staying put is denoted

by k0 (x, t), and the probabilities satisfy the normalization condition

kR (x+ Φδx, t) + kL (x− Φδx, t) + k0 (x, t) = 1. (2.9)

Note that the destination of a jump is x±δx, and x is the original location before

the jump. Hence, if Φ = 1, kR/L depend only on the destination, and this case

can be interpreted as that the individuals are attracted toward the location x (for

whatever reasons). Similarly, if Φ = 0, kR/L depend only on the original location

and indicate a repulsion. For 0 < Φ < 1, it can be viewed as a combination of the

attraction and the repulsion. Since kR/L represent the jump probabilities toward

the right and toward the left, the random walk is biased if kR 6= kL. We may

define

k (x, t) ≡ kR (x + Φδx, t) − kL (x− Φδx, t) , (2.10)

to indicate such bias. By letting δt, δx→ 0, we may take Eq. (2.9) to its continuum

limit and obtain

∂ρ

∂t
= − ∂

∂x

{[

v − (1 − 2Φ)
∂κ

∂x

]

ρ

}

+
∂

∂x

(

κ
∂ρ

∂x

)

, (2.11)

where

v (x, t) ≡ lim
δt,δx→0

k (x, t) δx/δt, (2.12)

κ (x, t) ≡ κ0 (1 − k0 (x, t)) , (2.13)

κ0 ≡ lim
δt,δx→0

δx2/ (2δt) . (2.14)

The diffusion coefficient κ0 is a constant, and κ is the diffusivity, proportional

to the probability of individuals leaving x. The anisotropic jump probabilities

result in a non-zero k and hence, a non-zero drift speed v. The advection term in
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Eq. (2.11) suggests that the spatial inhomogeneity can also cause the individuals

to drift; the results show that individuals in a repulsion driven situation (e.g.

hazard avoidance) tend to aggregate near the minima of the diffusivity while

those in an attraction driven situation (e.g. food searching) tend to aggregate

near the diffusivity maxima. A common conjecture is that the diffusion among

animals is for the purpose of avoiding overcrowd, which can be classified as a

repulsion-induced diffusivity. Therefore, some models choose to construct a dif-

fusivity inversely proportional to the local density field and result in aggregations

near where the density is already higher. Note that the mechanism behind such

repulsion-induced aggregations is more in line with Hamilton’s selfish herds [38]

and different from the models of Thompson et al. [92] and of Alt [2], where

individuals are actively seeking company. Nonetheless, many kinematic mod-

els assume the form of an advection-diffusion equation similar to Eq. (2.11) as a

building block [16, 65, 84]. Indeed, an active aggregation due to attraction can be

formulated as the biased-induced drift speed v, such as the models discussed in

“The Regulation of Inhomogeneous Populations” by Gurney and Nisbet [37] and

in “Partial differential equations in ecology: spatial interactions and population

dynamics” by Holmes et al. [41]

∂ρ

∂t
=

∂

∂x

(

c∂ρ

∂x
ρ

)

+ κ
∂2ρ

∂x2
. (2.15)

Here, κ is homogeneous, and v ≡ c∂ρ/∂x. If the constant c is chosen greater than

zero, the drift is biased toward a higher ρ, and the individuals move upward along

the density gradient, resulting in aggregation. On the other hand, the convolution

form in Eq. (2.7) provides an alternative idea of handling the active attractions.

Although Eq. (2.7) is used for an externally induced drift aggregation in Ref. [2],

the convolution can also be applied for internally induced swarming aggregation
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[62, 94], which is the subject of our research in this thesis.

2.2.3 The position-jump and the orientation-jump pro-

cesses

Another difference among typical kinematic swarming models is that some mod-

els, such as those of Hamilton and of Okubo [38, 71], describe the process as

consecutive jumps in positions of individuals, where the length of a jump may

vary; others, such as the models of Thompson et al. and of Alt, describe the pro-

cess as a series of discrete changes in individuals’ orientations, where the speed of

an individual is usually assumed constant. The former are called position-jump

models or “kangaroo processes” by Othmer et al. in their 1988 paper “Models

of Dispersal in Biological Systems” [74] since the individuals jump like kanga-

roos. The latter belong to a sub-class of what Othmer et al. call velocity-jump

models. They are called orientation-jump models here because the most general

cases of velocity-jump models in Ref. [74] also include dynamic models, which are

discussed in Section 2.3. Position-jump models are the direct descendants of dis-

persal models in population dynamics while orientation-jump models are variants

that lead to dynamic swarming models.

To derive a general form for both position-jump and orientation-jump models,

Othmer et al. begin with a waiting time probability function f(t), which specifies

the probability of individuals waiting for a period of time t between jumps. The

probability of an individual staying put (not making jumps) within t is then

f̂ (t) =

∫ ∞

t

f (s) ds. (2.16)

Assuming that the probability of an individual jumping from location ~y to location

~x at time t is k (~x, ~y, t), the amount of individuals that jump into ~x exactly at
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time t can be expressed as

δρ (~x, t) = δt,0ρ (~x, 0) +

∫ t

0

∫

Rd

f (t− s) k (~x, ~y, t) δρ (~y, s) d~y ds, (2.17)

where ρ (~x, 0) is the initial density distribution; δt,0 = 1 when t = 0 and = 0

otherwise. Hence, the density distribution at time t is

ρ (~x, t) =

∫ t

0

f̂ (t− s1) δρ (~x, s1) ds (2.18)

= f̂ (t) ρ (~x, 0)

+

∫ t

0

∫ s1

0

∫

Rd

f̂ (t− s1) f (s1 − s2) k (~x, ~y, s2) δρ (~y, s2) d~y ds2 ds1.

When k is independent of time, Eq. (2.18) can further be reduced to

ρ (~x, t) = f̂ (t) ρ (~x, 0) +

∫ t

0

∫

Rd

f (t− s) k (~x, ~y) ρ (~y, s) d~y ds. (2.19)

The random motion of animals is commonly modeled as a Poisson process, charac-

terized by f (t) = c exp (−ct), where c is an arbitrary constant. By differentiating

Eq. (2.19) with respect to t,

∂ρ

∂t
= −cρ + c

∫

Rd

k (~x, ~y) ρ (~y) d~y (2.20)

for a Poisson process. In one dimension with

k (x, y) =
1

δx
k0

(

x− y

δx
, δx

)

, (2.21)

one obtains an advection-diffusion equation

∂ρ

∂t
= v

∂ρ

∂x
+ κ

∂2ρ

∂x2
+ O

(

δx3
)

, (2.22)
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provided that the constants

v =
cδx2

2

∫

R

k0 (r, δx)

δx
rdr, (2.23)

κ =
cδx2

2

∫

R

k0 (r, δx) r2dr, (2.24)

converge in the diffusion limit ( δx → 0, c → ∞, and cδx2 → a finite constant).

Note that for non-biased random walk processes, k0 is symmetric and v vanishes,

leaving only the diffusion term in Eq. (2.22). These are consistent with the findings

by Okubo in Ref. [71] and further support the use of advection-diffusion equations

for position-jump models.

Similar processes can also be applied to orientation-jump models. The equa-

tion analogous to Eq. (2.20) for a Poisson process is

∂ρ

∂t
+ vv̂ · ~∇ρ = −cρ + c

∫

Bd−1

k (v̂, û) ρ (~x,~v) dû. (2.25)

Here, k is the probability of an individual changing its orientation from û to v̂.

Note that Eq. (2.25) becomes the same as Eq. (2.7) derived by Alt in Ref. [2] as c

is a constant turning frequency. For a 1D problem,

k (v̂, û) = δû,−v̂ (2.26)

because the orientation can only switch to the opposite direction when a jump is

made. This reduces Eq. (2.25) to a damped wave equation

∂2ρ

∂t2
+ 2c

∂ρ

∂t
= v2 ∂

2ρ

∂x2
, (2.27)

also known as the telegraph equation.

The advection-diffusion models as in Eq. (2.22) are sometimes criticized be-
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Figure 2.4: The solutions of the diffusion and the telegraph equations [40].
The initial condition is a delta pulse at the release point. The two figures show
snapshots at t = 5 (left) and at t = 7.6 (right). Reprint of Fig. 1 on page 783
in E. E. Holmes, “Are diffusion models too simple? A comparison with telegraph
models of invasion”, American Naturalist, Vol. 142, No. 5, pp. 779-795 c©1993
by The University of Chicago.

cause they yield solutions with infinite speed of propagation of the support [40,

41, 62]. This is an unphysical situation, and thus, the solutions of the advection-

diffusion equations are often seen as only an approximation to the actual den-

sity distribution. On the other hand, the telegraph equation in Eq. (2.27) has a

more favorable solution, where the density can only spread with a finite speed.

The comparison of the solutions for both models are shown in Fig. 2.4; the solu-

tions of the telegraph equation stay compactly-supported after a finite time while

those of the diffusion equation spread indefinitely. However, the derivation of

the advection-diffusion equation is more general and can be extended to higher

dimensions while the derivation of the telegraph equation really depends on the

specific 1D properties [74]. Therefore, the advection-diffusion models are often

reasonably assumed for position-jump processes, and the functional forms of the

advection and the diffusion terms are conveniently altered on a heuristic ground

for various situations or assumptions. The individual jump rules of a general
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orientation-jump model are usually far more complicated than the 1D case, and

its PDE description cannot be obtained as elegantly as in Eq. (2.27). As a result,

the advection-diffusion models are usually adopted for analytical studies because

of their simplicity. An orientation-jump model often retains its individual-based

forms to serve application purposes and may eventually evolve into a dynamic

model. Sections 2.2.4 and 2.2.5 discuss more recent developments in each of the

categories.

2.2.4 Advection-diffusion models

As previously mentioned, the advection-diffusion models are sometimes criticized

for their unconfined solutions that allows individuals to travel at an infinite speed.

Attempts were made to provide remedies for this non-physical situation. Holmes

compared the solutions of the diffusion and the telegraph equations in her 1993

paper “Are Diffusion Models too Simple? A Comparison with Telegraph Models

for Invasion” [40]. It is shown that without population reproduction, both solu-

tions are very close to each other after some transient time and converge toward

each other asymptotically (Fig. 2.4). Therefore, it is reasonable to regard the

advection-diffusion models as an approximation of the more realistic cases where

individuals should only travel at finite speeds.

A further improvement of this situation is provided by Mogilner and Edelstein-

Keshet in their 1999 paper “A Non-Local Model for a Swarm” [62]. They begin

with the general 1D advection-diffusion form as in Eq. (2.11) with Φ = 0.5 (dis-

persal due to both attraction and repulsion)

∂ρ

∂t
= − ∂

∂x
(vρ) +

∂

∂x

(

κ
∂ρ

∂x

)

. (2.28)
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Figure 2.5: The effects of an odd kernel (left) and an even one (right) on density
movements in Ref. [62]. Reprint of Fig. 1 on page 541 in A. Mogilner and L. Edel-
stein-Keshet (1999) “A non-local model for a swarm”, Journal of Mathematical
Biology, Vol. 38, No. 6, pp. 534-570, with kind permission of Springer-Verlag
and Business Media.

The novel idea is that the drift speed v takes a convolution form

v (ρ (x, t)) = k ∗ ρ (2.29)

=

∫ y+r

y−r

k (x− y) ρ (y, t) dy,

introducing non-locality into the dynamics. They found that the even kernels

provide a drift motion toward either direction while the odd ones cause the popu-

lation density to aggregate or to spread, as shown in Fig. 2.5. Knowing the effects

of the kernels, a particular kernel is constructed

v = keρ + (Ca − Crρ) (ko ∗ ρ) , (2.30)

where ke, Ca, and Cr are scalar constants and ko is an odd kernel

ko =

{

− x
2r|x| if |x| ≤ r

0 otherwise .
(2.31)

Here, r represents an interaction length scale. The drift term keρ is a local

function, and the aggregation is modeled by an attraction Cako∗ρ and a repulsion

Crρko ∗ ρ, both of which are non-local. The diffusion κ can stabilize the density
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Figure 2.6: A basic simulation for the model of Mogilner and Edelstein-Keshet
in Ref. [62]. The horizontal axis represents the one-dimensional spatial coordinate
x, while the vertical axis represents density ρ. Reprint of Fig. 4 on page 556 in A.
Mogilner and L. Edelstein-Keshet (1999) “A non-local model for a swarm”, Jour-
nal of Mathematical Biology, Vol. 38, No. 6, pp. 534-570, with kind permission
of Springer-Verlag and Business Media.

aggregation if it is chosen density-dependent

κ = κ0ρ, (2.32)

where κ0 is a positive constant. It is shown that if the diffusion is small enough

κ0 <
Car

4

(

1 − 2ke

Ca

)

, (2.33)

the compactly-supported solutions are locally stable. A basic simulation of the

model is shown in Fig 2.6. A small portion of the density trails behind the main

group while the front edge touches down to zero. Although there is no global

stability for such “traveling-band” solutions, they last long enough to make their

existence meaningful on biologically reasonable time scales.
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The studies of the non-local model of Mogilner and Edelstein-Keshet were

extended from 1D to 2D by Topaz and Bertozzi in their 2004 paper “Swarming

Patterns in a Two-Dimensional Kinematic Model for Biological Groups” [94].

Here, the diffusion κ due to random movement is assumed negligible since local

stability exists only for small diffusion. The 2D equations of motion are

∂ρ

∂t
= −~∇ · (~vρ) , (2.34)

~v = ~k ∗ ρ =

∫

R2

~k (|~x− ~y|) ρ (~y) d~y. (2.35)

Here, the integration kernel ~k is a two-dimensional vector, which can generally be

written as

~k ≡ ~∇⊥VN + ~∇VP (2.36)

by applying the Hodge decomposition, where ~∇⊥ ≡ (−∂/∂y, ∂/∂x) in 2D. The

first term on the RHS of Eq. (2.36) contributes to density-conserved “incompress-

ible motion” while the second term describes the compressibility of the density

distribution, named “potential motion” in the paper. These two component can

be investigated independently. For the incompressible motion, the model resem-

bles that of vortex patches in the fluid dynamics. A typical example is shown in

Fig. 2.7 by using a Gaussian kernel for VN . The gray patch is a constant density

distribution, which begins to rotate and develops spiral arms. On the other hand,

the potential motion is shown in Fig. 2.8 using the same Gaussian kernel but as VP

here. The density gradually concentrates into several groups. The power spectra

show that each final distribution has a particular wave number which is related

to the interaction length, defined in the kernel VP . For the case of a general

kernel ~k in 2D, the density movement should be a combination of the above two

types. While the potential motion depicts the aggregation behavior of animals,
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Figure 2.7: The incompressible motion of the 2D model in Ref. [94]. The time
evolution of the pictures is from top-left to bottom-left, then from top-right to
bottom-right. The shaded area represents a constant density evolving on a 2D
(x-y) plane. Reprint from C. M. Topaz and A. L. Bertozzi, “Swarming patterns
in a two-dimensional kinematic model for biological groups”, SIAM Journal on
Applied Mathematics, Vol. 65, pp. 152-174, Copyright (2004) by SIAM.
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Figure 2.8: The potential motion of the 2D model in Ref. [94]. In the left panel
are the spatial distributions of the density in a 2π×2π box. In the right panel are
the power spectra of the density distributions to their left. Darker colors mean
higher densities. The top figures are the initial distribution, the middle ones are
the case of a shorter interaction-length (equaling 0.4), and the bottom ones are of
a longer interaction-length (equaling 1.0). Reprint from C. M. Topaz and A. L.
Bertozzi, “Swarming patterns in a two-dimensional kinematic model for biological
groups”, SIAM Journal on Applied Mathematics, Vol. 65, pp. 152-174, Copyright
(2004) by SIAM.
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the incompressible motion resembles certain circular movements among animals,

such as the mill-formation in fish and in ants, discussed later in Chapter 3.

More variations of the advection-diffusion models can be found in Ref. [22, 35,

36, 41, 50, 64, 95]. The advection-diffusion models are usually more favorable for

1D problems because the jump rules are simpler in 1D, and the derivation, as

well as the model construction, is rather straightforward. In higher dimensions,

it becomes less clear how the functional forms of the advection and the diffusion

terms are related to individual rules, and the individual rules are often more so-

phisticated. As a result, researchers often model the swarms in higher dimensions

as sets of directional rules, which are categorized as orientation-jump models.

2.2.5 Orientation-jump models

Orientation-jump models are especially favorable for modeling bird flocks and fish

schools, which are known to keep a relatively constant individual speed and to

reach intended positions by changing the heading direction. The bird flock model

of Thompson et al. [92] in Section 2.2.1 is an earlier example of orientation-jump

models. The directional rules of Thompson et al. are too complicated for much

theoretical analysis other than behavioral observations. One of the most abstract

orientation-jump models is the one proposed by Vicsek et al. in their work “Novel

Type of Phase Transition in a System of Self-Driven Particles” in 1995 [98]. Not

restricted to any specific species, the model describes a group of general swarming

particles that change their orientations to align with each other. The equations

of motion are

~xi (t+ ∆t) = ~xi (t) + ~vi (t) ∆t, (2.37)

~vi (t) = v cos Θi (t) x̂ + v sin Θi (t) ŷ, (2.38)

Θi (t+ ∆t) = 〈Θ (t)〉i,` + ηΘ, (2.39)
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where ~xi and ~vi are respectively the position and the velocity of particle i; v is a

constant speed; the orientation is denoted by an angle Θi; 〈Θ (t)〉i,` is the ensemble

average of the orientations of all particles located within an interaction range `

of particle i. A stochastic term ηΘ is added to the orientation jump, representing

noise in the swarm. Note that for the case of v = 0, the model reduces to an

analog of a well-known XY -model [52]. This is an extremely abstract model

and thus, particularly suitable for theoretical analysis. Simulations show that

for 0.003 < v < 0.3, the results are not affected by the value of v, and thus,

Vicsek et al. adopt v = 0.03 for their presentation. The value of ηΘ is randomly

chosen with a uniform probability distribution from the interval [−η/2 , η/2].

The computational domain is an L × L box with periodic boundary conditions.

The number of particles are denoted by N , and thus, ρ ≡ N/L2 is the density.

Vicsek et al. found that the aggregation behaviors vary with respect to η and ρ.

Examples of their simulations can be found in Fig. 1 of Ref. [98]. It shows that for

low density and low noise, the particles aggregate into small groups with locally

coherent motion. For high density and high noise, the particles drift randomly,

and for high density and low noise, almost all particles move coherently. The

degree of coherence can be measure by a quantity P , called the “polarity”

P ≡ 1

Nv

∣

∣

∣

∣

∣

N
∑

i=1

~vi

∣

∣

∣

∣

∣

. (2.40)

For highly coherent configurations, P ' 1, and for those randomly distributed,

P ' 0. They discovered that the model exhibits an interesting phase transition

P ∝ (ηc (ρ) − η)β1 , (2.41)

P ∝ (ρ− ρc (η))β2 , (2.42)
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where ηc and ρc are respectively critical noise and critical density, which are

evaluated from the simulations. The critical exponents can be fitted to obtain

β1 = 0.45 ± 0.07 and β2 = 0.35 ± 0.06.

While the model of Vicsek et al. is not restricted to any specific species, many

orientation-jump models are based on real-life examples. In an effort to better

describe the movement of organisms, a series of development eventually leads

orientation-jump models to dynamic models. The model of Thompson et al. [92]

in Section 2.2.1 is an early example that involves sophisticated orientation rules.

For the purpose of parametric studies, simplified models are more suitable. Huth

and Wissel design an orientation-jump model for fish to test some assumptions

in their 1992 paper “The Simulation of the Movement of Fish Schools” [44]. One

particular question is whether a fish adjust its orientation according to that of

a particular neighbor, or to the averaged direction of multiple neighbors. Let

xi,j be the distance between fish i and its neighbor fish j. Following the be-

havioral patterns suggested by Aoki in his 1982 paper “A Simulation Study on

the Schooling Mechanism in Fish” [3], Huth and Wissel categorized the neighbor

distances into four different areas: the repulsion area (xi,j < r1), the parallel

area (r1 < xi,j < r2), the attraction area (r2 < xi,j < r3), and the searching

area (xi,j > r3), as shown in Fig. 2.9. Additionally, there is a blind spot behind

the fish, characterized by an angle ω and also categorized as the searching area.

When two fish are in the parallel area, they tend to align their orientation. In

the repulsion area, fish veer away from each other by each heading toward the

perpendicular direction of the other’s current orientation. In the attraction area,

the fish turn toward each other’s current location. In the searching area, a fish

just randomly picks an orientation. Let δΘi,j be a turning angle taken by fish i

for the next time step due to the presence of fish j; the orientation rules can be
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Figure 2.9: The four different interaction areas defined by Huth and Wissel
in Ref. [44]. From inner to outer, the four areas are respectively the repulsion
area, the parallel area, the attraction area, and the searching area. Reprinted
from Journal of Theoretical Biology, Vol. 156, A. Huth and C. Wissel, “The
simulation of the movement of fish schools”, pp. 365-385, Copyright (1992) with
permission from Elsevier.
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formulated as

δΘi,j =























min
(

arg (v̂j − v̂i) ± π
2

)

if xi,j < r1 (attraction area),

arg (v̂j − v̂i) if r1 < xi,j < r2 (parallel area),

arg
(

~xj−~xi

|~xj−~xi| − v̂i

)

if r2 < xi,j < r3 (attraction area),

a random angle if xi,j > r3 (searching area) ,

(2.43)

where ~xi and v̂i are respectively the position and the orientation of fish i, and

arg (v̂) is the angle of the orientation v̂. For swarms consisting more than two

fish, the actual turning angle of fish i, ∆Θi, is randomly picked from one of the

following two probability distributions

f (∆Θi) =
∑µ

j=1
6
√

2
π2 bje

−(∆Θi−δΘi,j)
2(π/12)2 (D-model), (2.44)

f (∆Θi) = 6
√

2
π2 bje

−(∆Θi−〈δΘi,j〉)
2(π/12)2 (A-model), (2.45)

where 〈δΘi,j〉 =
(

∑µ
j=1 δΘi,j

)

/µ, µ is the number of neighbors, and bj is a weight

factor of fish j. D-model (Eq. (2.44)) lets a fish randomly decide a neighbor to

follow, while in A-model (Eq. (2.45)) the turning angle is an ensemble average

over all neighbors. After ∆Θi is determined, the equations of motion are

~xi (t + ∆t) = ~xi (t) + ~vi (t + ∆t) ∆t, (2.46)

~vi (t) = v (t) v̂i (t) , (2.47)

v̂i (t + ∆t) =

(

cos ∆Θi (t) − sin ∆Θi (t)
sin ∆Θi (t) cos ∆Θi (t)

)

v̂i (t) , (2.48)

where ~vi is the velocity of fish i, composed of its magnitude vi and its orientation

v̂i. The magnitude vi is a random number picked from a Gamma distribution for

each time step

fΓ (vi) ∝ vi
3e−3.3vi . (2.49)
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Figure 2.10: The functions of behavior patterns adopted by Reuter and Breck-
ling in Ref. [78]. The most preferred swimming distance between neighbors is
denoted by md in the figure, where the parallel orientation increases to 100%
without any attraction or repulsion. The x-axis represents the neighbor distance
ma, and the y-axis specifies the percentage of the repulsion, the parallel orien-
tation, and the attraction. Reprinted from Ecological Modelling, Vol. 75-76,
H. Reuter and B. Breckling, “Selforganization of fish schools: an object-oriented
model”, pp. 147-159, Copyright (1994) with permission from Elsevier.

By comparing the D-model and the A-model, Huth and Wissel found that the A-

model better resembles the group behaviors of real fish schools than the D-model

and produces more coherent movement among the fish. In their subsequent paper

“The Simulation of Fish Schools in Comparison with Experimental Data” in 1994

[45], the internal structures of the fish schools produced by the A-model also

compare favorably to experimental data. Most swarming models, including ours,

calculate neighbor-interactions using ensemble averages, and the results of Huth

and Wissel justify this conjecture. A close variant of Huth and Wissel’s model is

provided by Reuter and Breckling in their 1994 paper “Selforganization of Fish
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Schools: an Object-Oriented Model” [78]. In their model, the interaction areas

are no longer distinctly separated; instead, the interaction becomes a mixture

of various ratios of the repulsion, the parallel orientation, and the attraction, as

shown in Fig. 2.10. Comparing to the model of Huth and Wissel, this model is

more capable of overcoming randomized initial configurations and environmental

disturbance to result in self-organized coherent swarms.

Although kinematic descriptions are reasonably suited for the cases such as fish

and birds that feature approximately constant speeds, there are limitations. Most

notably, the orientation of the velocity cannot abruptly change by an arbitrarily

large angle, as assumed in a kinematic orientation-jump model. A more realistic

formulation is imposing a finite turning rate, which is a dynamic feature since it

is associated to the changing rate of the velocity. An example of such a hybrid

model appears in the 2002 paper “Collective Memory and Spatial Sorting in

Animal Groups” by Couzin et al. [14]. The basic idea is similar to that of

Huth and Wissel [44]. Several behavioral zones are defined, as shown in Fig. 2.11,

including the zone of repulsion (zor), the zone of orientation (zoo), and the zone

of attraction (zoa), of which the radii are respectively denoted by rr, ro, and ra.

A particular individual tends to move away from the neighbors in zor, to align its

orientation with that of the neighbors in zoo, and to move towards the neighbors

in zoa. As a result, the “intended” orientation for an individual at the next time

step is

v̂′i =
~v′i
|~v′i|

, (2.50)

~v′i ≡
∑

j∈zor

~xi,j (t)

xi,j (t)
+
∑

j∈zoo

v̂i (t) −
∑

j∈zoa

~xi,j (t)

xi,j (t)
. (2.51)

An exceptional situation is when there is no neighbor present in any of the be-
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Figure 2.11: The behavioral zones defined by Couzin et al. in [14]: zor is zone
of repulsion, zoo is zone of orientation, and zoa is zone of attraction. The angle
α defines a field of perception for an individual, and thus, the region behind an
individual, indicated by (360 − α)◦, is a blind spot which it cannot see. Reprinted
from Journal of Theoretical Biology, Vol. 218, I. D. Couzin, J. Krause, R. James,
G. D. Ruxton, and N. R. Franks, “Collective memory and spatial sorting in animal
groups”, pp. 1-11, Copyright (2002) with permission from Elsevier.
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havioral zones. In this case, the individual maintains its current orientation, i.e.,

v̂′i = v̂i (t). Here, v̂i (t) is the orientation of particle i at time t. The displacement

vector from particle i to particle j is denoted by ~xi,j ≡ ~xj − ~xi, where ~xi is the

position of particle i; xi,j ≡ |~xi,j| is the scalar distance. Let ω be a finite turning

rate and Θ be the angle between the unit vectors v̂i (t) and v̂′i. The orientation of

particle i at the next time step v̂i (t+ ∆t) = v̂′i if Θ ≤ ω∆t; otherwise, particle i

turns an angle ω∆t toward the direction of v̂′i. By varying the widths of zoo and

zoa, denoted by ∆ro ≡ ro−rr and ∆ra ≡ ra−ro respectively, the authors find dra-

matical transitions among four distinct states, as shown in Fig. 2.12. Such states

can be distinguished by two group properties, named the polarity and the angular

momentum, which we adopt for our studies and discuss later in Section 3.5. A

high polarity indicates a highly aligned arrangement within a group and a high

angular momentum points to a highly coherent rotational pattern. The phase di-

agrams of the polarity and the angular momentum are shown by Fig. 2.12 (E) and

(F), respectively. The authors call the state in Fig. 2.12 (A) a swarm, which has

low polarity and low angular momentum, corresponding to region a in the phase

diagrams. The pattern in Figure 2.12 (B) is called a torus; it has low polarity

and high angular momentum, corresponding to region b in the phase diagrams.

Figure 2.12 (C) and (D) show respectively a dynamic parallel group and a highly

parallel group; both have much higher polarity and very low angular momentum,

corresponding to regions c and d in the phase diagrams. The addition region e in

the phase diagram represents a parameter regime where groups tend to fragment.

Swarm behaviors are often observed in insects while the torus can be seen in fish

schools [70, 75, 76]. While traveling, fish schools also form parallel groups, as do

bird flocks. Among the model parameters, the effect of the turning rate ω is also

investigated in their paper. It is found that the turning rate affects the internal
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Figure 2.12: Various swarming states observed in the model of Couzin et al.
[14]: (A) Swarm, (B) Torus, (C) Dynamic parallel group, and (D) Highly parallel
group. The two figures on the bottom are the phase diagrams of (E) the polarity
and (F) the angular momentum. Swarm behavior in (A) corresponds to region a
in the phase diagrams; torus behavior in (B) is indicated by region b; regions c
and d represent (C) and (D) respectively. Region e has a great chance of resulting
in fragmenting groups. Reprinted from Journal of Theoretical Biology, Vol. 218,
I. D. Couzin, J. Krause, R. James, G. D. Ruxton, and N. R. Franks, “Collective
memory and spatial sorting in animal groups”, pp. 1-11, Copyright (2002) with
permission from Elsevier.
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structure of a group, where the particles with a higher turning rate tend to be

closer to the group center and away from the group front.

The basic assumption of the orientation-jump models is that the particle speed

is constant. This is a reasonable approximation for animals in constant movement,

such as fish and flying birds, as well as some types of robots in artificial swarms,

such as Dubins vehicle [18, 86, 89] (see also Chapter 8). For more general cases,

acceleration is involved and the particle speed may not stay homogeneously con-

stant. Fully dynamic descriptions are required to account for such situations.

This is especially true for most types of swarming robots which exhibit significant

acceleration phases. Dynamic models also offer clearer physical interpretations

for the studies of individual and pairwise behaviors, because particle interactions

and environment influences are viewed as forces. In the next section, we review

the historical development of the dynamic swarming models.

2.3 Dynamic models

As previously mentioned, dynamic descriptions are more favorable for the behav-

ioral studies at the individual-level. Indeed, the dynamic models for swarming

problems started with the investigations of the internal structure of swarms, espe-

cially how animals manage to keep an optimal distance from one another within

a group. The possibility of using Newton’s laws to understand these phenomena

was first suggested by Breder in his 1951 paper “Studies on the structure of the

fish school” [5]. In his 1954 article “Equations descriptive of fish schools and

other animal aggregations” [6], he further formulated this idea by proposing an

interaction force

F (x) =
Ca

xm
− Cr

xn
, (2.52)
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where positive values mean attraction, and negative ones indicate repulsion, al-

though the convention in physics would rather reverse the signs. Eq. 2.52 is dis-

cussed and compared with static data analysis.

In two 1973 papers, “A model for group structure and its behavior” by Sakai

[81] and “Movement of a group of animals” by Suzuki and Sakai [91], the first

truly dynamic model for swarming problems was constructed. The equation of

motion is [70]

mi
d2~xi

dt2
+ β

d~xi

dt
= α

d~xi/dt

|d~xi/dt|
+

1

N − 1

N
∑

j 6=i

C (xi,j)
~xi,j

xi,j

(2.53)

+
1

µ

∑

xi,j<`

c0

(

d~xj

dt
− d~xi

dt

)

+ ηi (t) ,

where mi and ~xi are the mass and the position of particle i, respectively. Time

is denoted by t, and β is the friction coefficient. The first term on the RHS of

Eq. (2.53) is a forward thrust, or the propulsion, where the parameter α specifies

its strength. The second term is a mutual interaction force, where

C (xi,j) =











−c1xi,j if 0 < xi,j < R0,

c2 if R0 < xi,j < R1,

0 if R1 < xi,j.

(2.54)

The parameters c1 and c2 are positive coefficients, and N is the total number

of particles in the group. In Eq. (2.54), the mutual interaction force consists of

a linear repulsive force at shorter range, a constant attractive force at medium

range, and zero force at long range. The third term is an arrayal force that aligns

the particle velocities with each other. The arrayal coefficient c0 is also a positive

number, and µ is the number of neighbor particles that qualify the criterion

xi,j < `, in which ` is a threshold distance. The fourth term ηi is a stochastic
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Figure 2.13: Basic patterns of the model in Ref. [81, 91]. a) Amoebic movement.
b) Doughnut pattern. c) Rectilinear movement. The figure comes from Ref. [70].
Reprint of Fig. 7.11 on page 125 of Ch. 7 “The dynamics of animal grouping”
in A. Okubo, (1980) Diffusion and Ecological Problems: Mathematical Models,
with kind permission of Springer-Verlag and Business Media.

force describing environmental noise. By varying the parameters of the model, the

authors observe three major categories of group movement: amoebic movement ,

doughnut pattern, and rectilinear movement, as shown in Fig. 2.13. Note that the

amoebic movement is similar to the swarm behavior in the model of Couzin et

al. [14], the doughnut pattern is comparable to their torus behavior, and the

rectilinear movement belongs to parallel groups. A phase diagram of pattern

transitions regarding some of the model parameters is presented in Fig. 2.14, in

which the parameters the authors investigate are the propulsion strength α, the

magnitude of noise max |ηi|, the arrayal coefficient c0, and the threshold distance

` of the arrayal force. Another earlier dynamic model was proposed by Okubo

et al. in their 1977 paper “Studies on the schooling behavior of fish” [72]. They

describe fish movement as forced, damped harmonic oscillations, in which the

oscillators were coupled under the assumption that a trailing fish would follow
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Figure 2.14: Phase diagram of various group patterns of the model in Ref.[81,
91]. The symbols used in the figure is different from those used here: a is α, b is
max |ηi|, h is c0, and ` has the same definition. The figure comes from Ref. [70].
Reprint of Fig. 7.12 on page 126 of Ch. 7 “The dynamics of animal grouping”
in A. Okubo, (1980) Diffusion and Ecological Problems: Mathematical Models,
with kind permission of Springer-Verlag and Business Media.
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a leading one. This model provided an insight in the spectrum analysis of the

trajectory fluctuations due to fish adjusting their equilibrium distances between

each other. It is, however, much less relevant to our dynamic model; therefore,

we will not discuss it in detail here. These earlier dynamic models are discussed

in Okubo’s 1980 review book “Diffusion and Ecological Problems: Mathematical

Models” [70].

In the next decade, the concept of applying Newton’s laws in swarming prob-

lems was mostly used for static data analysis, such as individual tendency, spacing

between swarmers, and swarmers’ relative positions within a swarm [3, 4, 31, 105,

102]. It was not until the 1990s, with the aid of rapid advances in computers, that

the group-level dynamics of these models re-emerged as an active area of research.

One example is the 1990 article “A stochastic nonlinear model for coordinated bird

flocks” by Heppner and Grenander [39]. They model the strongly synchronized

movement of certain small bird flocks such as pigeons, starlings, and shorebirds.

Since experimental efforts to identify leaders among these flocks have failed, they

propose that these phenomena can be a byproduct of some decentralized rules.

The equations describing such rules are

d~xi

dt
= ~vi, (2.55)

d~vi

dt
= −~vi fvel (vi) − ~xi fhome (xi) +

N
∑

j=1

finteract (xi,j) ~xi,j + ηi (t) , (2.56)

where ~xi and ~vi are the position and the velocity of bird i, and ~xi,j ≡ ~xj − ~xi.

The functional forms of fvel, fhome, and finteract are drawn in Fig. 2.15, from left to

right respectively. The first term on the RHS of Eq. (2.56) is a velocity regulation

force that expresses the tendency of individual birds to achieve a constant favorite

speed. The second term is called a homing force, which describes how the birds
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Figure 2.15: The functional form of the forces adopted in the bird flock model of
Heppner and Grenander [39]. Left: Velocity regulation. Middle: Homing. Right:
Interaction. Reprints of Fig. 1, Fig. 2, and Fig. 3 on page 235 in Ch. 19, F.
Heppner and U. Grenander, “A stochastic nonlinear model for coordinated bird
flocks”, The Ubiquity of Chaos, Ed. S. Krasner, c©1990 by American Association
for the Advancement of Science.

are attracted toward their roosting area at the origin. The third term is an

interaction force, featuring a short-range repulsion and a long-range attraction.

The last term ηi is a stochastic force simulating environmental noise. Computer

simulations of the model in Eq. (2.55) - (2.56) exhibit several flock-like behaviors

including group hovering and clumping that mimic real birds. One example is

shown in Fig. 2.16.

In a 1994 paper, Niwa recognized Breder’s and Sakai’s works and explicitly

laid down a general frame work for dynamic models [67]. He categorized the forces

within a swarming system into four components:

1. locomotory force: it regulates the velocities of an individual, also know as

the self-driving force;

2. attraction: coming from other individuals within the swarm, it is usually

coupled with a repulsion as well and also known as the interaction force;

3. arrayal force: it unifies the velocities among neighbors;

4. stochastic force: it is postulated as environmental noise or small errors in

the sensory system of individuals.
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Figure 2.16: A series of time frames of the model simulation in Ref. [39]. The
encircled cross is the roosting area. The small dots represent individual birds,
on which the line segments indicate the forces acting on the birds. Reprint of
Fig. 4 on page 237 in Ch. 19, F. Heppner and U. Grenander, “A stochastic
nonlinear model for coordinated bird flocks”, The Ubiquity of Chaos, Ed. S.
Krasner, c©1990 by American Association for the Advancement of Science.

Let ~xi and ~vi represent the position and velocity of particle i; the general equations

of motion can be expressed as

d~xi

dt
= ~vi, (2.57)

d~vi

dt
= ~F

(l)
i + ~F

(g)
i + ~F

(p)
i + ~ηi, (2.58)

where ~F
(l)
i is the locomotory force, ~F

(g)
i is the attraction, ~F

(p)
i is the arrayal force,

and ~ηi is the stochastic force. Note that the locomotory force is called the velocity

regulation force in Heppner and Grenander’s model; it is also the combination of

the forward propulsion and the friction of the Sakai and Suzuki’s model. The

attraction is often called interaction elsewhere. The specific functionals Niwa
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Figure 2.17: The theoretical curve of the phase transition between polarized and
non-polarized groups in Niwa’s model [67]. Reprinted from Journal of Theoretical
Biology, Vol. 171, H.-S. Niwa, “Self-organizing dynamic model of fish schooling”,
pp. 123-136, Copyright (1994) with permission from Elsevier.

adopted for his model simulations are

~F
(l)
i = α~vi − βv2

i ~vi, (2.59)

~F
(g)
i =

∑

j 6=i

(

Ca
~xi,j

xi,j
− Cr

~xi,j

x3
i,j

)

, (2.60)

~F
(p)
i =

c0
µi

∑

xi,j<`

(~vj − ~vi) . (2.61)

The parameter α and β are respectively propulsion and friction coefficients while

Ca and Cr specify the strengths of attraction and repulsion. The arrayal force only

acts on nearby neighbors within a threshold distance `, and the number of such

neighbors around particle i is denoted by µi. The parameter c0 is the coefficient

of the arrayal force. The stochastic force ~ηi is randomly picked from a Gaussian

distribution satisfying

〈~ηi (t) · ~ηi (t
′)〉 =

2ε

N
δ (t− t′) , (2.62)

where ε is a small coefficient, and N is the total number of particles. Niwa
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derived a probability function of group velocities and its time evolution from

Eqs. (2.57) - (2.62). Similar to the purpose in Ref. [98] of Vicsek et al., he used

the probability function to study the phase transition between polarized and non-

polarized groups, as shown in Fig. 2.17. In the figure, the critical parameter is
√

(1 − 5βε/α)α/β, and the normalized speed is vcm/
√

α/β, where vcm is the

center of mass speed. Note that this normalized speed is a dynamic version of the

polarity defined in Eq. (2.40) for the kinematic model of Vicsek et al. Polarized

groups result in non-zero normalized speeds, and the critical transition point

occurs when the critical parameter equals zero.

Another independent development can also be found in Romey’s 1996 paper

“Individual differences make a difference in the trajectories of simulated schools

of fish” [79]. His model follows the orientation-jump kinematic models in Sec-

tion 2.2.5. Instead of directly formulating the velocity as in kinematic models, he

constructs an expression for the interaction force

~Fi =
∑

j 6=i

(

xc0
i,j − c1

)

~xi,j
(

xc2
i,j + c3

)

xi,j

, (2.63)

where ~xi,j ≡ ~xj − ~xi is the displacement vector from particle i to particle j, and

~xi is the position vector of particle i. The parameters c0, c1, c2, and c3 are four

arbitrary positive constants. Since the model is still an orientation-jump model,

the equation of motion governs the change in orientation for the next time step

v̂i (t+ ∆t) =
pv̂i (t) + (1 − p) ~Fi/Fi
∣

∣

∣
pv̂i (t) + (1 − p) ~Fi/Fi

∣

∣

∣

, (2.64)

where v̂i denotes the orientation of particle i, and 0 ≤ p ≤ 1 is a ratio of how much

old momentum is retained. The force ~Fi given in Eq. (2.63) indicates the direction
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toward which particle i tends to turn. High momentum particles have higher p

and make gradual turns while low momentum ones have lower p and turn more

sharply. Using the model, he investigated the effects of individual differences on

group trajectories and found some predictive trends regarding group structures.

While Romey’s model is still not completely dynamic, the model in the 1996

paper “Collective motion in a system of motile elements” by Shimoyama et al.

[85] is a further unification of the orientation-jump models and the dynamic mod-

els. Their model describes the motion of motile elements that mimic bird flocks.

Although the orientation is still the focus in the model, the time variation affects

the full velocity, not just the orientation. The equations of motion are

mi
d~vi

dt
= αn̂i − β~vi +

∑

j 6=i

ci,j ~Fi,j + ~Gi, (2.65)

τi
dn̂i

dt
= n̂i × v̂i × n̂i. (2.66)

A significant difference of this model is that there are two orientations. One is

the direction of the velocity v̂i = ~vi/vi, and the other is the heading direction

n̂i. In most of the other models, these are conveniently assumed to be the same.

However, if we image a bird gliding through the air, these two directions can be

different. As a result, the self-propulsion expressed by the first term on the RHS

of Eq. (2.65) is parallel to the heading direction n̂i, but the friction in the second

term is along the velocity direction v̂i. The third term is the mutual interaction

force while the fourth term is the gravitational force. Eq. (2.66) describes that the

orientation n̂i tend to relax toward v̂i. The parameter mi is the mass of particle i,

and τi is the relaxation coefficient associated to its moment. The functional form
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of the interaction force is chosen as

~Fi,j = −C
[

(xi,j

`

)3

−
(xi,j

`

)2
](

~xi,j

`

)

e(−xi,j/`), (2.67)

where ~xi,j is the displacement vector from particle i to particle j, C is the inter-

action strength parameter, and ` is the interaction length. The coefficient ci,j in

front of the interaction force enhances the effect of particles in front of particle i

ci,j = 1 + c0n̂i ·
~xi,j

xi,j
, (2.68)

where c0 is a positive constant. In their Fig. 2 of Ref. [85], they observed distinct

swarming patterns via model simulations. In addition to the coherent polarized

and incoherent non-polarized patterns studied in most previous models, there

are coherent rotational patterns that are also observed by Couzin et al. [14]

in Section 2.2.5. The authors quantitatively divide these patterns into chaotic

(incoherent) and non-chaotic (coherent) classes. By numerical simulations, they

find a unique parametric boundary that separates the two classes, which can be

found in their Fig. 3 of Ref. [85]. In the figure, the disorder parameter is the

standard deviation of particle speeds.

Thus far, the development of kinematic orientation models has converged to

the evolution of dynamic models. Niwa’s Eqs (2.57) - (2.58) are still the general

form of dynamic models. However, since Romey found that the effects of arrayal

force ~F (p) is minimum, many dynamic models, including ours, have ignored it.

Recently, a series of papers by Erdmann et al. has added new insights to swarm-

ing problems in the field of physics [21, 23, 24, 25]. They develop the “active

Brownian particles” models, which obey a Langevin equation, like normal Brow-

nian particles, but are also self-driven by additional “active forces”. Such systems
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are similar to those of swarming particles. The basic equations of motion are

d~xi

dt
= ~vi, (2.69)

d~vi

dt
= f (l) (vi)~vi − ~∇U (~xi) + ηi (t) . (2.70)

The first term on the RHS of Eq. (2.70) is the self-driving mechanism, i.e., the

locomotory force in Niwa’s classification, and the most common choice in their

various papers is

f (l) (v) = α− βv2, (2.71)

where α and β are positive constants. The second term on the RHS of Eq. (2.70)

is the interaction force, written as a potential gradient. The functional form of

the potential they usually choose is

U (~xi) =
∑

j 6=i

C

2
(~xi − ~xj)

2 , (2.72)

which assumes that all particles are attracted toward the center of mass, and the

force is proportional to the distance from the center of mass. This is Hooke’s

Law, and Eq. (2.72) is indeed a spring potential. The third term on the RHS of

Eq. (2.70) is the stochastic force, representing noise and satisfying

〈~ηi (t) · ~ηi (t
′)〉 = 2εδ (t− t′) , (2.73)

where ε is a small positive constant. Note that Erdmann et al. also ignore the ar-

rayal force. They focused primarily on noise-induced phenomena, which also has

biological significance since most swarming agents reside in noisy environments.

One interesting phenomenon observed in their model is that the rotational coher-

ent patterns may randomly switch direction with the presence of noise, as shown
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in Fig. 2.18. Noise also induces state transition from a translational state to a

rotational one, as shown in Fig. 2.19

All the dynamic models introduced so far are based on individual rules. Like

kinematic models in Section 2.2, which feature both individual-based random walk

models and continuum advection-diffusion models, continuum dynamic models,

albeit rare, also exist. The most noticeable is the contribution from Toner and

Tu in their 1995 paper “Long-range order in a two-dimensional XY model: How

birds fly together” [93]. By comparing the model of Vicsek et al. [98] to a classical

2D XY spin model [52], they add convection to the classical model and propose

the following equations of motion

∂ρ

∂t
+ ~∇ · (~vρ) = 0, (2.74)

∂~v

∂t
+
(

~v · ~∇
)

~v = α~v − βv2~v − ~∇P (2.75)

+κ0
~∇
(

~∇ · ~v
)

+ κ1
~∇2~v + κ2

(

~v · ~∇
)2

~v + η (~x, t) .

The density and the velocity fields are denoted by ρ and ~v, respectively. Eq. (2.74)

is the continuity equation while Eq. (2.75) is the momentum transport equation.

The first term on the RHS of Eq. (2.75) is the self-propulsion, and the second term

is the friction or self-deceleration; these two terms combine as the locomotory force

classified by Niwa [67]. The third term is a pressure gradient, where the pressure

P (ρ) =

∞
∑

m=1

cm (ρ− ρ0)
m . (2.76)

It reflects that the density tends to converge to a favorable density ρ0, and cm are

expansion coefficient. The parameters κ0, κ1, and κ2 in Eq. (2.75) are diffusion
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Figure 2.18: Snapshots of the active Brownian particles studied by Erdmann et
al. [23]. The counterclockwise mill in the first frame is disrupted in the second
frame and then evolves into a clockwise mill in the third frame. Reprinted figure
with permission from U. Erdmann, W. Ebeling, and V. S. Anishchenko, Physical
Review E, Vol. 65, pp. 061106, 2002. Copyright (2002) by the American Physical
Society.
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Figure 2.19: Snapshots of the transition from a translational state to a rotational
one in the model of Erdmann et al. [24]. Reprinted figure with permission from
U. Erdmann, W. Ebeling, and A. Mikhailov, Physical Review E, Vol. 71, pp.
051904, 2005. Copyright (2005) by the American Physical Society.
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coefficients, the the last term in the equation is a stochastic force, satisfying

〈ηi (~x, t) ηj (~x′, t′) = εδi,jδ
d (~x− ~x′) δ (t− t′) , (2.77)

where ε is a small positive constant, i and j represent Cartesian components,

d is the spatial dimension, and δ is the Dirac delta function. Upon linearizing

Eq. (2.74) - (2.75), the authors evaluate the scaling exponents of the model and

analytically study the symmetry-breaking states of its solutions. While the model

of Toner and Tu is based on heuristic arguments, in this thesis we propose a

systematic procedure to derive a dynamic continuum model from an established

dynamic individual-based model.

For interests in physics, a more abstract and more generalized swarming model

is favorable, especially for analytical studies. The dynamic model proposed by

Levine et al. in their 2000 paper “Self-organization in systems of self-propelled

particles” is even more simplified than the model of Erdmann et al [57]. It is a de-

terministic model that ignores the noise term, and the individual-based equations

of motion are

d~xi

dt
= ~vi, (2.78)

d~vi

dt
= αn̂i + β~vi − ~∇U (~xi) , (2.79)

where ~xi and ~vi are respectively the position and the velocity of particle i. The first

term on the RHS of Eq. (2.79) is the self-propulsion, and the second term is the

friction; these two terms combine as the locomotory force in Niwa’s classification.

The authors propose two self-propulsion mechanisms to construct the unit vector

n̂i. One is a local propulsion for which

n̂i = v̂i =
~vi

vi

. (2.80)
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The other is a non-local propulsion, where

n̂i =
∑

j 6=i

v̂j exp (− |~xj − ~xi| /`c)
|v̂j exp (− |~xj − ~xi| /`c)|

, (2.81)

and `c is a correlation length. Note that Eq. (2.81) involves velocity averaging

and acts also as an arrayal force in Niwa’s classification. The third term on

the RHS of Eq. (2.79) is an interaction force, expressed by a potential gradient.

Instead of the spring potential in Eq. 2.72 adopted by Erdmann et al. and others,

Levine et al. choose a more realistic functional form for the interaction. Based

on the assumption that the interactions are pairwise, and their strength decreases

in distance, the authors adopt a generalized version of Morse potential as their

interaction

U (~xi) =
∑

j 6=i

V (~xj − ~xi) ≡
∑

j 6=i

−Cae
− |~xi−~xj|

`a + Cre
− |~xi−~xj|

`r . (2.82)

The characteristic lengths of the attraction and the repulsion are respectively de-

noted by `a and `r while Ca and Cr specify their original strength. Interesting

spiraling patterns emerge with the local propulsion in Eq. (2.80), as shown in

Fig. 2.20, where some particles rotate clockwise while the others rotate counter-

clockwise around the same center. By instead implementing the non-local propul-

sion in Eq. (2.81), i.e., the arrayal force, the rotational directions of such milling

patterns quickly unify. The authors continue to construct a continuum version of

their individual-based model in Eqs. (2.78) - (2.79)

∂ρ

∂t
+ ~∇ · (~vρ) = 0, (2.83)

∂~v

∂t
+
(

~v · ~∇
)

~v = αn̂− β~v −
∫

ρ (~y) ~∇V (~y − ~x) d~y. (2.84)
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Figure 2.20: Time frames of a random initial configuration evolving into inter-
locking mills in the model of Levine et al. [57]. The line segment at the lower-right
corner in Fig. a represents the length of `a. Reprinted figure with permission from
H. Levine, W.-J. Rappel, and I. Cohen, Physical Review E, Vol. 63, pp. 017101,
2000. Copyright (2000) by the American Physical Society.

With the help of the continuum model, preliminary analytical results are given

in the paper and compared to simulations of the individual-based model.

2.4 Summary

In this chapter, we have reviewed the existing literature on models for biological

swarming. Such problems emerge as a branch of population dynamics but focus

on relatively short time scales and small spatial domains. Earlier swarming mod-

els are based on kinematic rules of random-walk particles. A traditional class

of such random-walk models involves jumps in particle positions and is called

position-jump models. An advection-diffusion model can usually be derived out

of a position-jump model as its continuum version, which is suitable for analytical

studies since the degrees of freedom in the model are greatly reduced. On the

other hand, unphysical phenomena observed in solutions of advection-diffusion
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models drives scientists to look for alternative models. Closer observations of in-

dividual animals suggest jumps in orientations may better describe the movement

inside a typical swarm. Because jumps in orientations are related to changes in

velocities, the evolution of orientation-jump models gradually merges with the de-

velopment of dynamic models. Dynamic swarming models originate from earlier

static descriptions of the interactions between swarming individuals by apply-

ing Newton’s laws. Such models are more favorable when scientists attempt to

construct a swarming equation based on the knowledge of individual tendencies.

However, unlike the (position-jump) kinematic models, a continuum version of a

dynamic (or an orientation-jump) model is not as easy to derive. Some continuum

dynamic models are proposed based on heuristic arguments rather than rigorous

derivations. Without an understanding of a continuum limit, the dynamic mod-

els are mostly understood through statistical studies since the high degrees of

freedom obstruct further analytical investigations. In the following chapters, we

primarily focus on a dynamic model based on realistic descriptions of individual

tendencies. Then we attempt to construct a procedure for deriving a continuum

dynamic model from a individual-based dynamic one by using this model as an

example.

Also note that the primary subject regarding swarming models has gradu-

ally shifted from the formation of polarized groups to the emergence of various

swarming patterns or states. Our phenomenological observations in the latter

chapters also focus on the pattern formations, and the stability of these patterns

are discussed.
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Chapter 3

Individual-Based Model

3.1 Introduction

Since there has been some understanding about individual animal tendencies with

respect to the presence of other animals, the Newtonian description appears ap-

propriate for formulating such tendencies. A dynamic swarming model is readily

obtained based on these individual formula. In this chapter, we construct an

individual-based dynamic model according to physical and biological arguments.

The equations of motion are put together in Section 3.2. We adopt this model

as our research subject and the primary example throughout the discussions in

this thesis. In Sections 3.3 and 3.4, we identify several distinct patterns produced

by the model over the parametric space. We then quantitatively classify these

swarming states and illustrate the transitions between states in Section 3.5.

3.2 The equations of motion

A dynamic model is composed by Newton’s second law of motion for each indi-

vidual

d~xi

dt
= ~vi , (3.1)

mi
d~vi

dt
= ~Fi, (3.2)

where mi, ~xi and ~vi denote, respectively, the mass, position, and velocity of

particle i while ~Fi is the force acting on it. It is suggested by Niwa in Ref. [67],
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that ~Fi for a swarming mechanism generally consists of

~Fi ≡ ~F
(l)
i + ~F

(g)
i + ~F

(p)
i + ~ηi, (3.3)

Here, ~F
(l)
i is a locomotory force that sustains the momentum of a particle; ~F

(g)
i is

a group interaction force that describes the interaction among particles; ~F
(p)
i is an

arrayal force that align the orientation of a particle to that of its neighbors; and

~ηi is a stochastic force that imitate environemntal noise. The locomotory force

has a forward thrust and a drag that, in combination, regulate the speed of an

individual particle. While various formulas can be used for this speed regulation

mechanism, the more important factor of swarming problems is that the organisms

can reach and sustain a constant speed; the specific details of how they reach such

status do not significantly affect the dynamical equilibrium state and are difficult

to determine. A widely adopted formula [17, 21, 23, 24, 25, 61, 67, 93] is suggested

in Ref. [103, 104, 106] for the studies of fish movement, which can be described

by a Rayleigh-type dissipation [77]

~F l
i ≡ α~vi − β |~vi|2 ~vi. (3.4)

Note that the linear thrust α~vi and the the cubic drag β |~vi|2 ~vi, in combination,

give the particles a tendency to approach an equilibrium speed veq =
√

α/β.

Eq. (3.4) can generally be used without loss of generality for species other than fish

because most swarming phenomena, particularly in steady states, depend only on

the equilibrium speed but not the specific functional form of the locomotory force

in the model. Indeed, the swarming patterns of our model are also more sensitive

to this regulated speed rather than to the specific formula of speed regulation and

thus, we adopt this conventional form for our locomotory force as well. The group

interaction force ~F
(g)
i is usually written as the negative gradient of an interaction
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potential Ui, where Ui is a summation of pairwise interaction potentials Vi,j

~F
(g)
i ≡ −~∇~xi

Ui = −~∇~xi

∑

j 6=i

Vi,j. (3.5)

One common choice for Vi,j is a generalized Morse potential [17, 21, 57, 62],

Vi,j ≡ V (|~xi − ~xj|) = −Cae
− |~xi−~xj|

`a + Cre
− |~xi−~xj|

`r . (3.6)

The pairwise interaction consists of an attraction and a repulsion with Ca, Cr

specifying their respective strengths and `a, `r their effective interaction length

scales. Furthermore, similar behavior is observed with other functional forms of

interaction potential characteristically similar to Eq. (3.6). In consistency with

the conclusion in Ref. [79], we do not find the arrayal force ~F
(p)
i necessary to

produce polarized formations as suggested by some earlier models [78, 81, 91],

only that the arrayal force shortens the transient period. Therefore, we exclude

the arrayal force to simplify our derivation and stability analysis. Another choice

to simplify the analysis is to ignore the stochastic force ~ηi due to noise and separate

deterministic phenomena from stochastic ones. The effects of stochastic forces are

studied in many papers [21, 23, 24, 25, 61, 98], which observe that noise affects

the swarming patterns only beyond certain thresholds, and thus its consequences

are not investigated here. By combining Eqs. (3.1) - (3.6), the swarming model we

consider is [10]

d~xi

dt
= ~vi , (3.7)

mi
d~vi

dt
= α~vi − β |~vi|2 ~vi − ~∇~xi

∑

j 6=i

(

−Cae
− |~xi−~xj|

`a + Cre
− |~xi−~xj|

`r

)

. (3.8)

To understand different regimes of swarming patterns, we non-dimensionalize
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the equations of motion by substituting t′ =
(

mi/`a
2β
)

t, ~x′i = ~xi/`a, and thus,

~v′i = (`aβ/mi)~vi into Eqs. (3.7) - (3.8)

d~x′i
dt′

= ~v′i , (3.9)

d~v′i
dt′

= α′~v′i − |~v′i|
2
~v′i −

1

mi
′
~∇~x′

i

∑

j 6=i

(

−e−|~x′
i−~x′

j| + Ce−
|~x′i−~x′j|

`

)

, (3.10)

where α′ =
(

αβ`a
2
)

/mi
2, mi

′ = mi
3/
(

β2Ca`a
2
)

, C = Cr/Ca, and ` = `r/`a.

Hence, the model has 4 parameters, among which mi
′ only affects the time scale

of the particle interaction. Thus, we keep it fixed and study the effects of the

other three parameters C, `, and α′. Note that the dimensional parameter α only

appears in the dimensionless parameter α′, which allows us to vary α to change

α′ without affecting the other three independent parameters, provided that β,

`a, and mi are fixed during the process. To preserve the original meaning of the

model parameters, our results are presented in the dimensional form by using

Eqs. (3.7) - (3.8). Also note that the interaction potential only depends on C and

`. Therefore, in the ensuing discussion, we design a phase diagram with respect

to C and ` for the potential and explore the dynamics of of aggregate states as a

function of α for the different regimes in the phase diagram.

3.2.1 Numerical method

To integrate Eqs. (3.7) - (3.8) over time, we use the fourth order Runge-Kutta

and the four step Adam-Bashforth methods [53]. The time steps are chosen so

that the increments in |~x| are less than 0.1`a and the increments in |~v| are less

than 0.1`aβ/mi for each time step. Unless specified otherwise, we impose free

boundary conditions to the model and initiate our simulations with a uniformly

random distribution of particle positions and velocities.
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3.3 Various states of swarming patterns

In Chapter 4, a statistical property called “H-stability” is investigated and dis-

cussed. For our model, H-stability is found associated to the dimensionless pa-

rameters C and `, and various aggregation patterns may emerge with respect to

different regimes on the H-stability diagram. Before heading into the details of

H-stability discussion in the next chapter, let us first explore these distinct pat-

terns with respect to various C-` combinations. Figure 3.1 is a phase diagram

of C and `, divided into several regimes according to the characteristics of the

interaction potential. Region V is classified as the repulsion-dominant regime

because the potential has a global minimum at x ≡ |~xi − ~xj| = ∞, and inter-

acting particles disperse over the infinite domain. Regions I, II, III, and IV are

classified as the attraction-dominant regime because their pairwise interaction po-

tentials either have a global minimum at r = 0 that eventually attracts particles

together, or have a global maximum at x = ∞ that globally drives all particles

to aggregate within a finite region. The more interesting regions are VI and VII,

categorized as the biologically relevant regime [63]. In this regime, the pairwise

interactions are characterized by a long-range attraction and a short-range repul-

sion (C > 1, ` < 1), meaning that animals tend to seek companies if they are far

away from their own kind but would push each other away if they eventually get

too close to each other. A general functional shape of the biologically relevant

pairwise interaction is shown in Fig. 3.2 (a).

In the biologically relevant regime, we find several interesting swarming states

of distinct patterns by varying the thrust parameter α while fixing the others.

Figure 3.2 (b) and (c) are two typical patterns akin to those observed in various

natural swarms: (b) the single-mill state, where every particle travels at the

same speed veq around an empty core at the center of the swarm, and (c) the
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Figure 3.1: Potential characteristic diagram. This diagram specifies several char-
acteristically distinct regimes of the pairwise interaction potential V (x), including
the attraction-dominant regime (I, II, III, and IV), the repulsion-dominant regime
(V), and the biological relevant regime (VI and VII).
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double-mill state, in which particles travel in both clockwise and counterclockwise

directions, also at a uniform speed veq. In the double-mill state, when viewed as

two superimposed mills, the cores of each mill do not exactly coincide but rather

fluctuate near each other. Another two states are shown in Fig. 3.2 (d) and (e):

(d) the coherent flock state, in which all particles travel at a unified velocity

while self-organizing into a stable formation, and (e) the rigid-body rotation state,

which closely resembles the formation of a coherent flock, but instead of traveling

at the same velocity, the particles circulate around the swarm center defining

a constant angular velocity ω. Unlike the single and double-mill state, where

particles swim freely within the swarm, both the coherent flock and the rigid-body

rotation states bind particles at fixed relative positions, exhibiting a lattice-type

formation. Hence, we also use the term lattice states to refer to both the coherent

flock and the rigid-body rotation states. Note that the coherent flock is a traveling

wave solution of the model, and thus a solution of the following Euler-Lagrange

equation

~∇Ui = ~∇
∑

j 6=i

V (|~xi − ~xj|) = 0.

It is interesting to note that this equation arises in the context of a gradient

flow algorithm for autonomous vehicle control [32, 33, 34, 60]. Thus the flock

formations have the shape and structure as equilibria of the gradient flow problem

with the same potential.

The coherent flock and the single-mill states are among the most common

patterns observed in biological swarms [75, 76, 83]. The double-mill pattern is

also occasionally seen; an example is the M. xanthus bacteria at the onset of

fruiting body formation [51]. On the other hand, natural occurrences of rigid-body

rotation, to the best of our knowledge, have not been reported in the literature.

Indeed, the rigid-body rotation, where every particle travels at a constant angular
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Figure 3.2: Biologically relevant swarming patterns: (a) The functional shape of
the biologically relevant pairwise interaction potential. (b) The single-mill state.
(c) The double-mill state. (d) The coherent flock. (e) The rigid-body rotation.
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Figure 3.3: Attraction-dominant patterns: (a) The functional shapes of the
attraction-dominant pairwise interaction potentials of regions I - IV in Fig. 3.1.
(b) The clump formation. (c) The ring formation. (d) The clumping-ring forma-
tion.

velocity ω, does not define a rotationally symmetric solution for Eqs. (3.7) - (3.8)

and the swarm is observed to drift randomly due to the unbalanced self-driving

mechanism. After a transient period, the random drift may eventually break the

rotational symmetry and turn the swarm into a coherent flock. Thus, we speculate

that this pattern may only be a meta-stable or a transient state. In addition to

the above aggregation states, the particles may simply escape from the collective

potential field, and no aggregation is observed. We name it the dispersed state.

The dispersed state also characterizes the swarming behavior in the repulsion-

dominant regime (C ≥ 1, ` ≥ 1) but for different reasons. It is simply because

that the repulsion is dominant, making the particles disperse over the space.

On the other hand, the attraction-dominant regime offers other distinct patterns
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that may have applications in artifical swarms. Figure 3.3 (a) shows the functional

shapes of the pairwise interaction potentials in this regime. In region I of Fig. 3.1

(1 ≥ C > `), the swarm self-organizes into a clump formation, as shown in

Fig. 3.3 (b). This phenomena can be explained by the functional shape of its

pairwise interaction potential which has a global minimum at a small distance

and is mostly attraction dominant. As a result, particles keep a small distance

from each other but are still attracted altogether within a finite region, forming

clumping groups to circulate around a center as the interaction force provides the

necessary centripetal force. In region II of Fig. 3.1 (1 ≥ C = `), the swarm self-

organize into a ring formation, as shown in Fig. 3.3 (c). This is because the global

minimum is now shifted to x = 0, and thus, the configuration is optimized with

particles overlapping each other. By assuming equidistant particle spacing, the

ring radius R can be estimated by balancing the centrifugal and the centripetal

forces

mα

2Rβ
=

N/2
∑

n=1

sin
(πn

N

)

[

Ca

`a
e−2R/`a sin(πn/N) − Cr

`r
e−2R/`r sin(πn/N)

]

. (3.11)

The estimates match extremely well to those obtained by numerical simulations,

as seen in Fig. 3.4. Regions III (1 ≥ ` > C) and IV (C < 1, ` > 1) of Fig. 3.1 have

the same formation, which is the clumping ring formation in Fig. 3.3 (d). In these

two regions, the attractive force at x = 0 does not vanish and thus, further at-

tracts particles into some singular points. Unlike the biologically relevant regime,

the types of swarm formation is not sensitive to α in the attraction-dominant

regime; the formation stays characteristically the same by increasing α until the

kinetic energy becomes too large for the interaction potential to sustain the ag-

gregation. Note that the patterns exhibited in the attraction-dominant regime

involve extreme collapse, where particles occasionally overlap and run over each
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Figure 3.4: Ring radius as a function of N from numerical data and from the
estimates of Eq. (3.11). The parameters used here are α = 1, β = 0.5, Ca = `a = 1,
Cr = 0.6, and `r = 0.5.

other. In Chapter 4, it becomes clear that the interaction potentials in this regime

are not H-stable and unable to prevent indiviuals from collapsing in the large N

limit. On the other hand, the repulsion-dominant regime is safely H-stable.

3.4 The biologically relevant regime

As stated earlier, we find various swarming patterns by varying α in the biolog-

ically relevant regime while the formation types are insensitive to α in the other

regimes. Let us return to the biologically-relevant regime to further investigate

the α-related transition. The biological regime is divided into two sub-regimes,

region VI and region VII, by the H-stability criterion, which is described in Chap-

ter 4. Using numerical simulations, we find that swarms in the H-stable region VI

and the non-H-stable region VII undergo a different state transition with respect

to α. In both regions VI and VII, the lattice states, as shown in Fig. 3.2 (d) and

(e), emerge for low values of α, and thus, of low veq. In this case, the confining
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interaction potential is stronger than the kinetic energy of individual particles and

tends to bind the particles at specific “crystal” lattice sites. Most initial condi-

tions lead to the coherent flock state while some occasions result in the rigid-body

rotation state. In region VI, as α further increases, the particles eventually gain

enough kinetic energy to dissolve the aggregation, and the swarm reaches the

dispersed state.

On the other hand, the state transition in region VII is not as simple; it is

characterized by more behavioral stages. Starting from the lattice states and upon

increasing α, the particles gain more kinetic energy through the self-propulsion to

reach veq and are able to break away from the crystal lattice sites. However, unlike

the case of region VI, the interaction potential in region VII is still strong enough

to aggregate medium-speed particles within a swarm. In this regime, core-free

mill states emerge, as shown in Fig. 3.2 (b) and (c). Since all particles travel at

a non-zero uniform speed, the centripetal force provided by the collective inter-

action potential is not strong enough to sustain such particles too close to the

rotational center. As a result, the mill core is a particle-free region. At moderate

α, a single mill state emerges. At slightly higher α, we observe both single mills

and double mills as possible states. In the latter case, the interaction potential

gradually loses its effectiveness to unify the clockwise (CW) and counterclockwise

(CCW) rotational directions; particles traveling in the opposite direction with

respect to the majority tend to not change their direction of motion, and double

mills can emerge. The transition from single to double mill is a gradual process.

Figure 3.5 shows the number of particles in each rotational direction for various

values of α. In the single-mill regime, particles traveling at one direction are

quickly assimilated into the other (Fig. 3.5, top). Upon increasing α, the particles

no longer settle into a unified rotational direction (Fig. 3.5,middle), and for large
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Figure 3.5: Time variation of the numbers of particles rotating in different
directions: The triangles represent the number of CCW particles while the circles
are of CW ones. (Top) α = 1.5. (Middle) α = 4.0. (Lower) α = 6.0. The fixed
parameters are β = 0.5, Ca = 0.5, Cr = 1.0, `a = 2.0, `r = 0.5, and N = 500. All
parameters here and throughout the thesis are in arbitrary units.

67



100
 N

0.01

0.1

1

α es
c

Region VI
Region VII
Theoretically estimated

Figure 3.6: αesc versus the total number of particles in a region VI swarm
(β = 0.5, Ca = 0.5, Cr = 1.0, `a = 2.0, `r = 1.5, dashed line) compared to that of
a region VII swarm (β = 0.5, Ca = 0.5, Cr = 1.0, `a = 2.0, `r = 0.5, dotted line).
The solid line is the curve estimated by Eq. (3.12).

enough α, approximately the same number of particles travel in each of the CW

and CCW directions (Fig. 3.5, bottom). The presence of either a velocity align-

ment rule or a hard-core repulsive interaction will destroy this double-mill state.

The latter case is further discussed in Chapter 4. On the other hand, although the

coherent flock state remains a possibility in this regime, the basin of attraction is

much smaller than the mill states, and only very polarized initial conditions can

lead to a coherent flock formation. As α increases beyond the double-mill regime,

particle kinetic energy eventually becomes high enough to break up the swarm.

This is the dispersed state, and no aggregation can be found.

Upon fixing the other parameters, the threshold between the aggregation and

the dispersed states is described by a critical escape value of α, denoted by αesc.
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Figure 3.6 shows αesc of swarms in both region VI and VII, where stable rotational

formations are initiated and α is increased until the dispersed regime is attained.

For the region VI swarm, αesc does not vary significantly with respect to the total

particle number of the swarm, denoted by N , due to a related observation that

the nearest neighbor distance (δNND) approach a constant for large N . As a result,

the binding potential energy of the interaction force acting over each particle is

independent of N . On the other hand, αesc of the region VII swarm varies linearly

with respect to N . From our numerical simulations, we observe that the outer and

the inner radii of the region VII swarm remain approximately fixed with respect

to N while α . αesc. Based on this observation, we can derive a semi-empirical

formula to estimate the value of αesc by assuming that particles are uniformly

distributed in a doughnut shape domain. By balancing the centripetal and the

interaction forces, we obtain

mαesc

2β
=

N

2π (R2
out − R2

in)

∫ Rout

Rin

V (|~r −Routx̂|) d~r, (3.12)

where Rin and Rout denote the inner and the outer radii of the single mill, respec-

tively, and x̂ is an arbitrary unit vector. This estimate predicts that αesc should

scale linearly with N , which is clearly illustrated in Fig. 3.6, where we use the

numerically simulated Rout = 5.2 and Rin = 1.2 for a quantitative comparison.

3.5 Quantifying the biologically relevant state

transition

In order to quantitatively determine whether the swarm is in a coherent flock

state or a single-mill state, Couzin et al. have proposed two measures [14]: the
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polarity , P , and the (normalized) angular momentum, M , defined as follows

P =

∣

∣

∣

∣

∣

∑N
i=1 ~vi

∑N
i=1 |~vi|

∣

∣

∣

∣

∣

, (3.13)

M =

∣

∣

∣

∣

∣

∑N
i=1 ~ri × ~vi

∑N
i=1 |~ri| |~vi|

∣

∣

∣

∣

∣

, (3.14)

where ~ri ≡ ~xi − ~xCM, and ~xCM is the position of the center of mass. A perfect

coherent flock corresponds to P = 1 and M = 0 while a perfect single-mill

pattern corresponds to M = 1 and P = 0. In order to distinguish the double-mill

pattern, we propose an additional measure by modifying the normalized angular

momentum

Mabs =

∣

∣

∣

∣

∣

∑N
i=1 |~ri × ~vi|

∑N
i=1 |~ri| |~vi|

∣

∣

∣

∣

∣

. (3.15)

If a double-mill pattern has perfectly equal numbers of particles going at each

direction with the centers of mass of both directions exactly overlap, Mabs = 1

and M = 0; both M and Mabs equal one for a single mill.

Although the presence of the coherent flock that yields P ' 1 allows us to use

P to quantify the transition from lattice to single-mill state, the co-existing rigid-

body rotation state, for which P ' 0, introduces spurious events. Since the rigid

body state has a much smaller basin of attraction than the coherent flock, one

choice is discarding all rigid-body rotation events and selecting only the coherent

flock ones. However, the boundary between a rigid body rotation and a single

mill is ambiguous, as shown in Fig. 3.7, where a rigid-body rotation transforms

to a single mill by increasing α. Since a constant tangential speed indicates

a milling formation, and a constant angular velocity (i.e., a linear tangential

speed against r) characterizes a rigid-body rotation, we can see from the figure
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Figure 3.7: Emergence of a rotating single-mill structure from a rigid-body
rotation in region VII. The left panel shows the ensemble averaged tangential
velocity, 〈v (r)〉tang, of particles at a distance r from the center of mass. Each
〈v (r)〉tang figure corresponds to the swarm structure of different values of α on
the right panel: from top to bottom are α = 0.003, α = 0.03, α = 0.1, and
α = 0.5. The other parameters are β = 0.5, Ca = 0.5, Cr = 1.0, `a = 2.0,
`r = 0.5, and N = 500.
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that two states are mixed during the transition: the outer part of the swarm

begins to exhibit the milling phenomena while the inner part still remains a

rigid body. Indeed, the collective interaction potential is stronger in the inner

part of the swarm, and particles need a higher kinetic energy injection from the

self-propulsion to escape the binding potential. Since the lattice formation of the

rigid-body rotation has an ordered particle distribution, and the milling formation

exhibits more disordered distribution, we propose an ordering factor of period Q

to quantitatively distinguish these two states

O(Q) ≡
1

Nµ

∣

∣

∣

∣

∣

N
∑

i=1

µ
∑

j

cos
(

Q · φ(i)
j,j+1

)

∣

∣

∣

∣

∣

, (3.16)

where φ
(i)
j,j+1 is the angle between ~xi,j and ~xi,j+1 with ~xi,j defined as ~xj − ~xi. The

summation index j here represents the j-th nearest neighbor of particle i, and

µ denotes the number of neighbors that are taken into consideration for each

particle. We also define ~xi,µ+1 ≡ ~xi,1 to simplify the formula. If all φ
(i)
j,j+1 are

distributed at 2πk/Q where k < Q is a positive integer, O(Q) = 1, and the particles

are distributed on a lattice of period Q. On the other hand, if the distribution is

completely random, cancellation occurs in the summation of cosines, and O(Q) ' 0

for all Q. The number of nearest neighbors of each particle i can be arbitrarily

chosen for µ ≥ 2. However, note that µ cannot be too large; otherwise, second

layer neighbors may be counted, which results in an incorrect Q. For the sake of

definiteness, we choose µ = 3. In order to avoid incorrect estimations due to the

dispersed state, we also impose that a particle pair must be separated by a distance

no larger than 2`a for the particles to qualify as neighbors. Figure 3.8 (b) shows

the distribution of φ
(i)
j,j+1 collected for all i and j on a rigid-body formation. Peaks

are observed at kπ/3 (1 ≤ k ≤ 5), indicating that the formation is a hexagonal
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Figure 3.8: (a) The ordering factor of period 6 versus α and an illustration

showing the definition of φ
(i)
j,j+1. The squares are data points of a region VI swarm

while the triangles represent a region VII case. The parameters other than α for
both cases are the same as those in Fig. 3.6 with N = 200. (b) The distribution

of φ
(i)
j,j+1 for all i and j. (c) Comparison of the ordering factors of different periods

Q.

lattice. Figure 3.8 (c) shows O(Q) versus Q for the same rigid-body formation. As

expected for a hexagonal lattice, the curve peaks at Q = 6. Therefore, O(6) can

be used to explore the transition from a hexagonal lattice to a non-lattice mill

state.

Using the quantities defined in Eqs. (3.13) - (3.16), different swarming states

can be classified. Dramatic changes in P , M , Mabs, and O(Q) are observed upon

modifying specific parameters in the model and indicate a change in the swarming

state. Figure 3.8 (a) shows the transition of a region VII swarm from lattice to

single-mill states as O(6) gradually decreases with respect to increasing α. Also
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shown in the figure are the same quantities for a region VI swarm; note that as

α increases, O(6) suddenly drops to zero, corresponding to the sudden dissolution

of the hexagonal lattice structure into a dispersed state. The larger value of O(6)

in the region VI swarm indicates a more regular hexagonal lattice formation.

For higher values of α, we further consider P , M , and Mabs to differentiate the

coherent state and the two mill states. Additionally, in order to distinguish the

dispersed state from the rest, we calculate the aggregation fraction, fagg, defined

as the fraction of the N initial particles that aggregate as a swarm. In Fig. 3.9, we

show how region VI and VII swarms are different during the transition between

states. Figure 3.9 (a) shows that a region VI swarm is a coherent flock for small

α, indicated by P ' 1. For increasing α, the swarm disperses and fagg = 0. Note

that P remains close to one when fagg 6= 0, indicating that the aggregate goes

from the coherent lattice state directly to the dispersed one. Figure 3.9 (b) shows

the transition of a region VII swarm, which displays a full four-stage transition:

in the small α regime, particles arrange as a coherent lattice with P ' 1; as α

keeps increasing, the single-mill state appears (P ' 0 and M ' 1), followed by

the double-mill state (Mabs ' 1 and M ' 0) until the dispersed state (fagg = 0)

is reached.

3.5.1 Analogy to bulk matter

Drawing an analogy from the state transition of swarming patterns to the phase

transition of bulk matter, the lattice states can be regarded as “solid” since inter-

particle distances are kept constant. The milling state allows particles to “swim”

within a finite volume without being bound to a fixed lattice site; thus, it can be

regarded as “liquid”. Finally, in the dispersed state, particles escape to fill the

free space, similar to a “gas”. Upon increasing α, a region VII swarm undergoes
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Figure 3.9: The state transition diagram of (a) a region VI swarm and (b) a
region VII swarm. The fixed parameters are the same as those in Fig. 3.6 with
N = 200.
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a solid–liquid and liquid–gas transition, which resembles the processes of melting

and vaporization. On the other hand, a region VI swarm goes from a solid state

directly to a gas one, which is more similar to sublimation.

Consistently with granular media models [7], we may define a “temperature”

analog using the variation of the individual particle velocity among the flock:

Ts ≡
〈

(~v − 〈~v〉)2〉. Note that 〈~v〉 is the velocity of the center of mass, and thus,

Ts ' 0 for the coherent flock pattern, while Ts ' α/β for the steady mill states.

The swarming patterns change from one state to another by varying Ts.

Since we have seen the characteristic differences between the region VI and VII

swarms, it is natural to ask what contributes to the differences. The functional

shapes of their pairwise interaction potential are generally the same as what is

shown in Fig. 3.2 (a) for the potentials in the biologically relevant regime. Thus,

the differences cannot be easily explained by particle-pair interactions using a

qualitative argument as in the other regimes. As stated earlier, the differences

are caused by H-stability properties of the interaction potentials in each region.

The H-stability analysis of our model is discussed in the next chapter.
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Chapter 4

H-stability

4.1 Introduction

Since it was discovered that bulk matter is composed of charged particles, the

stability of such particle aggregation was once a center of attention in physics.

A conjecture is that the binding potential energy per particle has a lower bound

[73]. Otherwise, it can release an unbounded amount of energy by combining bulk

matter, for example, pouring several cups of water into one container, and as a

consequence, the combined system may collapse in volume. This criterion is later

known as H-stability because it implies that the Hamiltonian is stable – meaning

that the total energy is bounded below proportional to the number of particles

[19]. It is also important in thermodynamics where both energy and volume are

extensive quantities; without H-stability, equations of state cannot be defined.

Indeed, H-stability is a necessary, albeit insufficient, condition for the existence

of thermodynamics [27, 59, 80, 82]. Initially taken for granted, H-stability was

later proved for hard-core billiard balls by Onsager [73] and for short short-range

potentials by Fisher and Ruelle [27]. The proofs of H-stability was then extended

and generalized to the more realistic, long-range Coulomb potentials by a series

of contributions from Dyson and Lenard [19, 20], Lebowitz and Lieb [54], Lieb

and Thirring [59], and Lieb [58]. In Section 3.5.1, we make an analogy between

swarms and bulk matter. However, various observed swarming patterns are not as

commonly seen in classical charged particle systems and seem to show collapsing

characteristics. It is worthwhile examining whether H-stability also holds for the

swarming patterns classified in the phase diagram of Fig. 3.1. In this chapter, the
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basic definitions regarding H-stability are introduced in Section 4.2. H-stability

of our Morse-type interaction potential in Eq. (3.6) is analyzed in Section 4.3,

followed by a brief discussion in Section 4.4. More discussions are postponed to

Chapter 5 where a continuum model is derived, and H-stability shows significant

effects when a swarming system approach toward the large-number continuum

limit.

4.2 The basic definition

Let us define V k (~xi1 , ~xi2 , ..., ~xik) as a k-body interaction potential among particles

i1, i2, ..., ik. The total potential U tot of an N -particle system is

U tot (~x1, ..., ~xN) =
∑

k≥2

∑

1≤i1<...<ik≤N

V k (~xi1 , ~xi2 , ..., ~xik) (4.1)

The basic criterion for the H-stability is defined as

Definition 4.2.1 H-stability [80].

The interaction potentials V k’s are H-stable if there exists a constant B ≥ 0

such that

U tot (~x1, ..., ~xN) ≥ −NB (4.2)

for all N ≥ 0 and ~xi ∈ Rd.

Definition 4.2.2 Catastrophe.

The interaction potential V k is called catastrophic if it is not H-stable.

A system composed of catastrophic interaction potentials can lead to non-thermodynamic

behavior because the grand partition function

ZΛ ≡ 1 +
∞
∑

N=1

zN

N !

∫

ΛN

d~x1...d~xne−βBUtot(~x1,...,~xN) (4.3)
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may diverge if U tot is not bounded below. Here Λ ⊂ R
d and βB ≡ 1/kBT , where

kB is the Boltzmann constant and T is the temperature.

4.3 The H-stability analysis

Although the basic definition of the H-stability in Eq. (4.2) is not readily appli-

cable to an arbitrary type of k-body interaction potential, Ref. [80] shows that

various equivalent sub-criteria can be deduced for a specific class of pairwise (i.e.,

2-body) interaction potentials, which is the isotropic pairwise interaction potential

V (~xi, ~xj) = V (|~xi − ~xj|) . (4.4)

Recall that our pairwise interaction potential of the Morse type in Eq. (3.6) is

indeed an isotropic one. Therefore, we are able to utilize these sub-criteria to

determine whether our interaction potential is H-stable or catastrophic.

Proposition 4.3.1 Negative integral.

Assuming that a pairwise interaction potential V (~x) is absolutely integrable,

it is catastrophic if
∫

Rd

V (~x)d~x < 0. (4.5)

As a result, we may integrate Eq. (3.6) to obtain

0 >

∫

Rd

V (~x)d~x =

∫

Rd

(

−Cae
− |~x|

`a + Cre
− |~x|

`r

)

d~x (4.6)

= Ca`a
2
(

`2 − 1
)

,

which leads to our first criterion

Criterion 4.3.2 If

C`2 < 1, (4.7)
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then the Morse potential in Eq. (3.6) is catastrophic.

Proposition 4.3.3 For a pairwise interaction potential satisfying the condition

V (~x) = V (−~x), it is H-stable if and only if

N
∑

i=1

N
∑

j=1

V (~xi − ~xj) ≥ 0 ∀N ≥ 0, ∀~x1, ~x2, ..., ~xN ∈ R
d. (4.8)

In other words, if there exists an N -particle distribution (~x1, ~x2, ..., ~xN) such that

Eq. (4.8) is violated, the pairwise interaction potential is catastrophic. A partic-

ular case that we can easily test is when all particles overlap ~x1 = ~x2 = ... = ~xN .

By substituting Eq. (3.6) into Eq. (4.8) for this particular case,

0 ≤
N
∑

i=1

N
∑

j=1

V (0) =

N
∑

i=1

N
∑

j=1

(−Ca + Cr) (4.9)

= N2Ca (C − 1) .

If Eq. (4.10) is violated, the Morse type interaction potential is catastrophic.

Thus, a second criterion is obtained:

Criterion 4.3.4 If

C < 1, (4.10)

then the Morse potential in Eq. (3.6) is catastrophic.

Proposition 4.3.5 Positive-type pairwise interaction potential.

Let Ṽ (~q) denote the Fourier transform of V (~x). If

Ṽ (~q) ≥ 0 ∀~q ∈ R
d, (4.11)

V (~xi − ~xj) belongs to a class of interaction potentials called the positive-type,
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which satisfies

N
∑

i=1

N
∑

j=1

ziz
?
jV (~xi − ~xj) ≥ 0 ∀~x1, ..., ~xN ∈ R

d and ∀z1, ..., zN ∈ C. (4.12)

A positive-type pairwise interaction potential is always H-stable.

For the Morse-type interaction potential defined in Eq. (3.6), its Fourier transform

can be obtained as

Ṽ (~q) = 2πCa

[

C`2

(1 + `2q′2)3/2
− 1

(1 + q′2)3/2

]

, (4.13)

where q′ ≡ q`a = |~q| `a. By substituting Eq. (4.13) into Eq. (4.11), we have the

following criterion for H-stability.

Criterion 4.3.6 If

[

C`2

(1 + `2q′2)3/2
− 1

(1 + q′2)3/2

]

≥ 0 ∀q′ ∈ R, (4.14)

which leads to

` ≥ 1, ` < C,

or ` < 1, ` >
1√
C
, (4.15)

then the Morse potential in Eq. (3.6) is H-stable.

Putting together the criteria in Eqs. (4.7), (4.10), and (4.14), the H-stability

phase diagram can be obtained in Fig. 4.1. Note that the region of C < ` and

C > 1 is not specified by any of the criteria. Given the fact that the global

potential minimum occurs at x = ∞ in such a region, dynamical particles tend

to diverge asymptotically, which is a H-stable configuration. Thus, we categorize
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this region as H-stable as well. For the case of extremely fast dissipative systems,

say, a potential gradient flow [32, 33, 34, 60], a great number of initial conditions

more likely to form collapsing configurations instead. Later in Chapter 8, we will

see such a dissipative system when our model is adapted to be implemented on

first-order vehicles. Here, we label this region as H-stable following the classical

sense. Nonetheless, this region does not offer interesting patterns to be explored;

thus, it is less important whether this region is H-stable or not. Figure 4.1 labels

regions V and VI as H-stable while the others are denoted as catastrophic.

4.4 Discussion

Note in Fig. 4.1 that the clump formation in region I, the ring formation in regin

II, and the clumping rings in region III and IV are all catastrophic patterns. Fur-

thermore, the H-stability boundary divides the biologically relevant regime into

two regions, where region VI is H-stable and region VII is catastrophic. Swarms

in the catastrophic region VII also exhibit more abundant pattern transitions that

include the lattice, the milling, and the dispersed states, while the H-stable region

VI has only the lattice and the dispersed states.

As described in Chapter 3, the presence of a hard-core repulsive interaction

will destroy the double-mill state. This is because hard-cores always provide a

system with H-stability. Thus, it is clear that for sufficiently many particles, the

double mills will ultimately break apart. Notwithstanding, it appears that the

double mills are especially sensitive to hard-cores and, even for small cores and

moderate N , we have not observed these structures.

While different aggregation morphologies can be studied using the individual-

based model, the large number of degrees of freedom involved pose a difficulty for

analyzing the dynamics of large N systems. In the following chapter, we develop
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and investigate a continuum model consistent with the microscopic description of

Eqs. (3.7) - (3.8). Additionally, we find that the ghost of H-stability appears yet

again in the continuum concept and affects whether the continuum model is valid

in a particular regime on the H-stability diagram, which is also discussed in the

next chapter.
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Chapter 5

Continuum Model

5.1 Introduction

Individual-based models arise naturally in the description of behavioral inter-

actions among organisms. While large simulations of individual-based models

are subjects of the statistical analysis, another interesting question is whether

these swarming formations are asymptotically stable. However, the large num-

ber of degrees of freedom in such many-body systems make it formidable to an-

swer this question analytically. Researchers have been proposing the continuum

analogies for certain classes of the individual-based models, which allow them

to solve for steady state solutions and to analyze the stability of such solutions

[2, 12, 29, 35, 36, 49, 57, 64, 71, 97]. Earlier continuum models are mostly based on

a heuristic interpretation of individual-based formula [2, 12, 49, 97]. A more rig-

orous derivation was presented by Okubo for the simplest case of biased random

walks that feature only linear behavioral responses [70], as discussed in Chap-

ter 2. A new approach was proposed by Grünbaum for a more general class of 1D

random-walk models that include non-linear behavioral responses in his 1994 pa-

per “Translating stochastic density-dependent individual behavior with sensory

constraints to an Eulerian model of animal swarming” [36]. In the paper, the

author starts with the following individual-based model

m
d2x

dt2
+ β

(

dx

dt
− v0

)

= η (t) , (5.1)
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where m, x, t are mass, position, and time. Eq. (5.1) describes an organism swim-

ming in a flow field of speed v0, β is a drag coefficient of the surrounding media,

and the stochastic force η represents noise. Assuming that the local velocity

is statistically stationary, he then compares the functional form of the velocity

autocorrelation function and obtains a continuum PDE via Okubo’s results [70]

∂ρ

∂t
= D

∂2ρ

∂x2
− ∂

∂x
[ρ (v0 + vaE {fd})] . (5.2)

In Eq. (5.2), the density ρ is a function of x and t. The diffusion coefficient D

and an aggregation speed va are evaluated from individual-based arguments, and

the drift speed v0 has been predefined in Eq. (5.1). Note that there is no social

interaction in Eq. (5.1). Indeed, the social interaction is considered as a separated

kinematic rule, formulated by a “decision function” fd (x, t, ρ1, ρ2, ρ3, ..., ρµ), where

ρi is the density at a predefined position i. In 1D, the decision function can be

one or minus one, meaning that a particle at position x and time t decides to

move toward the right or the left. It depends on the density distribution ρ1, ρ2,

..., ρµ. The averaged decision can be evaluated as E {fd}, the expected value

of fd, which appears in Eq. (5.2). While non-linear behavioral responses can be

represented by non-linear decision functions, the author uses an example to show

how to evaluate the expected value for such functions under the assumption that

the organisms are Poisson particles, which is generally assumed in large-number

swarming problems.

Although Eq. (5.1) takes a dynamic form, the assumption of a statistically

stationary local velocity renders the acceleration term negligible. Additionally, the

interactions are kinematic. Hence, Grünbaum’s derivation is a kinematic approach

and essentially an extension of Okubo’s work [70]. Other extensions of Okubo’s

work on kinematic continuum models include two 2005 papers “From individual-
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based models to partial differential equations. An application to the upstream

movement of elvers” by Gómez-Mourelo [35] and “An interacting particle system

modelling aggregation behavior: from individuals to populations” by Morale et al.

[64]. In both papers, the authors start with a probability density f (~x, t) of finding

particles at position ~x and time t. Each individual particle moves according to a

stochastic differential equation

d~xi = ~c1 (~x, t) dt+ c2 (~x, t) d~ηi, (5.3)

where ~ηi is a stochastic variable. The two papers choose different behavioral

functions ~c1 and c2 to describe their own subjects. Nevertheless, by applying

Igô’s formula, Eq. (5.3) leads to

∫

Rd

f (~x, t) ρ (~x, t) d~x =

∫

Rd

f (~x, 0) ρ (~x, 0) d~x (5.4)

+

∫ t

0

∫

Rd

(

∂f

∂s
+ ~c1 · ~∇f +

c22
2
~∇2f

)

ρ d~xds,

where ρ (~x, t) is the particle density distribution. Given specific ~c1 and c2, Eq. (5.4)

can further be rewritten as a weak form of a partial differential equation of ρ,

which is the PDE of the continuum model.

The above examples contain the continuum limit of individual-based kine-

matic models; our model, however, is a dynamic model. If we want to apply the

same procedure to a dynamic model, the velocity or the momentum has to be

included as a coordinate on the phase space, and the particle density has to be

expressed as ρ (~x,~v, t) instead of just ρ (~x, t). This is a Fokker-Planck approach.

The 1999 paper “From individuals to aggregations: the interplay between behav-

ior and physics” by Flierl et al. [29] shows an example of using such an approach

to convert an individual-based dynamic model. Since it is easier to understand
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the spatial pattern of a swarm by expressing the density as ρ (~x, t), Flierl et al.

integrate ρ (~x,~v, t) as well as the PDE over ~v. To close out the integration, they

have to make some assumptions; most notably, the “preferred velocity”, or the

equilibrium speed in our terminology, needs to be small with respect to a stochas-

tic noise. The assumption is not applicable to our model since it is a deterministic

model; even if we may add a noise term, interesting swarming patterns emerge

mostly in a rather high-speed regime, which contradicts the assumption. Flierl

et al. focus more on the patchiness phenomena, where the particles concentrate

on several small patches, and the assumption is reason for such a problem. For

our model and our interest of research, a different approach is needed. In this

chapter, we apply a classical method in statistical mechanics that is used to derive

fluid and gas-dynamics equations in the 1950 paper “The statistical mechanical

theory of transport processes. IV. The equations of hydrodynamics” by Irving

and Kirkwood [46]. In Section 5.2, we derive a fluid-like continuum swarming

model. In Section 5.3, we compare the results of our continuum model to those

of its individual-based counterpart. Additionally, we find that the H-stability

properties, discussed in the pervious chapter, affect the validity of our derivation.

In Section 5.4, we show a simple linear stability analysis of the continuum model

in the regime where our derivation is valid. In Section 5.5, we discuss the choice

of using soft-core interaction potentials to simulate swarming patterns. Although

there are drawbacks regarding such choice, we propose remedies for this situation.

5.2 Derivation of the continuum model

Here, a continuum model is derived by explicitly calculating the ensemble average

of Eqs. (3.7) - (3.8) using a probability distribution function. This classical pro-

cedure is described in Ref. [46] where continuum hydrodynamics equations are
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derived starting from a microscopic collection of N particles. Let

f = f (~x1, ~x2, ..., ~xN ; ~p1, ~p2, ..., ~pN ; t) (5.5)

be the probability distribution function on the phase space, defined by position

and momentum (~xi, ~pi), 1 ≤ i ≤ N , at time t. The mass density ρ (~x, t), the

ensemble velocity field ~u (~x, t), and the continuum interaction force ~FV (~x, t) can

be defined as

ρ (~x, t) = m

N
∑

i=1

〈δ (~xi − ~x) ; f〉, (5.6)

~u (~x, t) =
~p (~x, t)

ρ (~x, t)
=

∑N
i=1 〈~piδ (~xi − ~x) ; f〉

ρ (~x, t)
, (5.7)

~FV (~x, t) =

N
∑

i=1

〈

−~∇~xi
U (~xi) δ (~xi − ~x) ; f

〉

. (5.8)

We consider the case of identical masses, mi ≡ m. The function δ (~x) is the Dirac

delta function, and U (~xi) the collective interaction potential acting on particle

i. Using the generalized Liouville theorem that incorporates the deformation of

phase space due to the non-Hamiltonian nature of the system at hand [96], we

obtain the continuum equations of motion

∂ρ

∂t
+ ~∇ · (ρ~u) = 0, (5.9)

∂

∂t
(ρ~u) + ~∇ · (ρ~u~u) + ~∇ · σ̂K = αρ~u− 2βEK~u− 2β~qK + 2β~u · σ̂K + ~FV .(5.10)

The first is the equation of continuity, and the second is the momentum transport

equation. Here, EK = ρ |~u|2 /2 is the kinetic energy. The terms ~qK (~x, t) and
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σ̂K (~x, t) are mathematically defined as

~qK (~x, t) =
N
∑

i=1

〈

m

2

∣

∣

∣

∣

~pi

m
− ~u

∣

∣

∣

∣

2(
~pi

m
− ~u

)

δ (~xi − ~x) ; f

〉

,

σ̂K (~x, t) =
N
∑

i=1

m

〈(

~pi

m
− ~u

)(

~pi

m
− ~u

)

δ (~xi − ~x) ; f

〉

,

and represent the energy flux and the stress tensor due to local fluctuations in

particle velocities with respect to ~u (~x, t). The derivation of the term ~∇ · σ̂K can

be found in Ref. [46]. Readers can refer to Section 5.2.2 for the derivation of the

other terms that are related to ~qK and σ̂K. By simulating the discrete model,

we estimate the magnitude of ~qK and σ̂K and find that both fluctuation terms

become negligible with respect to the the other terms on the RHS of Eq. (5.10) in

the lattice, single-mill, and the dispersed states. Thus, neglecting the fluctuation

terms, we obtain

∂ρ

∂t
+ ~∇ · (ρ~u) = 0, (5.11)

∂

∂t
(ρ~u) + ~∇ · (ρ~u~u) = αρ~u− 2βEK~u+ ~FV . (5.12)

5.2.1 Continuum interaction force

In Eq. (5.12), the continuum interaction force can be obtained by substituting the

explicit form of the interaction potential Eq. (3.6) into Eq. (5.8)

~FV (~x, t) =
N
∑

i=1

N
∑

j=1

〈

−~∇~xi
V (~xi − ~xj) δ (~xi − ~x) ; f

〉

. (5.13)
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Using the fact that an arbitrary function F (~xj) ∀~xj ∈ R
d can be written as

F (~xj) =

∫

Rd

F (~y) δ (~xj − ~y)d~y,

we can rewrite Eq. (5.13) as

~FV (~x, t) =
N
∑

i=1

N
∑

j=1

∫

Rd

d~y
〈

−~∇~xi
V (~xi − ~y) δ (~xi − ~x) δ (~xj − ~y) ; f

〉

=

∫

Rd

−~∇~xV (~x− ~y)
N
∑

i=1

N
∑

j=1

〈δ (~xj − ~y) δ (~xi − ~x) ; f〉d~y

=

∫

Rd

−~∇~xV (~x− ~y) ρ(2) (~x, ~y, t) d~y, (5.14)

where the ρ(2) is the pair density

ρ(2) (~x, ~y, t) ≡
N
∑

i=1

N
∑

j=1

〈δ (~xj − ~y) δ (~xi − ~x) ; f〉.

Note that we should take the ensemble average on a scale considerably larger than

the spacing between particles. If the particles are quite dispersed, the suitable

scale may be much larger than the characteristic lengths of the interaction force

(−~∇V in Eq. (5.14)), rendering it localized. In this case, the continuum approach

cannot capture the swarming characteristics occurring on the the interaction scale

and fails to describe the individual-based model on such a scale. This is what

occurs in the H-stable regime, which we further discuss in Section 5.3.

For identical particles, the pair density can be written as

ρ(2) (~x, ~y, t) =
1

m2
ρ (~x, t) ρ (~y, t) g(2) (~x, ~y) ,
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where the correlation function g(2) (~x, ~y) = 1 when the particles have no intrinsic

correlation. Using this assumption,

ρ(2) (~x, ~y, t) =
1

m2
ρ (~x, t) ρ (~y, t) , (5.15)

and

~FV (~x, t) =

∫

Rd

−~∇~xV (~x− ~y)
1

m2
ρ (~x, t) ρ (~y, t)d~y. (5.16)

If we further substitute the interaction potential specified in Eq. (3.6) into the

above equation, we get

~FV (~x, t) = −ρ (~x, t) ~∇
∫

Rd

(

−Ca

m2
e−

|~x−~y|
`a +

Cr

m2
e−

|~x−~y|
`r

)

ρ (~y, t)d~y. (5.17)

Since we assume that all particles have an identical mass, we may choose m = 1

without loss of generality. In this case, Eq. (5.17) becomes the one proposed in

Ref. [57]. Using Eq. (5.11), we may modify Eq. (5.12) and divide by ρ on both

sides to obtain a more conventional expression

∂ρ

∂t
+ ~∇ · (ρ~u) = 0, (5.18)

∂~u

∂t
+ ~u · ∇~u = α~u− β |~u|2 ~u− 1

m2
~∇
∫

Rd

V (~x− ~y) ρ (~y, t)d~y. (5.19)

5.2.2 Fluctuation terms

This section shows the derivation of the fluctuation terms in Eq. (5.10). Since we

have argued that these terms are negligible for the phenomena explored in this

thesis, the reader can skip this section without loss of essential information for

other sections. The derivation here is for future consideration when these terms
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are needed and an unambiguous close form can perhaps be defined for other

situations.

Following Ref. [46], the momentum transport equation can be obtained by

substituting the macroscopic momentum

ρ (~x, t) ~u (~x, t) =

〈

N
∑

i=1

~piδ (~xi − ~x); f

〉

into the generalized Liouville Equation, valid for non-conserved systems [96],

∂ (ρ~u)

∂t
=

∂

∂t

〈

N
∑

i=1

~piδ (~xi − ~x); f

〉

=

N
∑

k=1

〈

~pk

m
· ~∇~xk

(

N
∑

i=1

~piδ (~xi − ~x)

)

+ ~̇pk · ~∇~pk

(

N
∑

i=1

~piδ (~xi − ~x)

)

; f

〉

.

Here f is the probability density function described in Eq. (5.5). Since

~pk

m
· ~∇~xk

(

N
∑

i=1

~piδ (~xi − ~x)

)

=
~pk

m
· ~∇~xk

~pkδ (~xk − ~x)

= −~∇~x ·
(

~pk~pk

m

)

δ (~xk − ~x) ,

~̇pk · ~∇~pk

(

N
∑

i=1

~piδ (~xi − ~x)

)

= ~̇pkδ (~xk − ~x) ,

the transport equation can further be reduced to

∂ (ρ~u)

∂t
=

N
∑

k=1

[

−∇~x ·
〈(

~pk~pk

m

)

δ (~xk − ~x) ; f

〉

+
〈

~̇pkδ (~xk − ~x) ; f
〉

]

.(5.20)
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The first term on the right hand side can be modified by noting that

N
∑

k=1

m

〈(

~pk

m
− ~u

)(

~pk

m
− ~u

)

δ (~xk − ~x) ; f

〉

=

N
∑

k=1

〈(

~pk~pk

m

)

δ (~xk − ~x) ; f

〉

− ~u

N
∑

k=1

〈~pkδ (~xk − ~x) ; f〉

−
N
∑

k=1

〈~pkδ (~xk − ~x) ; f〉~u+ ~u~u
N
∑

k=1

〈mδ (~xk − ~x) ; f〉

=
N
∑

k=1

〈(

~pk~pk

m

)

δ (~xk − ~x) ; f

〉

− ρ~u~u,

where ~u is the macroscopic velocity defined in Eq. (5.7). Eq. (5.20) then becomes

∂ (ρ~u)

∂t
+ ~∇~x · (ρ~u~u) = −~∇~x · σ̂K (~x, t) +

N
∑

k=1

〈

~̇pkδ (~xk − ~x) ; f
〉

, (5.21)

where

σ̂K =

N
∑

k=1

m

〈(

~pk

m
− ~u

)(

~pk

m
− ~u

)

δ (~xk − ~x) ; f

〉

.

We can substitute the explicit form of ~̇pk from Eqs. (5.7) and (5.8)

~̇pk = α~pk − β
|~pk|2
m2

~pk − ~∇U (~xk)
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into the second term of Eq. (5.21)

N
∑

k=1

〈

~̇pkδ (~xk − ~x) ; f
〉

=
N
∑

k=1

〈(

α~pk − β
|~pk|2
m2

~pk − ~∇U (~xk)

)

δ (~xk − ~x) ; f

〉

= αρ~u−
N
∑

k=1

〈(

β
|~pk|2
m2

~pk

)〉

+ ~FV .

The second term above can be further simplified as

N
∑

k=1

〈(

β
|~pk|2
m2

~pk

)

δ (~xk − ~x) ; f

〉

=

β

N
∑

k=1

〈(

|~pk|2
m2

~pk

)

δ (~xk − ~x) ; f

〉

− β

N
∑

k=1

〈

|~pk|2
m

~uδ (~xk − ~x) ; f

〉

+ β
N
∑

k=1

〈

m

(

−2
~pk

m
· ~u+ |~u|2

)(

~pk

m
− ~u

)

δ (~xk − ~x) ; f

〉

+ 2βEK~u− 2β~u · σ̂K + β
N
∑

k=1

〈

m |~u|2
(

~pk

m
− ~u

)

δ (~xk − ~x) ; f

〉

= 2β

N
∑

k=1

〈

m

2

∣

∣

∣

∣

~pk

m
− ~u

∣

∣

∣

∣

2(
~pk

m
− ~u

)

δ (~xk − ~x) ; f

〉

+ 2βEK~u− 2β~u · σ̂K

= 2β~qK + 2βEK~u− 2β~u · σ̂K,

where

~qK =

N
∑

i=1

〈

m

2

∣

∣

∣

∣

~pi

m
− ~u

∣

∣

∣

∣

2(
~pi

m
− ~u

)

δ (~xi − ~x) ; f

〉

.

As a result, Eq. (5.21) can be written as

∂

∂t
(ρ~u) + ~∇ · (ρ~u~u) + ~∇ · σ̂K = αρ~u− 2βEK~u− 2β~qK + 2β~u · σ̂K + ~FV ,
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which is the momentum transport equation shown in Eq. (5.10).

5.2.3 Numerical method

For numerical simulations of the continuum model, we use the Lax-Friedrichs

method [56] to integrate the partial differential equations (5.11) - (5.12). Unless

specified otherwise, the computational domain is a 5`a × 5`a box with boundary

conditions of out-going waves, which are equivalent to the free boundary con-

ditions of individual-based simulations. The initial conditions are chosen as a

homogeneous density in a 2`a × 2`a box at the center of the computational do-

main with randomized momentum field. The computational domain is divided

into 256×256 grid cells while the time step size is chosen so that the CFL number

is 0.98.

5.3 Comparison to the individual-based model

The time-dependent variations of the density ρ (~x, t) and of the momentum ~p (~x, t) ≡

ρ (~x, t) ~u (~x, t) can be obtained through numerical simulations of Eqs. (5.11) - (5.12).

We compare the results of the continuum model to those of the individual-based

model of Eqs. (3.7) - (3.8). Figure 5.1 shows the frequently observed single-mill

steady state solutions of both models in the catastrophic regime. Both simula-

tions use identical parameter values and the same total mass

mtot =

∫

∞
ρ (~x)d~x = Nm.

Consistent with the initial conditions of the continuum model, particles of the

individual-based model are initially distributed with random velocities and at

random positions in a 2`a × 2`a box. Free boundary conditions are imposed to

the individual-based simulation, which allow the particles to move around over
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the entire space, The individual-based simulation also adopts an adaptive time

step size that keeps the increment in position of each step under `a/10 and the

increment in velocity under Ca/5m. Figure 5.1 (a) illustrates the averaged den-

sity 〈ρ〉 as a function of the radial distance from the center of mass. These

two profiles are in good agreement despite the density oscillation shown in the

individual-based model, reflecting a multiple-ring ordering of the particle distri-

bution. Figures 5.1 (b) and (c) match the averaged radial and tangential momenta

(denoted by 〈p〉rad and 〈p〉tang respectively) from the simulations of both models.

The negligible radial momenta in Fig. 5.1 (b) indicate that there is no net inward

or outward mass movement, and thus, the density profile along the radial direction

is steady. We can divide the momentum by the density to obtain the velocity field.

In Fig. 5.1 (d), we show the averaged tangential velocities, 〈v〉tang ≡ 〈p〉tang/〈ρ〉,

from the simulations of both models; it shows that both the individual-based and

the continuum swarms are rotating at the same constant speed, which equals to

veq.

5.3.1 Validity of the continuum model

The ensemble average implicit in the continuum approach does not allow for

double-milling in the continuum limit because the velocity inside a mesh cell is

averaged and unified. Local velocity variations, which contribute to ~qK (~x, t) and

σ̂K (~x, t) in Eq. (5.10), are neglected. We calculate the ratio of the speed variation

to the equilibrium speed, ∆K ≡
√

〈(v − veq)
2〉/veq

2, in order to efficiently estimate

the contribution of these local velocity fluctuation terms. Figure 5.2 shows that

∆K becomes negligible after the swarm has reached the single-mill configuration

and M ' 1. However, during the transient time, ∆K is significantly larger,

which implies that ~qK (~x, t) and σ̂K (~x, t) cannot be neglected during this period.
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Figure 5.1: Comparison of the numerical simulations of the individual-based
model and the continuum model: The parameters used in both simulations are
Ca = 0.5, Cr = 1.0, `a = 2.0, `r = 0.5, α = 1.2, β = 0.5, and the total mass
mtot = 88. (a) The averaged density profiles along the radial distance from the
center of mass. (b) The averaged radial momentum profiles. (c) The averaged
tangential momentum profiles. (d) The averaged tangential velocity profiles.
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Figure 5.2: Relative speed fluctuations ∆K while forming a single mill from
random initial conditions. The dashed curve illustrates the normalized angular
momentum M in Eq. (3.14) while the solid curve represents ∆K. The parameters
of this simulation are α = 1.0, β = 0.5, Ca = 0.5, Cr = 1.0, `a = 2.0, `r = 0.5,
and N = 500.

Hence, the continuum model of Eqs. (5.11) - (5.12) can be useful in analyzing the

stability of the steady state solution but does not capture the dynamics of the

swarm settling into this steady state.

While Figure 5.1 shows good agreement between the steady state solutions of

the continuum and the individual-based models in the catastrophic regime, in-

consistencies arise as the parameters shift into the H-stable regime. Here, at low

particle speeds, the individual-based model results in compactly supported solu-

tions similar to those shown in Fig. 3.2 (d) and (e). Conversely, the corresponding

continuum model yields a uniform density distribution spreading over the entire
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computational domain regardless of domain size. Since a valid continuum model

should reflect the large-number limit of the individual-based model, we can in-

vestigate how the steady state solutions of the individual-based model evolve by

increasing N while keeping all continuum variables and parameters fixed. In

particular, we increase N while keeping the macroscopic parameter mtot = Nm

fixed. If the individual-based solution has converged to the continuum limit, the

solutions should be independent of any microscopic parameter, such as N . In

Fig. 5.3 (a), we show the radius R of steady swarms versus N under fixed mtot for

an H-stable case and for a catastrophic one. The flock size is indeed independent

of N for catastrophic swarms, and the two models yield consistent solutions, as

shown in Fig. 5.1. However, in the H-stable regime, the swarm size increases with
√
N in spite of a fixed mtot. This suggests that a compactly supported solution

does not exist in the large number limit of an H-stable swarm. Figure 5.3 (b)

further illustrates this point by expanding the investigation to a broader param-

eter space. The H-stability threshold is the solid curve, parting the C–` phase

space in Fig. 5.3 (b). The flock radius R is approximately independent of N for

catastrophic swarms, but when the parameters C and ` cross over to the H-stable

regime, R scales as NZ with Z ' 1/2. As N → ∞, H-stable swarms tend to

occupy the entire space.

The cue to the inconsistency between the solutions of the two models in the

H-stable regime lies in the derivation of the continuum model. As previously

mentioned, the macroscopic variables are obtained as ensemble averages over a

large number of microscopic ones. In the catastrophic regime, δNND � `a, `r in

large N limit, as shown in Fig. 5.3. Hence, as N → ∞, the particle distribution

converges to a continuum density on a scale comparable to the interaction length.

On the other hand, for an H-stable swarm, δNND stays non-negligible with respect
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Figure 5.3: (a) Flock radius versus number of particles with the total mass fixed
at mtot = Nm = 500. The solid circles represent the H-stable flock (`r = 1.5),
fitted by R ∝ N 0.41, while the solid diamonds represent the catastrophic flock
(`r = 1.3), fitted by R ∝ N 0.11. The other parameters are α = 0, β = 0.5,
Ca = 0.5, Cr = 1.0, and `a = 2.0. (b) Exponents Z of the power law fitting
R ∝ NZ for a range of C and `. The dimensionless parameters C and ` are
changed by varying Cr and `r while the other parameters remain the same as
above. The gray-scale map indicates the power Z, and darker colors represent
higher exponents. The solid curve marks the H-stability boundary with the upper
region being H-stable and the lower region being catastrophic.
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to the characteristic length of the interaction. Hence, Eq. (5.14) does not hold on

a scale comparable to the interaction length, and as a result, Eq. (5.16) is not a

valid description of the continuum force on such a scale in the H-stable regime.

This is also verified in Fig. 5.4. In Fig. 5.4 (a), we define significant neighbors of

a particle as neighbors that exhibit a “significant interaction”. The quantita-

tive definition is illustrated by the graph on the upper-right corner, in which the

pairwise interaction potential V (x) is plotted versus the inter-particle distance

x, and the potential well depth is denoted by Vmin. We define a distance xs so

that V (x) > sVmin if x > xs, where 0 ≤ s ≤ 1 is a ratio. Then, the number

of significant neighbors of each particle is the number of neighbors at a distance

x for which x ≤ xs. In Fig. 5.4 (a), we count the averaged number of significant

neighbors of a particle, denoted by ns, for s = 0.5 and s = 0.1. In the H-stable

regime, ns is very low and remains steady; it rises rapidly when the parameter

crosses over into the catastrophic regime. The results suggest that the H-stable

swarms are locally too sparse for Eq. (5.14) (and thus, Eq. (5.16)) to remain valid.

Furthermore, we can use ensemble averages to approximate the collective inter-

action potentials in the two models. If the continuum limit properly describe

the individual-based description, these two potential energies should converge as

N increases. Let us define UEu as the continuum ensemble average interaction

potential in the Eulerian frame

UEu (~x) ≡ 1

m2

∫

Rd

V (~x− ~y) ρ (~x) ρ (~y) d~y.

Here ρ (~x) is approximated by the ensemble average of the individual particles

during the simulation. We also define ULa as the average collective potential

calculated in the Lagrangian frame, ULa (~x) ≡ 〈U (~xi)〉~xi=~x, where U (~xi) is defined

in Eq. (3.6) of the individual-based model. Since the rigid-body rotation and the
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Figure 5.4: (a) ns versus `. The upper curve represents the case of s = 10%
while the lower curve is for s = 50%. On the upper-right corner is an illustration
showing how the significant neighbors are defined. (b) UEu and ULa versus `. Here
α = 0.003, β = 0.5, Ca = 0.5, `a = 2.0, Cr = 1.0, and N = 500. (c) 4U and
versus N . ` = 0.65 for the catastrophic curve while ` = 0.75 for the H-stable
curve. The other parameter values are the same as (b).
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single-mill state have rotational symmetry with respect to ~xCM, we evaluate UEu

and ULa after such states are reached and at position ~x such that |~x− ~xCM| = R/2,

where R is the swarm radius. In Fig. 5.4 (b), UEu and ULa are shown to converge

in the catastrophic regime and diverge in the H-stable one. In Fig. 5.4 (c), we

investigate whether the difference between these two averaged potentials, 4U ≡

UEu − ULa, vanishes with increasing N . Figure 5.4 (c) shows that 4U indeed

tends to zero for catastrophic swarms by increasing N but remains finite for H-

stable ones. For the ensemble average to be valid in the H-stable regime, we

may instead choose a scale that is much larger than the characteristic interaction

lengths. Under such low resolution, the particle distribution can be seen as a

continuous density, and Eq. (5.14) is then valid. This becomes the case of the

incompressible fluids in Ref. [46], where the interaction is extremely localized,

and hence, the continuum force yields a stress tensor as a function of the local

density. However, the swarming patterns which we am interested in emerge on

a much smaller scale. In contrast, when the particles are in the dispersed state,

they are far away from each other; thus, particle-particle interaction is very weak

and dominated by velocity fluctuations. The continuum force then yields a scalar

pressure, which gives the gas dynamics equations [46].

5.4 Linear stability analysis

That the solutions of the continuum model of Eqs. (5.11) and (5.12) relax toward

a uniform density distribution in the H-stable regime can also be shown by the

linear stability analysis of its homogeneous solution. Let us first consider a more
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general case for a 2D self-driving continuum model with a non-local interaction

∂ρ

∂t
− ~∇ · (ρ~u) = 0; (5.22)

∂

∂t
(ρ~u) + ~∇ · (ρ~u~u) = f (l) (|~u|) ρ~u− ρ~∇

∫

Rd

V (|~x− ~y|) ρ (~y) d~y,

where f (l) (|~u|) is a scalar function specifying the self-driving mechanism, and the

non-local interaction is expressed by the convolution term. For our model,

f (l) (|~u|) = α− β |~u|2 .

The possible homogeneous steady state solutions can be written as ρ (~x, t) = ρ0

and ~u (~x, t) = v0 v̂, where v̂ is a unit vector and v0 can be 0 or any of the roots

of f (l) (v0) = 0. For our Rayleigh-type dissipation, v0 =
√

α/β or 0. We perturb

the steady state solution using ρ (~x, t) = ρ0 + δρ exp (σt+ i~q · ~x) and ~u (~x, t) =

v0 v̂ + (δu û+ δv v̂) exp (σt + i~q · ~x), where δρ, δu, δv � 1 are small amplitudes.

The unit vector û points to the direction perpendicular to v̂ on the 2D space.

The wave vector is denoted by ~q while σ = σ (~q) represents its growth rate. By

substituting this ansatz into Eq. (5.22), the dispersion relation is

σ′





δρ
δu
δv



 =





0 −iρ0q sin θ −iρ0q cos θ

−iqṼ sin θ f (l) (v0) 0

−iqṼ cos θ 0 f (l) (v0) + v0f
(l)′ (v0)









δρ
δu
δv



 , (5.23)

where σ′ ≡ σ + iv0 v̂ · ~q, and Ṽ = Ṽ (~q) is the Fourier transform of the pairwise

interaction potential V (~x). The angle between the wave vector ~q and the unit

vector û is denoted by θ.

For the case of v0 = 0, the solution is isotropic, and we can arbitrarily choose

the unit vector v̂. If the wave vector ~q is parallel to the arbitrarily chosen v̂,
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Eq. (5.23) reduces to

σ





δρ
δu
δv



 =





0 0 −iρ0q
0 f (l) (0) 0

iqṼ (~q) 0 f (l) (0)









δρ
δu
δv



 ,

and σ = f (l) (0) or

(

f (l) (0) ±
√

f (l) (0)2 − 4ρ0q2Ṽ (~q)

)

/2. If f (l) (0) > 0, the

homogeneous solution is always unstable. If f (l) (0) < 0, the homogeneous solution

is stable only when ρ0q
2Ṽ (~q) > 0. Since ρ0 and q2 are both non-negative, the

criterion can be reduced to

Ṽ (~q) > 0. (5.24)

For our Rayleigh-type dissipation, f (l) (0) = α. Since α is positive, the uniform

density solution with zero speed is an unstable steady state solution.

For the case of v0 6= 0 satisfying f (l) (v0) = 0, Eq. (5.23) becomes

σ′





δρ
δu
δv



 =





0 −iρ0q sin θ −iρ0q cos θ

−iqṼ (~q) sin θ 0 0

−iqṼ (~q) cos θ 0 v0f
(l)′ (v0)









δρ
δu
δv



 .

We thus obtain the growth rate by solving the following eigenvalue equation

σ′3 − v0f
′ (v0)σ

′2 + σ′ρ0q
2Ṽ (~q) − v0f

(l)′ (v0) ρ0q
2Ṽ (~q) sin2 θ = 0. (5.25)

Let us consider the two cases of the wave vectors parallel and perpendicular to

the v̂-direction. For the parallel case, i.e., θ = 0,

σ′ = 0 or σ′ =
1

2

[

v0f
(l)′ (v0) ±

√

(

v0f (l)′ (v0)
)2 − ρ0q2Ṽ (~q)

]

.

On the other hand, in the perpendicular case (θ = π/2), σ′ = v0f
(l)′ (v0) or

σ′ = ±
√

−ρ0q2Ṽ (~q). If f (l)′ (v0) > 0, the homogeneous solutions are always
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Figure 5.5: The linear stability diagram of the swarming model of
Eqs. (3.7) - (3.8).

unstable. For our Rayleigh-type dissipation, f (l)′ (v0) = −2βv0 < 0; hence, the

homogeneous solution is stable only when ρ0q
2Ṽ (~q) > 0, which is the same as

the criterion in Eq. (5.24). Further analysis shows that for a general angle θ,

Eq. (5.25) can be rewritten as

(

σ′ − v0f
(l)′ (v0)

)(

σ′2 + ρ0q
2Ṽ (~q)

)

+ Γ cos2 θ = 0,

where Γ ≡ v0f
(l)′ (v0) ρ0q

2Ṽ (~q). In our model, Γ > 0 whenever the homogeneous

solution is unstable. Thus, an inspection of the above equation shows that its

largest root, i.e., the fastest growth rate, is at θ = π/2. As a result, perturbations

on the direction perpendicular to the swarm velocity are the fastest growing mode,

and their rate is
√

−ρ0q2Ṽ (q) for a given q.
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Substituting Eq. (3.6) into Eq. (5.24), the linear stability criterion for our

swarming model can be explicitly obtained as

Ṽ (q) ≡ 2π

[

− 1
(

1 + q′2
)3/2

+
C`2

(

1 + `2q′2
)3/2

]

> 0, (5.26)

where q′ ≡ q`a. Since the above criterion has to hold for all q′ ∈ R, stability is

attained at

C`2 > 1 if ` < 1,
C > ` if ` ≥ 1,

The linear stability diagram is shown in Fig. 5.5. Note the close connection be-

tween the different regimes shown here and in the H-stability diagram of Fig. 4.1.

When the homogeneous solution is linearly stable, the interaction potential is also

H-stable. This is because the condition of Eq. (5.24) is also sufficient, but not nec-

essary, for H-stability [80]. Further study on the dispersion relation in Eq. (5.25)

reveals that σ′ increases as q2Ṽ (~q) decreases, and the maximum of σ′ occurs

when the minimum of q2Ṽ (~q) is reached. As a result, we am able to evaluate

the wavelength of the fastest growth mode and categorize the long-wave and the

short-wave instability regions in the parameter space. Furthermore, we compare

the fastest growth wavelength to the pattern of the fully nonlinear continuum

model near the onset of the instability, shown in the left panel of Fig. 5.6. The

simulations are initiated with a homogeneous density distribution and computed

on a periodic domain of a 206.8×206.8 box. The wavenumber of the fastest growth

mode is calculated as the minimum of Eq. (5.26). For the parameters chosen in

Fig. 5.6, |~q| = 0.121, which corresponds to a wavelength λ = 51.87. This value

matches the density aggregation patterns quite well. In the upper figure, α = 0;

the steady state density has zero velocity, and the x-y directions are isotropic.
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In the lower figure, α 6= 0, and the velocity field of the swarm is initiated as

~u (t = 0) =
√

α/βŷ. The direction of the stripes indicates that the fastest growth

mode is indeed perpendicular to the initial velocity, which is also consistent with

the theoretical prediction. The results can also be compared to the simulation of

the individual-based model by using the same parameter values and equivalent

initial and boundary conditions. Since V (r) decays rapidly in r, U (~xi) can be

well approximated by including only the adjacent eight boxes surrounding the

computational domain. The steady particle distributions of the individual-based

simulations are shown on the right panel of Fig. 5.6. The theoretically predicted

wavelength agrees with the patterns seen in the simulations of the continuum and

the individual-based models.

5.5 Discussion

Soft-core interactions are widely adopted in the swarming literature [14, 17, 21,

23, 24, 25, 57, 61, 63, 79, 93]. Our investigations, with the Morse potential of

Eq. (3.6), reveal that the commonly observed core-free mill patterns only exist

in the catastrophic regime and not in the H-stable one. In this latter case, par-

ticles arrange in rigid-body-like structures, similar to the solid configurations in

molecular dynamics simulations using a Lennard-Jones potential. The morphol-

ogy richness associated with soft-core catastrophic potentials has led to their

popularity in the literature of swarming patterns. One drawback to soft-core in-

teractions for swarming models is that particles could occupy the same space,

which is an unphysical situation. However, one need not abandon such models

completely; it can be modified locally and still retain large scale features of the

swarm. One modification is to consider that animals usually flock on a reduced

dimension and thus, can use the extra dimension to avoid actually occupying the
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Figure 5.6: Left panel: The contours of a density distribution of the continuum
model near the instability onset with (upper) α = 0 and (lower) α = 1; Right
panel: Simulations of the individual-based model using the same parameters and
initial conditions as the left figures. The parameter values are β = 0.5, Ca = 0.5,
Cr = 1.0, `a = 2.0, and `r = 1.35.
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same space. For example, ants can crawl over each other; therefore, they can

use z-direction to “pass through” each other when viewed as a swarm on the x-y

plane. Another way of modification is using separation of scales. We may actu-

ally add an additional hard-core repulsion solely to prevent overlapping. In other

words, there is a soft-core potential that defines an equilibrium distance between

particles and gives rise to the swarming patterns, and there is also a hard-core

potential on a much smaller scale that specifies a forbidden distance and prevent

particles from penetrating each other. We find that the presence of the hard-core

potential affects the swarming pattern only when N is large enough, and hence

the equilibrium distance between nearest neighbors, determined by the collective

soft-core interaction, collapses to the vicinity of the hard-core forbidden distance.

Otherwise, flocks exhibit the same soft-core steady state patterns for small to

moderate N , except for the double-mill state, which is apparently very sensitive

to hard-cores and, in our simulations, are absent altogether. As N increases, the

equilibrium δNND at first decreases; the flock size increases with N only when the

equilibrium δNND becomes close to the forbidden hard-core zone and cannot de-

crease further. Thus, a swarming flock at moderate N can have soft-core patterns

in spite of the existence of a local hard-core repulsion.

Despite the natural tendency to keep a reasonable distance between each other,

animals may still come close and occasionally touch each other while moving in

a biological swarm. Thus, the natural repulsive tendency can be realized as a

soft-core repulsion while the body length of the swarming animals can be viewed

as a hard-core forbidden zone. For biological swarms, the equilibrium δNND is

visibly larger than the hard-core forbidden zone, which supports the description

given in the previous paragraph. In contrast, the Lennard-Jones potential, used

for physical systems of molecules, defines an equilibrium distance very close to
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where the potential rapidly rises toward infinity. In other words, the equilibrium

distance is nearly the same as the hard-core forbidden zone. Compressibility is

perhaps the reason why various catastrophic patterns, which are not observed in

the condensed phases of classical matter, can exist in the aggregation states of

natural swarms. In artificial swarms, such as the applications in Chapter 8, the

hard-core repulsion can be understood as a collision avoidance strategy. If the

distance to invoke the collision avoidance is much shorter than the equilibrium

spacing between agents, various collapsing patterns shown in Ref. [17] become

possible and might even be engineered for artificial swarming of vehicles.
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Chapter 6

A Brief History of Artificial Swarms

While various patterns in biological swarms are observed, the foraging efficiency

and defensive advantage are especially of interest to engineers. Inspired by such

natural phenomena, engineers have built systems of multiple autonomous robots

that performs cooperative strategies, in some cases attempting to imitate natural

swarms. Such studies serve two purposes. On the one hand, they provides real-

life simulations for testing conjectures related to animal group behaviors. On the

other hand, the advantage shown in cooperative animal groups can be used as as

design paradigm for complicated tasks with multiple independent robots. In this

chapter, we first review some pioneering work of cooperative autonomous robots,

followed by some recent results that are more relevant to our model in previous

chapters and its applications in the next two chapters.

6.1 Walter’s turtles

The famous neurophysiologist and robotician W. Grey Walter is believed to be

the first to bring this idea to reality. In late 1940s, he started building several

autonomous robots, nicknamed “turtles” because of their shapes [100]. A turtle is

a self-propelled three-wheel vehicle with a steering motor to change its direction.

A light sensor is installed on the vehicle to detect light sources; touch sensors

are also installed in order to detect and avoid obstacles, walls, or another vehicle.

On-board vacuum tube computers allow the turtles to make simple logical compu-

tations. The picture in Fig. 6.1 shows one of the turtles heading for a target point

while avoiding an obstacle on its way. Using light sources as the target points,

113



Figure 6.1: A picture of Walter’s turtle [101]. This is a time-exposure photo-
graph in which the turtle starts from the left, avoids the obstacle in the middle,
and reaches the target on the right. A lamp is mounted on the turtle, and hence,
the photo is able to record its trajectory as well. Reprint from W. G. Walter,
“A machine that learns”, Scientific American, Vol. 185, No. 2, pp. 61, 1951,
photogrphed by Desmond Tripp.
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a series of experiments were conducted on these machines, which include single-

vehicle tasks and multi-vehicle behaviors. The observations were presented in

two of his papers “An imitation of life” and “A machine that learns” [100, 101].

Based on his research of brain activities, his primary purpose is to show that

such a robotic system is capable of giving rise to complex behaviors, much like

what brain cells are believed to do. Nevertheless, his contribution opened up a

promising field that has generated great interests at present.

6.2 Recent works

Sugawara and Sano, two authors of the theoretical swarming model in Ref. [85]

which we have reviewed in Section 2.3, published the paper “Cooperative acceler-

ation of task performance: Foraging behavior of interacting multi-robots system”

in 1997 [90]. Their robots are similar to Walter’s turtles; they are self-propelled

vehicles equipped with a light sensor and two touch sensors. They are able to

steer left or right depending on which side touches an obstacle. The authors in-

vestigated the efficiency of collecting pucks on a testbed where multiple robots

are deployed. They test a simple interaction rule similar to that of the foraging

bird flocks in Ref. [92]. According to the rule, every robot that just picks up a

puck will turn on a lamp, mounted on the robot, for a period of time. Other

robots that have not found a puck will respond to this light and head toward

this location. For a homogeneous distribution of the pucks, the robots perform

similarly with or without interaction. However, when the pucks distribute locally,

a more realistic situation for animals, the foraging efficiency is greatly enhanced

just by such a simple interacting rule. The comparison is shown in Fig. 6.2, where

the collecting time become much shorter for interacting robots when the number

of robots increases.
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Figure 6.2: Foraging efficiency of Sugawara and Sano’s robots [90]. The x-axis is
the number of robots, and the y-axis is the inverse of time T by which all pucks are
collected. Pucks are distributed homogeneously in Field 1, where robot interaction
does not show any significant effect. Field 3 has localized puck distributions,
where robots with interaction demonstrate more superior efficiency by increasing
the number of robots. Reprinted from Physica D: Nonlinear Phenomena, Vol.
100, K. Sugawara and M. Sano, “Cooperative acceleration of task performance:
Foraging behavior of interacting multi-robots system”, pp. 343-354, Copyright
(1997) with permission from Elsevier.

As the capability of on-board computing for robots has continuously pro-

gressed, more sophisticated interaction rules are implemented for later develop-

ment of artificial swarms. Leonard et al. applied the idea of interaction forces by

constructing virtual potentials to guide their underwater vehicles [26, 55, 68, 69,

88]. One example is in the 2001 paper “Virtual leaders, artificial potentials and

coordinated control of groups” by Leonard and Fiorelli [55]

Vi,j =







−C
(

ln (xi,j) + `
xi,j

)

if 0 < xi,j < `c,

−C
(

ln (`c) + `
`c

)

if xi,j ≥ `c,
(6.1)

where C, `, and `c are positive constants. The force is then given by ~Fi =

−~∇
∑

j 6=i Vi,j. They showed that underwater vehicles can self-organize into a

rigid-body formation, through interaction forces defined by virtual potentials,

and proved that the formation is stable [55, 68, 88]. While the ability of obstacle

avoidance was theoretically discussed in literature [8, 69], Leonard et al. also
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conducted field tests with their autonomous underwater vehicles for problems in-

volving ocean sampling [26]. We adopt the idea of virtual potential and formulate

our control algorithm in Chapters 7 and 8 by converting our swarming model in

Eqs (3.7) - (3.8).

Some vehicles have a fixed speed, and thus, steering control is another com-

mon scheme for artificial swarms. An example of such a vehicle is discussed in

Chapter 8. In their 2003 conference paper “Steering laws and continuum models

for planar formations” [48], Justh and Krishnaprasad propose a steering control

law for such vehicles:

d~ri

dt
= x̂i, (6.2)

dx̂i

dt
= ŷiωi, (6.3)

dŷi

dt
= −x̂iωi, (6.4)

where x̂i and ŷi are respectively a tangential and a normal unit vector with respect

to the trajectory of vehicle i, while ~ri is the displacement vector from the vehicle

to a reference point, as shown in Fig. 6.3. Note that the speed does not appear

in Eqs. (6.2) - (6.4) because they assume the unit speed in their model. In polar

coordinates, d~ri/dt = (cos Θi, sin Θi) and dΘi/dt = ωi. The steering control

parameter is the angular velocity ωi. In the paper, Justh and Krishnaprasad

design two control laws that produce distinctly different swarming formations.

One of them is called the “rectilinear control law”

ωi =
1

N

∑

j 6=i

[

c0

(

~ri,j

ri,j
· x̂i

)(

~ri,j

ri,j
· ŷi

)

− V (ri,j)

(

~ri,j

ri,j
· ŷi

)

+ c1x̂j · ŷi

]

, (6.5)

where ~ri,j ≡ ~rj −~ri, N is the number of vehicles, and c0, c1 are positive constants.
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Figure 6.3: The coordinate system of the steering control law in the paper of
Justh and Krishnaprasad [48]. Reprint from E. W. Justh and P. S. Krishnaprasad,
“Steering laws and continuum models for planar formation”, in Proc. of the 42nd
IEEE Conference on Decision and Control, pp. 3609-3614 ( c© 2003 IEEE).

The first term in the summation gives the vehicles a tendency to form a rectan-

gular formation, and the third term unifies the orientation of the vehicles. The

function f in the second term is chosen to define an equilibrium distance between

the vehicles. The rectilinear formations are shown in the left figure of Fig. 6.4.

The second control law is called the “circling control law”

ωi =
1

N

∑

j 6=i

[

c2

(

~ri,j

ri,j
· x̂i

)

− V (ri,j)

(

~ri,j

ri,j
· ŷi

)]

, (6.6)

where the parameter c2 is also a positive constant. The circling patterns are shown

in the right figure of Fig. 6.4. The proofs of convergence of such a multi-vehicle

system are also given in the paper. In Chapter 8, we show applications of these

steering control laws on our testbed vehicles.

Convergence is an important property for multiple autonomous vehicles to be
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Figure 6.4: The vehicular formations in the model of Justh and Krishnaprasad
[48]. Left: Rectilinear formation. Right: Circling formation. Reprint from E. W.
Justh and P. S. Krishnaprasad, “Steering laws and continuum models for planar
formation”, in Proc. of the 42nd IEEE Conference on Decision and Control, pp.
3609-3614 ( c© 2003 IEEE).

viewed as a swarm. An application of virtual potentials that is especially useful

in proving convergence is the “potential flow” model, expressed by the following

kinematic description

d~xi

dt
= −~∇

∑

j 6=i

V (xi,j) , (6.7)

where V is a pairwise interaction potential depending on the distance between

particles i and j, denoted as xi,j. In a series of papers [32, 33, 34, 60], Gazi and

Passino proves global convergence for a particular potential flow model, in which

V (x) = c0x
2 + c1 exp

(

−x
2

`2

)

. (6.8)

Here, c0, c1, and ` are positive constants. The first term on the RHS of Eq. (6.8)

is an attraction while the second term is a repulsion. Note that the attraction

is a spring potential, which is unphysical for general vehicular communications

because radio signals usually decay in distance. The proof of global convergence

takes advantage of this strong interaction at a distance. Although we are not able

to prove the same global convergence for our virtual potential, the works of Gazi
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and Passino inspire us to instead prove local convergence, which is discussed in

Chapter 8.
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Chapter 7

Caltech Multi-Vehicle Wireless Testbed

7.1 Introduction

The Multi-Vehicle Wireless Testbed built by Murray et al. provided numerous in-

teresting applications of artificial swarms [15, 47]. The testbed consists of second-

order vehicles, nicknamed “Kelly”, with ducted fans and is capable of performing

cooperative control algorithms. It was originally designed for RoboFlag project

[9] but has also been used to demonstrate many other tasks [1, 43, 66]. In this

chapter, we show applications of using the idea of virtual interaction potentials

to guide the vehicles. Sections 7.2 - 7.4 review our collaborative work in the paper

“Virtual attractive-repulsive potentials for cooperative control of second order

dynamic vehicles on the Caltech MVWT” [66]. In Section 7.2, we describe the

composition of the testbed. In Section 7.3, we present a model adaption that

converts Eqs (3.7) - (3.8) into a virtual-potential control algorithm. After the con-

trol algorithm is obtained, in Section 7.4 we show the experimental results of our

testbed applications.

7.2 Testbed

Figure 7.1 shows the Caltech MVWT vehicles, Kelly. They sit on casters, and

each consists of an onboard computer, a pair of fans, and wireless network con-

nection. The positions of the vehicles are reported by overhead cameras to an

offboard computer and then passed along to each vehicle’s onboard computer via

the wireless network. Readers can refer to Ref. [15, 43, 66] for more detailed hard-

ware setup of the testbed. Thanks to the wireless network connections, each Kelly
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Figure 7.1: The vehicle Kelly at the Caltech MVWT [66].

is able to obtain real-time tracking information of its own position and that of the

others. Each Kelly is driven by a pair of fans mounted on each side of the caster.

Their relative power outputs determine the magnitude and the direction of the

vehicle’s acceleration. The primary challenge of applying our model is to trans-

late the equations of motion to the output control of the fans, which is detailed

in Section 7.3.

7.3 Model adaption

The motion of vehicle i in the Caltech MVWT system is described by its position

~xi = xix̂+yiŷ and an orientation angle Θi, as shown in Fig. 7.2. In the figure, the

x-y coordinate system is fixed on the testbed while Θi is measured with respect

to the x-axis. The basic equations of motion of Kelly is

mi
d2~xi

dt2
= −β~vi + (FR,i + FL,i) (cos Θix̂ + sin Θiŷ) (7.1)

Ji
d2Θi

dt2
= −ψωi + (FR,i − FL,i) r1/2, (7.2)
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where ωi is the angular speed; a positive ω represents a counter-clockwise spin

while a negative ω represents a clockwise one. The linear and the rotational

friction coefficients are respectively denoted by β and ψ while Ji is the moment

and r1/2 is the half length of the vehicle. The most important quantities in the

equations are FR,i and FL,i, the output forces by the right and the left fans, because

these are the only thing that we can directly control. By writing down Eqs. (3.7) -

(3.8) and (7.1) - (7.2) in the same coordinate system, we obtain formulas for FR,i

and FL,i

FR,i =
α

2
−
∑

j 6=i

[(

−Cae
− |~xi−~xj|

`a + Cre
− |~xi−~xj|

`r

)

·(xi − xj) (cos Θi − sin Θi) + (xi − xj) (sin Θi + cos Θi)

|~xi − ~xj|

]

, (7.3)

FL,i =
α

2
−
∑

j 6=i

[(

−Cae
− |~xi−~xj|

`a + Cre
− |~xi−~xj|

`r

)

·(xi − xj) (cos Θi + sin Θi) + (xi − xj) (sin Θi − cos Θi)

|~xi − ~xj|

]

. (7.4)

Here, we adopt the self-driving model α~vi/ |~vi|−β~vi of Ref. [57] because the friction

is linear to the velocity. Also note that the rotational friction term −ψω cannot be

obtain from a point-mass swarming model such as Eqs. (3.7) - (3.8). Nevertheless,

the presence of the dissipative friction in the testbed environment actually helps

to stabilize the angular speed and does not affect the behavior substantially. Our

interaction in Eq. (3.6) decays in distance, implying that the vehicles have limited

sensor range and do not necessarily know the entire configuration.
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Figure 7.2: The coordinate systems of a testbed.

7.4 Testbed simulations

The Caltech MVWT consists of second-order vehicles that can be controlled

through fan power outputs using Eqs. (7.3) - (7.4). However, there is a central

structural pole on the testbed floor which results in a real obstacle to avoid while

performing flocks. Therefore, we initially considered single-vehicle tasks and ap-

plied our models to some fundamental problems. Two such problems are target

searching and obstacle avoidance, which combine as a path planning problem. We

used the Morse potential in Eq. (3.6) to create a virtual field that leads the vehicle

to the target and keeps it away from obstacles. One feature of this kind of control

algorithm is that it only depends on real-time displacements of the vehicle to the

targets and the obstacles; the vehicle does not need to know global coordinate

and can rely only on sensors for these tasks. However, in our MVWT testbed

simulations, we did not use onboard sensors but used the offboard computer to

simulate such processes for convenience because the existing control subroutines

for RoboFlag were in the offborad computer and were readily modified for our

model. This introduces an additional delay due to wireless communication be-

tween the offboard computer and the onboard computer, but the effect is neglible
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since our testbed experiments are at very low vehicular speed. The computation

simulation in Fig. 7.3 illustrates the idea of using virtual potentials for path plan-

ning to search for a target while avoiding obstacles. The upper figure shows that

the vehicle circumvents the potential “hills” created by the obstacles and heads

toward the potential “valley” where the target is located. The lower figure is the

same task drawn on a 2D plane, where the starting point is denoted by a black

star; the vehicle (blue circles) navigates through the obstacles (encircled red X’s),

and reached the target (green star) on the bottom. Note that we use different

potential parameters for the obstacles and the targets.

To implement virtual potentials on the actual testbed, we start with the sim-

plest case where only an attractive point (target) exists without any obstacles.

The vehicle is placed approximately four meters away from the target, and dif-

ferent initial orientations of the Kelly vehicle are tested. The Kelly trajectories

are shown in the left panel of Fig. 7.4. Immediately, a deviation from ideal is

noticed: the left and right fans do not generate the same propulsion given the

same power input. It is especially evident by Fig. 7.4 (a) where the vehicle starts

by facing directly toward the target but still drifts toward the right before making

left turns to hit the target. This case is verified by the computer simulations in

the right panel of Fig. 7.4. Figure 7.4 (e) is the ideal path that directly leads to

the target; Figure 7.4 (f) is is the path for a vehicle with a fan-output offset, which

deviates from its supposed trajectory, similar to the one on the testbed shown in

Fig. 7.4 (a) of the left panel. The phenomena, however, demonstrate an advantage

of using virtual potentials for path planning. The vehicles have the capability of

overcoming a systematic error and making corrections to find their way back to a

desired target point, provided that the target is not out of the interaction range of

the vehicles. Figure 7.5 show the actual testbed experiments of a vehicle searching
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Figure 7.3: Obstacle avoidance using the virtual attractive / repulsive poten-
tials [66]. The upper 3D figure illustrates the the shape of the virtual potential
designed for this task. The black curve on the potential surface depicts the vehi-
cle trajectory. The lower figure shows the vehicle trajectory with respect to the
locations of the obstacles and the target. The blue empty circles illustrate the
trajectory of Kelly while the red encircled X’s represent the stationary obstacles.
The initial position of Kelly is denoted by a black star on the left, and the target
is the green star to the right. The vehicular parameters are α = 0.066 N, and
β = 5.05 kg s−1. The obstacle parameters are Ca = 0, Cr = 5 J, and `r = 0.15 m.
The target is a pure attractive point with Ca = 3 J and `a = 3.5 m.
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Figure 7.4: (a) - (d): Target searching tasks with Kelly facing toward different
initial orientations. (e) - (f): Computer simulations of the target searching tasks
in ideal situation and in the realistic situation where an offset exists between the
left and right fans [66]. The parameters used in these simulations are α = 0.6 N,
β = 5.05 Kg s−1, Ca = 0.06 Nm, `a = 4 m, and Cr = 0.

for a target while avoiding obstacles on its way. Despite the fan-output offset,

the vehicle performs well on these tasks. Figure 7.6 shows a simple experiment,

in which two vehicles search for multiple targets using a greedy search algorithm

[13] while avoiding colliding with each other. In this case, a vehicle sees the other

one as a moving obstacle. In the algorithm, the vehicles search a list of targets

of known locations. Upon reaching the current target location, the vehicle au-

tomatically select the closest unfinished target from the list as its next target.

Additionally, the vehicles cooperate with each other through communication. If

two vehicles have selected the same target, the one farther away from the target

will select another target. The vehicles also exchange the current and finished

target list when they are in communication range, which is 1.5 m in this experi-

ment. In Fig. 7.6, the vehicles start at (a) in which they are within each other’s

communication range. As they find out that both have selected the upper-left

target as their current target, one of the vehicles switches to the lower-left target.
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Figure 7.5: Trajectories of the testbed experiments of target searching and obsta-
cle avoidance. Left: One obstacle and one target. Right: Multiple obstacles and
one target [66]. The vehicular parameters used in these simulations are α = 0.6
N and β = 5.05 Kg s−1, the target parameters are Ca = 0.06 Nm, `a = 4 m, and
Cr = 0, and the obstacle parameters are Ca = 0.5 Nm, `a = 0.5 m, Cr = 1.0 Nm,
and `r = 0.3 m.

Knowing that the lower-left target has been selected by the circle vehicle, the

triangle vehicle goes to the upper-right target after finishing the upper-left one,

as shown in Fig. (c). Finally, in Fig. (d), the lower-right target has been finished

by the circle vehicle; both vehicles stop when they are in communication again

and realize that all targets have been searched.

7.5 Conclusion

In this chapter, we present a decentralized control method for nonlinear second-

order dynamic vehicles. We show that virtual potentials provide a useful mech-

anism for the vehicles to guide themselves toward target locations or to avoid

obstacles. Due to time and space constraint, we were unable to test our algo-

rithm extensively on the MVWT testbed. Subsequently, a multi-vehicle testbed

was built in the Applied Mathematics Laboratory at UCLA. That testbed is in-

troduced in the next chapter, and more complex theoretical and experimental

results are also discussed.
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Figure 7.6: Two Kellys performing the greedy search algorithm using virtual
potentials [66]. The four squares represent the targets while the triangle and the
solid circle represent the vehicles’ current locations. The circles surrounding the
vehicles represent their communication range, which is 1.5 m in diameter. The
vehicular parameters used in these simulations are α = 2.6 N and β = 5.05 Kg s−1,
the target parameters are Ca = 1.01 Nm, `a = 4 m, and Cr = 0, and the collision
avoidance parameters are Ca = 0 Nm, Cr = 2.5 Nm, and `r = 1 m.
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Chapter 8

UCLA MicroCar Testbed

8.1 Introduction

The MicroCar Testbed at UCLA was built in 2005, motivated by the collabora-

tion with Caltech on the MVWT. While the Caltech MVWT system is capable

of performing a wide range of tasks, the MicroCar Testbed at UCLA is a cost-

down design, which also consumes a much smaller space and thus, can potentially

accommodate more vehicles. However, the vehicles present more mechanical con-

straints, thus, requiring modification of the model. In this chapter, we review our

collaborative works in the papers “An economical Micro-Car Testbed for valida-

tion of cooperative control strategies” [42] and “Multi-vehicle flocking: scalability

of cooperative control algorithms using pairwise potentials” [11]. In Section 8.2,

we describes the composition of the testbed. The model adaption is discussed in

Section 8.3, where an analogous potential-flow algorithm is also introduced. In

section 8.4, we prove the aggregation properties of a general potential-flow model.

In section 8.5, we present our results in both testbed experiments and computer

simulations.

8.2 Testbed

The UCLA MicroCar Testbed, as designed in 2005, features multiple converted

1/64th scale radio-controlled cars, a position-tracking system using overhead cam-

eras, and offboard computers that receive position information and send radio

signals. The left picture in Fig. 8.1 shows a side view of two UCLA MicroCars,

and the middle picture is an overhead view of three vehicles on the testbed. The
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Figure 8.1: UCLA MicroCar Testbed. Left: MicroCars. Middle: Cars on the
testbed. Right: Partial screen shot of the processed camera image [42].

right picture shows an image taken by one of the overhead CDC cameras and

processed by the OpenCV1 computer software, which can detect the shapes of

the objects in an image by using a contour searching function. The position and

the identity of each vehicle on the testbed are obtained by detecting a black and

white two dimensional bar code on top of each vehicle, similar to that used on the

CalTech MVWT [15, 43, 66]. More detailed description of the hardware can be

found in Ref. [42]. Because the cars do not have onboard computations, the in-

dividual decision-making processes are imitated by offboard computations. Even

with a chip installed, the cars should still only be capable of doing rather sim-

pler calculations and rely on communication and interaction to produce complex

behavior, much in line with natural swarming systems.

8.3 Model adaption

The models in Eqs. (3.7) - (3.8) need to be modified due to mechanical constraints

of the UCLA MicroCar testbed vehicles. The testbed consists of Dubins micro-

cars, which are better described by a first-order kinematic model [18, 86, 89].

Virtual potentials can be implemented as a controller for a first-order vehicle

1http://www.intel.com/technology/computing/opencv/index.htm
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through the motion rule

d~xi

dt
= −c~∇i

∑

j 6=i

V (xi,j). (8.1)

Here, ~xi = (xi, yi) is the position of vehicle i, and t is time. The distance between

vehicles i and j are denoted as xi,j; V is a pairwise interaction potential, and c is

a constant. Without loss of generality, let us set c = 1. The Morse-type potential

as in Eq. 3.6 can be adopted here for the interaction potential V . Note that the

steady state solution of Eq. 8.1 is the same as the coherent-flock solution of the

dynamic model Eqs. (3.7) - (3.8), as pointed out in Section 3.3. However, Dubins

vehicles have more constraints than general first-order vehicles. Dubins vehicles

have bounds on their turning radii and can only move forward. Additionally, the

UCLA MicroCars can only turn at fixed turning radii and move with a fixed speed,

which is even more strict than general Dubins vehicles. Due to such constraints,

Eq. 8.1 is not realistic enough for the UCLA MicroCars. Further adaption results

in the following control algorithm

dxi

dt
= α cos Θi,

dyi

dt
= α sin Θi (8.2)

dΘi

dt
=











α
RL

if γi > Γt (left turn),

− α
RR

if γi < −Γt (right turn),
α

RS
otherwise.

(8.3)

Here, α represents the fixed vehicle speed, and RL, RR are the left and right

turning radii, respectively. The only independent variable in Eqs. (8.2) - (8.3) is

the orientation Θi, defined similarly as in the Caltech MVWT controller and

illustrated in Fig. 7.2. Due to the fixed turning radii and speed, the potential

gradient in Eq. (8.1) can dictate neither the magnitude nor the orientation of the
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Figure 8.2: Definition of variables for vehicle i in the UCLA MicroCar testbed
[11]. The heading is denoted by Θi, the angle between its direction of motion and
the x axis of the testbed. The interaction force it experiences due to all other
vehicles is represented by ~Fi. This direction defines an angle γi with the heading
direction. Vehicle i is at a distance ~ri,j from vehicle j and the angles φi and φj

here shown are used in the collision avoidance scheme later in Section 8.3. The
origin of the reference coordinate system is fixed at the left-lower corner of the
testbed. All vehicular angles, γi, Θi, φi, are defined in [π,−π).

vehicle velocity. Instead, in Eq. (8.3), the potential gradient vector provides an

direction, indicating how the vehicle should turn. For each vehicle, we measure

the angle γi between vehicle heading and the potential gradient ~Fi associated to

vehicle i, as shown in Fig. 8.2. Vehicle i then changes direction only if |γi| > Γt,

where Γt is an angular threshold 0 ≤ Γt ≤ π. If the turning commands are not

given, the vehicle proceeds along the direction specified by the heading parameter

Θi.

An additional parameter RS is also introduced in Eq. (8.3) to take a mechanical

defect into account. Due to problems in steering alignment, the vehicle may not

run on a straight path when it is ordered to; the actual path can be described as a

portion of the perimeter of a circle with radius RS. In the ideal case, RL = RR, and

RS = ∞. In general, the alignment asymmetries cause RL 6= RR, and |RS| <∞.
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Collision avoidance

A crucial point for practical applications is that the interaction potential in

Eq. (3.6) is soft-core and does not prevent vehicles from colliding. In fact, even

hard-core potentials cannot avoid collisions due to various practical issues, such

as communication delays, errors in position information, and the finite turning

radius of the vehicles. Because of the low vehicle speed in our Caltech MVWT ex-

periments, the repulsive potential was enough to avoid collision. The same thing

can not be said for the UCLA MicroCar testbed vehicles since they have fixed

speeds, which are rather fast. The repulsive range may be increased to initiate

turning at larger inter-vehicle distances. However, this would significantly affect

pattern formation, and the emergence of cooperative aggregates would be un-

likely. As a result, we instead add an additional collision avoidance algorithm to

address short range interactions for the UCLA MicroCars. Note that we discuss

the implication of adding such a collision avoidance strategy in Section 5.5. Here,

we use a ‘wait and go’ scheme for vehicles closer than a cutoff distance rc. For

vehicles i, j at distance ~ri,j such that ri,j < rc, we define the angles φi, φj between

their main axis and ~ri,j, as shown in Fig. 8.2. If φi < φj vehicle i will pause while

vehicle j veers away, until ri,j > rc. The cutoff distance rc in the control algorithm

acts as an effective hard-core potential, as discussed in Section 5.5. If φi = φj,

one of the vehicles (in our simulations the one with a higher labeling index) will

pause and let the other proceed. When φi, φj ' 0 the ’wait and go’ scheme cannot

avoid collision as shown in Fig. 8.3, and an alternate algorithm is invoked. For

vehicles i and j we define the angle Ωi,j between ~ri,j and the segment joining their

opposite front edges measured from max{φi, φj} as shown in Fig. 8.3. If max{φi,

φj} < Ω, where Ω is an angular threshold 0 ≤ Ω ≤ π/2, then the vehicle closer

to the center of the testbed is veered towards the center and the other in the
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Figure 8.3: Collision avoidance failure [11]. The angles φi and φj are too small
and vehicles i and j collide even if one of them should pause. An additional
algorithm is required to steer the vehicles away from each other and is described
in the text. It relies on the angle Ωi,j here depicted.

opposite direction.

8.4 Proof of convergence

In Ref. [32, 33, 34, 60], Gazi and Passino prove a global convergence for particles

to aggregate under the potential-flow algorithm in Eq. (8.1) using a particular

functional form of the potential V . The particular functional form they adopt is

asymptotically quadratic, i.e., a spring potential at long range, and their proof

of global convergence heavily relies on the fact that the potential diverges at

a distance. Therefore, the global convergence is restricted to only a class of

interaction potentials which is rather artificial than natural or physical because

most communication signals generally dissipate in distance, including our Morse

potential in Eq. (3.6). However, we can still prove a local convergence for such

physical interaction potentials. First let us mathematically define

Definition 8.4.1 Diffused state. A flock or is in a diffused state if xi,j >

δ ∀i 6= j, where δ is the repulsive range such that V ′(x) > 0 for all x > δ.

Note that in order to be in a diffused state, the potential must yield only attraction

outside of a certain radius. The following Lemma shows that, regardless of the

specific form of the potential, a diffused state always shrinks.
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Lemma 8.4.2 Weak maximum principle. Define the flock radius as R ≡

supi xi, where xi = |~xi|. For a flock in the diffused state, Ṙ ≤ 0.

Proof : Let R = xi and define x̂i,j ≡ ~xi,j/xi,j. Then

ẋi
2

2
= ~xi · ~̇xi = −~xi ·

N
∑

j 6=i

x̂i,jV
′(xi,j) (8.4)

=
N
∑

j 6=i

(~xi · ~xj − x2
i )

xi,j
V ′(xi,j) ≤ 0 (8.5)

since x2
i ≥ ~xi ·~xj and V ′ > 0 in the diffused state. Thus x2

i , and xi, are decreasing

functions and Ṙ ≤ 0. �

Note that the proof of Lemma 8.4.2 implies that the swarm size decreases even if

only the outermost agents are in the diffused state. This is due to the fact that

the proof only uses an estimate for the farthest agents of the swarm. Using this

lemma, we can prove a local stability limit for a general interaction V . We can

also find conditions for particles initially constrained to a local region of radius R,

to evolve into a more compact ball of radius R∗ < R. The proof uses a Lyapunov

function discussed in [32, 34].

Theorem 8.4.3 Consider N particles located at ~xi with xi ≤ R ∀i, 1 ≤ i ≤ N .

If a finite constant value c > 0 exists such that max{0≤x≤2R} |cx − V ′(x)| < cR,

then asymptotically xi ≤ R∗, with R∗ < R.
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Proof : We choose the Lyapunov function Li ≡ x2
i /2. Its time derivative obeys

L̇i = −~xi · ~∇i

∑

j 6=i

V (xi,j) (8.6)

= −~xi ·
∑

j 6=i

x̂i,jV
′ (xi,j) (8.7)

≤ −cNx2
i + xi(N − 1)η, (8.8)

where η ≡ max{ 0 ≤ x ≤ 2R}|cx − V ′(x)|. In going from Eq. (8.7) to Eq. (8.8),

we have added and subtracted cxi,j where c > 0 is an arbitrary constant. We

also used the fact that ~xi ·
∑N

j 6=i ~xi,j = Nx2
i . Also note that xi,j ≤ 2R since by

assumption xi ≤ R. Asymptotically then

xi ≤
N − 1

N

η

c
≤ η

c
≡ R∗, (8.9)

and we require η < cR for this bound to be more stringent than the initial radius

R. �

Our control algorithm adopts the generalized Morse potential in Eq. (3.6), for

which a sufficient condition for Theorem8.4.3 is

(

Ca

`a
e−

2R
`a − Cr

`r

)

< 2cR < 2

(

Ca

`a
e−

2R
`a − Cr

`r

)

. (8.10)

Recalling that ` ≡ `r/`a and C ≡ Cr/Ca, Eq. (8.10) is satisfied only if ` > C

so that R can be chosen as 2R < `a ln (`/C). It is interesting to compare this

sufficient (but not necessary) condition with the H-stability phase diagram in

Fig. 4.1 for the same potential in the second order model of Eq. (3.7) - (3.8). In

the phase diagram, the region ` > C with C < 1 is classified as catastrophic, where

particles converge and becoming denser as N → ∞. This is consistent with the
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results proven here that N particles initially in a ball of radius R get “squeezed”

into a tighter one. However, the region ` > C, with C > 1 is classified as stable

in Fig. 4.1, with no possible squeezing effects in the long time limit, which is not

consistent with the results proven here. In this region, the pairwise potential has

a positive, local minimum for ri,j = 0 and a barrier at ri,j = rmax > `a ln(`/C),

before decaying to zero as ri,j → ∞. The discrepancy is due to, as mentioned

in Ch. 4, that the potential-flow equation in Eq. (8.1) is purely dissipative. Once

the particles start within the threshold radius `a ln(`/C), their energy can only

dissipate under the potential flow, and there is no chance such particles can gain

energy to eventually overcome the barrier and escape the attraction.

For other functional form of potentials, the specific criteria of convergence can

similarly be derived either analytically or numerically by applying Theorem8.4.3.

The theorem can be regarded as a local version of Gazi and Passino’s results in

Ref. [32, 34]; it can only prove local convergence but is applicable to a broader

class of potentials.

8.5 Testbed and computer simulations

The potential flow equation in Eq. (8.1) for general first-order vehicles cannot

be directly applied to the UCLA MicroCar Testbed, and thus, an adapted ver-

sion is devised as in Eqs. (8.2) - (8.3). After the model is adapted to hardware

constraints and formulated into control algorithms, we are able to explore the

corresponding behaviors of the vehicles on the testbeds. Since our second-order

model is greatly modified to a first-order model to adapt various hardware con-

straints of the UCLA MicroCars, we shall also investigate the model behaviors

through computer simulations. They are presented in Sections 8.5.1 and 8.5.2,

respectively.
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Figure 8.4: Multiple interacting vehicles following a leader on the UCLA Mi-
croCar testbed [11]. The leader is denoted by a black diamond while the vehicles
are represented by a blue triangle, a blue circle and a blue square. In the left
figure, two vehicles are following the leader on an ellipse trajectory (N = 2).
On the right, the leader is followed by three vehicles (N = 3). The parameters
used for the vehicle interaction are Ca = 104 erg, Cr = 6 × 103 erg, `a = 95.2 cm,
`r = 5.7 cm. The virtual leader has Ca = N × 104 erg and Cr = 0 while the other
parameters are the same.

8.5.1 Testbed simulations

The UCLA MicroCar testbed consists of Dubins vehicles that can be controlled

through Eqs. (8.2) - (8.3). The size of these vehicles are much smaller than the

Kellys at Caltech, allowing us to observe dynamic formations of multiple vehicles

on the testbed. Figure 8.4 shows a group of vehicles following a virtual leader

while interacting with each other. In the left panel, two vehicles are following the

leader while the interaction keeps an equilibrium distance between them; in the

right panel, three vehicles adjust to triangle formations while following the leader.

These experiments show that the testbed vehicles can attain cohesive movements

via the adapted control algorithm of Eqs. (8.2) - (8.3). For this model, we may

investigate behavior of larger groups via computer simulations.

8.5.2 Computer simulations

Unlike our applications to the Caltech MVWT testbed, in which the equations

of motion are only adapted but unchanged, the control algorithms of the UCLA

MicroCar testbed is a modified version of the original swarming model. In par-
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Figure 8.5: Two observed formations of the computer simulations for
Eqs (8.2) - (8.3) [11].

ticular, the interaction “force” does not provide acceleration for the vehicles but

instead gives directional orders. As a result, the large-group swarming behavior

may not be the same as those described in Chapter 3 and 4. We first calibrate the

computer model using the experimental data obtained from the openloop tests of

the UCLA MicroCar testbed. In line with the experiments in Section 8.5.1, we

simulate the behaviors of a large group of vehicles (N = 100) with the presence

of a leader. Figure 8.5 shows two observed formations in the computer simula-

tions. In the left panel, the vehicles fall out of leader’s path and self-organize into

circulating mills, similar to the formations in Fig. 3.2 (b) and (c). In the right

panel, the vehicles successfully follow the leader and form a polarized group much

similar to the coherent pattern in Fig. 3.2 (d). Note that the symmetry is broken

due to the modified model. The vehicles are less capable of adjusting relative po-

sitions due to fixed turning radii, and it is also less likely for a vehicle to catch up

others in front because of the constant vehicular speed. As a result, the coherent

formation exhibits larger gaps along the traveling path and denser packs along

the lateral direction.

The next thing we explore is whether H-stability also has effects on this mod-
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Figure 8.6: Scaling in the H-stable and catastrophic regimes [11]. The potential
parameters are C = 1.667, `a = 95.2 cm. The system is H-stable for `r > 73.5 cm
(top curve `r = 76.2 cm), otherwise it is catastrophic (middle curve `r = 69.02 cm;
bottom curve `r = 35.7 cm). The middle curve is at the threshold. Straight lines
are power law fits with powers 0.11, 0.01, and -0.00042 for the top, middle, and
bottom sets respectively.

ified first-order model. Similarly, we investigate the scaling properties with re-

spect to H-stable and catastrophic parameter values, as shown in Fig. 8.6. In

the figure, we adopt the same parameters as the experiments in Section 8.5.1:

Ca = 104 erg, Cr = 6 × 103 erg, and `a = 95.2 cm. Using Eqs. (4.7) and (4.15),

we obtain that the Morse potential is H-stable if `r > 73.5 cm. The top curve in

the figure is for `r = 76.2 cm, which is in the H-stable regime; the middle curve

is for `r = 69.0 cm, just below the H-stability threshold; the bottom curve is for

`r = 35.7 cm, a catastrophic case. Even though the modified model is less capable

of adjusting inter-distances between the vehicles, we still see that the flock radius

of H-stable swarms scales up against increasing N while the catastrophic swarms

have a fixed swarm size.
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8.6 Summary and conclusion

We consider a well-known first-order potential gradient flow model analogous to

the second-order dynamic model we discussed in previous chapters. We prove

a criterion of local convergence for a general class of potentials. The criterion

estimates the radius of a ball inside which the particles asymptotically collapse

into a even smaller ball. Such radius is found independent of the number of

particles, implying that the swarm density can go to infinity upon increasing

number of particles. This scaling property is very important in designing large

swarming algorithm.

We then adapt the model to a system of Dubins vehicles and program the

vehicles to follow a virtual leader in swarming formations. For small numbers

of vehicles, the testbed verifies some facts about the stability with respect to

the algorithm parameters. For larger groups, we use computer simulations to

investigate their scaling properties. The results show that the swarm in our model

can maintain its cohesion while the system size scales up.

In Chapters 7 and 8, we adapt and apply our model respectively to second-

order and to first-order vehicles using the control algorithm of virtual potentials.

On the testbeds, small numbers of vehicles perform cooperative tasks and achieve

cohesive formations. Larger systems are studied via computer simulations and

show similar scaling stability to that discussed in Chapter 4 for the original theo-

retical model. While our testbed continues to improve and upgrade, these results

paint a promising future for further applications of our swarming model.
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Chapter 9

Summary and Conclusion

In Chapter 2, we briefly review the historical development of swarming models

and distinguish two major classes of the models: kinematic models and dynamic

ones. Kinematic models evolved from population dynamics while dynamic mod-

els originated from individual descriptions of organism interactions. Because of

the population dynamics origin, kinematic models have better developed contin-

uum descriptions, and are generally used to explore polarization, segregation, and

coarsening of swarming groups. In contrast, dynamic models are based on realis-

tic individual descriptions and are more suitable to study small-scale phenomena,

such as internal structure and pattern formation of a swarming group. In this

thesis, we focus on aggregation patterns of swarms and thus, adopt a dynamic

description for modeling. In Chapter 3, the individual-based dynamic model is

constructed. Through computer simulations, we observe various distinct patterns

including coherent flocks, rigid-body rotations, single mills, double mills, rings,

clumps, and dispersed configurations. Statistical properties are numerically cal-

culated to investigate the parametric boundaries between the patterns. Many

of these patterns do not appear to scale well with increasing number of swarm-

ers. To better understand the scalability of the swarming patterns, in Chapter 4

we apply H-stability analysis from classical statistical mechanics to the interac-

tion of our swarming model. A phase diagram given by the analysis shows that

most swarming patterns are in non-H-stable (catastrophic) regimes and do not

scale with respect to number of swarmers, while H-stable regimes feature only

lattice-type patterns (coherent flocks and rigid-body rotations) in addition to the

143



dispersed state. Most notably, the single-mill pattern, frequently observed in nat-

ural swarms, is a catastrophic state. It helps to explain why models used to study

milling formations always adopt non-H-stable interactions, while studies focusing

on group coherence and segregation usually do not experience any difference with

respect to H-stability. To further investigate analytical properties of the model,

a continuum description of the model is necessary. Unlike kinematic models,

the connection between the individual-based and the continuum descriptions of

dynamic models has not been rigorously established. In Chapter 5, we apply a

classical method in statistical mechanics and propose a systematic derivation for

the continuum description of an individual-based dynamic model. The validity

of such derivation is verified by comparing the solutions of the individual-based

and the continuum models. We find that H-stability of the interaction potential

also plays an important role here. Our examinations show that on the scale of

a typical swarming pattern, our proposed continuum limit is only appropriate

for catastrophic potentials. In the H-stable regime, the continuum limit exists

only on a very large scale where swarming patterns are indistinguishable, and

this case converges to the classical fluid or gas dynamics. Despite such a limita-

tion, we may analyze the continuum swarming model in the catastrophic regime.

We present a linear stability analysis for the model and compare the predicted

characteristic wave length to both the simulated patterns of the continuum and

the individual-based models. The implication of H-stability and the choices for

interaction potentials are discussed first briefly in the end of Chapter 4 and then

more thoroughly in the end of Chapter 5.

The defensive advantage and foraging efficiency of swarming organisms inspires

engineers to apply such models to autonomous robotic systems. In Chapter 6, we

briefly review some of the earlier literature on such artificial swarms. In Chapter 7,
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we apply our model to a second-order multi-vehicle testbed housed at Cal-Tech.

During the summer of 2004, we utilized our swarming model and derived a virtual-

potential control algorithm for the testbed vehicles. Using this control algorithm,

the vehicles successfully performed target searching and obstacle avoidance tasks.

In Chapter 8, a first-order multi-vehicle testbed is built at UCLA for further

exploration of artificial swarms. In that chapter, we derive a first-order control

algorithm from our second-order model and prove local convergence for such an

algorithm. Cooperative tasks of multiple vehicles are tested with three vehicles

chasing a virtual leader while interacting with each other. The interaction keeps

the vehicles on a formation and prevents them from collisions. The scalability

of this first-order algorithm is also investigated via computer simulations for a

large number of vehicles. The results show that the scaling exponents are not the

same as the full second-order model; however, there still exist distinct differences

between the H-stable and the catastrophic regimes.
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[36] D. Grünbaum. Translating stochastic density-dependent individual behav-
ior with sensory constraints to an Eulerian model of animal swarming. Jour-
nal of Mathematical Biology, 33:139–161, 1994.

[37] W. S. C. Gurney and R. M. Nisbet. The regulation of inhomogeneous
populations. Journal of Theoretical Biology, 1975.

148



[38] W. D. Hamilton. Geometry for the selfish herd. Journal of Theoretical
Biology, 31:295–311, 1971.

[39] F. Heppner and U. Grenander. A stochastic nonlinear model for coordinated
bird flocks. In S. Krasner, editor, The Ubiquity of Chaos, chapter 19, pages
233–238. American Association for the Advancement of Science, Washing-
ton, D.C., 1990.

[40] E. E. Holmes. Are diffusion models too simple? A comparison with tele-
graph models of invasion. American Naturalist, 142:779–795, 1993.

[41] E. E. Holmes, M. A. Lewis, J. E. Banks, and R. R. Veit. Partial differ-
ential equations in ecology: spatial interactions and population dynamics.
Ecology, 75:17–29, 1994.

[42] C. H. Hsieh, Y.-L. Chuang, Y. Huang, K.K. Leung, A.L. Bertozzi, and
E. Frazzoli. An economical micro-car testbed for validation of coopera-
tive control strategies. In Proc. of the 2006 American Control Conference,
Minneapolis, MN, 2006, in print.

[43] C. H. Hsieh, Z. Jin, D. Marthaler, B. Q. Nguyen, D. J. Tung, A. L. Bertozzi,
and R. M. Murray. Experimental validation of an algorithm for cooperative
boundary tracking. In Proc. of the 2005 American Control Conference,
pages 1078–1083, Portland, OR, 2005.

[44] A. Huth and C. Wissel. The simulation of the movement of fish schools.
Journal of Theoretical Biology, 156:365–385, 1992.

[45] A. Huth and C. Wissel. The simulation of fish schools in comparison with
experimental data. Ecological Modelling, 75/76:135–145, 1994.

[46] J. H. Irving and J. G. Kirkwood. The statistical mechanical theory of trans-
port processes. IV. The equations of hydrodynamics. Journal of Chemical
Physics, 18:817–829, 1950.

[47] Z. Jin, S. Waydo, E. B. Wildanger, M. Lammers, H. Scholze, P. Foley,
D. Held, and R. M. Murray. MVWT-II: The second generation Caltech
Multi-Vehicle Wireless Testbed. In Proc. of the 2004 American Control
Conference, pages 5321–5326, Boston, MA, 2004.

[48] E. W. Justh and P. S. Krishnaprasad. Steering laws and continuum models
for planar formation. In Proc. of the 42nd IEEE Conference on Decision
and Control, pages 3609–3614, Maui, Hawai’i, 2003.

[49] K. Kawasaki. Diffusion and the formation of spatial distributions. Mathe-
matical Science, 16(183):47–52, 1978.

149



[50] D. A. Kessler and H. Levine. Pattern formation in Dictyostelium via the
dynamics of cooperative biological entities. Physical Review E, 48:4801–
4804, 1993.

[51] A. L. Koch and D. White. The social lifestyle of myxobacteria. Bioessays,
20:1030–1038, 1998.

[52] J. M. Kosterlitz and D. J. Thouless. Ordering, metastability, and phse
transitions in two-dimensional systems. Journal of Physics C: Solid State
Physics, 6:1181–1203, 1973.

[53] J. D. Lambert. Numerical Methods for Ordinary Differential Equations.
John Wiley & Sons, 1991.

[54] J. L. Lebowitz and E. H. Lieb. Existence of thermodynamics for real matter
with Coulomb forces. Physical Review Letters, 22:631–634, 1969.

[55] N. E. Leonard and E. Fiorelli. Virtual leaders, artificial potentials and
coordinated control of groups. In Proc. of the 40th IEEE Conference on
Decision and Control, pages 2968–2973, Orlando, FL, 2001.

[56] R. J. Leveque. Numerical Methods for Conservation Laws. Birkhäuser, 1st
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