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Abstract

We develop high order essentially non-oscillatory (ENO) schemes on non-uniform
meshes based on generalized binary trees. The idea is to adopt an appropriate data
structure which allows to communicate information easily between unstructured data
structure and virtual uniform meshes. While the generalized binary trees as an un-
structured data structure can store solution information efficiently if combined with
a good adaptive strategy, virtual uniform meshes allow us to take advantage of many
well-developed ENO numerical methods based on uniform meshes. Therefore, the ENO
adaptive tree methods proposed here can leverage the merits from both tree structures
and uniform meshes. Numerical examples demonstrate that the new method is efficient
and accurate.

1 Introduction

Since its inception in [11], essentially non-oscillatory (ENO) schemes have been very influen-

tial in numerical solutions for nonlinear hyperbolic equations. The original design principle

of ENO schemes for nonlinear conservation laws is to generalize the Godunov scheme: re-

construct an essentially non-oscillatory piecewise polynomial of the solution from its cell

averages, evolve in time through an approximate solution of the resulting initial value prob-

lem, and average the approximate solution over each cell. Consequently, this pioneering

work was built upon an adaptive algorithm to choose a local stencil among several possible

candidates so that the resulting polynomial interpolant yields high-order accuracy whenever

the function is smooth but avoids the Gibbs phenomena at discontinuities.
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Following this beautiful idea, many researchers have improved the methodology and

expanded the area of its applications; see [27] and references therein for an overview of

ENO and its applications. Because it is costly to evaluate cell averages accurately in high

dimensional spaces and it is desirable to have the time evolution operator that does not

increase the total variation of the solution, Shu and Osher [28, 29] have introduced efficient

ENO schemes based on nodal values rather than cell averages and total variation diminishing

(TVD) Runge-Kutta time discretizations, which can save computational costs tremendously

in multi-dimensional spaces; however, the efficiency of such approaches critically hinges on

uniform meshes. In this work we propose an adaptive tree based generalization of ENO

schemes so that uniform mesh based ENO schemes can be used on unstructured meshes

naturally.

Multi-dimensional ENO schemes based on unstructured meshes were developed in [5, 1].

Casper and Atkins [5] have developed their finite volume approach by assuming a smooth

rectangular transformation between a reference Cartesian mesh and their computational grid.

Abgrall [1] has developed a class of ENO schemes on general unstructured meshes based on

a quasi minimal family of candidate stencils; such ENO schemes on unstructured meshes are

quite complicated, depending on the complexities of the grid structure.

As a consequence, the question is: can we develop ENO schemes on non-uniform meshes

as efficient as those on uniform meshes designed by Shu and Osher [28, 29]? As pointed out by

Merriman in his enlightening paper [17] on understanding the Shu-Osher conservative finite

difference form, it is still an outstanding problem to make the Shu-Osher form compatible

with robust adaptive gridding in the development of the highly successful class of ENO

methods. To that end, in this work we extend ENO schemes to grids that have abrupt

changes in cell size by making use of generalized binary trees in arbitrary dimension, retaining

all the desirable properties of accuracy, simplicity and shock-capturing capability, so that the

resulting family of ENO schemes is as efficient as the original Shu-Osher and is compatible

with adaptive gridding.

2



In an earlier work [6] we have developed first order monotone finite difference schemes on

generalized binary trees. To extend those first order schemes to high order ENO schemes on

non-uniform meshes based on generalized binary trees, the idea is to adopt an appropriate

data structure which allows to communicate information easily between unstructured data

structure and virtual uniform meshes. While the generalized binary trees as an unstructured

data structure can store solution information efficiently if combined with a good adaptive

strategy, virtual uniform meshes allow us to take advantage of many well-developed ENO

numerical methods based on uniform meshes [20, 13, 12, 25]. Therefore, the ENO adaptive

tree methods proposed here can leverage the merits from both tree structures and uniform

meshes.

2 Tree Data Structure

In this section we describe the tree data structure used. We use a generalized binary tree (e.g.

quad-tree in 2d, octree in 3d, etc.) data structure, details of which can be found in numerous

computer science texts [14],[24],[8]. We describe the portions of the implementation that are

specific to our problem of solving a PDE in a bounded spatial domain.

Consider a computational domain, Ω = [0, 1]n. At the kth level of the tree, each node, c,

represents a hypercube cell with sides of length dxc = 1/2k, and center xc. We assume that

the function value, φ(xc), is stored at the center of mass of the nodes at the finest level of

the tree, also known as the leaves. An alternate storage location could be the vertexes of

the cells. We choose the centers because of the simplicity of implementation (e.g. there are

no storage points belonging to multiple cells), and the fact that local interpolations can be

done in a way that is easily generalized to higher dimensions.

When refinement of a cell is done, the cell is split into 2n subcells with side lengths

1/2k+1. We do not allow any cells with side length ratio > 2 or < 0.5 to be neighbors. This

restriction results in what is known as a balanced tree; see [19] for some results concerning

tree balancing. For higher order numerical flux methods (such as 6-point WENO) we impose
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more stringent balancing, restricting the above size ratio not only on the neighbors of a cell,

but also on the neighbors of neighbors of a cell.

In the interface motion based on level set formulation, this balancing can be obtained by

following the criterion of refining any cell whose distance to the interface, Γ, is less than a

constant times its edge length [30]. In practice, if we are using a single level set function φ

e.g. for co-dimension-one problems, and if φ is a signed distance function then we can set

ρ ≥ (1+
√

n/2) and refine if |φ(xc)| < ρdxc. If the intersection of multiple level set functions,

{φj}, represents Γ, where the level sets of the φj are mutually orthogonal and each φj is a

distance function measured along the level sets of the other φi6=j, we can compare ‖φ‖l2
to

ρdxc.

3 Brief Review of 1d ENO Polynomial Interpolation

In this section we briefly review the procedure of constructing 1d ENO polynomial inter-

polants. During the evolution of the grid we will use 1d ENO interpolation to determine

function values at both parents of cells, as well as at newly created child cells.

For our purposes we will always assume that we have a point x0 where we will evaluate

the interpolant, P (x), and that x0 is between 2 values: x−1 < x0 < x1 that are on the

stencil of points used to construct P . The stencil {x−1, x1} is our starting stencil. We

define L = −1, R = 1 as the left and right endpoints of our stencil. We denote the function

values used in the interpolation by fi ≡ f(xi). We predetermine a maximum polynomial

interpolation degree r and construct a set of candidate stencil points of size 2r: x−r <

x−r+1 < · · · < xr−1 < xr, where r of these points are less than x0, and r are greater than x0.

The procedure for constructing P is then as follows:

1. If R−L < r+1, then continue to step 2. Otherwise the interpolation stencil {xL, . . . xR}

is completely found and P (x0) can be evaluated.

2. Form the divided differences a = f [xL−1, . . . xR], and b = f [xL, . . . xR+1].
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3. If |a| < |b| then set L = L − 1, otherwise set R = R + 1.

4. Go to step 1.

Note that this procedure is almost the same as the standard procedure for ENO interpo-

lation; see [27].

4 Parent Cell Interpolation with ENO

In this section we describe the ENO interpolation method used to find a value at the center

of a cell c when c is not a leaf cell. In [6] we used the 2n point average of the value of all

first children of c for the value at c. While this is a monotone interpolation scheme, it may

smear discontinuities. Here, we introduce a more accurate reconstruction method using 1d

ENO polynomial interpolations along the extended diagonals of the hypercube c.

The basic idea is that we will find a 1d ENO polynomial interpolation along each of

the 2n−1 diagonals, {dj}, of the n dimensional hypercube, c. This will give 2n−1 candidate

values, {φj(xc)}, for φ(xc). From this set of candidates we choose φ(xc) to be the average of

{φj(xc)} such that

φ(xc) =
2n−1

∑

j=1

αjφj(xc) (1)

where αj = 2−(n−1). Other convex combinations could be used in practice, such as choosing

the αj based on a measure of smoothness of the interpolating polynomial φj.

For example in 2d, Figure 1 shows the interpolation stencils used when the value at w0 is

to be found at the center of the cell with dashed edges. If we use 2-point linear interpolations

the points used for the polynomial stencil for φ1 would be {w1
−1, w

1
1} with function values

{φ(w1
−1), φ(w1

1)}, and the points used for the stencil for φ2 would be {w2
−1, w

2
1} with function

values {φ(w2
−1), φ(w2

1)}. In order to put the interpolation into a 1d setting we reassign the

independent variables using a function d : R
n → R, given by dê(w) = sgn(w · ê)‖w − w0‖2.

Here ê is a chosen unit vector along a particular axis (in this example ê = (0, 1), noting
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that the choice of ê does not affect the resulting interpolated value), and sgn is the signum

function. The interpolated parent value in this case is

φ(w0) = 0.25(φ(w1
−1) + φ(w1

1) + φ(w2
−1) + φ(w2

1)).

If we instead use ENO interpolation with 3-point sub-stencils then φ1 will use a stencil

constructed from the points {w1
k}k=−2:2,k 6=0, and φ2 will use a stencil constructed from the

points {w2
k}k=−2:2,k 6=0.

Because of the grading of the tree, although the stencils are nonuniform, there are only

a limited number of stencils which can occur, allowing for a lookup table to be constructed

for faster interpolation speed.

WENO interpolations could also be constructed and one could use the smoothness in-

dicators calculated in determining the WENO sub-stencil weights to help choose the αj in

equation (1).

The extension from 2d to other dimensions is straightforward.

Within the tree data structure a postorder traversal call of the interpolate parent function

will recursively calculate the unknown parent values starting at the parents of the leaf cells

and ending at the root of the tree. For example, this traversal would be called after a single

forward-Euler PDE time-step advancement were completed at all leaves of the tree.

5 Child Cell Interpolation with ENO

In this section we describe the ENO interpolation method used to find a value at the center

of a child cell c, with parent C, when c has been created but not yet assigned a value, e.g.

when cell refinement has just occurred. In [6] we used the two-point interpolation based on

a weighted average consisting of the value at xC and the value of the nearest neighbor cell

along the ray r = xC + τ(xc − xC), τ > 0. Here, 1d ENO interpolation is used along r.

For example in 2d, Figure 2 shows the interpolation stencils used when the value at w0

is to be found at the center of the cell with dashed edges. The method of [6] would use the

6



w0

w1
1

w−2
2

w1
2

w−1
2

w−1
1

w2
2 w2

1

w−2
1

x

y

Figure 1: Interpolation stencils {w1
k}k=−2:2,k 6=0, {w2

k}k=−2:2,k 6=0 used in computing the value
at the parent cell with dashed edges having center x = w0.

2-point stencil {w−1, w1} with function values {φ(w−1), φ(w1)}. For an ENO interpolation

with three-point sub-stencils the big stencil would use stencils constructed from the points

{wk}k=−2:2,k 6=0, and for an ENO interpolation with four-point sub-stencils the big stencil

would use stencils constructed from the points {wk}k=−3:3,k 6=0.

As in the parent interpolation case we use the mapping dê(w) to convert our n dimensional

stencil to a 1d stencil (for the example in Figure 2 ê = (1, 0) ). Again, there are only a

limited number of possible stencils allowing for lookup tables and WENO interpolations to

be generated, and the extension from 2d to other dimensions is straightforward.

6 Computing numerical fluxes and numerical gradients

When computing numerical fluxes for hyperbolic conservation laws or numerical gradients

for Hamilton-Jacobi equations we are able to use high order approximations constructed for

uniform meshes such as ENO and WENO because of the graded tree data structure.

For example in Figure 3 we wish to calculate an approximation D+
y φ(w0) of φy(w0) using
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Figure 2: Interpolation stencil {wk}k=−3:3,k 6=0, used in computing the value at the child cell
with dashed edges having center x = w0.
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6-point WENO interpolation with the stencil {wk}k=−2:3 (this employs three different 4-point

sub-stencils). This would be the case for solving a Hamilton-Jacobi problem if we have chosen

a monotone numerical Hamiltonian which is a function of higher order approximations of

D+
y φ(w0) and D−

y φ(w0) of φy(w0); see [20] for examples of such numerical Hamiltonians.

In general we will need to obtain values at the points xk
i that are offset in the ith dimension

from the cell with center x0 (≡ w0 in Figure 3) in order to construct WENO interpolations

of φxi
. The stencil used in calculating φxi

consists of the points, xk, that are defined by

xk ≡ x0 − k dxi ei, k = −r : r + 1. (2)

Note that for fifth order WENO interpolations r = 2, and for third order WENO inter-

polations r = 1. The resulting value of φxi
is then calculated in exactly the same way as

described in [21, 27].

In Figure 3 all cells with single circles at their center are leaf cells, while those cells

with double circles at their centers are either nonexistent leaf cell children (in the case of

w1, w2, w3), or leaf cell parents (in the case of w−2). Here, only the cell with center w−1 is of

the same size as the cell centered at w0. However, this is not a problem given that:

1. We have values at the parent cells of all nodes, so that φ(w−2) has already been

calculated and is known.

2. We can easily construct values at the non-existing cells centered at the points w1, w2,

and w3, cells that are of the same size as the cell centered at w0. For this example we

show the stencils for two-point interpolations only; e.g. φ(w1) is calculated using leaf

cells centered at P3, P4, but higher order ENO interpolations could of course be used.

Here we can see why we require our tree to be graded. If it were not, interpolations could

become much more complicated. For example, if the cells centered at points P1, P2, P3,

and P5 were joined together, then the interpolations at points w1, w2, and w3 could not be

computed in the systematic way as described in Section 5.
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We now describe the simplest general procedure for obtaining the neighboring values at

wk in Figure 3.

1. Assume that we need the value of φ at a point wk which is a cell center at the same

tree level as the cell c0 with center w0. We will say that c0 has edge length dx0 for ease

of notation.

2. Attempt to find the finest existing cell , c, (that is at least as large as c0) that contains

wk.

(a) If c is at the same level as c0 then we have φ(wk) already calculated, which will

happen if c contains children cells or is a leaf cell itself, e.g. w−2, w−1 in Figure 3.

Thus we are finished.

(b) If c is larger than c0 then we must use interpolation to determine φ(wk), e.g.

w1, w2, and w3 in Figure 3. For 2-point interpolation as shown in the example we

use the point wc (the center of cell c), and the point at the center of the finest

cell which contains

wk +
wk − wc

|wk − wc|
√

n(dx0 + ε), (3)

where ε, a positive number, is smaller than the finest grid size used in the tree.

Here ε is used to ensure that the point being found is in a neighboring cell (not

the cell where wc is). Note again that the grading of the tree allows this formula

to be valid in all cases where c is larger than c0.

Similarly, we may use the above strategy to evaluate numerical flux functions on a virtual

uniform mesh so that well-established ENO/WENO type conservative numerical schemes

constructed for uniform meshes [28, 29, 13] can be applied in the adaptive computation right

away.
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Figure 3: Stencil {wk}k=−2:3 used in calculating D+
y φ(w0).
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7 Adaptivity

In this section we discuss some methods that can be used to determine where the mesh

should be refined or coarsened. While this is an important part of any adaptive method, it

is not the main focus of this paper, thus we will not go into great detail in this section.

As described in [30], [18],[6], when the problem is studied in a level set framework, there

is a natural choice to refine the mesh near the particular level set of φ representing the

interface being tracked. The details of this adaptive procedure are well documented in the

above references and will not be further commented upon here.

For general problems, such as conservation laws, all values of φ are important, and a

typical adaptive method is to attempt to determine a point-wise error estimate and then

refine where the error is large and coarsen where the error is small. These error estimates

can be problem dependent, such as assuming large errors near discontinuities and shocks

[10, 15, 2, 7], or can be more general in nature, based on an estimation of truncation errors

[3, 4].

For the examples presented here for conservation laws and Hamilton-Jacobi equations

we have implemented an estimate of truncation errors found by comparing the numerical

solution obtained using a low order discretization in space and time, such as two-point

upwinding and forward-Euler time-stepping, with the solution obtained using a high order

discretization, such as fifth order WENO and third order Runge-Kutta [22]. This method

tends to pick out the shocks and contact discontinuities for refinement, as well as other areas.

Given a starting solution, φ(x, t = t0), the method is implemented by evolving the solution

for a period of time using a low order method to get φL(t = t0+∆t), and a high order method

to get φH(t = t0 + ∆t). Then we compute E(x) = |φH(x) − φL(x)|. We adopt an adaptive

mesh strategy proposed in [22] to our setting. Given a problem and/or mesh dependent

δR > δC > 0, if E(x) > δR then the leaf containing x is marked for refinement, while

if E(x) < δC then the leaf containing x is marked for coarsening, and if a parent has all

children marked for coarsening, then we coarsen it. In practice the more accurate solution
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is the one used for the evolution of φ.

Because the evolving step in time is based on the Runge-Kutta time stepping on a virtual

uniform mesh, the time step size is restricted by the finest mesh cell of the virtual uniform

mesh at a particular time; for example, if there is a grid cell with dx = 1/1024 then even

the big cells of size dx = 1/256 still evolve with a CFL condition determined by the finest

cell of dx = 1/1024.

8 Numerical Examples

8.1 Linear advection equations

Example 1. We solve the model equation

ut + ux = 0, 0 ≤ x < 1 (4)

u(x, 0) = u0(x), (5)

where u0 is periodic with period 1,

u0(x) =

{

1, 0.25 ≤ x ≤ 0.75,
0, otherwise.

(6)

Figure 4 shows the computational results by uniform meshes and adaptive meshes. For

the uniform mesh, the solutions are computed with 129 and 513 uniformly distributed grid

points, respectively. In terms of adaptive methods, we have used interpolation polynomials

of degree 1 and 5, respectively, so that the solutions are computed over non-uniform meshes

with the largest mesh size dx = 1/64 and the finest mesh size dx = 1/512, consisting of 122

grid points in total. The comparison results demonstrate that given a finest mesh size, the

adaptive tree method with far fewer number of mesh points achieves the same accuracy as

does the uniform method with the finest mesh size.
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Figure 4: Transport problem in 1d after 2 periods. Red circle: uniform grid, dx = 1/128.
Blue triangle: uniform grid, dx = 1/512. Green star: 122 point adaptive grid, interpolation
degree = 1, largest dx = 1/64, finest dx = 1/512. Black dot: 122 point adaptive grid,
interpolation degree = 5, largest dx = 1/64, finest dx = 1/512. Left: solution at t = 2.
Center: error. Right: zoom-in on error of most accurate solutions.
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8.2 Hamilton-Jacobi equations

Example 2. The Burgers equation We solve

ut + H(ux, uy) = 0, 0 ≤ x, y ≤ 1 (7)

u(x, y, 0) = −0.25 cos(2π(x + y)), (8)

with a convex H = H(p, q) = 0.5(p + q + 1)2.

We solve the equation by using both adaptive meshes and uniform meshes up to the

final time T=0.15625. The Hamilton-Jacobi solver is based on Lax-Friedrichs monotone

numerical Hamiltonians [20]. We test the adaptive tree method on both two-level and three-

level adaptive meshes, with the WENO fifth order in space and the Runge-Kutta third

order in time as the driving scheme and with the two-point upwinding and forward Euler

time stepping as the prediction scheme. To calibrate our adaptive computation, we use the

results computed on uniform meshes.

Figure 5 shows the computational results on two-level adaptive meshes of dx = 1/32 and

dx = 1/64, respectively; the results shown are at the final time T=0.15625 after 41 time

steps. As illustrated by the computational mesh, the adaptive mesh method uses more mesh

points around the region where the solution changes rapidly and fewer mesh points around

the region where the solution changes slowly.

Figure 6 shows the computational results on three-level adaptive meshes of dx = 1/32,

dx = 1/64 and dx = 1/128, respectively; the results shown are at the final time T=0.15625

after 41 time steps. As illustrated by the computational mesh, the adaptive mesh method

uses more mesh points around the region where the solution changes rapidly and fewer mesh

points around the region where the solution changes slowly.

Example 3. A nonconvex equation We solve

ut + H(ux, uy) = 0, 0 ≤ x, y ≤ 1 (9)

u(x, y, 0) = −0.25 cos(2π(x + y)), (10)

with a nonconvex H = H(p, q) = − cos(p + q + 1).
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Figure 5: A 2-D Burgers equation. (a) The adaptive computational mesh has 2 levels:
dx=1/32 and dx=1/64. (b) The uniform computational mesh has dx=1/64. (c) The solution
by WENO-5 with RK-3 based on the adaptive mesh illustrated in (a). (d) The solution by
WENO-5 with RK-3 based on the uniform mesh illustrated in (b).
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Figure 6: The 2-D Burgers equation. (a) The adaptive mesh has three levels: dx=1/32,
dx=1/64, and dx=1/128. b) The solution by WENO-5 with RK-3 based on the adaptive
mesh illustrated in (a). (c) The solution by WENO-5 with RK-3 based on the uniform mesh
of dx=1/128.
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We solve this non-convex equation by using both adaptive meshes and uniform meshes

up to the final time T=0.3125. The Hamilton-Jacobi solver is based on Lax-Friedrichs

monotone numerical Hamiltonians [20]. We test the adaptive tree method on both two-level

and three-level adaptive meshes, with the WENO fifth order in space and the Runge-Kutta

third order in time as the driving scheme and with the two-point upwinding and forward

Euler time stepping as the prediction scheme. To calibrate our adaptive computation, we

use the results computed on uniform meshes.

Figure 7 shows the computational results on two-level adaptive meshes of dx = 1/32

and dx = 1/64, respectively; the results shown are at the final time T=0.3125 after 41 time

steps. As illustrated by the computational mesh, the adaptive mesh method uses more mesh

points around the region where the solution changes rapidly and fewer mesh points around

the region where the solution changes slowly.

Figure 8 shows the computational results on three-level adaptive meshes of dx = 1/32,

dx = 1/64 and dx = 1/128, respectively; the results shown are at the final time T=0.3125

after 41 time steps. As illustrated by the computational mesh, the adaptive mesh method

uses more mesh points around the region where the solution changes rapidly and fewer mesh

points around the region where the solution changes slowly.

8.3 Hyperbolic conservation laws

Example 4. Sod’s shock tube problem We consider the Riemann problem for the Euler

equations of gas dynamics for a polytropic gas [29],

ut + f(u)x = 0, (11)

u(x, 0) = u0(x), (12)

where u = (ρ, ρq, E)T , f(u) = qu + (0, P, qP )T , P = (γ − 1)(E − 1
2
ρq2), and γ = 1.4. Here

ρ is density, E is the total energy, P is the pressure, and q is the velocity.
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Figure 7: The 2-D non-convex equation. (a) The adaptive computational mesh has 2 levels:
dx=1/32 and dx=1/64. (b) The uniform computational mesh has dx=1/64. (c) The solution
by WENO-5 with RK-3 based on the adaptive mesh illustrated in (a). (d) The solution by
WENO-5 with RK-3 based on the uniform mesh illustrated in (b).
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Figure 8: The 2-D non-convex equation. (a) The adaptive mesh has three levels: dx=1/32,
dx=1/64, and dx=1/128. b) The solution by WENO-5 with RK-3 based on the adaptive
mesh illustrated in (a). (c) The solution by WENO-5 with RK-3 based on the uniform mesh
of dx=1/128.
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The initial condition is the Riemann data,

u(x, 0) =

{

uL, x < 0.0,
uR, otherwise.

(13)

Sod’s initial condition is given as [29],

(ρL, qL, PL) = (1, 0, 1); (ρR, qR, PR) = (0.125, 0, 0.10). (14)

For expected solution behavior of the shock tube problem, we refer to [16].

We use the Roe-entropy fix numerical flux in the computation [29]. To do the adaptive

computation we use the first-order upwind difference and the forward Euler scheme to get a

lower order solution and compare with WENO fifth-order spatial discretization and Runge-

Kutta third-order time stepping to see where the differences are the largest, and we refine

those regions accordingly [22].

The results are shown in Figure 9, where we show the density plot only. We can see that

the adaptive mesh method with 252 points has been able to resolve the details around the

density discontinues as well as does the finest uniform mesh with 2048 points.

Example 5. Rayleigh-Taylor instability We consider the two dimensional Euler

equations of compressible gas dynamics [26],

ut + f(u)x + g(u)y = 0, (15)

u(x, y, 0) = u0(x, y), (16)

where

u = (ρ, ρū, ρv̄, E)T ,

f(u) = (ρū, ρū2 + P, ρūv̄, ū(E + P ))T ,

g(u) = (ρv̄, ρūv̄, ρv̄2 + P, v̄(E + P ))T .

Here ρ is density, (ū, v̄) is the velocity, E is the total energy, P is the pressure, related to

the total energy by P = (γ − 1)(E − 1
2
ρ(ū2 + v̄2)), and γ is the ratio of specific heats.
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Figure 9: Sod shock tube problem density plot. Blue line: 2048 point uniform grid solution.
Red circles: 512 point uniform grid solution. Black dots: 252 point adaptive grid solution
with largest dx = 1/128, finest dx = 1/2048. Top left: Shock tube density at t = 0.2. Top
right: zoom in near left end of rarefaction. Bottom left: zoom in near contact discontinuity.
Bottom right: zoom in near shock.
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Rayleigh-Taylor instability happens on an interface between fluids with different densities

when an acceleration is directed from the heavy fluid to the light fluid. The instability has

a fingering nature, with bubbles of light fluid rising into the ambient heavy fluid and spikes

of heavy fluid falling into the light fluid; see [9]. See [23] for an adaptive method based on

discontinuous Galerkin formulation.

The problem is set up as follows [26]. The computational domain is [0, 1
4
]× [0, 1]; initially

the interface is at y = 1
2
, the heavy fluid with density ρ = 2 is below the interface, and the

light fluid with density ρ = 1 is above the interface with the acceleration in the positive

y−direction; the pressure p is continuous across the interface; a small perturbation is given

to the y−direction fluid speed; thus for 0 ≤ y < 1
2
, ρ = 2, ū = 0, P = 2y + 1, v̄ =

−0.025c · cos(8πx), and for 1
2
≤ y < 1, ρ = 1, ū = 0, P = y + 3

2
, v̄ = −0.025c · cos(8πx),

where c is the sound speed, c =
√

γP

ρ
, and the ratio of specific heats γ = 1.4; reflective

boundary conditions are imposed for the left and right boundaries; at the top boundary the

flow values are set as ρ = 1, P = 2.5, ū = v̄ = 0, and at the bottom boundary they are ρ = 2,

P = 1, ū = v̄ = 0; the source term ρ is added to the right hand side of third equation and

ρv̄ is added to the fourth equation of Euler equations. The final simulation time is t = 1.95.

We use the Roe-entropy fix numerical flux in the computation [29]. To do the adaptive

computation we use the first-order upwind difference and the forward Euler scheme to get a

lower order solution and compare with WENO fifth-order spatial discretization and Runge-

Kutta third-order time stepping to see where the differences are the largest, and we refine

those regions accordingly [22].

The computational results are shown in Figure 10, where we have compared the adaptive

solution with the uniform solution. As we can see, by using only the half of the number of

mesh points as required on a uniform mesh, the adaptive solution has similar resolution as

the one on a uniform mesh.
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Figure 10: Contour plots for Rayleigh-Taylor instability problem for 2-D Euler equations.
Left to right: density, ū, and v̄. Top row: uniform grid, dx = 1

256
, 16,384 points. Bottom

row: adaptive grid, largest dx = 1
64

, finest dx = 1
256

, 8,788 points.
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9 Conclusion

We developed high order ENO schemes on non-uniform meshes based on generalized binary

trees. The idea is to adopt an appropriate data structure which allows to communicate

information easily between unstructured data structure and virtual uniform meshes. While

the generalized binary trees as an unstructured data structure can store solution information

efficiently if combined with a good adaptive strategy, virtual uniform meshes allow us to

take advantage of many well-developed ENO numerical methods based on uniform meshes.

Therefore, the ENO adaptive tree methods proposed here can leverage the merits from both

tree structures and uniform meshes. Numerical examples demonstrate that the new method

is efficient and accurate.
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