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Abstract. We present a variational PDE based model for tracking ob-
jects under occlusion. Here, prior shape information is used within a
logic-based framework as a means for detecting and segmenting objects
under partial occlusions. The model was tested on real and synthetic
image sequences with promising results.

1 Introduction

Occlusion tracking [6–8, 13] presents a difficult problem since most, if not all,
of the information which characterizes a particular object becomes unreliable
under occlusions. A successful algorithm for occlusion tracking, then, must have
some means of identifying the object of interest when such information is lacking,
or inaccurate. Typically, this is accomplished by using information from other
frames of a video sequence to aid in the identification of the object in an occluded
frame.

In this work, we assume that the boundary of the object of interest is avail-
able, and use this prior shape information to track the object in occluded frames.
There have been previous works[10–12] that use prior knowledge of the shape of
objects to facilitate segmentation specially under low contrasts, occlusions and
other undesirable noisy conditions. Most of these works incorporate the shape
term additively within the segmentation energy which results in locally optimal
solutions. The novelty in this work is that the shape prior is combined with the
image term using logical operations pertaining to a unique occlusion scenario,
thus leading to “meaningful” solutions. Our work is based on Sandberg et. al.[1]
algorithm for logical segmentation of multi channel images, and related to the
joint segmentation and registration framework of Moelich et. al. [2].

2 Description of the Model

Our model is a forward tracking algorithm; we rely solely upon data from pre-
vious frames in order to identify and segment the object in the current frame.
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Throughout the remainder of the discussion, we make three assumptions: the
first frame of the video sequence, which we refer to as the “template” frame,
contains the entire, un-occluded boundary of the object (shape prior) we wish
to track; second, the object boundary does not deform; and third, the object
undergoes only affine movement between frames. The first assumption will allow
us to not have to use any a priori about the particular occlusion scenario for the
algorithm to succeed. The second assumption results from the desire to incorpo-
rate prior shape information into the algorithm. We make the last assumption
for simplicity, in that more complicated motions amount to a more sophisticated
registration model than we use here.

2.1 Logic Models

Before introducing our model, we briefly describe the region-based logic models
[1, 2] based upon the Chan-Vese segmentation energy [4]. While dealing with
multi-channel images, often there are disparities in the appearance of an object
in each of the channels. In such cases, there is more than one valid interpretation
of the actual object. These alternate interpretations correspond to different log-
ical interpretations of the images. The logic models, developed by Sandberg et.
al. [1], are designed to segment multi-channel images according to such logical
interpretations. For example, given two images f1 and f2 in Figure 1(a) which
contain two different instances of a particular object of interest, logic models
allow us to interpret the actual object (white curve in Figure 1 (b) and (c)) by
combining the segmentation in each frame according to a pre-selected logical
operation.

(a) Images

(b) f1∩f2 (AND) (c) f1 ∪ f2 (OR)

Fig. 1. Logical Segmentation on Two Frames

In particular, we consider two logic segmentation models, denoted as f1 ∩
f2(AND) and f1 ∪ f2(OR). The AND model interprets the actual object as the
intersection of the object regions that appear in the two frames. Similarly, the
OR model, then, is the union of the object regions which appear in the frames.
As discussed in [1], a segmentation energy for a single channel can be easily



recast in to a logical framework when dealing with multi channels. We briefly
review the discussion from [1] here.

Given two frames f1 and f2, each which contain an object of interest (that
might appear different in each frame), we first define the functions
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As in the standard C-V model, cini (i = 1, 2) represents the average intensity
inside the object in frame fi, respectively. Similarly, cout

i represents the average
intensities of the background. The constants Mi and Ni ensure that each z
function takes values only between 0 and 1. The segmentation energy takes the
familiar form
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Ω
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where the last term is a regularization term which prevents the level-sets of φ
from becoming too flat. The functions fin and fout vary depending upon which
logical combination is desired.

Based upon the definitions of the z-functions (1), we have zin
1 ≈ 0/1 in-

side/outside the object in f1 and similarly zout
1 ≈ 0/1 outside/inside the object

in f1. The case is similar for the functions z2. When taking the OR model, we
desire fin = 0 for all points inside the object in at least one of the frames (see
Figure 1(c)), and fout = 0 for all points that lie outside the object in both frames,
which we achieve by defining fin and fout as
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For the AND model (Figure 1(b)), the case is reversed. We desire fin = 0 for
all points inside the object in both frames, and fout = 0 for points outside the
object in either frame. The resulting definitions are
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Before we discuss our model, we first motivate using the logic models in a
tracking algorithm. In Figure 2, we provide a simple demonstration how the logic
models as discussed above can be used to recover the boundary of an artificially
occluded object (the white turning car) . The first image (a), or template fτ , is
used to segment the other two occluded frames (b and c). In the second image



(b), a region of different intensity occludes the object, and hence we take the
model fτ ∪ f1 to recover the boundary of the object (curve shown in (d)). In
the image (c), the occlusion is of similar intensity to the car, so fτ ∩ f2 yields
the desired result (curve shown in (e)). Note how the appropriate logic model
depends upon the intensity of the occlusion relative to the object. When no
occlusion is present, either logic model will give the desired result, since the
object appears identical in each frame. Thus we see that the application of the
shape prior (through the template image fτ ) depends on the occlusion type,
which allows our algorithm to avoid local minima problems of models that just
additively introduce the shape term.

(a) Template-fτ (b) f1 (c) f2

(d) fτ ∪ f1 (e) fτ ∩ f2

Fig. 2. Occlusion Segmentation

To summarize, in this paper, we deal with two types of occlusion scenario, de-
pending on the intensity of the occlusion relative (similar/different) to the object
being tracked. We use an appropriate logic segmentation model (AND/OR) for
the occlusion scenario, to correctly segment the object from the current frame,
using the template image. Finally, we discuss a technique which we use to au-
tomatically switch between the logic models to deal with changing occlusion
scenario across frames.

2.2 Joint Registration and Segmentation

The logic models as presented in [1] assume pre-registered images. Consequently,
for use in a tracking algorithm, we must incorporate a registration model into



our algorithm to reflect object motion. For our purposes, we employ a Joint
Registration and Segmentation algorithm similar to [3] and extended to the
logic models by Moelich and Chan in [2]. Given a template frame fτ : Ω1 → <+

and an occluded frame fi : Ω → <+, we register the two images by introducing
a spatial correspondence between the domains Ω1 and Ω, denoted by g, with the
parameters {∆x ∆y θ}. Here, ∆x and ∆y represent translation and θ represents
rotation. The selection of the transformation g is arbitrary; many other valid
choices exist which allow for more general object motions. For further details,
see [3] or [2].

2.3 Automation of Logic Models

As discussed earlier, while segmenting the boundary of an occluded object (e.g.
Figure 2), the correct logical model to be used depends upon the similarity of
the intensities of the object and the occlusion. The application of the incorrect
logic model will lead to not only an error when segmenting the images (see
Fig. 3 (d)), but can also conceivably cause an error in the registration of the
images as well. Consequently, in order to employ the logic models in a tracking
algorithm, we introduce a method by which we can automatically determine the
appropriate choice of logical segmentation. To determine the appropriate logic

(a) Template (b) Occluded Frame

(c) Correct Model (OR) (d) Incorrect Model (AND)

Fig. 3. Need for Automation

model, we make use of the prior shape of the object, given by the contour Cτ in
the template frame fτ . Also, we denote the contour given by logical segmentation
of the current frame by C. Regardless of the intensity of the occluding object, the
correct logic model is that which gives the least shape dissimilarity between Cτ



and C. In this work, we use area difference as the shape dissimilarity measure.
Therefore, the correct logic model is that which minimizes the quantity

(AREA (inside (Cτ ))−AREA (inside (C)))2 . (5)

In the level-set framework, we denote by ψ the function used to implicitly rep-
resent the contour Cτ , and φ represents C. The variational form of (5) then
becomes ∫

Ω

(H (ψg)−H (φ))2 , (6)

where ψg = ψ
(
g−1

)
, and H is the Heaviside function. To enforce this constraint

in practice, we compute two functions, φ∩ using the AND model, and φ∪ using
the OR model, check the quantity (6) in each case, and select as φ that which
produces a minimum.

2.4 Variational Framework

We now describe the level-set formulation of our model. Given a template frame
fτ and the ith frame from a video sequence fi, define Fτ = fτ

(
g−1

)
. Extending

the logic models to include a registration component is then straightforward.
The z-functions (1) become
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Note that in practice, to target the correct object in the ith frame, we fix cini = cinτ
and only update cout

i along with the contour. The functions fin,out then become
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And finally, in our formulation, for each of the logic models (AND/OR), we add
the shape term (5) to the segmentation energy. The addition of the shape term
has several benefits. Foremost, it helps to ensure a correct registration between
frames. Also, it helps prevent unwanted portions (usually similar to the object’s



intensity) of the image from being included in the final segmentation. Thus, we
may introduce the variational form of our model,

E (φ,∆x,∆y, θ) =
∫

Ω

finH (φ) + fout (1−H (φ)) dx

+β
∫

Ω

(H (ψg)−H (φ))2 dx+ λ

∫
Ω

(|∇φ| − 1)2 dx. (10)

Again, H is the Heaviside function, and ψ represents the boundary of the object
in the (unregistered) template frame. The function ψg then, is defined as ψg =
ψ

(
g−1

)
. λ and β are parameters to balance the terms.

In this context, our algorithm reduces to finding sequentially, for each frame
fi of the sequence, the function φi and the parameters pi = {∆xi ∆yi θi} which
minimize the energy (10). Since the functions fin,out differ depending upon the
logic model, we minimize the energy separately for each case, to produce two
sets of functions with coupled parameters, {φ∩i , p∩i } and {φ∪i , p∪i }, then select as
{φi, pi} that which minimizes (6). This selection gives the desired segmentation;
the segmentation closest to the shape prior.

In summary, we combine both shape information and the correct logical
interpretation of images to achieve the desired result. We can thus avoid many
local minima that other models, which just additively introduce shape, may
encounter. In Fig. 4, the first frame demonstrates the result of our algorithm,
which combines prior shape and the automated choice of logic model to achieve
the desired segmentation. The final frame demonstrates that prior shape alone
is not sufficient, and might result in a local minimum.

(a) Logic and Shape (b) Shape without Logic

Fig. 4. Various Combinations of Logic Models and Prior Shape



3 Numerical Implementation

When implementing the algorithm, we begin with an initial φ0 and an initial set
of parameters {∆x0 ∆y0 θ0}, and evolve them according to the Euler-Lagrange
equations of (10) until a minimum is reached. The equations for gradient descent
are given by

∂φ
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To minimize (10), we follow the procedure outlined in [2, 3]. Beginning from
the initial set {∆x0 ∆y0 θ0 φ0}, we first hold φ fixed and perform one iteration
of (12), and update the functions Fτ and ψg with the new parameters. The
registration parameters are then fixed and φ is updated via one iteration of (11).
This process is continued until convergence.

In practice, selecting the initial set of registration parameters for the ith

frame presents the largest barrier for our algorithm to track successfully. That
is, how to select pi

0 =
{
∆xi

0 ∆y
i
0 θ

i
0

}
. In simpler cases, it suffices simply to take

pi
0 = pi−1

final. However, when the sequence has moderate to severe occlusions or
low contrast (see Fig. 7), the algorithm becomes more sensitive to local minima,
and hence we must select the parameters more carefully. From our experience,
we have developed several techniques to combat this sensitivity. Based upon the
definitions of f∪in and f∩in, we see that the OR model allows for more possible
registration local minima than the AND model, and hence the AND model is
less sensitive to the prediction of pi

0. Consequently we can first compute φ∩ and
use those final parameters as the initial parameters for the computation of φ∪.
Alternatively, we might hypothesize a motion trajectory for the tracked object
(in the case of Fig. 7-a linear trajectory), and use this to generate each pi

0.
Finally, to reduce the computational burden we run the algorithm only locally
around the object of interest in each frame. That is, we simply crop from each
frame a small region around the object of interest (this process is automated
via use of the shape prior and the prediction of p0 for each frame) and run the
algorithm on the reduced frame. Once we have the desired contour, we simply
bring the result back to the original image. Due to such difficulties, and to try
and develop a more robust and computationally efficient algorithm, we plan to
incorporate the described logical framework into a particle filtering algorithm,
such as that described in [13].



4 Experimental Results

We now give results of our algorithm on both synthetic and real examples. In all
cases, the first frame f1 was used as the template, thus the sequences begin with
frame f2. The first example (Figure 5) demonstrates the need to automate the
choice of logic model via (6). Without some means of determining the appropri-
ate logical interpretation of the images, an undesirable segmentation can result.
In this example, the arbitrary choice was made to use the OR model across
all frames. While the algorithm tracks successfully through the first occlusion,
when the person reaches the second occlusion, the OR model is no longer correct,
and so the algorithm fails. In the later frames of the sequence, when the person
has passed completely through the second occlusion, the correct segmentation
is once again realized since in such frames, when no occlusion is present, the
object appears identical in each channel and hence either logic model gives the
desired result. However, in more severe cases, since the registration prediction
also depends upon the accuracy of the final segmentation in the previous frame,
if the incorrect model is used, the algorithm can completely lose track of the
object.

The second example (Figure 6) shows the full algorithm on the same sequence
as in (Figure 5). It demonstrates the capability of the algorithm to handle oc-
clusions of both types when the automation method is utilized. The intersection
model was taken automatically as the person passes through the black-line oc-
clusion, and union automatically through the second, gray-line occlusion. The
current model is unable to cope with the intermediate case, in which the object
of interest is simultaneously occluded by regions of both similar intensity and
different intensity to the object itself. Such a scenario requires a combination
AND/OR model, and we are currently experimenting with a multi-phase level-
set method to handle this final case.

The final example, (Figure 7) demonstrates the algorithm on a real video
sequence, and was the most challenging. We employed the full algorithm as
described, which selected only the union model across each frame. As the se-
quence progresses, poor image contrast and more severe occlusions make the
tracking more difficult, but with a careful choice of the target intensity cinτ
and a careful prediction of the initial parameters at each step, our algorithm
succeeded. Video clips of the last two examples are available for viewing at
http://www.math.ucla.edu/~sheshad/mansequence.avi and
http://www.math.ucla.edu/~sheshad/carsequence.avi.
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(a) f2 (b) f17

(c) f21 (d) f23

(e) f35 (f) f43

(g) f48 (h) f77

Fig. 5. Result without using (6)



(a) f2 (b) f17

(c) f21 (d) f23

(e) f35 (f) f43

(g) f48

Fig. 6. Tracking through both types of occlusions



(a) f2 (b) f30

(c) f40 (d) f49

(e) f55 (f) f76

(g) f83 (h) f90

Fig. 7. Real sequence with poor image contrast
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