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Abstract

Closely inspired by the Total Variation (TV) model by Rudin, Osher and Fatemi [Physica D, 60:259-
268,1992], we propose the quantized or quantum TV model (either with a preassigned quanta set Q
or without), and study the associated mathematical properties and computational algorithms. An algo-
rithm based on stochastic or Markovian gradient descent is proposed to handle the discrete programming
nature of the quantum TV model, which further leads to a two-step iterative algorithm for the compu-
tationally more challenging free quantum TV model. We also demonstrate several major applications of
the proposed models and algorithms in bar code scanning, image quantization, and image segmentation.

1 Introduction

Ever since it was first introduced for image restoration by Rudin, Osher and Fatemi, total-variation (TV)
based regularization [19] has found a wide range of applications in contemporary imaging and vision. Many
variations of the original TV model have been proposed for further improved or extended applicability, e.g.,
adaptive methods proposed in [4, 5, 14], and novel applications in and links to other areas of imaging and
vision [1, 5–7, 21, 24, 28], only to name a few. Recently, the importance of images with bounded variations
(BV) has also been further reiterated in Meyer’s G-norm analysis for texture modeling [2, 3, 16, 18, 25, 26].
The most striking difference between classic Sobolev images and BV images lies in that BV images allow
jumps or lower dimensional singular features, which are indispensable for processing images or other signals
acquired in a world filled with individual objects and patterns.

A typical variational model with TV regularization has the following canonical form:

min
u∈BV

E[u | f,K] = min
u∈BV

∫

Ω

|Du|+Gλ[f |u,K], (1)

where the first term denotes the TV Radon measure, and the second term is a suitable fidelity term ensuring
that the candidate u must well “explain” a given observation f . λ and K are appropriate system parameters
or parametric fields. For example, for image deblurring under additive Gaussian white noise, one has
f = K ∗ u+ n with a point spread function (PSF) K and Gaussian noise n, and the fidelity term must be
given by

Gλ[f | u,K] =
λ

2

∫

Ω

(f −K ∗ u)2dx,

with λ inversely proportional to the variance of the noise µ. In order to focus on the core idea of the present

work, we shall assume in what follows that Gλ[f | u,K] =
λ

2

∫

Ω

(u− f)2dx, i.e., without any significant blur

K.
In this paper, we are interested in a quantized or quantum version of the TV model (1) for which the

candidate image u only takes values from a finite discrete set (the quanta set). This has been primarily
motivated by a number of emerging problems in contemporary imaging and vision.
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(a) Restorations of Binary Images. One important example in daily life concerns the robust reading of
black-white bar codes at checkout counters [10, 12, 20].

(b) Image Quantization. When high fidelity images are to be displayed on low fidelity or low-bit devices
(e.g., cell phones), the images needs to be properly quantized.

(c) Image Segmentation. Segmentation is a central task in imaging and vision. While there are numerous
remarkable segmentation models in existence with various degrees of complexity, the simplest one is
perhaps just to cluster according to color shades. The piecewise constant Mumford-Shah model is such
an example, by which an image is partitioned into different object patches and each object takes a
specific discrete value. This can often provide very cheap but reasonably good initial guesses to more
sophisticated or expensive segmentation models.

The TV model in which the candidate image u takes only a finite number of discrete values will be
referred to as the quantum TV model in the present work. With such discrete constraints, the quantum
TV model becomes a harder problem involving discrete or nonlinear programming. Classical continuum
methods, such as continuous gradient-descent marching, cannot be straightforwardly applied without proper
adaption or revision. Notice that while the notion of quantum TV makes perfect sense, quantum Sobolev
would be less meaningful. This is a characteristic property of the TV Radon measure.

The paper is organized as follows. In Section 2, we present the proposed quantum TV model followed by
discussion on the uniqueness and existence of the minimizer. In Section 3, after a brief exploration on classic
(and deterministic) iterative schemes, a novel stochastic algorithm is presented to compute the quantum TV
model. In Section 4, a two-step algorithm (alternating on geometric and photometric features) is proposed
for the free quantum TV model for which the quanta set is also unknown. Generic numerical results and
examples are presented in Section 5.

2 Quantum TV Model and Its Analysis

2.1 Quantum TV, Free Quantum TV, and Mumford-Shah

Let Q ⊂ R be a nonempty finite set of real numbers. Define the Q-BV space by

BVQ = BV(Ω;Q) = {u ∈ BV(Ω) : u(x) ∈ Q, a.e. x ∈ Ω}. (2)

Here Ω denotes a given bounded 2-D image domain, which is usually a rectangle in most digital applications.
We refer to Q as the quanta set and assume its cardinality to be |Q| = k + 1. Since gray images are often
normalized to the canonical range [0, 1], we are particularly interested in a quanta set of the following form:

Q = {0 ≤ c0 < c1 < · · · < ck ≤ 1}.

Notice that for such finite quanta set, the definition (2) makes less sense for Sobolev images since it would
require the quanta set to be a singleton, and consequently the set in (2) only contains trivial constant images.

Under the constraint of the quanta set Q, the TV model (1) becomes

min
u∈BVQ

E[u | f ] = min
u∈BVQ

∫

Ω

|Du|+ λ

2

∫

Ω

(f − u)2dx. (3)

We refer to this model as a quantum TV model with a (prescribed) quanta set Q. The optimal image u∗ is
thus a BV function that is quantized by the quanta set Q and minimizes the TV model.

Furthermore, in some application, the specific values ci’s of the quanta set Q cannot be predefined, except
for its cardinality k + 1 = |Q|. This leads to

min
u∈BVQ, |Q|=k+1

E[u] = min
u∈BVQ, |Q|=k+1

∫

Ω

|Du|+ λ

2

∫

Ω

(f − u)2dx. (4)
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For convenience, we shall refer to it as a free quantum TV model.
These quantum TV models (3) and (4) can be closely related to image segmentation. For example, each

value ci in a quanta set Q can define a segment in a quantum image u, and a natural partitioning thus
results:

Ωi = {x ∈ Ω | u(x) ≡ ci}, ci ∈ Q.
In the context of pattern and data analysis, this approach amounts to color-based pixel clustering. Pixels
sharing a same color shade are partitioned into a same virtual “object.”

Recall that the piecewise constant Mumford-Shah [11,17, 22] model for a given image f is given by

minEMS [Γ, c|f ] = H1(Γ) +
λ

2

k∑

i=1

∫

Ωi

(f − ci)2dx, (5)

Here Γ denotes the partitioning boundary set with a finite 1D Hausdorff measureH1, and {Ωi : i = 0, 1, . . . , k}
are the connected components of Ω\Γ. Implemented by the level-set method, this reduced Mumford-Shah
model (5) has also been frequently referred to as the Chan-Vese model [8], who rediscovered the model
from the viewpoint of robust active contours. Along this line, the free quantum TV model (4) can also be
expressed as:

E[u,Q|f ] =

∫

Γ

|[u]|ds+
λ

2

k∑

i=0

∫

Ωi

(f − ci)2dx. (6)

Here u ∈ BVQ is given by

u =
k∑

i=0

ci1Ωi(x), Ω\Γ = ∪ki=0Ωi, Q = {c0 < c1 < · · · < ck},

and |[u]| denotes the (absolute) jump magnitude along Γ. Therefore, under the free quantum TV model,
each piece γ of the jump set Γ bordering two patches Ωi and Ωj contributes a cost of |cj − ci|H1(γ), instead
of H1(γ) in the Mumford-Shah model. This data dependence increases the complexity of the free quantum
TV model.

2.2 Minimizers to Quantum TV

In this section, we analyze both the existence and the uniqueness of the minimizers to the quantum TV
model (3):

min
u∈BVQ

E[u] = min
u∈BVQ

∫

Ω

|Du|+ λ

2

∫

Ω

(f − u)2dx,

given a noisy image f(x) ∈ [0, 1], and a specified finite quanta set Q ⊂ [0, 1].

Theorem 2.1 (Existence) For any given λ > 0, quanta set Q ⊂ [0, 1] with |Q| = k + 1 ≥ 1, and any
measurable image f on Ω whose range is within [0, 1], there exists at least one minimizer in BVQ to the
quantum TV model (3).

Proof. Take any quantum datum ci ∈ Q and define ũ ≡ ci such that ũ ∈ BVQ. Then E[ũ|f,Q] < ∞
since f is bounded. Consequently, one must have infu∈BVQ E[u|f,Q] < +∞. Let {un}∞n=1 be a minimizing
sequence, such that

inf
u∈BVQ

E[u|f,Q] = lim
n→∞

E[un|f,Q].

For convenience, one can assume that for some M > 0,

E[un|f,Q] =

∫

Ω

|Dun|+
λ

2

∫
(un − f)2 ≤M, for n = 1 . . .∞.
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Since Q ⊂ [0, 1], this implies that {un} must be a bounded sequence in BV(Ω). By the precompactness of a
bounded BV set in L1(Ω), one can select a subsequence of {un} (still denoted by {un} after relabeling for
convenience), such that un → u∗ in L1(Ω) for some u∗ ∈ L1(Ω). The convergence can be further assumed
to be a.e. convergence after another round of subsequence refinement and relabeling.

By the L1-lower semi-continuity of the TV semi-norm, one has
∫

Ω

|Du∗| ≤ lim inf
n→∞

∫

Ω

|Dun|. (7)

By Lebesgue’s Dominated Convergence (since ‖un − f‖∞ ≤ ‖un‖∞ + ‖f‖∞ ≤ 2), one has

∫

Ω

(u∗ − f)2 = lim
n→∞

∫

Ω

(un − f)2.

In combination, one has
E[u∗|f,Q] ≤ lim inf

n→∞
E[un|f,Q] = inf

u∈BVQ
E[u|f,Q]. (8)

Now that for a.e. x ∈ Ω, un(x) → u∗(x) and un(x) ∈ Q, we conclude that a.e. for each given x ∈ Ω,
there must exist some index Nx and some unique cx ∈ Q, such that ∀n > Nx, un(x) ≡ cx. For such a pixel,
one thus must have u∗(x) = cx ∈ Q. Combined with (7) or (8), this implies that u∗ ∈ BVQ, and that u∗ is
a minimizer to the quantum TV model. �

For the classical TV model (1), it is well established that the minimizer exists and is unique, since the
functional is strictly convex (see, e.g., Chambolle and Lions [5]). However, this is not the case for the
quantum TV model. The discrete nature of the quantum constraint Q effaces the uniqueness of the original
TV restorations model. This is to be demonstrated through specific constructions as follows.

Proposition 1 The minimizers to the quantum TV model (3) can be non-unique.

Proof. Consider the example of Q = {0, 1}, and f(x) ≡ 1

2
. Then, for any u ∈ BVQ,

E[u|, f,Q] =

∫

Ω

|Du|+ λ

2

∫

Ω

(u− f)2 ≥ λ

2

∫

Ω

(u− f)2dx =
λ

2
(
1

2
)2|Ω| = λ

8
|Ω|.

It is apparent that the lower bound is achieved if and only if

∫

Ω

|Du| = 0. That is, either u ≡ 0 or u ≡ 1,

leading to two minimizers. �

Proposition 2 (Number of Minimizers and λ: A 1D Construction) Let Ω = [−1, 1], Q = {0, 1}
and f = 1

4 1x≤0 + 3
41x>0 as in Fig. 1 (a). Then,

(i) for λ > 4, the quantum TV model has a unique minimizer u(x) = 1x>0;

(ii) for λ = 4, there are three minimizers; and

(iii) for λ < 4, there are two minimizers u ≡ 0 and u ≡ 1.

Proof.
Notice that for any u ∈ BVQ

(u− 1

4
)2 ≥ (

1

4
)2 ∧ (

3

4
)2 =

1

16
, (u− 3

4
)2 ≥ (1− 3

4
)2 ∧ (0− 3

4
)2 =

1

16
. (9)

Thus,
λ

2

∫

Ω

(u− f)2dx ≥ λ

2

∫ 1

−1

1

16
dx =

λ

16
.
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Figure 1: (a) Graph of the 1D image signal f for the non-uniqueness construction in Proposition (2). (b)
Bifurcation diagram for the number of minimizers as the fitting weight λ varies.

The lower bound is achieved if and only if u = 1x>0 := u∗. Next, due to the quantum constraint Q, it is easy
to see that TV (u) =

∫
Ω
|Du| = 0, 1, 2, . . . depending on how many jumping points u has. We then consider

separately three different scenarios.
(a) If TV(u) = 0, then u ≡ 0 := u0 or u ≡ 1 := u1 and both have the same energy:

E[u, |f,Q] =
λ

2

(
(
1

4
)2 × 1 + (

3

4
)2 × 1

)
=

5λ

16
.

(b) If TV(u) = 1, then by (9),

E[u|f,Q] ≥ 1 +
λ

16
,

and this lower bound is reached if and only if when u = u∗ = 1x>0.
(c) Furthermore, if TV[u] = j > 1, by (9)

E[u|f,Q] ≥ j +
λ

16
> 1 +

λ

16
.

From the above three situations, it comes clear that a minimizer u of the quantum TV model must be
one from {u0 ≡ 0, u1 ≡ 1, u∗ = 1x>0}.

When λ > 4 (more fitting and less regularity), 5λ
16 > 1 + λ

16 , and one must have argmin E[u | f,Q] = u∗,
which is unique. When λ = 4, 5λ

16 = 1 + λ
16 , and the three candidates all reach the same minimum. Finally,

when λ < 4 (more regularity and less fitting), 5λ
16 < 1 + λ

16 , and one has argminE[u | f,Q] = {u0, u1}. This
bifurcation behavior against the fitting parameter λ is illustrated in Fig. 1 (b). �

In subsequent sections, we explore effective algorithms that can solve the challenging discrete program-
ming problem associated with both the quantum TV and the free quantum TV models.

3 Markov Gradient Descent Method for Quantum TV

To effectively compute the quantum TV model and conquer its challenging nature of discrete programming,
we propose in this section a novel algorithm based on stochastic gradient descent, which amounts to a
Markov random walk through the admissible space. The stochastic algorithm has been closely inspired by
its deterministic predecessors based on fixed-point iteration and lagged diffusivity linearization for the TV
model.

A typical fixed-point iteration can be written as

un+1 = T (un), n = 0, 1, . . . (10)

The algorithm is said to be energy decreasing if

E[un+1] ≤ E[un], n = 0, 1, . . . ,∞. (11)
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The algorithm is said to be gradient descent in the generalized sense if

∫

Ω

∂E[un]

∂u
δundx ≤ 0, n = 0, 1, . . .∞, (12)

where δun = un+1 − un = T (un)− un.
For example, the traditional infinitesimal gradient descent scheme

un+1 − un = δun = −τ ∂E
∂u

[un],

if well defined, must be gradient descent in the generalized sense. Similarity, if E is strictly convex and its
Hessian bilinear formHn exists, then the Newton-Raphson iteration is also gradient descent in the generalized
sense:

un+1 = un −H−1
un

(
∂E

∂u
[un]

)
, n = 0, 1, . . .∞.

For total variation minimization, one of the well known algorithms is the lagged-diffusivity fixed point
iteration (LD-FPI) [27]. Since the construction of our algorithm is closely inspired by LD-FPI, we first review
some important properties of LD-FPI.

3.1 Review of Lagged-Diffusivity Fixed-Point Iterations(LD-FPI)

For the classical TV model (1),

min
u∈BV

E[u] = min
u∈BV

E[u|f ] = min
u∈BV

∫

Ω

|∇u|dx+
λ

2

∫

Ω

(u− f)2dx,

a typical way to compute its minimizer starts from its Euler-Lagrange equation:

∂E

∂u
= −∇(

∇u
|∇u| ) + λ(u− f), (13)

where the first (curvature) term is understood in the distributional sense.
When one uses a direct time marching schemes

un+1 = un −∆t
∂E[un]

∂u
,

the CFL stability condition would demand small ∆t. Lagged-diffusivity fixed point iteration (LD-FPI)
works without the introduction of artificial time t. We refer to the excellent monograph of Vogel for more
details [27]. LD-FPI is also based on the Euler-Lagrange formula (13), and is in essence a linearization
technique. At each step n, given un, one solves un+1 from

−∇(
∇un+1

|∇un| ) + λ(un+1 − f) = 0

with Neumann boundary condition along ∂Ω. With proper conditioning techniques, we shall assume that
numerically un is smooth and |∇un| 6= 0 (i.e., via an ε-lifting |∇u|ε =

√
|∇un|2 + ε2.) At each n, define the

elliptic linear operator Ln = −∇(
1

|∇un|∇), then, LD-FPI becomes

un+1 = T (un) := (Ln + λI)−1(λf). (14)

Unlike the direct time marching scheme, LD-FPI in (14) is unconditionally stable, and is more suitable
for the stochastic approach proposed in this work. The two simple theorems below are important for later
development.
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Theorem 3.1 The LD-FPI scheme is energy decreasing, i.e., E[un+1] ≤ E[un].

Proof. Since Lnu
n+1 + λ(un+1 − f) = 0,

un+1 = argminz
1

2
〈Lnz, z〉+

λ

2

∫

Ω

(z − f)2

= argminz
1

2

∫

Ω

1

|∇un| |∇z|
2 +

λ

2

∫

Ω

(z − f)2

= argminz
1

2

∫

Ω

(
1

|∇un| |∇z|
2 + |∇un|) +

λ

2

∫

Ω

(z − f)2.

In the last line, we have added a constant term irrelevant to z. Let’s call this functional Gn[z], the interme-
diate reference energy.

Since un+1 is a minimizer,

Gn[un+1] ≤ Gn[un] = E[un] = E[un|f ], (TV model (1)).

By A+B
2 ≥

√
AB, one has

Gn[un+1] ≥
∫

Ω

[
|∇un+1|2 1

|∇un| |∇u
n|
]1/2

+
λ

2

∫

Ω

(un+1 − f)2

=

∫

Ω

|∇un+1|+ λ

2

∫

Ω

(un+1 − f)2 = E[un+1 | f ].

Thus, E[un+1 | f ] ≤ Gn[un+1] ≤ E[un | f ]. �

Theorem 3.2 The LD-FPI scheme is gradient descent, i.e.
∫

Ω

∂E[un]

∂u
δundx ≤ 0, where δun = un+1 − un.

Proof. By definition,
∫

Ω

∂E[un]

∂u
δundx =

∫

Ω

∂E[un]

∂u
(un+1 − un)dx

=

∫

Ω

((Ln + λ)un − λf)((Ln + λ)−1(λf)− un)dx

= 2 〈un, λf〉 − 〈(Ln + λ)un, un〉 −
〈
λf, (Ln + λ)−1(λf)

〉
.

On the other hand, let
√
Ln + λ denote the square root of the elliptic operator (Ln + λ). Then, by

Cauchy-Schwartz’s inequality,

2 〈un, λf〉 = 2
〈√

(Ln + λ)un,
√
Ln + λ

−1
(λf)

〉

≤ 2‖
√

(Ln + λ)un‖2 · ‖
√
Ln + λ

−1
(λf)‖2

≤ ‖
√

(Ln + λ)un‖22 + ‖
√
Ln + λ

−1
(λf)‖22

= 〈(Ln + λ)un, un〉+ +
〈
λf, (Ln + λ)−1(λf)

〉
.

Thus,

∫

Ω

∂E[un]

∂u
δundx ≤ 0. Furthermore, the equality holds if

√
(Ln + λ)un =

√
Ln + λ

−1
(λf), or (Ln + λ)un = λf.

That is, if and only if un = argminE[u|f ] is the minimizer. �
Therefore, LD-FPI is both energy diminishing and gradient descent in general sense, which will facilitate

the development of our stochastic algorithm. In what follows, the operator T always refers to LD-FPI in
(14).
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3.2 Randomized gradient descent under the principle of minimum variance

Under a quantum constraint u ∈ Q (with |Q| = k+1), the LD-FPI algorithm is no longer directly applicable,
since the iterative scheme T has no built-in coordination with Q. In order to still benefit from all the fine
structures of LD-FPI just established above, we propose to adapt the deterministic LD-FPI un+1 = T (un)
to a stochastic setting that is applicable to the quantum TV model.

Let un+1
α be a random variable at a pixel α ∈ Ω, supported on the quanta set Q. Let

〈
un+1
α

〉
denote its

mean. Inspired by the deterministic setting above, we require the LD-FPI to still hold in the stochastic or
averaging sense via: 〈

un+1
α

〉
= Tα(un). (15)

Let pc denote the probability of un+1
α = c for any quantum value c ∈ Q: pc = prob(un+1

α = c). Then the
mean is given by 〈

un+1
α

〉
=
∑

c∈Q
cpc.

Since the iteration (15) is applied from the beginning n = 0, all un’s become random fields of (random
variables). At each step n, (15) needs to be understood in the sense of conditional probability given un = un,
which will be indicated by a subscript n:

〈
un+1
α

〉
n

= Tα(un), and
〈
un+1
α

〉
n

=
∑

c∈Q
cpc. (16)

Proposition 3 The stochastic LD-FPI algorithm is still gradient descent in the average sense (or in terms
of conditional mean) at each step n:

〈∫

Ω

∂E[un]

∂u
δun dx

〉

n

≤ 0

where δun = un+1 − un.

Proof. Since the deterministic LD-FPI iteration T is gradient descent, we have

〈∫

Ω

∂E[un]

∂u
δundx

〉

n

=

∫

Ω

∂E[un]

∂u
〈δun〉n dx

=

∫

Ω

∂E(un)

∂u
(T (un)− un) dx =

∫

Ω

∂E(un)

∂u
δundx ≤ 0. �

Thus, the gradient descent property is preserved in a stochastic sense, which will be key to energy
minimization under the quantum constraint Q. However, the following proposition shows that (16) alone is
insufficient to determine a unique probability distribution over a general quanta set Q.

Proposition 4 Unless Q is binary, i.e. Q = {c0, c1}, the mean constraint (16) is insufficient to determine
the probability distribution (pc)c∈Q uniquely at each step n and for each point α ∈ Ω.

Proof. Suppose x is a random variable supported on Q, with pc = prob(x = c), for any c ∈ Q. For any

specified mean m, one requires :
∑

c∈Q
cpc = m. Also, the probability condition requires

∑

c∈Q
pc = 1, pc ≥ 0,

for c ∈ Q. Thus, when |Q| > 2, two equality constraints is not sufficient to determine {pc}c∈Q uniquely. �
In the deterministic setting, the gradient descent property (12) generally cannot guarantee energy de-

creasing in (11). The two are approximately equivalent when ‖δu(n)‖ � 1, due to the variational principle:

E[un+1]−E[un] =

∫

Ω

∂E[un]

∂u
δun dx+O(‖δun‖2).

8



For the randomized algorithm (16), the goal is also to have the target energy steadily decreasing in some
suitable stochastic sense. Therefore, we may require, on top of the mean constraint (15) or (16), that

〈
‖δun‖2

〉
n

=

〈∫

Ω

(δun)2dx

〉

n

� 1.

Since 〈·〉n commutes with
∫
· dx, we can require more explicitly that at each pixel level α ∈ Ω,

〈
(δunα)2

〉
n

=
〈
(un+1
α − unα)2

〉
is as small as possible. (17)

Let X = un+1
α and m = unα at each pixel α ∈ Ω. Assume that the sequence is close to convergence

so that unα is in the close proximity of a fixed point u∗ of the iterative scheme u∗ = T (u∗). Then one has
approximately un ' T (un), and the randomized algorithm (15) amounts to:

〈X〉n =
〈
un+1
α

〉
n

= 〈Tα(un)〉n = unα = m.

Therefore, m could be considered as the mean value of X . Then, the requirement in (17) simply becomes

var(X) =
〈
(X −m)2

〉
n

is as small as possible.

We refer to this as the Principle of Minimum Variance (PMV).
We thus consider the randomized gradient descent algorithm in (16) under PMV. At each step n and a

pixel α ∈ Ω, still denote by X = un+1
α and m = Tα(un). The probability distribution (pc)c∈Q of un+1

α is
then to be determined by solving the constrained optimization problem:

min
X:〈X〉=m

var(X), for all random variables supported on Q. (18)

Since X is supported on Q and 〈X〉 =
∑
c∈Q cpc, this optimization problem (18) is nontrivial if and only

if m ∈ conv(Q), the convex hull of Q. Otherwise, no random variable in Q can satisfy 〈X〉 = m. For the
quantum TV model targeted at image processing, we can assume that {0, 1} ⊂ Q, so that convex hull of Q
is conv(Q) = [0, 1]. Then, as long as the iterative scheme T satisfies the maximum principle

‖T (u)‖∞ ≤ ‖u‖∞,

the above compatible condition of m = Tα(u(n)) ∈ conv(Q) = [0, 1] is automatically satisfied. As a result,
we shall always assume m ∈ conv(Q) henceforth.

With the PMV condition, the following theorem shows that (18) has a unique solution, which resolves
the earlier issue of being under-determined in Proposition 4.

Theorem 3.3 Suppose Q = {c0 < c1 < · · · < ck} and m ∈ conv(Q). Then, the minimization (18) has a
unique solution of probability distribution (p∗c)c∈Q which is a scaled binary Bernoulli and is given as follows.
Suppose m ∈ [cj , cj+1], for some 0 ≤ j < k, then p∗c ≡ 0 for ∀c /∈ {cj , cj+1}, and

p∗cj =
cj+1 −m
cj+1 − cj

, p∗cj+1
=

m− cj
cj+1 − cj

. (19)

Proof. Consider any general distribution X ∼ {pc}c∈Q satisfying 〈X〉 =
∑
c∈Q cpc = m. For conve-

nience, assume m = 0. Define P− =
∑

c∈Q:c≤cj pc and P+ =
∑

c∈Q:c≥cj+1
pc. Then P− + P+ = 1. Further

define m− =
∑

c∈Q:c≤cj
c
pc
P−

and m+ =
∑

c∈Q:c≥cj+1

c
pc
P+

. Then P−m− + P+m+ = m = 0. From these two

conditions, one must have

P− =
m+

m+ −m−
, P+ =

−m−
m+ −m−

.
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m

C0 Cj Cj+1 CkCk−1Cj+2Cj−1C1

m+m−  

Also notice that m− ≤ cj and m+ ≥ cj+1. Furthermore, m− = cj if and only if pc = 0 for all c < cj , and
m+ = cj+1 if and only if pc = 0 for all c > cj+1. Since we have assumed m = 0 for convenience (by globally
shifting Q), we have

var(X) =
∑

c∈Q
c2pc =

∑

c≤cj
c2pc +

∑

c≥cj+1

c2pc = (v− +m2
−)P− + (v+ +m2

+)P+,

where v− =
∑

c≤cj
(c−m−)2 pc

P−
≥ 0 and v+ =

∑

c≥cj+1

(c−m+)2 pc
P+
≥ 0. Thus,

var(X) ≥ m2
−P− +m2

+P+ =
m2
−m+

m+ −m−
+
m2

+(−m−)

m+ −m−
= m+(−m−) ≥ cj+1(−cj).

Moreover, this lower bound cj+1(−cj) is reached if and only if

v− = v+ = 0, and m+ = cj+1,m− = cj(= −cj+1, since m is assumed to be 0.)

This lower bound corresponds to the optimal probability distribution p∗ that satisfies: p∗c = 0 for all c < cj
and c > cj+1, and p∗cj =

cj+1−m
cj+1−cj , and p∗cj+1

=
m−cj
cj+1−cj is found. �

We are now ready to propose a stochastic algorithm for the discrete programming problem of quantum
TV optimization.

3.3 Algorithm for Quantum TV

Based upon the above analysis, for the quantum TV model in (3),

min
u∈BVQ

E[u] = min
u∈BVQ

∫

Ω

|Du|+ λ

2

∫

Ω

(f − u)2dx,

we apply the LD-FPI iteration (14) via its stochastic modification in (15):

〈
un+1
α

〉
= Tα(un).

Coupled with the principle of minimum variation just discussed above, this leads to unique stochastic iteration
at each step, as expressed by (18).

The algorithm for quantum TV (Algorithm 1) is expressed as follows:
At each step n and for each pixel α ∈ Ω,

Step 1 Compute Tα(un) := m.

Step 2 Suppose m ∈ [c, d], where c and d are two adjacent quanta in Q. Then, we sample X = un+1
α

according to the binary Bernoulli distribution (c, d | m):

prob(X = c) =
d−m
d− c , prob(X = d) =

m− c
d− c . (20)

Step 3 Set un+1 = X , and iterate to the next step.

10



Notice that at each step the computation goes independently at each pixel α ∈ Ω. Therefore, the
algorithm can be easily implemented in parallel across Ω. The key random sampling in Step 2 can be easily
realized by the following. Let F be any uniform random variable on [0, 1]. At each pixel α ∈ Ω, define
T = c+ (d− c)F . Then the random sampling by un+1

α can be done via:

un+1
α =

{
c, if T > m
d, if T ≤ m . (21)

The equivalence to (20) can be seen easily:

prob(un+1
α = d) = prob(T ≤ m) = prob(c+ (d− c)T ≤ m)

= prob(T ≤ m− c
d− c ) =

m− c
d− c ,

since T is uniformly distributed on [0, 1].

Proposition 5 Algorithm 1 leads to a Markov Chain:

u0 → u1 → · · · → un → un+1 → · · ·

Proof. Recall that a random walk chain is said to be Markovian if

prob(un+1|un, · · · ,u0) = prob(un+1|un), n = 0, 1, · · ·

This clearly holds in Algorithm 1, since at each step n, the distribution of un+1 is completely defined by
un. �

Therefore, we refer to Algorithm 1 as the algorithm of Markov Gradient Descent. As shown below, it
can also be understood as nearest rounding.

Proposition 6 (Nearest Rounding and Maximum Likelihood) Let Algorithm 1 be modified to the
following deterministic rounding, which is to be called Algorithm 2: at each step n and each pixel α ∈ Ω,

Step 1 compute m = Tα(un); and

Step 2 find the nearest c∗ ∈ Q, such that

un+1
α = c∗ = argminc∈Q|c−m|. (22)

Then, Algorithm 2 could be considered as the maximum-likelihood realization of the Markov transitions in
Algorithm 1.

Proof. Suppose m ∈ [c, d] with c < d in Q. Then

argminc∈Q|c−m| = argminc∈{c,d}|c−m|.

From (20), |c −m| ≤ |d −m| if and only if prob(un+1
α = c) ≥ prob(un+1

α = d). Thus, the nearest-neighbor
rounding (22) is equivalent to performing maximum likelihood on (20). �

4 The Free Quantum TV Model and Its Algorithm

In some applications such as optimal quantization and segmentation, the quanta set Q = {cj} values cannot
be preassigned except for its cardinality k+ 1 = |Q|. This leads to a quantum TV model with a free quanta
set Q (a free quantum TV model) as mentioned in (4) earlier:

min
u∈BVQ, |Q|=k+1

E[u] = min
u∈BVQ, |Q|=k+1

∫

Ω

|Du|+ λ

2

∫

Ω

(f − u)2dx,
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where the quanta set Q is to be optimized as well.
Suppose Q = {c0 < c1 < · · · < ck} ⊂ [0, 1] and u ∈ BVQ. We define a natural image partition by

Ωj = u−1(cj) = {x ∈ Ω|u(x) = cj}, for j = 0, 1, . . . , k. Then u can be expressed as

u(x) =

k∑

j=1

cj1Ωj (x), a.e. x ∈ Ω.

As in computer graphics, we shall call {cj} the photometric feature of u and {Ωj} the geometric feature of u.
Thus, a quantum image u is a combination of two features, and the optimization problem (4) can be carried
out by the alternating minimization (AM) technique, as well practiced in multivariate tasks in imaging and
vision.

The free quantum TV AM algorithm (AM Algorithm) is as follows.

G-step (Geometric Optimization) Given Q, optimize u = argminuE[u|Q, f ] where u is represented by the
partition {Ωj}kj=0.

P-step (Photometric Optimization) Given Ωj from u, optimize the quanta set Q = argminQE[Q|u, f ].

The results in Section 3 naturally applies to G-step. Thus, we shall only focus on the photometric step.

Theorem 4.1 Assume that each boundary ∂Ωj = Γj is regular enough. Define

Γ+
j = {x ∈ Γj | [u]~ν > 0} and Γ−j = {x ∈ Γj | [u]~ν < 0},

where ~ν denotes the outer normal (w.r.t Ωj) and

[u]~ν = lim
ε→0+

[u(x+ ε~ν)− u(x− ε~ν)], and lim
ε→0+

u(x− ε~ν) = cj .

Then, the optimal photometric quanta set Q∗ = {c∗j}j=0,...,k that minimizes the functional (6) must satisfy

c∗j = 〈f〉Ωj +
1

λ|Ωj |
[H1(Γ+

j )−H1(Γ−j )], (23)

for j = 0, . . . , k and 〈f〉A = 1
|A|
∫
A
f .

Proof. For a given geometric partition {Ωi}, we denote by F [Q] the free quantum TV functional in (6), to
emphasize the only dependence on the quanta set Q. For each given j, the entire F [Q] can be conveniently
grouped into

F [Q] =

∫

Γj

|[u]|ds+
λ

2

∫

Ωj

(cj − f)2dx+Rj ,

where the residue term Rj = Rj [Q \ {cj}] does not involve cj . Thus,

F [Q] =

∫

Γ+
j

(u+
j − cj)ds+

∫

Γ−j

(cj − u−j )ds+
λ

2

∫

Ωj

(cj − f)2dx+Rj (24)

where u±j (x) along Γ±j are defined by: u±j (x) = limε→0+ u(x + ε~ν) a.e. for x ∈ Γj . Since Ωj = u−1(cj), we

conclude that u±j ∈ Q\{cj}. Then (24) gives,

∂F

∂cj
= −

∫

Γ+
j

ds+

∫

Γ−j

ds+ λ

∫

Ωj

(cj − f), for j = 0, 1, . . . , k.

Since optimality requires that
∂F [Q∗]
∂cj

= 0 for j = 0, 1, . . . , k, one must have

λ

∫

Ωj

(c∗j − f)− (H1(Γ+
j )−H1(Γ−j )) = 0, j = 0, 1, . . . , k,
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which gives {ci} in (23) and completes the proof. �
The expression in (23) gives the exact updating formula for photometric optimization {ci} in the AM al-

gorithm. However, there are two main challenges for computing (23): (i) to efficiently extract the boundaries
Γ+
j and Γ−j , and (ii) to robustly computeH1(Γ+

j ) andH1(Γ−j ). Parametric approaches are notoriously clumsy
in image processing and computer vision. We propose the following region-based algorithm for computing
cj (P-step):

Let un be the computed image at step n partitioned by {Ωj}. For each j = 0, 1, . . . k, we perform the
following.

• Define Ωj = u−1(cj), Ω+
j = {x| u(x) > cj}, and Ω−j = {x| u(x) < cj}.

• Define the smoothen versions of the characteristic functions to be ξ(x) = smooth(1Ω+
j

(x)) and η =

smooth(1Ω−j
(x)). (Smoothing is for robust numerical computation of gradients, and can be carried out

by moderate heat diffusion.)

• Let Ωεj be an ε-extension of Ωj .

• Then, we employ the following approximations:

H1(Γ+
j ) '

∫

Ωεj

|∇ξ|, H1(Γ−j ) '
∫

Ωεj

|∇η|. (25)

Such region based computational scheme is often more robust than those based on parametric curve
representation. Numerical examples are presented in the following section.

5 Computational Results and Applications

We present several computational examples and applications of the proposed quantum TV model (3) (either
with a given quanta set Q or without) and the associated algorithms developed in Section 3.

Figure 2 compares quantum TV model with the simple scheme of nearest rounding of values. The image
is moderately noisy in (a), and the quanta set is preassigned: Q = {0, 1/3, 2/3, 1}. It is evident from the
example that the quantum TV model (3) excels in producing consistent geometric regularity for the quantized
patches.

Figure 3 is another application of quantum TV in bar code processing. Since the gray values of the
corrupted bar code image (in (a) mostly stay above zero (black), we have empirically adopted the quanta set
Q = {0.45, 1} for the quantum TV model. The binary output is then rescaled to the canonical black-white

(a) (b) (c)

Figure 2: Comparison with simple rounding (with Q = {0, 1/3, 2/3, 1}): (a) moderately noisy original image;
(b) pixelwise direct rounding to the quanta set Q; and (c) output from the quantum TV model.
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(a) (b)

Figure 3: Bar code processing: (a) noisy and moderately corrupted bar code image; (b) output from the
quantum TV model.

(a) (b) (c)

(d) (e) (f)

Figure 4: Effects of different quanta sets for the quantum TV model (3): (a) original image; (b) Q = {0, 1};
(c) Q = {0, 1/3, 2/3, 1}; (d) Q = {0, 0.25, 0.5}; (e) Q = {0, 0.5, 1}; and (f) Q = {0.5, 0.75, 1}.

bar code quanta {0, 1} (as shown in (b)). Pay attention to how the color inhomogeneity in the originally
imperfect bar code image has been properly got rid of.

Figure 4 demonstrates the effect of image quantization for the “Boat” test image. Different representative
quanta sets are tested (from (b) to (f)) on the original image in (a). This example partially shows the
limitation of the quantum TV model with a fixed quanta set. In practice, different choices may lead to very
different quantization outputs. Thus the example well motivates the free quantum TV model for which the
quanta set Q is also to be optimized instead of being preassigned.

The next three examples demonstrate the performance of the free quantum TV model (4) and the
associated two-step AM algorithm proposed in Section 4. The quanta set Q is also to be optimized with
only the cardinality |Q| = k + 1 information available.

Figure 5 shows an application in segmenting a noisy brain image. Based on the three clusters in the
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(a) (b)

Figure 5: Segmentation via the free quantum TV model: (a) original noisy brain image; (b) segmentation
output from the free quantum TV model with |Q| = 3.

(a) (b)

Figure 6: Segmenting a galaxy image via the free quantum TV model: (a) original image with two nebulas;
(b) segmentation by the free quantum TV model (with |Q| = 3). The performance is comparable to the
piecewise constant Mumford-Shah model.

histogram of the given noisy image in (a), we assign |Q| = 3. The 2-step AM algorithm starts with a random
initial guess for Q, and robustly converges to the optimal quanta set Q∗ = {0.1608, 0.5164, 0.7362}.

Figure 6 demonstrates another example of image segmentation by the free quantum TV model. For this
real and complex galaxy image, the performance is very comparable to the piecewise constant Mumford-Shah
model and its level set implementation studied by several authors [8, 9, 13, 15, 23].

Finally in Figure 7, we demonstrate (via the Lenna image) the quantization performance of the free
quantum TV model with |Q| = 5 and |Q| = 8. For |Q| = 5, the quanta set Q converges to Q =
{0.2192, 0.3876, 0.5216, 0.6384, 0.8049} (in (b1)). For k = 8, it converges to
Q = {0.2176, 0.3790, 0.4924, 0.5667, 0.6287, 0.6979, 0.7818, 0.8477} (in (c1)). In each case, the output is com-
pared with that from direct rounding to an equally spaced quanta set Q with the same cardinality (in (b2)
and (c2)). The free quantum TV model clearly outperforms direct rounding in terms of geometric regularity
and meaningfulness of pixel grouping.
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(a)

(b1) (b2)

(c1) (c2)

Figure 7: Quantization via the free quantum TV model: (a) original Lenna image; (b1) quantized using
|Q| = 5, with the computed optimal quanta set Q∗ = {0.2192, 0.3876, 0.5216, 0.6384, 0.8049}; (b2) direct
rounding to an equally spaced quanta set Q with |Q| = 5; (c1) quantized using |Q| = 8; (c2) direct rounding
to an equally spaced quanta set Q with |Q| = 8. Notice the superb performance of the free quantum TV model
in terms of geometric regularity and smoothness (e.g., the facial area).

6 Concluding Remarks and Discussion

In this paper, we have proposed both the quantum TV model (3) and the free quantum TV model(4),
studied their mathematical properties, and developed the associated computational algorithms. Compared
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with the classical TV model, the quantum TV model is more challenging due to its discrete programming
nature. The models and their algorithms have been tested in several major applications in contemporary
image processing, including bar code scanning, image quantization, and image segmentation.
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