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Abstract

This paper is devoted to the study of local scales or oscillations in images and use
the knowledge of local scales for image decompositions. Denote by

Kt(x) =
(
e−2πt|ξ|2

)∨
(x) = (2t)−n/2e−2π

|x|2
4t , t > 0,

the Gaussian kernel. Motivated from the Triebel-Lizorkin function space Ḟα
p,∞, we

define a local scale of f at x to be t(x) ≥ 0 such that

|Sf(x, t)| =
∣∣∣∣t1−α/2 ∂Kt

∂t
∗ f(x)

∣∣∣∣
is a local maximum with respect to t for some α < 2. The choice of α will be discussed.
We also define a nontangential local scale (a smooth version of the previous local scale)
of f at x to be t∗(x) such that S∗f(x, t∗) is a local maximum in t, where

S∗f(x, t) = sup
|x−y|<t

∣∣∣∣Sf(y, t)e
−|x−y|2

2t

∣∣∣∣ .
We then extend the work in [14] to decompose f into u + v, with u being piecewise-
smooth and v being texture, via the minimization problem,

inf
u∈BV

{
K(u) = |u|BV + λ‖Kt̄(·) ∗ (f − u)(·)‖L1

}
,

where t̄(x) is some appropriate choice of a (nontangential) local scale to be captured in
the oscillatory part v at x.
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1 Introduction and Motivation

Given an image f defined on Rn or Ω = [0, 1]n ⊂ Rn. When f is defined on Ω, we
assume that f is periodic and Ω is the fundamental domain. Denote the function space
defined on Rn by X(Rn) and the function space defined on Ω by X(Ω). When we make
no distinction between X(Rn) or X(Ω), we write X to mean either X(Rn) or X(Ω).
An important problem in image analysis is the decomposition of f into u + v, where
u is piecewise-smooth containing the geometric components of f and v is oscillatory,
typically texture or noise. A variational approach to this image decomposition problem
is by solving the following variational problem,

inf
(u,v)∈(X1,X2)

{K(u) = F1(u) + λF2(v), f = u + v} , (1)

where Fi’s are functionals on the function spaces Xi’s, and λ > 0 is a fixed tuning
parameter. Given the desired properties of u and v, a good model for (1) should have
F1(u) and F2(v) small in X1 and X2 respectively. Note that if Fi is a norm on Xi, then
K(u) is the usual Peetre K-functional. We recall a few models of this type.

The weak formulation of the Mumford-Shah model [30] introduced by E. De Giorgi,
M. Carriero and A. Leaci [11] has X1 = SBV (the space of Special functions of Bounded
Variation [10]) and X2 = L2 with

F1(u) =
∫

Ω\Su

|∇u|2 dx + βHn−1(Su), and F2(v) = ‖v‖2
L2 ,

where Su is the singularity set of u in Ω, β > 0 andHk(B) is the k-dimensional Hausdorff
measure of the set B. For an indepth discussion of the Mumford-Shah model, we refer
the readers to L. Ambrosio, N. Fusco and D. Pallara [3].

By replacing SBV with BV (the space of functions of Bounded Variation) for
X1, and keeping X2 = L2 with F1(u) = |Du|(Ω) and F2(v) = ‖v‖2

L2 , we obtain the
Rudin-Osher-Fatemi model [33], which was originally proposed for image de-noising.
See also [2], [31], [9], [8], [45], [44], [1], [18], [28], among others, for the analysis of the
variational model with F1(u) = |Du|(Ω) and F2(v) = ‖v‖L1 , which was proposed for
removing impulse noise and texture decomposition.

We recall that Du = (D1u, ..., Dnu) is the distributional derivative of u which is
defined as a Radon measure on Ω,∫

Ω
φ dDiu = −

∫
Ω

u
∂φ

∂xi
dx, for all φ ∈ C∞

c , i = 1, .., n,

and |Du|(Ω) defines a seminorm on BV , and ‖u‖L1 + |Du|(Ω) defines a norm, which
makes BV a Banach space. From now on, we denote |Du|(Ω) by |u|BV .

In [27], Y. Meyer then proposed to replace the space X2 = L2 in the Rudin-Osher-
Fatemi model with weaker function spaces to model oscillatory components (texture
or noise). These spaces of generalized functions are G = div(L∞), F = div(BMO) =

˙BMO
−1

([21], [37]) (BMO = space of functions of Bounded Mean Oscillation [20]), and
E = Ḃ−1

∞,∞, with F2(v) being the norm of one of these function spaces, while keeping
X1 = BV with F1(u) = |u|BV . D. Mumford and B. Gidas [29] also showed that natural
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images are drawn from probability distributions supported by generalized functions.
Further analysis and variations of Meyer’s models can be found in [43], [4], [5], [17],
[26], [22], [13], [14], among others.

A general idea for modeling oscillatory components is, instead of imposing ‖v‖Lp be
bounded, to impose that ‖K ∗ v‖Lp is bounded, for some “averaging” kernel K, which
can be realized as a low-pass filter. More specifically, we consider K such that K̂(ξ)
decays rapidly as |ξ| → ∞. With

F2(v) = ‖K ∗ v‖Lp =
∥∥∥∥(K̂(ξ)v̂(ξ)

)∨
(·)
∥∥∥∥

Lp

,

the model (1) allows v̂(ξ) to be large when |ξ| is large. This is precisely what allows v
to be more oscillatory. With

K̂(ξ) = β̂α(ξ) =
(
1 + 4π2|ξ|2

)α/2 = e
α
2

log(1+4π2|ξ|2), or

K̂(ξ) = Îα(ξ) = (2π|ξ|)α = eα log(2π|ξ|), for α < 0,
(2)

we obtain that ‖K ∗ v‖Lp is an equivalent norm for the potential Sobolev space Wα
p ,

and its homogeneous version Ẇα
p , respectively. These choices of K were investigated

in [32], [5], [23], and [13] for modeling oscillatory components. With K being the
Gaussian (K̂t(ξ) = e−2πt|ξ|2) or the Poisson kernel (P̂t(ξ) = e−2πt|ξ|), we arrive to the
homogeneous Besov space Ḃα

p,∞, for some α < 0. These kernels have faster decay in
the Fourier domain compared to (2). Besov spaces can also be characterized by other
smooth kernels (see [42]).

In [14], inspired by Y. Meyer [27], the decomposition of an image f into u + v has
X1 = BV and X2 = Ḃα

p,∞, with F1(u) = |u|BV and F2(v) = ‖v‖Ḃα
p,∞

. In other words,
the variational problem (1) becomes

inf
(u,v)∈(BV,Ḃα

p,∞)

{
K(u) = |u|BV + λ‖v‖Ḃα

p,∞
, v = f − u

}
, (3)

with α < 0, 1 ≤ p ≤ ∞, and the space Ḃα
p,∞ is the homogenous Besov space, which can

be characterized as follow.
Let Φ(x) = 2n/2e−2π|x|2 , for x ∈ Rn, and denote Φt(x) = t−nΦ(x/t), then the heat

kernel is defined as Kt(x) = Φ√
4t(x) =

(
e−2πt|ξ|2

)∨
(x). We have

∫
Rn Kt(x) dx = 1, for

all t > 0. For each f ∈ Lp, let u(x, t) = Kt ∗ f(x). Then u satisfies the heat equation,(
∂

∂t
−

n∑
i=1

∂2

∂x2
i

)
u(x, t) = 0, with u(x, 0) = f(x). (4)

The following definitions can be seen from E. Stein [35] and H. Triebel [41], [42].

Definition 1. For each α ∈ R, let m ∈ N0 such that m > α/2, we say a function (or
distribution) f belongs to the homogeneous Besov space Ḃα

p,∞(Rn), 1 ≤ p ≤ ∞, if

‖f‖Ḃα
p,∞(Rn) = sup

0<t<∞

{
tm−α/2

∥∥∥∥ ∂m

∂tm
Kt ∗ f

∥∥∥∥
Lp(Rn)

}
< ∞, (5)
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and we say f ∈ Ḃα
p,∞(Ω), 1 ≤ p ≤ ∞, if

‖f‖Ḃα
p,∞(Ω) = sup

0<t<1

{
tm−α/2

∥∥∥∥ ∂m

∂tm
Kt ∗ f

∥∥∥∥
Lp(Ω)

}
< ∞. (6)

Equipped with the aboce norms, Ḃα
p,∞(Rn) and Ḃα

p,∞(Ω) become Banach spaces.

From the above definitions, the variational problem (3) becomes

inf
(u,v)∈(BV,Ḃα

p,∞)

{
K(u) = |u|BV + λ sup

t>0

{
t−α/2‖Kt ∗ (f − u)‖Lp

}}
. (7)

Note that here we pick m = 0 for α < 0. The minimization problem (7) can be rewritten
as

inf
u∈BV

{
K(u) = |u|BV + λ̄‖Kt̄ ∗ (f − u)‖Lp

}
, (8)

for some t̄ = t̄(α, f−u) ≥ 0 and λ̄ = λt̄−α/2. The term ‖Kt̄ ∗v‖Lp from the equation (8)
imposes a uniform smoothing of scale t̄ on the texture component v. However, texture
may have different scales of oscillations locally. A natural extension of (8) is to have
t̄ as a function of x ∈ Ω. In other words, the support of the kernel Kt̄(x) is locally
adapted to the local oscillation. This paper is devoted to studying the local scales of
images and using these local scales for multiscale image decompositions.

We note that scale is an important aspect in computer vision, and has been studied
rigorously. We mention a few work by [36], [39], [7], [38], [25], [24], [12], and references
there in. Our study of local scales is different and is motivated from the function spaces
point of view.

2 Local Scales and Nontangential Local Scales

in Images

An important function space that measures the local differentiability of functions or
distributions is the Triebel-Lizorkin function space [42]. The following definition is the
characterization of this function space in term of the Gaussian kernel Kt.

Definition 2. For each α ∈ R, let m ∈ N0 such that m > α/2, we say a function (or
distribution) f belongs to the homogeneous Triebel-Lizorkin function space Ḟα

p,∞(Rn),
1 ≤ p ≤ ∞, if

‖f‖Ḟ α
p,∞(Rn) =

∥∥∥∥ sup
0<t<∞

{
tm−α/2

∣∣∣∣ ∂m

∂tm
Kt ∗ f

∣∣∣∣}∥∥∥∥
Lp(Rn)

< ∞, (9)

and we say f ∈ Ḟα
p,∞(Ω), 1 ≤ p ≤ ∞, if

‖f‖Ḟ α
p,∞(Ω) =

∥∥∥∥ sup
0<t<1

{
tm−α/2

∣∣∣∣ ∂m

∂tm
Kt ∗ f

∣∣∣∣}∥∥∥∥
Lp(Ω)

< ∞. (10)

Equipped with the above norms, Ḟα
p,∞(Rn) and Ḟα

p,∞(Ω) become Banach spaces.
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Remark 1. When p = ∞, we have Ḃα
∞,∞ = Ḟα

∞,∞ for all α ∈ R.

Note that in the above definition, any m ∈ N0, such that m > α/2, would provide
an equivalent norm for the space Ḟα

p,∞. The following result can be found in E. Stein
[35] and H. Triebel [41],[42].

Proposition 1. For 1 ≤ p ≤ ∞, if m1 and m2 are two non-negative integers greater
than α/2, then

sup
0<t<∞

{
tm1−α/2

∥∥∥∥ ∂m1

∂tm1
Kt ∗ f

∥∥∥∥
Lp(Rn)

}
and sup

0<t<∞

{
tm2−α/2

∥∥∥∥ ∂m2

∂tm2
Kt ∗ f

∥∥∥∥
Lp(Rn)

}
(11)

provide equivalent norms for the space Ḃα
p,∞(Rn). Similarly, if m1 and m2 are two

non-negative integers greater than α/2, then∥∥∥∥ sup
0<t<∞

{
tm1−α/2

∣∣∣∣ ∂m1

∂tm1
Kt ∗ f

∣∣∣∣}∥∥∥∥
Lp(Rn)

and
∥∥∥∥ sup

0<t<∞

{
tm2−α/2

∣∣∣∣ ∂m2

∂tm2
Kt ∗ f

∣∣∣∣}∥∥∥∥
Lp(Rn)

(12)
provide equivalent norms for the space Ḟα

p,∞(Rn). The same result also holds for the
function space Ḃα

p,∞(Ω) and Ḟα
p,∞(Ω) for 1 ≤ p ≤ ∞.

For each f ∈ Ḟα
p,∞, α < 2 and 1 ≤ p ≤ ∞, define

Sf(x, t) = t1−α/2 ∂

∂t
u(x, t) = t1−α/2 ∂

∂t
Kt ∗ f(x). (13)

Here we implicitly assume that if f ∈ Ḟα
p,∞(Ω) then Sf(x, t) is defined for all 0 < t < 1,

and if f ∈ Ḟα
p,∞(Rn) then Sf(x, t) is defined for all t > 0. Let τ = loga(t). Sometimes

we write Sf(x, τ) to mean that the evaluation in t is in logarithmic scale.
Note that the definition of Sf does not depend on p. However, its smoothness de-

pends on the space Ḟα
p,∞ in which f belongs to. We have the following results regarding

the regularity for the derivatives of Sf(x, τ) with respect to τ = loga(t).

Proposition 2. Let τ = loga(t), and by a change of variable, let

Sf(x, τ) = t1−α/2 ∂

∂t
Kt ∗ f(x).

Then for α < 2 and f ∈ Ḟα
p,∞(Rn), 1 ≤ p ≤ ∞,∥∥∥∥∥ sup

0<t<∞,τ=loga(t)

∣∣∣∣ ∂

∂τ
Sf(·, τ)

∣∣∣∣
∥∥∥∥∥

Lp(Rn)

≤ C1‖f‖Ḟ α
p,∞(Rn). (14)

In general, ∥∥∥∥∥ sup
0<t<∞,τ=loga(t)

∣∣∣∣ ∂k

∂τk
Sf(·, τ)

∣∣∣∣
∥∥∥∥∥

Lp(Rn)

≤ Ck‖f‖Ḟ α
p,∞(Rn), (15)

where Ck are universal constants that depend on n, α and k. The same results also
hold for f ∈ Ḟα

p,∞(Ω).
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Proof. Since dt
dτ = t ln a, we have∣∣∣∣ ∂

∂τ
Sf(x, τ)

∣∣∣∣ = ∣∣∣∣ ∂

∂t

(
t1−α/2 ∂

∂t
Kt ∗ f(x)

)
∂t

∂τ

∣∣∣∣
=
∣∣∣∣((1− α/2)t1−α/2−1 ∂

∂t
Kt ∗ f(x) + t1−α/2 ∂2

∂t2
Kt ∗ f(x)

)
t ln a

∣∣∣∣
≤ ln a

(
(1− α/2)

∣∣∣∣t1−α/2 ∂

∂t
Kt ∗ f(x)

∣∣∣∣+ ∣∣∣∣t2−α/2 ∂2

∂t2
Kt ∗ f(x)

∣∣∣∣)
≤ ln a

(
(1− α/2) sup

0<t<∞

∣∣∣∣t1−α/2 ∂

∂t
Kt ∗ f(x)

∣∣∣∣
+ sup

0<t<∞

∣∣∣∣t2−α/2 ∂2

∂t2
Kt ∗ f(x)

∣∣∣∣) .

By (11), we have∥∥∥∥∥ sup
0<t<∞,τ=loga(t)

∣∣∣∣ ∂

∂τ
Sf(·, τ)

∣∣∣∣
∥∥∥∥∥

Lp(Rn)

≤ ln a (1− α/2 + A1) ‖f‖Ḟ α
p,∞(Rn),

where A1 is the equivalent norm constant. Therefore,∥∥∥∥∥ sup
0<t<∞,τ=loga(t)

∣∣∣∣ ∂

∂τ
Sf(·, τ)

∣∣∣∣
∥∥∥∥∥

Lp(Rn)

≤ C1‖f‖Ḟ α
p,∞(Rn), (16)

with C1 = ln a (1− α/2 + A1). By differentiating ∂
∂τ Sf(x, τ) with respect to τ a second

time and using similar techniques, we obtain,

∂2

∂τ2
Sf(x, τ) = ln a

∂

∂τ

(
(1− α/2)t1−α/2 ∂

∂t
Kt ∗ f(x) + t2−α/2 ∂2

∂t2
Kt ∗ f(x)

)
= (ln a)2t

(
(1− α/2)2t1−α/2−1 ∂

∂t
Kt ∗ f(x)

+ (1− α/2)t1−α/2 ∂2

∂t2
Kt ∗ f(x) + (2− α/2)t1−α/2 ∂2

∂t2
Kt ∗ f(x)

+ t2−α/2 ∂3

∂t3
Kt ∗ f(x)

)
= (ln a)2

(
(1− α/2)2t1−α/2 ∂

∂t
Kt ∗ f(x)

+ (1− α/2)t2−α/2 ∂2

∂t2
Kt ∗ f(x) + (2− α/2)t2−α/2 ∂2

∂t2
Kt ∗ f(x)

+ t3−α/2 ∂3

∂t3
Kt ∗ f(x)

)
Therefore, ∥∥∥∥∥ sup

0<t<∞,τ=loga(t)

∣∣∣∣ ∂2

∂τ2
Sf(·, τ)

∣∣∣∣
∥∥∥∥∥

Lp(Rn)

≤ C2‖f‖Ḟ α
p,∞(Rn), (17)
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where C2 = A1(2− α/2)2 + A2, and Ai’s are the equivalent norm constant. In general,
for all x ∈ Ω, ∥∥∥∥∥ sup

t>0,τ loga(t)

∣∣∣∣ ∂k

∂τk
Sf(·, τ)

∣∣∣∣
∥∥∥∥∥

Lp(Rn)

≤ Ck‖f‖Ḟ α
p,∞(Rn). (18)

Note that if we further assume that f is bounded then for each x,

sup
0<t<∞

∣∣∣∣ ∂k

∂τk
Sf(x, τ)

∣∣∣∣ ≤ Ck‖f‖L∞(Rn),

for all k ≥ 0. In other words, for each x, Sf(x, τ) is smooth with respect to τ . We have
the following result regarding the spatial smoothness of Sf(x, t).

Proposition 3. Suppose f ∈ Ḟα
p,∞ for some α < 2 and 1 ≤ p ≤ ∞. For each t > 0,

we have
‖∆Sf(·, t)‖Lp ≤ Ct−1‖f‖Ḟ α

p,∞
, (19)

Recall the variational model for decomposing f into u + v via,

K(f, λ) = inf
(u,v)∈(X1,X2)

{K(u, v, t) = F1(u) + λF2(v), f = u + v} ,

for λ > 0. Since the geometric part u is much smoother than the oscillatory part
v, we typically have X1 ⊂ X2. The parameter λ > 0 determines the separation of
oscillations or scales. We can think of λ as a scale selecting parameter with respect
to the Peetre K-functional K(f, λ), which provides an equivalent norm for the space
X = X1 + X2. This interpretation of scales was investigated in [40] for multiscale
image decompositions with K(u, v, λ) = |u|BV + λ‖v‖2

L2 . The local scale interpretation
of this K-functional is discussed in [39]. See also [8], [45], [44], [1], and [28] for similar
interpretations with K(u, v, λ) = |u|BV + λ‖v‖L1 . In this paper, we consider a different
scale interpretation, which will become clearer in the following definitions.

Suppose f ∈ Ḟα
p,∞, for some α < 2 and 1 ≤ p ≤ ∞. From Proposition 2, for each

x ∈ Ω, ∂k

∂τk Sf(x, τ) is smooth and bounded in τ = loga(t). So as τ increases and if
there is a change in the scale of f at x, we also expect the change in Sf(x, τ) at x.
With this interpretation, we have the following definitions of local scales of f at x ∈ Ω.

Definition 3. Fix an f ∈ Ḟα
p,∞, α < 2 and 1 ≤ p ≤ ∞.

• The local scales of f at x is defined to be the set Tf (x) consisting of t ≥ 0, such
that | (Sf(x, t)) | is a local maximum. Moreover, for each t ∈ Tf (x), if there exists
an interval [a, b], a < b, containing t such that for all t ∈ [a, b], ∂

∂t (Sf(x, t)) = 0.
Then we only select t = a to be in Tf (x) and discard all other t′ ∈ (a, b]. Therefore,
if t and t′ belong to Tf (x), then |t− t′| > 0.

• We define the first scale of f at x to be tf,1(x), such that

tf,1(x) = inf {t ∈ Tf (x)} .
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The ith scale of f at x is then defined as

tf,i(x) = inf {t ∈ Tf (x) \ {tf,1(x), ..., tf,i−1(x)}} .

It is clear that 0 ≤ tf,1(x) < tf,2(x) < ... < tf,i(x) < ....

• We define the major scale of f at x up to s > 0, as tf,+(s, x) such that

tf,+(s, x) = arg max
t∈Tf (x),0≤t≤s

|Sf(x, t)| . (20)

• For each x, we refer to |Sf(x, t)| as the oscillatory level of f at scale t ∈ Tf (x).

In the previous definition, a local scale of f at x is defined as t such that |Sf(x, t)| is
a local maximum. To further impose some interaction of scales in the spatial domain,
we consider the nontangential control on the local maximum of |Sf(x, t)|. In other
words, let the following nontangential maximal function be defined as

S∗(x, t) := sup
|x−y|<t

∣∣∣∣Sf(y, t)e
−|x−y|2

2t

∣∣∣∣ .
We then define the nontangential local scales of f at x as the following.

Definition 4. For each f ∈ Ḟα
p,∞, α < 2 and 1 ≤ p ≤ ∞, we have the following

definitions.

• The nontangential local scales of f at x is defined to be the set T ∗
f (x) consisting

of t ≥ 0, such that S∗f(x, t) is a local maximum. Moreover, for each t ∈ T ∗
f (x),

if there exists an interval [a, b], a < b, containing t such that for all t ∈ [a, b],
∂
∂t (S∗f(x, t)) = 0. Then we only select t = a to be in T ∗

f (x) and discard all other
t′ ∈ (a, b]. Therefore, if t and t′ belong to T ∗

f (x), then |t− t′| > 0.

• We define the first nontangential scale of f at x to be t∗f,1(x), such that

t∗f,1(x) = inf
{
t ∈ T ∗

f (x)
}

.

The ith nontangential scale of f at x is then defined as

t∗f,i(x) = inf
{
t ∈ T ∗

f (x) \
{
t∗f,1(x), ..., t∗f,i−1(x)

}}
.

It is clear that 0 ≤ t∗f,1(x) < t∗f,2(x) < ... < t∗f,i(x) < ....

• We define the major nontangential scale of f at x up to s > 0, as t∗f,+(s, x) such
that

t∗f,+(s, x) = arg max
t∈T ∗f (x),0≤t≤s

S∗f(x, t). (21)

• For each x, we refer to S∗f(x, t) as the oscillatory level of f at scale t ∈ T ∗
f (x).

The next proposition shows that the number of local scales at x is invariant under
dilation. This is an important property that scales should satisfy. Moreover, the local
scales of an image are the local scales of its dilated version times the square of dilating
factor.
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Proposition 4. Suppose that f ∈ Ḟα
p,∞(Rn), α < 2, and define the dilating operator

dδf(x) = f(δx). Then for each α < 2 and δ > 0,

tf,i(x) = δ2tdδf,i(x). (22)

In other words, tf,i(x)
tdδf,i(x) = δ2, which is quadratic in δ.

Proof. Note that if we let Φ(x) = 2n/2e−2π|x|2 , and define Φt(x) = t−nΦ(x/t), then the
heat kernel Kt is just Φ√

4t(x). Without lost of generality, we may assume that x = 0.
Let

tf,∗(0) = arg max
0<t<1

t1−α/2

∣∣∣∣∂Kt

∂t
∗ f(0)

∣∣∣∣ .
We will show that tf,∗(0) = δ2tdδf,∗(0). The cases tf,i(0) = δ2tdδf,i(0) follow. We have

Kt ∗ dδf(0) =
∫

Kt(y)f(δy) dy =
∫

(4t)−n/2Φ
(

y√
4t

)
f(δy) dy

=
∫

(4t)−n/2Φ
(

z

δ
√

4t

)
f(z)

dz

δn
=
∫

(4tδ2)−n/2Φ
(

z√
4tδ2

)
f(z) dz

=
∫

Ktδ2(z)f(z) dz = Ks ∗ f(0)

where s = δ2t. This implies that

∂

∂t
(Kt ∗ dδf(0)) =

∂

∂t
(Ks ∗ f(0)) = δ2 ∂

∂s
(Ks ∗ f(0))

Note that in the last equality, we use ∂Ks
∂t = ∂Ks

∂s · ds
dt . Therefore,

sup
0<t<1

t1−α/2

∣∣∣∣∂Kt

∂t
∗ dδf(0)

∣∣∣∣ = sup
0<t<1

t1−α/2δ2

∣∣∣∣∂Ks

∂s
∗ f(0)

∣∣∣∣
= δα sup

0<t<1
s1−α/2

∣∣∣∣∂Ks

∂s
∗ f(0)

∣∣∣∣ . (23)

The supremum on the righthand side of equation (23) is attained at s = tf,∗, which
implies that

δ2tdδf,∗(0) = tf,∗(0). (24)

Since convolution is invariant under translation, (24) holds for all x.

Remark 2. From the previous Proposition, we see that tf,∗(x)
tdδf,∗(x) = δ2, which is quadratic

in δ. This quadratic behavior comes from The fact that the heat kernel is the rescaling
of Φ(x) = t−nΦ(x/t) by a multiple of

√
t. In other words, Kt(x) = Φ√

4t(x). If we were
to use the Poisson kernel instead of the heat kernel to study local scales, we then would
obtain

tf,∗(x)
tdδf,∗(x)

= δ, (25)

which is linear in δ. In other words, for α < 1, let Sαf(x, t) = t1−α ∂Pt
∂t ∗ f(x), where

Pt(x) = ϕt(x) = t−nϕ(x/t) with ϕ(x) = cn(1 + |x|2)−(n+1)/2, cn = Γ((n+1)/2)

π(n+1)/2 . Then
with the local scales defined as in Definition 3, we obtain (25). We chose to use the
heat kernel because it has faster decay and provides a better separation of scales.
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By observing Sf(x, t) for each x, we obtain a sequence of scales ti’s that f exhibits
at x, and the value of |Sf(x, ti)| determines how prominent the oscillation at the scale
ti is at x. For some i, suppose ti(x) is large at some point x, then we expect that, for
some y belonging to a small neighborhood of x, ti(y) is very close to ti(x). However,
it is no longer true if ti(x) is small. This statement is precisely the consequence of
Proposition 3.
Remark 3. Recall from Proposition 2 that for each f ∈ Ḟα

p,∞,∣∣∣∣∂Sf(x, t)
∂t

∣∣∣∣ ≤ Ct−1‖f‖Ḟ α
p,∞

, and∣∣∣∣∂Sf(x, t)
∂τ

∣∣∣∣ ≤ C ln a‖f‖Ḟ α
p,∞

.

In other words, having Sf as a function of t, we see that based on the definition of
scales the transition between scales is of order O(t). However, the transition between
scales is of order O(1) in logarithmic scale τ . With the constant a being close to 1,
we can take τ to be discrete (τ ∈ Z) and local scales computed over the discrete set
{aτ , τ ∈ Z} are still be close to the true local scales of f . Moreover, we also obtain an
equivalent norm for the space Ḃα

p,∞ and Ḟα
p,∞ in terms of this discrete variable. For

each α ∈ R and 1 ≤ p ≤ ∞, let m ∈ N0 such that m > α/2. Then for any a > 1,

‖f‖Ḃα
p,∞(Rn) ≈ sup

τ∈Z
aτ(m−α/2)

∥∥∥∥ ∂m

∂tm
Kaτ ∗ f(x)

∥∥∥∥
Lp(Rn)

,

where ’≈’ means equivalent norm. Similarly,

‖f‖Ḟ α
p,∞(Rn) ≈

∥∥∥∥sup
τ∈Z

∣∣∣∣aτ(m−α/2) ∂m

∂tm
Kaτ ∗ f(x)

∣∣∣∣∥∥∥∥
Lp(Rn)

.

Similar results also hold for the spaces Ḃα
p,∞(Ω) and Ḟα

p,∞(Ω), but with τ ∈ Z and τ < 0.
According to definition 3, the local scales of f depend on the choice of α. Figures

1 and 2 show the graph of |Sf(x, τ)| and |S∗f(x, τ)|, respectively, with respect to
the discrete variable τ for different values of α ∈ [−0.6, 0.6] at various x’s with the
assumption that f is periodic and Ω = [0, 1]n. From this figure, we observe that for
α < 0 the oscillatory levels |Sf(x, tf,i(x))| and |S∗f(x, t∗f,i)| are small for the first few
small scales tf,i(x) and t∗f,i(x) respectively, and the local scales are slightly increasing
as α decreases. In other words, when α < 0 and large in absolute value, the oscillatory
level for small scales are low and the oscillatory level for large scales are high. The
situation is reversed for large positive α. Also from these figures, α determines which
scale is a major local scale at each x. Experimentally for studying the local scales from
the test images in figure 3, we find α to be within a small neighborhood of the origin
is an appropriate choice.

For each f ∈ Ḟα
p,∞, let us for a moment make a change of notation by denoting Sf(x)

as Sαf(x), the set of local scales Tf (x) as Tα
f (x), the ith local scale tf,i(x) as tαf,i(x), and

the major scale tf,+(x) as tαf,+(x). We have the following result concerning the local
scales of f for different values of α. The same result also applies to the nontangential
case.
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Qi

α=−0.6 α=−0.4 α=−0.2 α=0 α=0.2 α=0.4 α=0.6

α=−0.6 α=−0.4 α=−0.2 α=0 α=0.2 α=0.4 α=0.6

α=−0.6 α=−0.4 α=−0.2 α=0 α=0.2 α=0.4 α=0.6

α=−0.6 α=−0.4 α=−0.2 α=0 α=0.2 α=0.4 α=0.6

Figure 1: The plots show the graphs of |Sf(xi, loga(t))| for different values of α, and xi is
the center of the square Qi, in the order from left to right and top to bottom.
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Qi

α=−0.6 α=−0.4 α=−0.2 α=0 α=0.2 α=0.4 α=0.6

α=−0.6 α=−0.4 α=−0.2 α=0 α=0.2 α=0.4 α=0.6

α=−0.6 α=−0.4 α=−0.2 α=0 α=0.2 α=0.4 α=0.6

α=−0.6 α=−0.4 α=−0.2 α=0 α=0.2 α=0.4 α=0.6

Figure 2: The plots show the graphs of |S∗f(xi, loga(t))| for different values of α, and xi is
the center of the square Qi, in the order from left to right and top to bottom.
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Lemma 1. Suppose f ∈ Ḟα
p,∞, for all α ∈ (a, b) and some p ∈ [1,∞]. If a < α1 < α2 <

b < 2, then for almost every x,

tα2
f,+(x) ≤ tα1

f,+(x).

Proof. Let a < α1 < α2 < b with ε = α2 − α1 > 0. We have

|Sα2f(x, t)| = t1−α2/2

∣∣∣∣∂Kt

∂t
∗ f(x)

∣∣∣∣ = t1−(α1+ε)/2

∣∣∣∣∂Kt

∂t
∗ f(x)

∣∣∣∣
= t−ε/2

(
t1−α1/2

∣∣∣∣∂Kt

∂t
∗ f(x)

∣∣∣∣) = t−ε/2|Sα1f(x, t)|.
(26)

Since tαf,+(x) = arg max0<t<1 |Sαf(x, t)| and t−ε/2 is decreasing,

arg max
0<t<1

|Sα2f(x, t)| ≤ arg max
0<t<1

|Sα1f(x, t)|

As a consequence of the previous lemma, we have

Proposition 5. Suppose f ∈ Ḟα
p,∞, for all α ∈ (a, b) and some p ∈ [1,∞]. Let

a < α1 < α2 < b < 2 and x ∈ Ω. Then for any t1 ∈ Tα1
f (x), there exists t2 ∈ Tα2

f (x)
such that t2 ≤ t1.

Recall that BMO is the space of functions of Bounded Mean Oscillation. The
following John-Nirenberg inequality can be found in E. Stein [34].

Theorem 1. (John-Nirenberg inequality) Suppose f ∈ BMO(Ω), and Denote by fB =
1
|B|
∫
B f(x) dx the mean of f in B . Then there exists a positive constant C1 and C2

so that for every α > 0, and every ball B ⊂ Ω,

|{x ∈ B : |f(x)− fB| > α}| ≤ |B|C1e
−C2α/‖f‖BMO(Ω) .

In particular, Suppose Ω is bounded and by replacing f(x) with f(x) + fΩ, then

|{x ∈ Ω : |f(x)| > α}| ≤ C1e
−C2α/‖f‖BMO(Ω) .

Let us for a moment assume that f belongs to L∞(Ω). Taking α = 0 in (13), we
have for each f ∈ Ḟ 0

p,∞(Ω),

Sf(x, t) = S0f(x, t) = t
∂Kt

∂t
∗ f(x, t).

Let τ = loga(t), for some a > 1. For each x ∈ Ω, and β > 0, define

Bβ(x) = {ti ∈ Tf(x) : |Sf(x, ti)| ≥ β} , (27)

and
Bβ,N = {x ∈ Ω : #Bβ(x) ≥ N} , (28)

where #B denotes the discrete measure of the set B.
The following theorem says that the measure of Bβ,N is exponentially decayed with

respect to N and the oscillatory level β. In other words, The measure of the set of x’s
that are embedded in many prominent scales is exponentially small.
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Theorem 2. For each f ∈ L∞(Ω), let Bβ,N be defined as (28) for some β > 0, and N
a positive integer. Then Bβ,N satisfies the two bounds,

1. |Bβ,N | ≤ C1e
−C2Nβ3/‖f‖3

L∞(Ω), and

2. |Bβ,N | ≤ C1e
−C2(Nβ3/‖f‖3

L∞(Ω)
)1/2

,

for some positive constants Ci’s. We also obtain the same result by replacing |Sf(x, t)|
with |S∗f(x, t)| in (27). The same result also holds if Ω = Rn.

Proof. Let the square function of f be defined as

[Sf(x)]2 =
∫ 1

0
|Sf(x, t)|2 dt

t
= ln(a)

∫ 0

−∞
|Sf(x, τ)|2 dτ.

We have
‖Sf‖BMO(Ω) ≤ C ′‖f‖BMO(Ω) ≤ C ′‖f‖L∞(Ω). (29)

Since
∣∣∣ ∂2

∂τ2 Sf
∣∣∣
L∞(Ω×R+)

≤ C‖f‖L∞(Ω), there exists a small ε > 0, which depends on

β and
∣∣∣ ∂2

∂τ2 Sf
∣∣∣
L∞(Ω×R+)

, such that the intervals Ii = [τi − ε, τi + ε] are disjoint with

|Ii| = 2ε, and ε = Cβ‖f‖L∞(Ω), for some new constant C. Moreover, In each Ii,
|Sf(x, τ)| is concave. This implies that for τ ∈ Ii,

|Sf(x, τ)| ≥ β − C

2
‖f‖L∞(Ω)|τ − τi| ≥

β

2
.

⇒
∫

Ii

|Sf(x, τ)|2 dτ ≥ (β/2)2|Ii| ≥ Cβ3/‖f‖L∞(Ω)

⇒ [Sf(x)]2 = ln(a)
∫ 0

−∞
|Sf(x, τ)|2 dτ ≥ ln(a)

∑
ti∈Bβ(x)

∫
Ii

|Sf(x, τ)|2 dτ

≥ Cβ3

‖f‖L∞(Ω)
·#{Bβ(x)}.

But

Bβ,N ⊂
{

x ∈ Ω : [Sf(x)]2 ≥ CNβ3

‖f‖L∞(Ω)

}
. (30)

By John-Nirenberg inequality, we have∣∣∣∣{x ∈ Ω : [Sf(x)]2 ≥ CNβ3

‖f‖L∞(Ω)

}∣∣∣∣ ≤ C1e
−C2Nβ3/

“
‖f‖L∞(Ω)‖Sf‖2

BMO(Ω)

”
,

for some positive constants Ci’s. Therefore, together with (29) and (30),

|Bβ,N | ≤ C1e
−C2Nβ3/‖f‖3

L∞(Ω) ,

for some new positive constants Ci’s.
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It can also be shown that, for some positive constants Ci’s,

|Bβ,N | ≤ C1e
−C2

“
Nβ3/‖f‖3

L∞(Ω)

”1/2

,

since

Bβ,N ⊂

{
x ∈ Ω : Sf(x) ≥

(
CNβ3

‖f‖L∞(Ω)

)1/2
}

.

2.1 Experimental Results for Local Scales and Nontan-
gential Local Scales

For numerical study, we assume that f is periodic and Ω = [0, 1]n. Therefore, the set
of scales of f is contained in [0, 1]. From remark 3, we discretize the scale interval [0, 1]
in a discrete logarithmic scale τ = loga t, for some a > 1, and τ ∈ Z with τ ≤ 0. The
closer the a to 1, the closer we are to capturing the true scales of f . In this paper, all
images are of size 256× 256 and the local scales are computed using the discrete set

S = {t0 = aτ0 , ..., ti = aτ0+i, ..., tN = aτ0+N}, (31)

where t0 and tN are the smallest and largest scales that we want to detect respectively,
a = 1/0.95, and τ0 = −290. Here, τ0 is chosen so that Kt0 approximates the Dirac
delta function.

The following figures show the local scales of images which we assume to be in
Ḟα

p,∞(Ω) with α = 0. Figures 4-5 show the graphs of |Sf(x, τ)| and S∗f(x, τ) with
respect to τ = loga(t) for a fixed x centered at the squares which are the significant
supports of Kti(x), where ti(x) is the ith local scale at x. Recall that a local scale of
f at x occurs at t if |Sf(x, t)| is a local maximum. In these two cases, both the local
scales and nontangential local scales are equal.

Figures 6-12 show loga(t1(x)) where t1(x) is the first (nontangential) local scale of
f at x such that on the first row the oscillatory level |Sf(x, t1(x))| > ε, and on the
second row S∗f(x, t1(x)) > ε, for various ε’s.

3 Multiscale Image Decompositions

Given an image f , we would like to decompose f into u+v, where u is piecewise smooth
and v is oscillatory. In [14] the following variational problem was considered,

K(u) = |u|BV + λ‖f − u‖Ḃα
p,∞

= |u|BV + λ sup
0<t<1

{
t−α/2‖Kt ∗ (f − u)‖Lp

} (32)

for α < 0 and 1 ≤ p ≤ ∞. Here, u is modeled as a function in BV and v is modeled as
a distribution in Ḃα

p,∞. The minimization problem (32) above can be rewritten as

inf
u

{
K(u) = |u|BV + λ̄‖Kt̄ ∗ (f − u)‖Lp

}
, (33)
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f1 f2 f3 f4

f5 f6 f7

Figure 3: Test images

Q1,Q2 |Sf | S∗f

Kt1 Kt2

Figure 4: |Sf | and S∗f are the graphs of |Sf(x, t)| and S∗f(x, t), respectively, with respect
to τ = loga(t), where f = f1 from figure 3, α = 0, x is the center of the squares Q1 and Q2.
Ktf,1(x) and Ktf,2(x) are the heat kernels at time scales tf,1(x) and tf,2(x) with the supports
discretely approximated by Q1 and Q2, respectively. Here we see that t∗f,i(x) ≈ tf,i(x).
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Q1,Q2,Q3 |Sf | S∗f

Kt1 Kt2 Kt3 Kt4

Figure 5: |Sf | and S∗f are the graphs of |Sf(x, t)| and S∗f(x, t), respectively, with respect
to τ = loga(t), where f = f2 from figure 3, α = 0, x is the center of the squares Qi, i = 1, 2, 4.
Ktf,i(x) is the heat kernel at time scales tf,i(x) with the support discretely approximated by
Qi, for i = 1, 2, 3. Here we also see that t∗f,i(x) ≈ tf,i(x).
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f

ε=0 ε=1 ε=2 ε=3

ε=0 ε=1 ε=2 ε=3

Figure 6: The first row shows loga(t1(x)), where t1(x) is the smallest local scale at x such
that the oscillatory level |Sf(x, t1(x))| > ε. The second row shows loga(t

∗
1(x)), where t∗1(x)

is the smallest nontangential local scale at x such that the oscillatory level S∗f(x, t∗1(x)) > ε
for various ε.
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f

ε=0 ε=1 ε=3 ε=5

ε=0 ε=1 ε=3 ε=5

Figure 7: The first row shows loga(t1(x)), where t1(x) is the smallest local scale at x such
that the oscillatory level |Sf(x, t1(x))| > ε. The second row shows loga(t

∗
1(x)), where t∗1(x)

is the smallest nontangential local scale at x such that the oscillatory level S∗f(x, t∗1(x)) > ε
for various ε.
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f

ε=0 ε=1 ε=3 ε=5

ε=0 ε=1 ε=3 ε=5

Figure 8: The first row shows loga(t1(x)), where t1(x) is the smallest local scale at x such
that the oscillatory level |Sf(x, t1(x))| > ε. The second row shows loga(t

∗
1(x)), where t∗1(x)

is the smallest nontangential local scale at x such that the oscillatory level S∗f(x, t∗1(x)) > ε
for various ε.
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f

ε=0 ε=1 ε=3 ε=5

ε=0 ε=1 ε=3 ε=5

Figure 9: The first row shows loga(t1(x)), where t1(x) is the smallest local scale at x such
that the oscillatory level |Sf(x, t1(x))| > ε. The second row shows loga(t

∗
1(x)), where t∗1(x)

is the smallest nontangential local scale at x such that the oscillatory level S∗f(x, t∗1(x)) > ε
for various ε.
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f

ε=0 ε=1 ε=5 ε=10

ε=0 ε=1 ε=5 ε=10

Figure 10: The first row shows loga(t1(x)), where t1(x) is the smallest local scale at x such
that the oscillatory level |Sf(x, t1(x))| > ε. The second row shows loga(t

∗
1(x)), where t∗1(x)

is the smallest nontangential local scale at x such that the oscillatory level S∗f(x, t∗1(x)) > ε
for various ε.
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f

ε=0 ε=1 ε=3 ε=5

ε=0 ε=1 ε=3 ε=5

Figure 11: The first row shows loga(t1(x)), where t1(x) is the smallest local scale at x such
that the oscillatory level |Sf(x, t1(x))| > ε. The second row shows loga(t

∗
1(x)), where t∗1(x)

is the smallest nontangential local scale at x such that the oscillatory level S∗f(x, t∗1(x)) > ε
for various ε.

23



f

ε=0 ε=1 ε=3 ε=5

ε=0 ε=1 ε=3 ε=5

Figure 12: The first row shows loga(t1(x)), where t1(x) is the smallest local scale at x such
that the oscillatory level |Sf(x, t1(x))| > ε. The second row shows loga(t

∗
1(x)), where t∗1(x)

is the smallest nontangential local scale at x such that the oscillatory level S∗f(x, t∗1(x)) > ε
for various ε.
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for some t̄ = t̄(α, f − u) ≥ 0 and λ̄ = λt̄−α/2. The term ‖Kt̄ ∗ v‖Lp from the equation
(33) imposes a uniform smoothing of scale t̄ on the oscillatory component v. However,
oscillatory components may have different scales of oscillations locally. Therefore, a
natural extension of (33) is to consider the following minimization problem,

inf
u

{
K(u) = |u|BV + λ‖Kt̄(·) ∗ (f − u)(·)‖Lp

}
, (34)

where now t̄(x) is a preferred scale at x, and λ > 0 is a constant.
Recall that each point x in the image f may exhibit multiple scales, and each choice

of t̄(x) arises to a different decomposition. One obvious choice for t̄(x) is the first local
scale tf,1(x) or nontangential local scale t∗f,1(x), but other choices can be used depending
on applications. We will consider two cases for the choice of t̄(x):

1. t̄(x) depends on f .

2. t̄(x) depends on the unknown v = f − u.

Remark 4. For each t̄(x) ≥ 0, denote Kf = Kt̄ ∗ f . Then K is linear and bounded
on Lp(Rn), 1 < p ≤ ∞. We note that |Kf(x)| ≤ Mf(x), where Mf is the Hardy-
Littlewood maximal function defined by

Mf(x) = sup
r>0

1
|B(x, r)|

∫
B(x,r)

|f(y)| dy,

and Theorem 1.3.1 of A. Stein [35] shows that Mf is bounded on Lp(Rn), 1 < p ≤ ∞.
In other words, ‖Mf‖Lp(Rn) ≤ Ap‖f‖Lp(Rn), for 1 < p ≤ ∞. Therefore, ‖Kf‖Lp(Rn) ≤
Cp‖f‖Lp(Rn), for 1 < p ≤ ∞.

Next we would like to show existence for (34) with p = 1, t̄(x) is chosen a prior and
Ω ⊂ R2 is bounded.

Theorem 3. Let f ∈ L∞(Ω), Ω = [0, 1]2 ⊂ R2. Note that L∞(Ω) ⊂ Lp(Ω), for all
p ≥ 1. Fixing λ > 0 and t̄(x) : Ω → [0, 1], and denote Kf(x) = Kt̄(x) ∗ f(x). Then
there exists a minimizer for the variational problem,

inf
u∈BV (Ω)

{
K(u) = |u|BV (Ω) + λ‖K(f − u)‖L1(Ω)

}
. (35)

Proof. We note that this is a standard proof of existence in variational calculus. Let
{un} be a minimizing sequence for (35). We have,

|un|BV (Ω) ≤ C (36)
‖K(f − un)‖L1(Ω) ≤ C. (37)

First, we make a claim that conditions (36) and (37) imply un,Ω = 1
|Ω|
∫
Ω un dx is

uniformly bounded. Now, assume this is true, by the Poincaré inequality,

‖un − un,Ω‖Lp(Ω) ≤ Cp|un|BV (Ω), for all 1 ≤ p ≤ 2, (38)

where Cp only depends on Ω. By (36) and the uniform boundedness of un,Ω, we obtain
that un is uniformly bounded in L1(Ω). Therefore un is uniformly bounded in BV (Ω).
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This implies that there exists a u ∈ BV (Ω) such that, up to a subsequence, un converges
weak* to u in BV (Ω) and strongly in L1(Ω). We have

|u|BV (Ω) ≤ lim inf
n→∞

|un|BV (Ω), and (39)

‖u‖L1(Ω) ≤ lim inf
n→∞

‖un‖L1(Ω). (40)

We also have un → u in Lp(Ω) since BV (Ω) is compactly embedded in Lp(Ω) for
1 ≤ p < 2. The boundedness of K on Lp(Ω), p > 1, implies that upto a subsequence,
for a p such that 1 < p < 2,

‖Kun −Ku‖L1(Ω) ≤ |Ω|1−1/p‖Kun −Ku‖Lp(Ω) ≤ Cp‖un − u‖Lp(Ω) → 0, as n →∞.

Therefore, ‖Ku‖L1(Ω) ≤ lim infn→∞ ‖Kun‖L1(Ω). Similarly,

‖K(f − u)‖L1(Ω) ≤ lim inf
n→∞

‖K(f − un)‖L1(Ω). (41)

By (39) and (41), K(u) ≤ K(un). Therefore, u ∈ BV (Ω) is a minimizer, and uΩ = fΩ.
To prove the claim: Let wn = un−un,Ω, then |wn|BV (Ω) = |un|BV (Ω), and wn,Ω = 0,

for all n. By Poincare’s inequality,

‖wn‖Lp(Ω) = ‖wn − wn,Ω‖Lp(Ω) ≤ Cp|wn|BV (Ω) ≤ C, for 1 ≤ p ≤ 2.

We have,

C ≥ ‖K(f − un)‖L1(Ω) = ‖K(f − wn)−Kun,Ω‖L1(Ω)

≥
∣∣‖K(f − wn)‖L1(Ω) − ‖Kun,Ω‖L1(Ω)

∣∣ = ∣∣‖K(f − wn)‖L1(Ω) − |un,Ω|
∣∣ (42)

But ‖K(f − wn)‖L1(Ω) is uniformly bounded since, for any 1 < p ≤ 2,

‖K(f − wn)‖L1(Ω) ≤ |Ω|1−1/p‖K(f − wn)‖Lp(Ω) ≤ Ap‖f − wn‖Lp(Ω) ≤ C.

Therefore, |un,Ω| is also uniformly bounded.

In general, when 1 < p ≤ n
n−1 , f ∈ Lp and K defined as above, we still obtain

existence of a minimizer for the following variational problem,

inf
u∈BV

{K(u) = |u|BV + λ‖K(f − u)‖Lp} . (43)

Next we would like to consider the variational model where the local scales depend
on the oscillatory component v. For each f ∈ L∞(Ω), 0 < s ≤ 1, and ε > 0, consider
the variational problem,

inf
u∈BV (Ω)

{
K = |u|BV (Ω) + λ

∥∥Kt̄(·) ∗ v(·)
∥∥

L1(Ω)
, v = f − u

}
, (44)

where τ = loga(t), α = 0, and

t̄(x) =
{

arg max {|Sv(x, t)| , 0 ≤ t ≤ s, t ∈ Tv(x), |Sv(x, τ)| > ε} , if exists
0, otherwise.

(45)
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or we may consider

t̄(x) =
{

arg max {S∗v(x, t), 0 ≤ t ≤ s, t ∈ T ∗
v (x), S∗v(x, τ) > ε} , if exists

0, otherwise.
(46)

For short notation, we write conditions (45) and (46) as

t̄(x) = arg maxS(v, s, ε), and t̄(x) = arg maxS∗(v, s, ε), respectively. (47)

3.1 Numerical Computations and Results

In this section, we show numerical results for texture decompositions. In [16] and [19],
the authors statistically showed that texture-like natural images when being convolved
with compact averaging kernels of zero mean have Laplacian probability distributions.
For image decomposition, the texture part v on a suitable compact set has zero mean.
Therefore, we consider the model (35) with p = 1. Recall the functional in (35),

K(u) = |u|BV (Ω) + λ‖K(f − u)‖L1(Ω) =
∫

Ω
|∇u| dx +

∫
Ω
|K(f − u)| dx,

where Kf = Kt̄(x) ∗ f and t̄(x) is fixed. Minimizing K(u) with respect to u, we obtain
the following differential equation

∂K
∂u

= −div

(
∇u

|∇u|

)
− λK∗

[
K(f − u)
|K(f − u)|

]
, (48)

where K∗ is the adjoint operator of K. Using gradient descend method, we then solve
the following PDE,

∂u

∂τ
= −∂K

∂u
= div

(
∇u

|∇u|

)
+ λK∗

[
K(f − u)
|K(f − u)|

]
. (49)

Note that Kf(x) = Kt̄(x) ∗ f(x) is the convolution with the scale t locally depends on
x. However, K∗f(x) is not the pointwise convolution. We have

(K∗f, u) = (f,Ku) =
∫

f(y)Ku(y) dy =
∫

f(y)
∫

Kt̄(y)(y − z)u(z) dz dy

=
∫ (∫

f(y)Kt̄(y)(y − z) dy

)
u(z) dz.

Therefore, K∗ is defined as K∗f(z) =
∫

f(y)Kt̄(y)(y − z) dy. The problem (44) is
computed in a similar fashion, but K is updated at each iteration. Denote Knf(x) =
Kt̄n(x) ∗ f(x). The algorithm is as follows:

1. Fix a λ > 0 and α < 0. Let u0 = f and the local scales t̄0 for K0 is ini-
tialized to be the first local scales of f . I.e. t̄0(x) = arg maxS(f, s, ε) (or
t̄0(x) = arg maxS∗(v, s, ε)), (see (47)).
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2. Assume that we have obtained un and Kn, un+1 is computed as follow

un+1 = un + ∆τ

(
div

(
∇un+1

|∇un|

)
+ λK∗

n

[
Kn(f − un)
|Kn(f − un)|

])
,

where ∆τ is an artificial time stepping for the gradient descend method. Kn+1

is then computed by (45), over the discrete set of scales S as defined in (31),
using vn+1 = f − un+1. I.e. t̄n+1(x) = arg max S(vn+1, s, ε) (or t̄n+1(x) =
arg maxS∗(vn+1, s, ε)), (see 47). Here we use ∆τ = 1, and the discrete spatial
grid size ∆x = 1.

Remark 5. We do not claim that a minimizer for the variational problem (44)-(46)
exists. Our scheme to solve this problem is an iterative scheme (as described above).
Numerically, with the above initial values for u0 and t̄0, we obtain that the energy
K(un) = |un|BV + λ‖Kn ∗ (f − un)‖L1 decreases (as shown in figure 15) and converges
to a local minimum.

Figures 13-14 show the decompositions using the variational model (34) with λ = 2 and
α = 0 for different choices of t̄(x). For computing the local scales, we use the set S as
defined in (31).

Figures 15-19 show the decompositions using the variational model (44) with λ = 2
and α = 0. The choices for t̄(x), which is updated at each iteration, are discussed in
each figure.

4 Discussions

4.1 Distinguishing Different Orientations of Oscillations

Definition 3 and 4 define the local scales in terms of the heat kernel Kt which is isotropic.
We remark that the knowledge of the local scales and their oscillatory levels at each
point can be used for segmenting different scales of texture as can be seen from figures
6-12. However, isotropic kernels do not distinguish different orientations of texture. To
further capture the orientations, one can consider nonisotropic kernels or the following
idea suggested by R. Coifman: Suppose α < 2 and f ∈ Ḟα

p,∞. Recall that Sf(x, t) is
defined as

Sf(x, t) = t1−α/2 ∂Kt

∂t
∗ f(x) = t1−α/2 [∆Kt ∗ f(x)] ,

where x = (x1, ..., xn) and ∆ = ∂2

∂x2
1

+ ... + ∂2

∂x2
n
. Suppose ti(x) = tf,i(x) is an ith local

scale of f at x. The orientation of the oscillation of f at the local scale ti(x) can be
obtained from the principal components of the n-vector

(ti(x))1−α/2

(
∂2

∂x2
1

Kti(x) ∗ f(x), ...,
∂2

∂x2
n

Kti(x) ∗ f(x)
)

.
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f

u1 v1 loga(t̄(x))

u2 v2 loga(t̄(x))

Figure 13: The decompositions, using (34), of f into: 1) u1 + v1 with the local scales t̄(x) =
t1(x) if t1(x) < a−220 and t̄(x) = 0 otherwise, 2) u2 + v2 with the local scales t̄(x) = t1(x)
if t1(x) < a−200 and t̄(x) = 0 otherwise. In both cases t1(x) is the first local scale of f at x
such that the oscillatory level |Sf(x, t1)| > 1.
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f K(u1) K(u2)

u1 v1 loga(t̄(x))

u2 v2 loga(t̄(x))

Figure 14: The decompositions, using (34), of f into: 1) u1 + v1 with the local scales t̄(x) =
t1(x) if t1(x) < a−220 and t̄(x) = 0 otherwise, 2) u2 + v2 with the local scales t̄(x) = t1(x) if
t1(x) < a−200 and t̄(x) = 0 otherwise. In both cases t1(x) is the first local scale of f at x such
that the oscillatory level S∗f(x, t1) > 1. K(ui) shows the evolution of the energy corresponds
to the decomposition f = ui + vi, i = 1, 2.
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f K(u1) K(u2)

u1 v1 loga(t̄(x))

u2 v2 loga(t̄(x))

Figure 15: The decomposition, using (44), of f into: 1) u1 +v1 with t̄(x) defined as (46), with
s = a−220 and ε = 1; 2) u2 + v2 with t̄(x) defined as (46), with s = a−200 and ε = 1. K(ui)
shows the evolution of the energy corresponds to the decomposition f = ui + vi, i = 1, 2.
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f

u1 v1 loga(t̄(x))

Figure 16: The decomposition, using (34), of f into u1 + v1 with the local scales t̄(x) = t1(x)
if t1(x) < a−220 and t̄(x) = 0 otherwise. Here, t1(x) is the first local scale of f at x such that
the oscillatory level S∗f(x, t1) > 1.
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f

u1 v1 loga(t̄(x))

u2 v2 loga(t̄(x))

Figure 17: The decomposition, using (44), of f into: 1) u1 + v1 with t̄(x) defined as (46),
s = a−220 and ε = 1; 2) u2 + v2 with t̄(x) defined as (46), s = a−220 and ε = 3.
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f

u1 v1 loga(t̄(x))

u2 v2 loga(t̄(x))

Figure 18: The decomposition, using (44), of f into: 1) u1 + v1 with t̄(x) defined as (46),
s = a−200 and ε = 1; 2) u2 + v2 with t̄(x) defined as (46), s = a−200 and ε = 3.

34



f

u1 v1 loga(t̄(x))

u2 v2 loga(t̄(x))

Figure 19: The decomposition, using (44), of f into: 1) u1 + v1 with t̄(x) defined as (46),
s = a−230 and ε = 3; 2) u2 + v2 with t̄(x) defined as (46), s = a−200 and ε = 3.
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4.2 Other Interpretations of Local Scales

In this paper, we study the local scales which are governed by the linear isotropic
equation,

∂u

∂t
= ∆u, u(x, 0) = f(x),

which has the solution u(x, t) = Kt ∗ f(x) for t > 0, where Kt is the heat kernel. For
α < 2, let s = 1− α/2. Rewrite Sf(x, t) as Ssf(x, t), we have

Ssf(x, t) = ts
∂u

∂t
(x, t) = ts∆u(x, t).

One can consider different evolution equations to study local scales. One example is
using the p-Laplacian. More specifically, for p > 0, consider the evolution equation

∂u

∂t
= ∆pu = div

(
|∇u|p−2∇u

)
, u(x, 0) = f(x), (50)

Now, for p > 0, define Ss,pf(x, t) and its nontangential version S∗s,pf(x, t) as

Ss,pf(x, t) = ts
∂u

∂t
(x, t) = ts∆pu(x, t),

S∗s,pf(x, t) = sup
|x−y|<t

∣∣∣∣Ss,pf(y, t)e
−|x−y|2

2σ

∣∣∣∣ .
The local scales coresponding to the evolution equation (50) can be defined as the local
maximums of |Ss,pf(x, t)| or S∗s,pf(x, t) for different values of s and p.

In [7], T. Brox and J. Weickert considered a different scale interpretation for the
case p = 1, where the local scale m(x) is defined as, for some choice of T ,

1
m(x)

=
1
2

∫ T
0 |∂tu(x, t)| dt∫ T

0 (1− δ∂tu(x,t),0) dt
, (51)

where ∂tu(x, t) = ∆1 = div
(
∇u(x,t)
|∇u(x,t)|

)
with u(x, 0) = f(x), and δa,b = 1 if a = b and 0

otherwise. From the above equation, we see that the average of ∂tu(x, t) upto time T
is used to define the local scale at x. In other words,

1
m(x)

=
1
2

∫ T
0 |S0,1f(x, t)| dt∫ T

0 (1− δ∂tu(x,t),0) dt
.

We refer the readers to [7] and [38] and references there in for further analysis of
scales in images.
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