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Abstract— In this work we generalize the total variation
restoration model, introduced by Rudin, Osher and Fatemi in
1992, to matrix valued data. In particular to Diffusion Tensor
Images (DTI). Our model is a natural extension of the color total
variation model proposed by Blomgren and Chan in 1998. We
treat the diffusion matrix D implicitly as the product D = LLT ,
and work with the elements of L as variables, instead of working
directly on the elements of D. This ensures positive definiteness
of the tensor during the regularization flow, which is essential
when regularizing DTI. We perform numerical experiments on
both synthetical data and 3D human brain DTI, and measure
the quantitative behavior of the proposed model.

I. INTRODUCTION

Image processing methods using variational calculus and
partial differential equations (PDEs) have been popular for
a long time in the image processing research community.
Among popular PDE methods are the anisotropic diffusion
method proposed by Perona and Malik [1], the total variation
method introduced by Rudin, Osher and Fatemi [2] and various
methods related to these [3]–[7]. Many of these methods were
originally introduced for scalar valued (gray scale) images,
and later generalized to vector valued (color) images.

During the last decade or so, a new Magnetic Resonance
modality called Diffusion Tensor Imaging (DTI) has been
extensively studied [8]–[13]. Using DTI, it is possible to study
anatomical structures like the nerve fibers in the human brain
non-invasively. The DTI images are matrix valued. In each
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Fig. 1. The diffusion matrix D can be represented by a diffusion ellipsoid,
where the semi-axes are spanned by the eigenvectors {Vi}3i=1 of D, and
the length of each semi-axis is given by the eigenvalues {λi}3i=1. In this
illustration the diffusion is anisotropic. The principal diffusion direction is
along eigenvector V1.

voxel of the imaging domain we construct a diffusion tensor
(i.e. diffusion matrix) D based on a series of K direction-
specific MR measurements {Sk}K

k=1. The matrix D ∈ R3×3

is a symmetric, positive definite matrix

D = V ΛV −1, (1)

where V is an orthogonal matrix, and Λ is a diagonal matrix
with positive elements. We may look at the diffusion matrix

as a hyper-ellipse where the eigenvectors {Vi}3
i=1 span the el-

lipsoid and the corresponding eigenvalues {λi}3
i=1 determines

the length of each semi-axis. It is customary to arrange the
eigenvalues in decreasing order. By the diffusion tensor model
we assume that the set of images {Sk}K

k=1 are related to the
non-weighted image S0 by the Stejskal-Tanner equation [18],
[19]

Sk = S0e
−bgT

k Dgk k = 1, 2, · · · ,K. (2)

Here gk ∈ R3 denotes the direction associated with Sk, and
b > 0 is a scalar which among other factors depends on the
acquisition time and the strength of the magnetic field [20].
Since D ∈ R3×3 is symmetric, it has six degrees of freedom.
Thus at least six measurements {Sk}6

k=1 are required to
estimate the tensor, as well as the non-weighted measurement
S0. The tensor D can be estimated from equation (2). In the
case of more than six measurements Sk, we can estimate D by
for example a least squares minimization. From the eigenvalue
decomposition of the diffusion tensor, we can reveal properties
like the dominant diffusion direction and the anisotropy of
diffusing water molecules [21]. This information can be used
to construct maps of the anatomy of the brain.

From the developments in DTI a need for robust regular-
ization methods for matrix valued images has emerged. As
far as the authors are aware of, there exists no state-of-the-art
method for regularization of tensor valued images, although
many methods have been proposed [14]–[17].

All measurements {Sk}K
k=1 contain noise, which degrades

the accuracy of the estimated tensor. Compared with con-
ventional MR, direction sensitive acquisitions have a lower
signal to noise ratio (SNR). Thus the gradient weighted images
{Sk}K

k=1 contain more noise than S0. There are several ways
to increase the accuracy of the estimated tensor. The most
intuitive way is to make an average of a series of repeated
measurements. Alternatively, we can increase the number of
gradient directions. An obvious disadvantage of both these
approaches is the increased scanner time. Perhaps a better way
to improve the quality of the tensor is by postprocessing the
data. In this paper we follow this approach, by introducing a
regularization method for tensor valued data.

Since D models diffusion, regularization methods in DTI
must preserve the positive definiteness of D. A positive defi-
nite matrix has only positive eigenvalues, which is necessary
from the physical modeling perspective. In a minimization
method for regularization of the tensor data, one possible
way to ensure positive definiteness would be to impose a
constraint on the minimization problem. Then the constrained
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problem would have a solution which is on the manifold
of positive definite matrices. Regularization of tensor valued
data constrained to manifolds has been studied during the
last couple of years, see [22]–[24]. We however follow a
different strategy. Using essentially the same idea as Wang
and coworkers did in a slightly different setting, we treat D
implicitly by writing D as the product D = LLT , where L
is a lower triangular matrix [14]. Every symmetric positive
definite (SPD) matrix has a factorization on this form. We
will in this work develop a regularization method for diffusion
tensor images, by generalizing methods previously developed
for scalar and vector valued images [2], [25].

Before we go into details of the proposed method, we briefly
introduce the Total Variation (TV) methods for scalar and
vector valued images. During the last 15 years or so, TV
models have undergone extensive studies, initiated by the work
of Rudin Osher and Fatemi (ROF) [2].

Define the Total Variation (TV) semi-norm for scalar valued
data as

TV[u] =
∫
Ω

|∇u|dx. (3)

Throughout this paper, ∇ denotes the spatial gradient, while
∇· denotes the divergence operator. In the ROF model, the
TV semi-norm with an added L2 fidelity norm is minimized

min
u

{
G(u, f, λ) = TV[u] +

λ

2
||u− f ||22

}
. (4)

Note that we can write the functional G more abstractly as

G(u, f, λ) = R(u) +
λ

2
F (u, f), (5)

where R(u) is a regularization functional and F (u, f) is a
fidelity functional. The regularization term is a geometric
functional measuring smoothness of the estimated solution.
The fidelity term is a measure of fitness of the estimated
solution compared to the input data. It is customary to measure
the fidelity in the sense of least squares. The equation (4) has
the corresponding Euler-Lagrange equation

∂uG = −∇ ·
(
∇u

|∇u|

)
+ λ(u− f). (6)

We can find a minimum of (4) by searching for a steady state
of

∂u

∂t
= −∂uG. (7)

which is the way the ROF model was first formulated [2].
Alternatively we can directly attack the zero of the Euler-
Lagrange equation

− ∂uG = 0, (8)

for example by a fixed-point iteration [26]. This is in general
less time consuming than solving the equation using the
method of steepest descent, but more tedious to carry out
numerically. When we generalize the method to matrix valued
images, we solve the minimization problem by the method
of steepest descent. Various methods have been proposed to
generalize the ROF model to vector valued image regulariza-
tion. Among the successful methods we find the vector TV

model developed by Blomgren and Chan [25] and the model
by Shapiro [27]. Blomgren and Chan [25] generalized the ROF
model to vector (color) image regularization using a set of
coupled equations{

∂ui

∂t
= αi∇ ·

(
∇ui

|∇ui|

)
− λ(ui − fi), i = 1, 2, 3,

}
(9)

with
αi =

TV[ui]
TV[u]

, i = 1, 2, 3 (10)

and

TV[u] =

√√√√ 3∑
i=1

TV[ui]2. (11)

The weight αi in Eq. (9) acts as a coupling between the
geometric part of the three image channels. In this work we
extend in a natural way the vector TV model of Blomgren and
Chan to a matrix TV model. However, the method we propose
is not restricted to our choice of regularization functional (TV).
For a detailed treatment of TV regularization methods we refer
the reader to the recent book by Chan and Shen [5].

In section II we define the minimization problem that we
propose to solve, and arrive at the Euler-Lagrange Equations
corresponding to this minimization problem. We perform
numerical experiments in section III, before we finish the paper
in section IV with a conclusion. Details on the Euler-Lagrange
equation and the numerical implementation are given in the
Appendix at the end of the paper.

II. MINIMIZATION PROBLEM

In this section we introduce the functional that we minimize
in order to regularize tensor valued data. Let L be a lower
triangular matrix. We define D by

D = LLT . (12)

This has immediate implications on D; symmetry, positive
definiteness and orthogonality of eigenvectors. These proper-
ties are required by the diffusion tensor model. Thus (12) is
a natural choice. We define `ij as the element in the i’th row
and j’th column of L. The elements dij are defined in the
same manner.

Let us look at the algebraic equation expressing D as a
function of `ij . We derive the expressions for D ∈ R3×3 ⊂
SPD. We explicitly write out the matrix multiplication (12)

D=

 `211 `11`21 `11`31
`11`21 `221 + `222 `21`31 + `22`32
`11`31 `21`31 + `22`32 `231 + `232 + `233

 . (13)

In our proposed model we solve a minimization problem in
terms of `ij . For each unique `kl we minimize

min
`kl


√∑

ij

TV[dij(`kl)]2+
λ

2

∑
ij

‖dij − d̂ij‖2
2

 , (14)

where {kl} ∈ {11, 21, 22, 31, 32, 33} and d̂ij denotes the
elements of the tensor estimated from the noisy data. As in
the scalar model, the functional (14) has the abstract form (5).
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The scalar ROF (TV − L2) functional is convex. But when
we introduce the factorization (12) into the model, we can not
expect the functional (14) to be convex or even quasi-convex.
However, from numerical experiments where we used different
(random) initial conditions ended up with almost exactly the
same solution. This means that even though we are not able to
prove that the functional is convex, we have indications that
it at least is quasi-convex.

We note that minimizing the functional (14) is related
to the functional used by Wang and coauthors [14]. Apart
from the fact that they simultaneously estimate and regularize
the tensor, there are fundamental differences between our
proposed regularization functional and the functional proposed
by Wang and others. Even though we represent the diffusion
matrix on the form of a Cholesky factorization, we regularize
the elements of the full diffusion tensor D, while Wang
and coauthors regularize the elements of the lower triangular
matrix L. Intuitively, regularizing the elements of D is more
direct than regularizing the elements of L. We highlight the
difference between Wang’s method and our proposed method
by a numerical simulation in a simplified setting in section III.
In addition, the method proposed in this paper has a coupling
between all elements of D in the regularization PDE, while
the method proposed by Wang et. al. does not have such a
coupling between the channels.

We also note that the functional (14) is chosen mainly
because of the good properties of the corresponding scalar and
vector valued functionals [2], [25], with edge preservation as
the most prominent property. Depending on the application at
hand, other functionals might be considered as alternatives.
The framework developed in this paper is however applicable
for other regularization functionals as well.

A. Euler-Lagrange Equations

In this section we derive the Euler-Lagrange equations
corresponding to the minimization functional (14). We first
differentiate the fidelity functional

∂F

∂`ij
=

∂

∂`ij

∑
ij

‖dij − d̂ij‖2
2

= 2
∑
ij

(
dij − d̂ij

) ∂dij

∂`ij
. (15)

We differentiate D with respect to `ij , e.g.

∂D

∂`11
=

2`11 `21 `31
`21 0 0
`31 0 0

 . (16)

The other derivatives follow the same pattern. Writing out (15),
we find the derivative of the fidelity functional

∂F

∂`kl
= 2

[
(d11 − d̂11)

∂d11

∂`kl
+ 2(d21 − d̂21)

∂d21

∂`kl

+(d22 − d̂22)
∂d22

∂`kl
+ 2(d31 − d̂31)

∂d31

∂`kl

+2(d32 − d̂32)
∂d32

∂`kl
+ (d33 − d̂33)

∂d33

∂`kl

]
, (17)

where {dij}3
i=1,j=1 denotes the elements of the matrix D. We

differentiate the regularization functional in (14). Define the
total variation norm of a matrix D ∈ R3 ×R3 as

TV[D] =
(

TV[d11(`ij)]2 + 2TV[d21(`ij)]2

+TV[d22(`ij)]2 + 2TV[d31(`ij)]2

+2TV[d32(`ij)]2 + TV[d33(`ij)]2
) 1

2
.

(18)

This is a straightforward generalization of the total variation
norm of a vector [25].

Using the chain rule, we find the derivatives of the regular-
ization functional

∂R

∂`kl
= −

∑
ij

αij∇ ·
(
∇dij

|∇dij |

)
∂dij

∂`kl
, (19)

with
αij =

TV[dij ]
TV[D]

. (20)

Note here that this derivative is essentially similar to the
derivative in the color TV model of Blomgren and Chan
[25], but with the important difference that we represent the
diffusion matrix by its Cholesky factors.

In the next section, we perform numerical simulations using
the method proposed in this paper. We give more details on
the Euler-Lagrange equations in the Appendix, which also
contains some details on the numerical implementation of the
model.

III. NUMERICAL EXPERIMENTS

In this section we perform numerical experiments on syn-
thetically constructed tensor fields and real tensor fields from a
human brain. The numerical implementation of the method is
briefly discussed in the Appendix. For the synthetical fields,
we have constructed clean tensor fields which are degraded
with noise with a prior known distribution. Thus we are able
to measure how well the method performs on synthetical data.
For the real human brain DTI the ”true” solution is of course
not known in advance. In this case we measure the perfor-
mance of the method in terms of a reference solution where
a large series of acquisitions are averaged. This is explained
in detail in section III-C. For the numerical implementation
of the method and some of the visualizations we have used
Matlab [28].

A. Synthetical Tensor Fields

In the first numerical experiment, displayed in Fig. 2, we test
the performance of the proposed method on a simple tensor
field. This field is mapping a square domain Ω ⊂ R2, with
four distinct regions, to R2×2. We construct the clean tensor
valued data by prescribing the eigenvalues and corresponding
eigenvectors. The values of each element of L is in the range
[0, 1]. Then we add normally distributed noise η(σ) to each
element of the Cholesky factorization of the matrix, that is
L̂ = L + η(σ). Finally, the degraded diffusion tensor is
constructed by D̂ = L̂L̂T . The noise levels in the simulations
in Figs. 2 and 4 are given by σ = 0.35 and σ = 0.25
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(a) (b) (c)
Fig. 2. A synthetically produced purely anisotropic tensor field with four distinct regions is degraded with normally distributed noise. The noisy field is
then processed with our proposed method. (a) The clean vector field D0. (b) The noisy field D̂ = D0 + η. (c) The recovered field D.

respectively. The time step is ∆t = 0.001. Notice that the
discontinuities in the data are preserved in the solution, i.e.
the edge preserving property of scalar and vector valued TV
flow is kept in the proposed matrix valued flow. In the first
example, the diffusion is anisotropic in the whole domain. To
show how the proposed method differentiate between isotropic
and anisotropic regions, we show a similar example, where
one of the four regions is interchanged with an isotropic
region. The isotropic region is constructed by considering the
orthogonal matrix Q from the QR factorization of a random
2 × 2 matrix. The columns of the matrix Q are considered
to be the eigenvectors of the diffusion tensor. We specify two
random numbers in the range [0, 1] as the eigenvalues of the
tensor. Thus the diffusion is random in the isotropic region.
As we can observe from these two numerical examples on
synthetical data edges are preserved in the regularized images.
We observe that even when the noise level is high we are able
to reconstruct an image which is close to the true noise-free
image.

From these numerical experiments on synthetical data we
see that the proposed method gives encouraging results. Simi-
larly as in the scalar and vector valued setting, edges are well
preserved. We further investigate the edge preservation in the
next experiment.

B. Qualitative experiments

To highlight the qualitative differences between regularizing
the elements of the tensor D and the elements of the Cholesky
factors L, we have constructed a simple numerical example in
1D. We have removed the fidelity measure from the model,
thus the method is in this setting merely a diffusion filter.
Thus we have simplified the model in such a way that we
can study the qualitative behavior of the two regularization
filters in the same setting. From this example we clearly see
that when we regularize D the edges are better preserved than
when we regularize L. Note that Wang et.al regularize the
Cholesky factors [14].

We also present a numerical example in 2D where we solve
the PDEs first as an uncoupled system, i.e. by employing the
weighting factors αij = 1, and then as a coupled system where
we use the weighting factors from equation 10. We denote the
clean field by D, the noisy field by D̂, the field regularized

with the uncoupled system by Du and the field regularized
with the coupled system by Dc. In Figure 5 (a)-(d) we show
the element D11,D̂11, Du

11 and Dc
11 respectively. Subindexes

denotes the elements of the matrix field. Figure 5(e)-(h) shows
the element D12,D̂12, Du

12 and Dc
12, while Figure (i)-(l) shows

the element D22,D̂22, Du
22 and Dc

22. From Figure (a)-(e) we
observe that the uncoupled system does not discriminate the
noise from the weak signal. The coupled system on the other
hand better discriminates the noise from the weak signal. A
similar 1D example is shown by Blomgren and Chan using
the color TV model [25].

In the next section we go one step further, and process real
human brain DTMRI.

C. Human Brain DTMRI

We also perform numerical experiments on DTMRI acqui-
sitions of a healthy human brain from a volunteer. The human
subject data is acquired using a 3.0 T scanner (Magnetom
Trio R©, Siemens Medical Solutions, Erlangen, Germany) with
a 8-element head coil array and a gradient subsystem with the
maximum gradient strength of 40 mT/m and maximum slew
rate of 200 mT/m/ms. The DTI data is based on spin-echo
single shot EPI acquired utilizing generalized auto calibrating
partially parallel acquisitions (GRAPPA) technique with accel-
eration factor of 2 and 64 reference lines. The DTI acquisition
consists of one baseline EPI and six diffusion weighted images
(b-factor of 1000 s/mm2) along following gradient direc-
tions: G1 = 1/

√
2[1, 0, 1]T , G2 = 1/

√
2[−1, 0, 1]T , G3 =

1/
√

2[0, 1, 1]T , G4 = 1/
√

2[0, 1,−1]T , G5 = 1/
√

2[1, 1, 0]T ,
G6 = 1/

√
2[1, 1, 0]T . Each acquisition has the following

parameters: TE/TR/averages is 91 ms/10000 ms/2, FOV is 256
mm x 256 mm, slice thickness/gap is 2 mm/0 mm, acquisition
matrix is 192 x 192 pixels and partial Fourier encoding is 75%.

For validation of the proposed regularization method on
real data, we construct a reference solution D∗ by averaging
18 replications. Each replication consists of six direction
weighted and one non-weighted acquisitions. This reference
solution is compared to solutions where averages of two,
four and six replications are post-processed with the proposed
regularization method. As a measure of the distance between
the reference solution and the processed solution, we use the
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Fig. 3. A simple 1D example showing the qualitative behavior of the model for regularizers
R
Ω |∇L| and

R
Ω |∇D|. The noisy signal in (a) is processed

with both flows. Figures (b), (c) and (d) are snapshots during the flow at the three times t = 8, t = 16 and t = 24 .

(a) (b) (c)
Fig. 4. Visualization of the true vector field (a), the noisy field (b), and the recovered field (c). In this example, the tensor field is isotropic in the lower
left corner, anisotropic in the other parts.
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Fig. 5. A noisy 2D tensor field is regularized. In this example, the smallest
parts of the signal is not easily discriminated from the noise.

Averages λ reg m(D, D∗) non reg m(D, D∗)

2 9 136,1 208,3
4 13 113,5 154
6 19 84,8 105,6

TABLE I
THE DISTANCE m(D, D∗) OF THE REGULARIZED AND THE

NON-REGULARIZED TENSOR FIELDS FROM THE NUMERICAL EXAMPLES

SHOWN IN FIGS. 7 AND 8.

2 4 6
80

120

160

200

240

m

Averages

Fig. 6. Comparison of m(D, D∗) for the original tensors (dashed) and the
regularized tensors (solid), versus the number of averaged acquisitions.

following metric

m(D,D∗) =
(
[d11 − d∗11]

2 + 2[d12 − d∗12]
2

+ 2[d13 − d∗13]
2 + [d22 − d∗22]

2

+ 2[d23 − d∗23]
2 + [d33 − d∗33]

2
)1/2

(21)

For each simulation, we report the regularization parameter λ,
and the metric m(·, ·) in Table I, and in Fig. III-C. We display
the result before and after applying the proposed method on
real DTMRI data in Figs. 7 and 8. In the figures we display
a 2D slice of a (RGB direction encoded) fractional anisotropy
(FA) measure defined by

FA =

√
3
2

(λ̄− λ1)2 + (λ̄− λ2)2 + (λ̄− λ3)2

λ2
1 + λ2

2 + λ2
3

, (22)

where λ̄ = (λ1 + λ2 + λ3)/3. The FA measure is direction
encoded as described by Pajevic and Pierpaoli [29]. We use
the DTMRI software DTIStudio to construct the visualizations
[30]. In the figures we show the color coded FA.

The noise level is different for each simulation due to the
varying number of acquisitions. Consequently, the regular-
ization parameter λ is different for each simulation in this
paper. However, for clinical applications, the regularization
parameter is estimated once for each imaging protocol. When
this is done, the same regularization parameter can be used
for subsequent applications of the same imaging protocol.
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(a) FA, 2 averages (c) FA, 4 averages (e) FA, 6 averages

(b) FA, 2 averages denoised (d)FA, 4 averages denoised (f)FA, 6 averages denoised
Fig. 7. Color coded fractional anisotropy (FA) maps constructed from averages of two (a), four (c) and six (e) acquisitions, and the corresponding denoised
maps (b), (d) and (f).

(a) FA, 4 averages (b) FA, 4 averages denoised (c) FA, 18 averages
Fig. 8. The noisy 4 average acquisition (a) is compared with the denoised acquisition (b) and a reference solution at 18 averages.
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D. Human Brain ROI study

Since our algorithm regularizes the tensor field, we focus
on the evaluation of the tensor field, and the derived scalar
FA map. However, we note that from the processed tensor
field we may reconstruct the corresponding diffusion weighted
images {Si}6

i=1 by equation 2. There are obvious visual
improvements in the processed diffusion weighted images
compared to the noisy diffusion weighted images. Edges are
preserved and noise is suppressed. Quantitatively the mean and
standard deviation at certain homogeneous regions of interests
(ROI) show significant improvements. We will now assess the
visual and quantitative improvements in terms of the denoised
tensors.

For qualitative evaluation, we select three regions-of-interest
(ROI) from one slice of the acquired images, with a 15 by 15
voxel size. We plot the 2D projection of the eigenvector cor-
responding to the major eigenvalue in Figure 9. From Figure
9 we can clearly see that our method preserves discontinuities
(edges) in the tensor field, while it smooths the tensor field
in homogenous regions. The denoised tensor field from the 4-
average acquisition is close to the tensor field obtained from
the 18-average acquisition.

For quantitative measures, we use the average deviation
angle (ADA) index of Chen and Hsu to measure if the tensor
field undergo gradual changes or sharp turns [17]. The PDE
filtering is performed after the tensors are computed, so we
use the angle deviation in adjacent voxels as a measure of
its performance instead of normalized magnitude of diffusion
tensor error (NMTE) index [17]. Denote the eigenvector
corresponding to the largest eigenvalue by V ∗. Define the
ADA by

ADA=
∆αi−1+∆αi+1+∆αj−1+∆αj+1+∆αk−1+∆αk+1

6
,

(23)
where e.g. ∆αi−1 = cos−1

(
|(V ∗

ijk, V ∗
i−1jk)|

)
. We note that

we use the absolute value of the innerproduct (·, ·) to ac-
commodate anti-sense directional vectors. A small change in
direction from one voxel to its neighbor gives a small ADA,
while a large change in direction gives a large ADA.

After masking the background, we compute the average
ADA within the brain, and call it the global ADA. From Table
II, we see that the global ADA of the data is reduced from
12.31 to 6.27 by the denoising algorithm, whereas the 18-
average clean data has an ADA of 6.65. With a higher data
fidelity requirement (when λ is larger, e.g. 20), the smoothing
is not very aggressive and the ADA is not as close as when
λ = 13. When λ is less than 13 (data not shown here), the
smoothing is excessive and the ADA values fall well below
the ADA of the 18-average data. From this information we
conclude that for the current acquisition data, λ = 13 is the
best choice. The ADA at selected ROIs is larger than the global
ADA because in those regions, there are obvious edges that
contributed to the relatively large ADA values. Compared with
the noisy 4-average data, the denoised data show significant
improvements. Using the regularization parameter λ = 13, the
ADA is close to the ADA of the 18 average data. The ADAs
of all the ROIs are however reduced compared to the noisy

Data(↓) ADA (→) global ROI 1 ROI 2 ROI 3
Noisy (4-avg.) 12.32 32.92 41.02 42.87
Denoised,λ = 13 6.27 11.77 31.50 25.27
Denoised λ = 20 7.58 13.34 32.88 28.86
Clean image (18-avg.) 6.65 18.23 24.80 24.80

TABLE II
THE AVERAGE DEVIATION ANGLE (ADA) OF THE NOISY DATA, THE

PROCESSED DATA (TWO DIFFERENT REGULARIZATION PARAMETERS) AND

THE REFERENCE DATA.

data.

IV. CONCLUSION

In this work we have generalized the color TV regularization
method of Blomgren and Chan [25] to yield a structure
preserving regularization method for matrix valued images.
We have shown that the proposed method performs well
as a regularization method with the important property of
preserving both edges in the data and positive definiteness of
the diffusion tensor. Numerical experiments on synthetically
produced data and real data from DTI of a human brain of a
healthy volunteer indicate good performance of the proposed
method.
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APPENDIX: EULER-LAGRANGE EQUATION, AND NUMERICAL IMPLEMENTATION

In this appendix we explicitly write out the Euler-Lagrange equations corresponding to the minimization functional 14. In
addition, the numerical scheme used in the simulations in section III of this paper is briefly discussed.
Using the short hand notation

p(xij) = αij∇ ·
(
∇xij

|∇xij |

)
, (24)

we can write out the derivatives of R and F as
∂R

∂`11
= 2

(
`11p(`211) + `21p(`11`21) + `31p(`11`31)

)
(25)

∂R

∂`21
= 2

(
`11p(`11`21) + `21p(`221 + `222) + `31p(`21`31 + `22`32)

)
(26)

∂R

∂`22
= 2

(
`22p(`221 + `222) + `32p(`21`31 + `22`32)

)
(27)

∂R

∂`31
= 2

(
`11p(`11`31) + `21p(`21`31 + `22`32) + `31p(`231 + `232 + `233)

)
(28)

∂R

∂`32
= 2

(
`22p(`21`31 + `22`32) + `32p(`231 + `232 + `233)

)
(29)

∂R

∂`33
=

(
2`33p(`231 + `232 + `233)

)
(30)

∂F

∂`11
= 4

[
(d11 − d̂11)`11 + (d21 − d̂21)`21 + (d31 − d̂31)`31

]
(31)

∂F

∂`21
= 4

[
(d21 − d̂21)`11 + (d22 − d̂22)`21 + (d32 − d̂32)`31

]
(32)

∂F

∂`22
= 4

[
(d22 − d̂22)`22 + (d32 − d̂32)`32

]
(33)

∂F

∂`32
= 4

[
(d32 − d̂32)`22 + (d33 − d̂33)`32

]
(34)

∂F

∂`31
= 4

[
(d31 − d̂31)`11 + (d32 − d̂32)`21 + (d33 − d̂33)`31

]
(35)

∂F

∂`33
= 4

[
(d33 − d̂33)`33

]
(36)

By combining each of the equations

∂G

∂`ij
=

∂R

∂`ij
+

∂F

∂`ij
, {ij} ∈ {11, 21, 22, 31, 32, 33}, (37)

we arrive at the Euler-Lagrange equations corresponding to the minimization problem (14). In the numerical simulations, we
use the steepest descent method with a fixed time step. Thus we have the six equations

dn+1
ij = dn

ij −∆t
∂Gn

∂`ij
, {kl} ∈ {11, 21, 22, 31, 32, 33}, (38)

where n is the iteration index, and ∆t is the time step parameter. We approximate the gradient ∂G
∂`ij

by standard finite difference
schemes, see e.g. [4]. We here note that each iteration of the form (38) is performed sequentially. Thus the equations are solved
as a coupled system of six PDEs.
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