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Abstract

Layered nanocrystals consist of a core of one material surrounded
by a shell of a second material. We present computation of the atom-
istic strain energy density in a layered nanocrystal, using an idealized
model with a simple cubic lattice and harmonic interatomic potentials.
These computations show that there is a critical size r∗s for the shell
thickness rs at which the energy density has a maximum. This critical
size is roughly independent of the geometry and material parameters
of the system. Interestingly, this critical size agrees with the shell
thickness at which the quantum yield has a maximum, as observed in
several systems and thus leads one to support the hypothesis that max-
imal quantum yield is strongly correlated with maximal elastic energy
density.
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1 Introduction

Layered nanocrystals consist of a core of one material surrounded by a shell
of a second material. Synthesis of layered nanocrystals with precise control
over their size and shape has been achieved by a number of research groups
[1] [3] [4] [5] and provides an effective method for designing material systems
with desired optoelectronic properties [3]. In particular, the photostability
(hole confinement in the core), electronic accessibility (electron spreading
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into the shell), and high quantum yield makes these core/shell nanocrystals
very attractive for use in optoelectronic devices [5].

Because of the small size of these systems, their atomic structure is
epitaxial in many cases. Lattice mismatch between the materials in the
core and shell leads to elastic strain in a layered nanocrystal. This strain
has both structural and optoelectronic consequences. If the strain is large
enough, then it is relieved by irregular growth of the shell [3]; i.e., the
epitaxial structure is lost. As a result, the shell may break off from the core
[3]. Quantum yield for a layered nanocrystal has been found to correlate
with strain [1].

The present study employs a simple model for the structure and strain
of a layered nanocrystal. Simulation of this model for a range of geometric
and elastic parameters shows that there is a critical shell size at which strain
has maximal influence. Moreover, this critical shell size correlates well with
the shell size at which quantum yield is maximal.

We shall show that the elastic energy density of a nanocrystal is con-
centrated near the interface between core/shell and that its maximal value
as a function of shell thickness has a peak with small shell thickness. We
define this shell thickness as critical shell thickness and compare and con-
trast these results to known photoluminescence quantum yield results from
experiments in [5]. Furthermore, we examine the sensitivity of the critical
shell thickness to material parameters and the size of core.

The strain model is presented in Section 2 and computational results of
the resulting strain for a nanocrystal are presented in Section 3. Section 4
contains a discussion of the results and their implications. Conclusions and
prospects for further work are discussed in 5.

2 Atomistic Strain Model

A typical nanocrystal contains a relatively small number of atoms (i.e., sev-
eral thousand or less) so that continuum elasticity is not appropriate. We
employ a lattice statics models, consisting of atoms whose positions are dis-
placed from a regular grid. Since the goal of this study is qualitative prop-
erties of nanocrystals, an idealized model is appropriate. For the geometry,
we use a simple cubic lattice, with different equilibrium lattice constants for
the core and shell materials. Since all of the cubic systems of Bravais lattice
groups have the same symmetry of elastic constants, we expect to obtain
qualitative properties of nanoscale systems using a simple cubic lattice. For
the atomistic energy, we use harmonic potentials, which are equivalent to
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linearized springs between the atoms and bonds. In order to access the
full range of elastic parameters, we allow nearest neighbor springs, diagonal
springs, and bond-bending springs, the last of which involves three-body in-
teractions. Further study using nonharmonic potentials is beyond the scope
of this work and will be addressed in further study.

The resulting discrete energy density at a discrete point x can be written
in the form

E =
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where p,q is + or - and k,l is 1,2 or 3. This represents the energy at a
discrete point for a “ball-and-spring” system on a three dimensional cubic
lattice with variable spring constants, in which k and l denote the three
possible lattice vectors and p = ± signifies the springs in the positive or
negative directions along a given lattice vector. For consistency between the
discrete and continuum energy densities, we can get elastic coefficients from
Voight constants as

(α, β, γ) = (C11, C44, C12)/4. (2.2)

The term S±kk is a discrete analogue of an elastic strain component; specif-
ically it is the k-th component of the displacement for the spring in the±k-th
direction from x. In other words, the bond displacement at the point x

dk± = D±
k u− εk (2.3)

where D±
k is the finite difference operator, u is the displacement, and εk is

the relative magnitude of the lattice distortion in the interface, e.g., lattice
mismatch. Then, the discrete strain components are given by

S±kk = dk±
k

Spq
kl = (dlq

k + dkp
l )/2 (2.4)

in which k and l are 1,2 or 3 (denoting the component number of the bond)
and p and q are + or - (denoting positive or negative direction along that
component).

The total elastic energy of the system is the sum of the discrete energy
densities for each of the atoms. The force balance equations are obtained
by setting the variation of the elastic energy with each of the displacements
equal to zero.
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In core/shell epitaxial growth, strain is induced by mismatch between
the lattice constants in the core and those in the shell. Denote the lattice
constants in the core and shell as lc and ls, respectively. For bonds connect-
ing a core atom and a shell atom, the rest length is taken to be the average
(lc + ls)/2. Similarly the elastic coefficients for the bonds connecting a core
atom and a shell atom are taken to be the averages of the elastic coefficients
for the pure materials.

µ
rc -rs

(a) 2D

µ
rc -rs

(b) 3D

Figure 1: Basic geometry of core/shell nanocrystal model

The significant geometric parameters are the core radius rc, the shell
thickness rs and the lattice mismatch

ε =
lc − ls

lc
. (2.5)

The core consists of atoms whose lattice position x (before displacement)
satisfies |x| ≤ rc, and the shell consists of atoms with rc < |x| ≤ rc + rs, as
shown in Figure 1.

3 Critical Thickness: Simulation Results

Computational results are presented here from minimization of the total
elastic energy (after removing degenerate modes corresponding to transla-
tion and rotation), corresponding to balance of all of the forces in the system,
for 2D (circular, or equivalently rods of infinite length) and 3D (spherical)
nanocrystals. For the harmonic potentials used here, this amounts to solv-
ing a linear system of equations, in which the forcing terms come from the
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lattice mismatch ε. The simulation results include values of the displace-
ments, the forces and the energy density. Graphical results will be presented
for the last of these. As a figure of merit for the atomistic strain field in
a nanocrystal, we shall use the maximum value Em of the discrete energy
density. Since the energy at each atom consists of elastic energy and bond
energy, the maximum elastic energy may be a good indicator of strain-driven
instability.

3.1 Elastic energy density

Figures 2 and 3 show the elastic energy density of 2D and 3D layered
nanocrystals, respectively, of fixed core size rc for various values of shell
thickness rs. In the 2D nanocrystal simulation (Figure 2), the shell has
thickness values rs = 1, 2 and 20 monolayers, on a core of radius rc =
20 monolayers. In the 3D nanocrystal simulation (Figure 3), the shell has
thickness values rs = 1, 2 and 7 monolayers, on a core of radius rc = 8
monolayers. For all of these simulations, the elastic constants are α = 5,
β = 1 and γ = 3 and lattice mismatch is ε = 0.04.

We have simulated energy density for a nanocrystal that is larger than
the the physical system, since the energy distribution is qualitatively similar
but more easily seen in the larger system. As the core radius increases, the
number of atoms along the interface also increases, so that we can more
readily examine the discrete energy density along the interface. In the 3D
simulations of Figure 3, the core radius rc = 8 monolayers is a few monolayers
larger than the typical physical system. The 2D simulations of Figure 3 use
rc = 20 monolayers so that the strain energy distribution exhibits features
that are nearly those of a continuum system.

In these figures, the gray scale ranges from black for E = 0 to white for
E = Em in which Em is the largest value of E among the three subfigures;
i.e., the scales are same for the different subfigures. The black region outside
of each nanocrystal is a vacuum where there is no energy. Both Figures 2
and 3 show that the energy is concentrated in the region of the shell, along
the interface with the core. As the shell thickness increases, the strain energy
becomes more concentrated near the shell/core interface, even though the
maximum energy density decreases for larger shell thickness. In addition
the largest values of the energy density are close to the diagonal.

5



(a) (b) (c)

Figure 2: Elastic energy density of 2D layered nanocrystals with core size
rc = 20 monolayers and with shell thickness rs of size (a) 1 monolayer, (b)
2 monolayers and (c) 20 monolayers.

(a) (b) (c)

Figure 3: Elastic energy density on an equatorial cross section for 3D layered
nanocrystals with core size rc = 8 monolayers and with shell thickness rs of
size (a) 1 monolayer, (b) 2 monolayers and (c) 7 monolayers.

3.2 Critical Thickness

Figure 4 shows the maximum energy density for a layered nanocrystal, as a
function of shell thickness rs, for fixed values of the other parameters, core
size rc and elastic constants α, β, γ and ε. Figure 4 shows that the maximum
energy density increases with increasing shell thickness rs up to a critical
shell thickness r∗s . For rs > r∗s , the maximum energy density is decreasing as
a function of rs. The general similarity between the critical shell thickness
in 2D and 3D is indicative of the robustness of this result. The physical core
radius of CdSe/CdS core/shell nanocrystal is ranging from 11.5Å to 19.5Å
which is equivalent to core radius of 3 monolayers to 6 monolayers, since one

6



full monolayer is approximately 3.5Å [5].
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Figure 4: Maximum energy density Em vs. shell thickness rs for (a) 2D and
(b) 3D nanocrystal of core radius rc = 8 monolayers.

Next we examine the critical shell thickness r∗s and its dependence on
the material and geometric parameters of the nanocrystal, in particular
the dependence of r∗s on the core size rc, lattice mismatch ε and elastic
parameters α, β and γ.
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Figure 5: Critical thickness r∗s vs. core size rc for (a) 2D and (b) 3D
nanocrystal.

Figure 5 shows weak sensitivity of critical shell thickness r∗s on the core
radius rc. The critical thickness r∗s is uniformly 2 monolayers as long as
the core size is big enough. We interpret this to be caused by the number
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of steps along the core/shell interface. Steps along the outer edge of the
shell tend to lower strain energy density, but those along the core/shell
interface maximize strain effect. For smaller size of core, the number of
steps on the core/shell interface is insufficient to increase the strain energy
density. For larger core size, the interaction is weak between the core/shell
interface and the outer edge of the shell, so that the strain energy density
is not large. In between there is a critical thickness when the strain energy
density is maximal. In simulation, for smaller core size than 3 monolayers for
2D layered nanocrystals and 5 monolayers for 3D layered nanocrystals, the
maximum elastic energy density Em occurs at 1 monolayer of shell thickness
rs.

We have systematically studied the critical shell thickness r∗s as a func-
tion of the elastic parameters α, β and γ and the lattice mismatch ε for
2D and 3D nanocrystals. The physically relevant elastic parameters need to
satisfy α > γ in cubic crystals in order to have positive elastic energy density
described in (2.1). We find that the critical shell thickness r∗s of nanocrystals
is independent of elastic parameters as long as the set of elastic parameters
α, β and γ satisfies α > γ. Moreover, we find that the critical shell thickness
r∗s is independent of the lattice misfit ε, i.e., the critical shell thickness is the
same for all values of lattice misfit ε with ε > 0.

4 Discussion

4.1 Step Interactions

Since the continuum limit of the core/shell nanocrystal corresponds to a shell
that is atomistically thick, the critical shell thickness cannot be explained
with continuum elasticity. Some insight into the existence of a critical shell
thickness r∗s comes from consideration of step interactions. The strain field
produced by a surface step, on an epitaxial surface, interacting with a buried
step, on the interface between an epitaxial thin film and the substrate has
been successfully studied in [6] using discrete harmonic potentials devel-
oped in [7]. We now try to understand step relaxation in core/shell layered
nanocrystal system with the analogous manner in [6]. Note that this discus-
sion is based on the use of harmonic potentials and a simple cubic lattice.
Although we expect that this provides qualitatively correct results, details
would certainly be different for a more realistic system.

On the outer edge of the shell, the shell atoms will relax towards their
equilibrium lattice constant, lowering the strain energy density. This relax-
ation will be greatest along the diagonal, where the atoms have the smallest
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number of neighbors. Also, the relaxation of the outer edge atoms puts ad-
ditional stress on the atoms at the core/shell interface. On the other hand,
along the core/shell interface, shell atoms near the diagonal have the largest
number of core atom neighbors and so they have the largest strain. This
maximum is increased by their interaction with the atoms along the diago-
nal on the outer edge, but that interaction decreases as the shell thickness
increases. This indicates a critical thickness.

2 r
c

r
s

r
s

r
c

r
s

a

Figure 6: Simplified model for step interaction between core and shell, as
a think film system consisting of vacuum, shell layer, core layer, shell layer
and vacuum, with a periodic step train on each of the four interfaces.

In order to qualitatively model this step interaction, we consider a two-
dimensional thin film consisting of a core layer between two “shell” layers,
with vacuum both below and above the thin film. In addition, there is
a periodic step train on each of the four interfaces, with aligned steps on
the two core/shell interfaces and on the shell/vacuum interfaces, as shown
in Figure 6. The geometric parameters are the core radius rc, the shell
thickness rs and the step distance a. Thickness of the core is 2rc which
is diameter of the core. We simulate this system using the atomistic strain
method described above, using shifted periodic boundary conditions in order
to reduce the computation to that over a single period of the step train.

Figure 7 shows that the maximum elastic energy density peaks at small
critical thickness r∗s and small critical step distance a∗, but is nearly inde-
pendent of a. The similarity between the simulation results for a nanocrystal
and the simplified model provides a means for understanding the origin of
the critical thickness. We examine the correlation of the shell thickness r∗s
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Figure 7: The maximum energy density Em vs (a) shell thickness rs and (b)
step distance a on the core radius rc = 5. (α = 5, β = 1, γ = 3 and ε = 4%).

and the step distance a∗ for a given core radius rc. We find the critical shell
thickness r∗s does not depend on the step separation a and the critical step
separation a∗ is approximately half the shell thickness rs. It provides some
understanding of the fact that shell atoms near the diagonal have the max-
imum elastic energy density. This interpretation is also consistent with the
independence of the critical shell thickness on the material and geometric
parameter of nanocrystals, as shown in Section 3.

4.2 Comparison to Quantum Yield

The critical shell thickness, observed in the simulations presented above, cor-
relates closely to the maximum value of the quantum yield from experiments.
Since high photoluminescence quantum yield is crucial in fabrication of op-
toelectronic device, the photoluminescence quantum yield (QY) has been an
indicator of high quality of devices. Photoluminescence quantum yield data
presented below comes from both CdSe/CdS [5] and InAs/CdSe [1] layered
nanocrystals.

Figure 8 shows a comparison between the quantum yield QY and maxi-
mum energy density Em as a function of shell thickness rs. The dotted line
represents the strain simulation results and solid line represents the quan-
tum yield results. The core radius of the CdSe/CdS nanocrystals are 19.5Å
and 110Å×20Å, respectively, which is approximately 5.5 and 5.7 monolayers
respectively, since each monolayer is approximately 3.5Å. The core radius
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used in the strain simulation is rc = 5 monolayers. In order to compare the
qualitative behavior of QY and Em, we scaled the strain simulation results
to have the same maximum as that of the of quantum yield. Both quantum
yields results have the peak at the small shell thickness. Strain has been
cited as a probable cause of high quantum yield in [1], [4].
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Figure 8: Comparison of quantum yield QY (–) and Em (- -) as a func-
tion of shell thickness rs for core radius rc = 5 monolayers. Em has been
scaled so that its maximum value is the same as that of QY . The experi-
mental measurements of QY are for (a) photoluminescence quantum yield
of CdSe/CdS core/shell nanocrystal with shell thickness on core radius of
19.5Å [5], (b) fluorescence quantum yield of CdSe/CdS core/shell nanorod
with shell thickness on core radii of 110Å× 20Å [4].

4.3 Continuum Limit of Nanocrystals

As a check on the atomistic computations, we solve the analogous equations
for continuum elasticity. Our atomistic strain model is derived from the
finite difference of continuum elasticity, so we expect that atomistic strain
computation is consistent with continuum elasticity. The continuum limit
is a nanocrystal with large core radius and a thick shell. Therefore, the
continuum limit does not have critical thickness where Em(rs) peaks. From
the study of continuum limit, we expect to check the atomistic phenomenon
and their validation.

We assume that the elastic coefficients are chosen to give isotropic elas-
ticity, so that the continuum nanocrystals are isotropic and invariant under
rotations with respect to their centers. Therefore, the displacement vec-
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tor −→u at the position x is radial function. The equilibrium equation for
continuum elasticity is

3β∆−→u + (α + β + 2γ)
−→∇(
−→∇ · −→u ) = 0 (4.1)

and the radial function satisfies
−→∇ × (

−→∇ × −→u ) = 0. With some algebraic
computations, we have the resulting equilibrium

−→∇(
−→∇ · −→u ) = 0. (4.2)

The lattice misfit is modeled as producing a pressure which is −ε on the
interface between core and shell and 0 on the outer edge of the shell. We
recalculate the solution of the continuum elastic equations given in [2]. The
elastic energy density in the core is a constant function and density in the
shell is bigger than the density in the core. The maximum elastic energy den-
sity for both a 2D and a 3D layered nanocrystal occurs along the core/shell
boundary. In this paper, we will compare the 2D simulations to the con-
tinuum solution. From continuum elasticity, the maximum elastic energy
density for a 2D layered nanocrystal is given by

Em(rc, rs) =
ε2

8
r4
c

((rc + rs)2 − r2
c )2
{ 3
α + β + 2γ

+
1
β

(rc + rs)4

r4
c

}. (4.3)

In Section 3, we have examined the maximum energy density as a func-
tion of shell thickness. In order to compare the continuum limit for a layered
nanocrystal, we consider continuum limit with large radius of core and thick
shell. Figure 9 shows the maximum energy density Em as a function of
shell thickness rs for a fixed core radius rc of 20 monolayers and rs ranges
from 1 monolayer to 30 monolayers. The dots represent the maximum elas-
tic energy density obtained from a continuum elasticity and the diamonds
represent one from an atomistic simulation described in Section 2 for a 2D
nanocrystal. Since our simulation calculates energy density as energy per
unit lattice cell, we adjust the energy scale by multiplying continuum limit
Em by cell area for a two-dimensional layered nanocrystal or cell volume in
three dimensions.

We find Em from an atomistic simulation converges to one from a con-
tinuum elasticity as shell thickness increases. However, the continuum limit
does not show any peak for very thin shell although the atomistic simulation
shows. This proves that the critical thickness is atomistic phenomenon which
is not present in the continuum theory. The convergence for thicker shell
shows that our strain model described in Section 2 is valid for simulating
the strain field of a layered nanocrystal.
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Figure 9: The maximum energy density Em(rs) from continuum (•) and
atomistic (¦) simulations, where rs ranges from 1 monolayer to 30 monolay-
ers for fixed core radius rc of 20 monolayeres.

4.4 Nanorod

A number of research groups demonstrated peak of photoluminescence quan-
tum yield for a layered nanorod [3] [1] [4]. Although our model can be appli-
cable to a nanorod of any shape, we will simulate it for the special case of an
ellipsoidal spheroid. For a 3D layered nanorod, the geometric parameters
are the core radius rd along the diameter and rl along the length of rod,
and the shell thickness rs. The core consists of atoms whose lattice position
(x, y, z) satisfies

x2

r2
l

+
y2 + z2

r2
d

≤ 1 (4.4)

and shell consists of atoms satisfying

x2

r2
l

+
y2 + z2

r2
d

> 1 and
x2

(rl + rs)2
+

y2 + z2

(rd + rs)2
≤ 1. (4.5)

Research on colloidal semiconductor nanocrystals suggested the possibility
for the epitaxial strain depending on the shape of the core varying from
nearly spherical to nearly cylindrical. We expect that a series of Em(rs) on
an aspect ratio rl : rd provide one of opportunities to study the strain at the
interface.

Figure 10 presents series of the maximum elastic energy density Em(rs) of
3D nanorod on rl : rd varying from 1:1 to 10:1 for the core radius rd equal to
5 monolayers (Figure 10(a)) and 7 monolayers (Figure 10(b)). Both Figure
10(a) and (b) show that series of Em curves all peak at the critical thickness
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Figure 10: A series of Em(rs) on an aspect ratio rl : rd ranging from 2:1 to
10:1 for rd is (a) 5 monolayers and (b) 7 monolayers.

r∗s of 2 monolayers. These results show that the critical shell thickness r∗s is
generally applicable to layered nanorods and nanocrystals.

An increase in Em was observed in thinner rod for rs > r∗s . We believe
that this effect is a result of the reflection of the strain field, but we have not
analyzed it yet. Thinner rod have more reflection effect from the relaxation
on the outer edge of the shell and strain on the interface of core/shell. The
increases in Em become less as the radius of diameter increases. It supports
the explanation of strain reflection effects.

Research of [3] demonstrated the planes extending along the diameter of
the rod are more compressed than planes extending along the length of the
rod. From the fact that the compression along the plane is the trace of the
strain tensor, we verified that Sxx + Syy < Syy + Szz at every atom, which
is consistent with the experimental results. It also implies that the irregular
growth occurs along the planes along the diameter, as shown in [3].

5 Conclusion

We have examined the elastic energy density of a nanocrystal and the cor-
responding critical shell thickness. The simulation results presented above
are for a highly idealized model of a layered nanocrystal. The robustness of
these results with respect to variation of dimension, geometry and material
parameters suggests that these results are qualitative and generally appli-
cable. In addition, there is some evidence that the critical shell thickness
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found in these simulations is related to the maximal values of quantum yield,
as found experimentally.

We have demonstrated the nature of the critical shell thickness by the
step-step interaction analysis. A continuum approach also shows that the
effect of step interaction is essentially atomistic. The spheroid model gener-
alize the effect of epitaxial strain at the interface of core/shell nanocrystal.
These may lead to determine the location where thick shell nanorod changes
morphologically and grows irregularly.

We expect our atomistic strain computations to provides evidence of the
strain effect in nanotechnology. The relation between strain and quantum
yield can help explain why the maximum quantum yield occurs at the thin
shell thickness and further shell growth reduces the quantum yield. This
suggests that engineering of strain effect may be a fruitful approach to ob-
taining desired optoelectronic properties in nanoscale devices.
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