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Abstract

In this paper we formulate a new time dependent convolutional model for super-
resolution based on a constrained variational model that uses the total variation of the
signal as a regularizing functional. The model uses a dataset of low resolution images and
incorporates a downsampling operator to relate the high resolution scale to the low reso-
lution one. We present an algorithm for the model and we perform a series of numerical
experiments to show evidence of the good behavior of the numerical scheme and quality
of the results.
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1 Introduction

A recording device or a scanner records a signal or image so that:

• the recorded intensity of a small region is related to the true intensities of a neighborhood of a
pixel through a degradation process usually called blurring

• the recorded intensities are contaminated by random noise

• the acquired signal is not well resolved.

The general image restoration problem consists in reconstructing a signal for which the previous
degradation effects are removed from the acquired signal.

The super-resolution problem consists in recovering a high resolution image from low resolution de-
graded images.

Classical models and algorithms for solving the super-resolution problem have been mainly based
on least squares, Fourier series, and other L2-norm approximations and consequently the results are
contaminated by Gibbs’ phenomena (ringing) and/or smearing near edges.

We restrict our discussion to R2 for the sake of simplicity. An image can be interpreted as either
a real function defined on Ω, a bounded and open domain in R2 or as a suitable discretization of this
continuous image. Let us denote by f the observed image and u the true image we want to recover. A
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model of blurring comes from the degradation of u through some kind of averaging. We will assume
that the blurring operator is defined from a kernel h(x, y) ≥ 0 as

(h ∗ u)(x, y) =

∫

Ω

u(s, r)h(x − s, y − r)dsdr (1)

such that
∫ +∞

−∞

∫ +∞

−∞
h(s, r)dsdr = 1 (2)

The standard model of degradation we assume is

h ∗ u + n = f (3)

where n is Gaussian white noise.
The usual approach consists in solving the following constrained variational problem

minuR(u) (4)

subject to ||h ∗ u − f ||2L2 = σ2

where σ is the standard deviation of the noise and R(u) is the so-called regularizing functional that
measures the quality of the image u in the sense that smaller values of R(u) correspond to better
images.

This problem can be solved by formulating the Tikhonov unconstrained formulation that consists
in solving the variational problem

u = argmin{R(u) +
λ

2
[||h ∗ u − f ||2L2 − σ2]} (5)

for an specific value of the Lagrange multiplier λ > 0.
If R(u) is a quadratic functional (e.g. R(u) = ||∇u||2L2 ) the problem does not allow discontinuities

in the solution u therefore the edges can not be satisfactorily recovered.
In [14] the total variation norm was proposed as regularizing functional for the image restoration

problem

TV (u) =

∫

Ω

|∇u|dxdy (6)

The variational problem (5) using the functional (6) allows to recover edges of the original image
avoiding ringing and removing noise ([13, 10, 17]). We will use the signal-to-noise-ratio of the image
u to measure the level of noise as

SNR :=
||u − ū||L2

||n||L2

where ū is the mean value of the signal u and σ is the standard deviation of the noise.
In this research work we address the super-resolution problem. The main goal of super-resolution

is to maximize the spatial resolution of the image from a dataset of low resolution images without a
loss in signal-to-noise ratio. The resolution of an image is determined by the physical characteristics
of the imaging system: the optics, the density of the detector elements and their spatial response.
The resolution improvement of the image system can be prohibitive. An increase in the sampling rate
could be achieved by obtaining more samples of the imaged object.
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The super-resolution problem consists in obtaining a high-resolution image from a data set of low
resolution images. This restoration problem is ill conditioned since high resolution and low resolution
images are typically related through a convolution operator and a down-sampling operator. Super-
resolution algorithms are useful for Magnetic Resonance Imaging inter-slice reconstruction and video
processing ([6, 12]). Several models have been proposed in the literature but the convolutional ones
appear to be the most reasonable to get optimal results ([6]).

A variational model using the TV norm as regularizing functional for deblurring and oversampling
a single noisy image was proposed in [7] (see also [8]). This model was formulated and solved in the
Fourier domain assuming periodic boundary conditions by means of the gradient descent method and
using characteristic functions as convolution kernels.

In this paper we present a variational model to solve the more general super-resolution problem
using the TV norm as regularizing functional. The proposed model uses a multi-frame dataset instead
of a single image and Gaussian kernels of convolution allowing homogeneous Neumann boundary
conditions. In addition, we propose an iterative refinement procedure based on an original idea by
Bregman [1], as suggested and implemented in [11], to improve spatial resolution. We formulate
an explicit algorithm to approximate the solution to this model. A set of numerical experiments is
presented to show evidence of the good behavior of the model. The algorithm recovers well edges,
reduces noise and captures some small features not appearing in the low resolution images.

The paper is organized as follows: in section 2 we present the new model, section 3 contains the
Bregman iterative refinement procedure applied to the original model, section 4 is devoted to the
algorithm and the implementation details and section 5 contains the numerical experiments.

2 A super-resolution convolutional model based on TV

regularization

Let ΩL be a subset of Ω ⊂ R
2. We define a low resolution image f as a real function defined in ΩL.

We assume that high resolution images are those whose domain is Ω. We consider a down-sampling
linear operator D acting on high resolution images with values in low resolution ones . Let S be its
transpose.

Given a low resolution image f the one frame model of super-resolution we assume is

f = D(h ∗ u) + n (7)

where u the unknown high resolution image, h is a given translation invariant convolution kernel and
n is Gaussian white noise with zero mean and variance σ2.

The kernel h is determined as the PSF of the sensor. The kernel could be another unknown of the
problem (blind deconvolution) and in this case it is supposed to be Gaussian,

h(x, y) :=
1

4πα
e−(x2+y2)/4α (8)

We can state the unconstrained variational problem using the TV-norm as regularizing functional
as follows:

u = argmin{TV (u) +
λ

2
[||f − D(h ∗ u)||2L2 − σ2]} (9)

Multiframe model: Given N low resolution images, fk, k = 1, 2, · · · , N , the convolutional model
describing the relation between u and fk is expressed by a set of linear equations
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fk = Dk(h ∗ u) + nk k = 1, · · · , N (10)

where Dk is a down-sampling operator and nk is Gaussian white noise with zero mean and variance
σ2

k.
In this case we can formulate the multi-frame model for super-resolution as

u = arg min
u

{

∫

|∇u| +
N

∑

k=1

λk

2

[

||fk − Dk(h ∗ u)||2L2 − σ2
k

]}

(11)

where λk > 0 are the Lagrange multipliers weighting the constraints.
The Euler-Lagrange equations associated to this variational problem is

∇ ∇u

|∇u| +
N

∑

k=1

λk(h̃ ∗ Sk(fk) − h̃ ∗ (Sk ◦ Dk(h ∗ u)) = 0 (12)

where Sk is the transposed operator (“up-sampling”) to Dk and h̃ is the transpose of h.
We can re-write the Euler-Lagrange equation (12) as

∇ ∇u

|∇u| + λh̃ ∗ (ḡ − T (h ∗ u)) = 0 (13)

where λ =
∑N

k=1 λk, ḡ =
∑N

k=1
λk

λ
Sk(fk) and the operator T :=

∑N
k=1

λk

λ
Sk ◦ Dk.

If Dk = D is the same operator for all k then the operator T = S ◦ D and ḡ = S(
∑N

k=1
λk

λ
fk)

where S is the transposed of D.
In order to reduce the parameter fitting of the λ′

ks we will assume a fixed averaging procedure,
(e.g. λk := λ

N
, k = 1, 2, · · · , N) to compute ḡ and T and therefore λ will be the only parameter to be

estimated.
We can solve the Euler-Lagrange equation (13) by means of the gradient-descent method formu-

lated as the time evolution equation

ut = ∇ ∇u

|∇u| + λh̃ ∗ (ḡ − T (h ∗ u)) (14)

with homogeneous Neumann boundary conditions and initiating with

u0 :=
1

N

N
∑

k=1

Sk(fk) (15)

We have tested different averaging procedures apart from the arithmetic mean. The following
average has been shown a good choice

λk

λ
=

TV (fk)
∑N

k=1 TV (fk)
(16)

If f0 := 1
N

∑N
k=1 fk the SNR of f0 will be larger than the SNR of each of the fk signals. Thus,

the noise of f0 is reduced due to the averaging.
To analyze precisely the convenience of using more than one degraded image as initial data we

consider the particular case of the deconvolution problem from a set of degraded images using the
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variational model (11) and taking the down-sampling operators equal to the identity and the quadratic
norm as regularizing functional

||u||2 =

∫

Ω

|∇u|2. (17)

The Euler-Lagrange equation associated to the problem

u = arg min
u

{

∫

|∇u|2 +
λ

2

1

N

N
∑

k=1

||fk − h ∗ u||2L2

}

(18)

using λk = λ
N

for all k, will be

∆u + λh̃ ∗ [f0 − h ∗ u] = 0 (19)

with homogeneous Neumann boundary conditions and f0 := 1
N

∑N
k=1 fk

Applying Fourier transform to equation (19) preserving the imposed boundary conditions (“cosine
transform”) the following equation is obtained in the frequency domain

− 1

(j2 + l2)
û(j, l) + λˆ̃h(j, l)f̂0 − λˆ̃h(j, l)ĥ(j, l)û(j, l) = 0 (20)

from where we obtain

û(j, l) =
λ
ˆ̃
h(j, l)f̂0(j, l)

1
j2+l2

+ λ|ˆ̃h(j, l)|2
(21)

with f̂0(j, l) = 1
N

∑N
k=1 f̂k(j, l)

High frequencies of fk are contaminated by noise. The average process allows to reduce the
amplitude of high frequencies in the f0 signal. Hence, equation (21) allows to recover more frequencies
of u as N the number of images increase.

3 Bregman iteration and inverse scale space method

Since we want to recover finer scales the Bregman iterative refinement is suitable for this purpose, see
[11].

The Bregman iterative refinement applied to equation (13) reads as follows: if u0 is the solution
of equation (13)

∇ ∇u0

|∇u0|
+ λh̃ ∗ (ḡ − T (h ∗ u0)) = 0 (22)

we denote v0 the residual calculated in the high resolution scale, ie,

v0 = ḡ − T (h ∗ u0) (23)

Then we solve again the Euler-Lagrange equation for the signal ḡ + v0 and the solution u1 will
satisfy

∇ ∇u1

|∇u1|
+ λh̃ ∗

(

ḡ + v0 − T (h ∗ u1)
)

= 0 (24)
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and the new residual is defined as
v1 = ḡ + v0 − T (h ∗ u1) (25)

and so on. Thus the sequence of Bregman iterates u0, u1, · · · , ui, · · · is obtained.
This procedure first recovers fine scales of the image and then recovers the noise. For this reason

this procedure must be stopped when the quality of the obtained image is satisfactory.
This discrete process can be done more precisely by a continuum process that depends on a

temporal variable acting as a scale variable. These methods are called inverse scale space methods
and were introduced for variational problems with quadratic regularizing functional in [15] and for
TV-restoration models in [2]. In [9] these methods have been used for image blind deconvolution based
on total variation. An inverse scale space method consists of a time evolution equation that begins
with signal u0 = 0 and evolves to the restored image in a way such that the coarser scales converge
faster than finer ones. The restored image corresponds to the one with minimum time for which the
L2-norm of the residual is approximately the standard deviation of the noise ([9]).

We propose a new nonlinear inverse scale space method to solve the super-resolution problem
based on the variational problem (11) as follows:

ut = ∇ ∇u

|∇u| + λ
[

h̃ ∗
(

ḡ − T (h ∗ u)
)

+ v
]

(26)

vt = αh̃ ∗
(

ḡ − T (h ∗ u)
)

(27)

where u|t=0 = v|t=0 = 0 and λ > 0, α > 0 are constants.
The restored image is the one obtained for the minimum time for which

||fk − dk(h ∗ u)||2L ≈ σk, k = 1, 2, · · · , N (28)

where σk is the standard deviation of the noise of fk.
If ĥ is the Fourier transform of h, the parameter α has to satisfy

0 < α ≤ λ

4
|ĥ|2

as demonstrated in [9].
If the kernel h is not given, h is assumed to be a Gaussian kernel.

4 An explicit numerical scheme

The Euler-Lagrange derivative of the TV-norm is not well defined at points where ∇u = 0, due to the
presence of the term 1

|∇u| . Then, it is common to slightly perturb the TV functional to become

∫

Ω

√

|∇u|2 + εdxdy (29)

where ε is a small positive parameter or
∫

Ω

|∇u|εdxdy (30)

with the notation
|v| =

√

|v|2 + ε (31)
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for v ∈ R2.
We can express the 2D model (14) in terms of explicit partial derivatives

ut = λh̃ ∗ (ḡ − T (h ∗ u)) +
uxx(u2

y + ε) − 2uxyuxuy + uyy(u2
x + ε)

(u2
x + u2

y + ε)
3

2

(32)

using u0 from (15) as initial guess and homogeneous Neumann boundary conditions (i.e. absorbing
boundary). In our experiments we will use the TV-average of the up-sampled frames.

Next we construct an explicit discrete scheme to solve (32). Consider the domain Ω = [0, 1]× [0, 1].
Let m be a positive integer. We define the high resolution grid as follows: we set h = 1

2m
, xi = ih, yj =

jh, i, j = 1, 2, · · · , 2m. The low resolution grid is defined as x′
i = 2ih, y′

j = 2jh, i, j = 1, 2, · · · , m. We
denote the time stepsize by ∆t, and tn = n∆ is the time discretization. Let un

ij be the approximation
to the mean value of u(x, y, tn) in the computational cell

]

xi − h

2
, xi +

h

2

[

×
]

yi − h

2
, yi +

h

2

[

(33)

i.e.

un
ij ≈ 1

h2

∫ xi+
h

2

xi− h

2

∫ yi+
h

2

yi− h

2

u(x, y, tn)dxdy, i = 1, · · · , 2m j = 1, · · · , 2m (34)

Our first order scheme reads as follows:

un+1
ij − un

ij

∆t
= λ[h̃ ∗ (ḡ − T (h ∗ un))]ij +

[

un
xx((un

y )2 + ε) − 2un
xyun

xun
y + un

yy((un
x)2 + ε)

[(un
x)2 + (un

y )2 + ε]
3

2

]

ij

(35)

where operations in the term containing derivatives are understood component-wise.
Some remarks are in order concerning how to compute the right hand side of (35): we denote by

∆x
±un

i,j := ±(un
i±1,j − un

i,j) and ∆y
±un

i,j := ±(un
i,j±1 − un

i,j). Then we have the following formulas to
compute the term containing derivatives

[un
xx]ij := ∆x

+∆x
−un

ij/h2 (36)

[un
yy]ij := ∆y

+∆y
−un

ij/h2

[un
xy]ij := (∆x

− + ∆x
+)(∆y

− + ∆y
+)un

ij/4h2

[un
x ]ij := (∆x

− + ∆x
+)un

ij/2h

[un
y ]ij := (∆y

− + ∆y
+)un

ij/2h

These formulas are computed at the boundaries using “mirror extension” of values to ensure
homogeneous Neumann boundary conditions.

The convolutions appearing in the constraint term are computed on the high resolution grid
(2m×2m) using the discrete cosine transform (DCT) to enforce the homogeneous Neumann boundary
conditions, (see [3, 5]).

In this paper we will use only one down-sampling operator D for all the frames fk so that ḡ =
S(

∑N
k=1

λk

λ
fk) and T = S ◦D. A discussion on the most convenient down-sampling operator sampling

to be used is out of the scope of this paper, (see [16, 4]).
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The one dimensional down-sampling operator Dx acting on vectors (ei) ∈ R2m with values in Rm

is defined as the m × 2m matrix

Dx =
1√
2











1 1 0 0 . . . 0 0
0 0 1 1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 1 1











and Dx(e) := 1√
2
(e1 + e2, e3 + e4, · · · , e2m−1 + e2m) ∈ Rm

The one-dimensional transposed Sx : Rm → R2m, c ∈ Rm is the 2m × m matrix, Sx(c) =
1√
2
(c1, c1, c2, c2, · · · , cm, cm).

Let u = (uij) ∈ R2m × R2m and f = (fij) ∈ Rm × Rm. The two-dimensional down-sampling
operator is defined as

f = D(u) := Dx · u · Sx (37)

where the righthand side operations are understood as matrix multiplications.
The transposed operator S is defined as

u = S(f) := Sx · f · Dx (38)

It is easy to see that D ◦ S = Im×m (m × m identity matrix) and T = S ◦ D 6= I2m×2m, therefore
the up-sampling operator is reversible and the down sampling one is not.

We can write the explicit expressions of the operators for m = 2

D









u11 u12 u13 u14

u21 u22 u23 u24

u31 u32 u33 u34

u41 u42 u43 u44









=
1

2

[

u11 + u12 + u21 + u22 u13 + u14 + u23 + u24

u31 + u32 + u41 + u42 u33 + u34 + u43 + u44

]

S

[

f11 f12

f21 f22

]

=
1

2









f11 f11 f12 f12

f11 f11 f12 f12

f21 f21 f22 f22

f21 f21 f22 f22









(S ◦ D)









u11 u12 u13 u14

u21 u22 u23 u24

u31 u32 u33 u34

u41 u42 u43 u44









=

1

4









u11 + u12 + u21 + u22 u11 + u12 + u21 + u22 u13 + u14 + u23 + u24 u13 + u14 + u23 + u24

u11 + u12 + u21 + u22 u11 + u12 + u21 + u22 u13 + u14 + u23 + u24 u13 + u14 + u23 + u24

u31 + u32 + u41 + u42 u31 + u32 + u41 + u42 u33 + u34 + u43 + u44 u33 + u34 + u43 + u44

u31 + u32 + u41 + u42 u31 + u32 + u41 + u42 u33 + u34 + u43 + u44 u33 + u34 + u43 + u44
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5 Numerical results

In this section some numerical examples are presented to illustrate the good behavior of the model
and efficiency of the proposed algorithm. The results indicate that the algorithm recovers well edges
and small features not appearing in the original degraded dataset without loss in the signal to noise
ratio.

All our calculations are performed using a CFL restriction on the time stepsize of the form

∆t

h2
≤ 0.1 (39)

We have chosen a Lagrange multiplier λ near the largest one for which the scheme is stable. We have
used the value ε = 1e − 4 for the regularization of the total variation functional. The low resolution
degraded images used are 128 × 128 pixels of resolution and dynamic range in [0, 255]. The results
obtained are 256 × 256 pixels of resolution.

5.1 Example

In this example we test our model using a data set of 10 synthetic images of 128 × 128 pixels from
the original 256 × 256 image (Figure 1) generated as follows. We consider a 129 × 129 discrete
approximation of a Gaussian kernel h (Figure 1) defined from (8) setting α = 10. We convolve the
original image with the kernel and we add 10 different Gaussian white noise with SNR≈ 10 to generate
10 degraded frames of 256 × 256. Then we apply the down-sampling operator D to obtain the 10
128× 128 low resolved and degraded frames. In Figure 2 we display one of the frames of this data set
(left picture) and the up-sampled and averaged image (right picture).

We apply our algorithm using λ = 20 and CFL= 0.1, by using equation (35) and performing 400
iterations. The result is shown in Figure 3. We observe that edges are recovered well.

In order to improve spatial resolution we apply the Bregman iterative refinement procedure using
the same parameters and number of iterations as in the original model and we display the first and
second Bregman iterates in Figure 4, left and right, respectively. We observe a better resolution in
the restored Bregman iterates.

To show numerical evidence that super-resolving an image from several low resolution images is
better than from only one we have tested our algorithm using just one frame (Figure 2, left). The
result is displayed in Figure 5 where we observe more noise and a less resolved image.
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