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Abstract

This paper is devoted to the decomposition of an image f into u + v, with u a
piecewise-smooth or “cartoon” component, and v an oscillatory component (texture or
noise), in a variational approach. The cartoon component u is modeled by a function
of bounded variation, while v, usually represented by a square integrable function,
is now being modeled by a more refined and weaker texture norm, as a distribution.
Generalizing the idea of Y. Meyer [32], where v ∈ F = div(BMO) = ˙BMO

−1
, we model

here the texture component by the action of the Riesz potentials on v that belongs to
BMO or to Lp. In an earlier work [26], the authors proposed energy minimization
models to approximate (BV,F ) decompositions explicitely expressing the texture as
divergence of vector fields in BMO. In this paper, we consider an equivalent more
isotropic norm of the space F in terms of the Riesz potentials, and study models
where the Riesz potentials of oscillatory components belong to BMO or to Lp, 1 ≤
p < ∞ (thus we consider oscillatory components in ˙BMO

α
or in Ẇα,p, with α < 0).

Theoretical, experimental results and comparisons to validate the proposed methods
are presented.

1 Introduction and motivations

We assume that a given grayscale image f is defined on Rn or Ω = [0, 1]n ⊂ Rn. When
f is defined on Ω, we assume that f is periodic and Ω is the fundamental domain. Denote
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the function space defined on Rn by X(Rn) and the function space defined on Ω by X(Ω).
When we make no distinction between X(Rn) or X(Ω), we write X to mean either X(Rn)
or X(Ω).

An important problem in image analysis is the decomposition of f into u + v, where u
is piecewise-smooth containing the geometric components of f and v is oscillatory, typically
texture or noise. A general variational method for decomposing f ∈ X1 +X2 into u+v, with
u ∈ X1 and v ∈ X2, can be defined by the minimization problem

inf
(u,v)∈X1×X2

{F1(u) + λF2(v) : f = u + v} , (1)

where F1, F2 ≥ 0 are functionals and X1, X2 are spaces of functions or distributions such
that F1(u) < ∞, and F2(v) < ∞, if and only if (u, v) ∈ X1 × X2. The constant λ > 0 is a
tuning parameter. A good model for (1) is given by a choice of X1 and X2 so that with the
given desired properties of u and v, we obtain F1(u) << F2(u) and F1(v) >> F2(v).

In more standard or canonical approaches, the space L2 is used to model v when f
denotes the image of a real scene, u is a piecewise-smooth approximation of f (made up of
homogeneous regions with sharp boundaries), and v is a residual (additive Gaussian noise or
small details). For example, in the Mumford and Shah model [35] for image segmentation,
f ∈ L∞(Ω) ⊂ L2(Ω) is split into u ∈ SBV (Ω) [2], a piecewise-smooth function with its
discontinuity set Ju composed of a union of curves of total finite length, and v = f−u ∈ L2(Ω)
representing noise or texture. The (non-convex) model in the weak formulation is [33]

inf
(u,v)∈SBV (Ω)×L2(Ω)

{∫
Ω\Ju

|∇u|2dx + αH1(Ju) + β‖v‖2
L2(Ω), f = u + v

}
, (2)

where H1 denotes the 1-dimensional Hausdorff measure, and α, β > 0 are tuning parameters.
With the above notations, the first two terms in the energy from (2) compose F1(u), while
the third term makes F2(v). A related decomposition is obtained by the total variation
minimization model of Rudin, Osher, and Fatemi [39] for image denoising. The (convex)
decomposition model is

inf
(u,v)∈BV×L2

{
|u|BV + λ‖v‖2

L2 , f = u + v
}

, (3)

where |u|BV (Ω) =
∫
|Du| (the semi-norm on the space BV ) [14], and λ > 0 is a tuning

parameter. This model is strictly convex and is easily solved in practice. However, it has
some limitations pointed out by several authors ([44], [45], [32] among others). If f = αχD

is a multiple of the characteristic function of a disk D centered at the origin and of radius R,
we would like the minimizer u to be f if R is not too small. However, for any R ≥ 1

λα
and

any finite λ > 0, we have [32]

u = (α− 1

λR
)χD, v =

1

λR
χD.

The model (3) is of the form |u|BV +λ‖f−u‖q
Lp , p ≥ 1, q ≥ 1, and the loss of intensity property

is always present when we have q > 1 while keeping the total variation. In particular, we
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no longer have an intensity loss if we substitute ‖ · ‖2
L2 in (3) with ‖ · ‖L2 or ‖ · ‖L1 , which

was proposed in the continuous case by Cheon, Paranjpye, Vese and Osher [10], and further
analysis in the L1 case was made by Chan and Esedoglu [9], among others).

We are interested in function spaces that give small penalties to oscillations. As noted
in [32], oscillatory components do not have small norms in L2 or L1. Moreover, Alvarez,
Gousseau and Morel [19], [1] argue that BV is not a good choice to model natural images.
To overcome these drawbacks, we can relax the condition on F1(u) = |u|BV or F2(v) = ‖v‖Lp ,
for p = 1 or p = 2. One way is to use a non-convex regularization in u (like in (2), [17],
[7], [48], [29] etc), that is weaker than | · |BV . Another way is to use weaker norms than the
Lp norm. Here we keep a convex BV regularization, and consider weaker norms than the
Lp norm, following [32]. Mumford and Gidas [34] also show that, under some assumptions,
natural images are drawn from probability distributions supported by generalized functions,
and not by functions.

Y. Meyer [32] questions the model (3) and proposes more refined versions, using weaker
norms of generalized functions to model v, instead of the ‖ · ‖2

L2 . Among the spaces proposed
in [32] to better model the texture component, is the space F and the minimization model

inf
(u,v)∈BV×F

{
|u|BV + λ‖v‖F , f = u + v

}
, (4)

where F is defined below.

Definition 1. In two dimensions, the space F consists of distributions v which can be written
as

v = div(~g) in D′, ~g = (g1, g2) ∈ BMO2, with

‖v‖F = inf
{
‖g1‖BMO + ‖g2‖BMO : v = div(~g) in D′, ~g ∈ BMO2

}
.

The space BMO is defined below.

Definition 2. We say that f ∈ L1
loc belongs to BMO [23], [41], if

‖f‖BMO = sup
Q

1

|Q|

∫
Q

|f − fQ|dx < ∞,

where Q is a square (it is sufficient to consider squares with sides parallel with the axes), and
fQ = |Q|−1

∫
Q

f(x)dx denotes the mean value of f over the square Q.

An equivalent norm of BMO can be obtained by taking the supremum over dyadic squares
and their 1/3 translations as in [15] by J. Garnett and P. Jones .

In [32], Y. Meyer also proposed two other function spaces to model the oscillatory compo-
nent v, denoted by G and E, with u ∈ BV ⊂ L2 ⊂ G ⊂ F ⊂ E. The space G is defined like
F but having ~g in (L∞)2 instead of (BMO)2, while E = Ḃ−1

∞,∞ = 4(Ḃ1
∞,∞) is a homogeneous

Besov space of regularity index −1.
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Meyer’s G-model is approximated and studied in [49]-[50], [37], [4], [3], [6], [36], [20], [51],
[11], [27], [25], among others. Meyer’s E model was studied and discussed in [5], [16] and
[24].

In [26], the third and fourth authors proposed several methods to numerically compute
the BMO-norm of a function defined on a bounded domain Ω, and approximate Meyer’s
F -model (4) by the convex variational relaxed problem,

inf
u∈BV (Ω), ~g∈BMO(Ω)2

{
|u|BV (Ω) + µ‖f − u− div~g‖2

L2(Ω) + λ
[
‖g1‖BMO(Ω) + ‖g2‖BMO(Ω)

]}
. (5)

As µ →∞, this model approximates the model (4). An equivalent model was also proposed
in [26], by setting ~g = ∇g, i.e. v = ∆g, and minimizing

inf
{
|u|BV (Ω) + µ‖f − u−∆g‖2

L2(Ω) + λ
[
‖gx‖BMO(Ω) + ‖gy‖BMO(Ω)

]
: u ∈ BV (Ω), g,4g ∈ L2(Ω),∇g ∈ BMO(Ω)2

}
.

(6)

Formulations (5) and (6) are still approximations to Meyer’s F -model. In these models,
a given image f is decomposed into u + v + r, where u ∈ BV (Ω) is piecewise smooth,
v = div(~g) ∈ F or v = ∆g = div(∇g) ∈ F consists of oscillatory components, and r =
f − u − v ∈ L2(Ω) is a residual. Numerically, r is negligible. The significance of r is also
discussed in [16].

Other related decomposition models using wavelets are by I. Daubechies and G. Teschke
[13], R. Coifman and D. Donoho [12], J. L. Starck, M. Elad, and D. Donoho [40], F Malgouyres
[31], S. Lintner and F. Malgouyres [30], Haddad and Meyer [20], Haddad, [21], or Gilles [18].

In this paper, we consider an equivalent norm for the space F in terms of the Riesz
potentials, and study models where the action of the Riesz potentials with the oscillatory
components belong to BMO. In other words, we model the oscillatory component v by
imposing that (−∆)α/2v belongs to BMO, for some α < 0, i.e. v ∈ ˙BMO

α
. If α = −1, we

recover the space F , but now the equivalent norm is defined in an isotropic way and we can
obtain exact decompositions (4), and equivalent decompositions as in (5) and (6).

As a byproduct and for comparison, we also consider models when (−∆)α/2v ∈ Lp,
1 ≤ p < ∞, i.e. v belongs to the homogeneous potential Sobolev space Ẇ α,p, for some α < 0.
The case 1 ≤ p < ∞ and α = −1 reduces to the case from [49], [50]. The case p = 2 and
α = −1 reduces to the model from [37] in an equivalent PDE formulation, while the more
general case with α < 0 and p = 2 reduces to the models proposed by L. Lieu [27], [28], and
also related with the proposal from [34].

As noted in [32] in more details, the space F = ˙BMO
−1

has also been used in an analysis

of the Navier-Stokes equations by Koch and Tataru [22], where ˙BMO
−1

is defined through
another isotropic equivalent norm in terms of the Carleson measure.
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2 The homogeneous spaces ˙BMO
α

and Ẇ α,p

In this section, we consider a general form of function spaces, and in the definitions we make
no distinction between periodic functions or functions defined on Rn. We recall the definitions
of the Riesz potential

Iαv(x) = (−4)α/2v(x) = ((2π|ξ|)αv̂(ξ))∨ (x) = kα ∗ v(x),

with kα(x) = ((2π|ξ|)α)∨ (x), where as usual, ˆ indicates the Fourier transform and ∨ indicates
the inverse Fourier transform.

We also recall the Riesz transforms of a function f in two dimensions:

(̂Rjf) (ξ) =
iξj

|ξ|
f̂(ξ), j = 1, 2,

having the property
(R1)

2 + (R2)
2 = −I,

where I is the identity operator. We note that the Riesz operators Rj are bounded in BMO:

‖Rjf‖BMO ≤ C0‖f‖BMO,

for some positive constant C0.
Our main motivation of this work is the following lemma, which provides an isotropic

equivalent norm for F , and easier to use in practice. This will also lead to generalizations.

Lemma 1. The norm ‖v‖F is equivalent with the norm ‖I−1v‖BMO = ‖(−∆)−1/2v‖BMO.

Proof. Again, we note that the Riesz operators Rj are bounded in BMO [41],

‖Rjf‖BMO ≤ C0‖f‖BMO,

for some positive constant C0.
We have:

v = −((R1)
2 + (R2)

2)v = −(−4)1/2(−4)−1/2((R1)
2 + (R2)

2)v

= R1(−4)1/2(−R1(−4)−1/2v) + R2(−4)1/2(−R2(−4)−1/2v)

= R1(−4)1/2g1 + R2(−4)1/2g2 = div(g1, g2),

with gj = −Rj((−4)−1/2v).
Then ‖gj‖BMO = ‖ −Rj((−4)−1/2v)‖BMO ≤ C0‖(−4)−1/2v‖BMO.
Therefore,

‖v‖F := inf
~g∈BMO×BMO, div~g=v

[
‖g1‖BMO + ‖g2‖BMO

]
≤ 2C0‖(−4)−1/2v‖BMO.
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For the converse inequality, suppose v = div(g1, g2), with g1, g2 ∈ BMO. Then

v = div(g1, g2) = (−4)1/2(R1g1 + R2g2),

therefore
(−4)−1/2v = R1g1 + R2g2,

and then

‖(−4)−1/2v‖BMO = ‖R1g1 + R2g2‖BMO ≤ ‖R1g1‖BMO + ‖R2g2‖BMO

≤ C0‖g1‖BMO + C0‖g2‖BMO = C0

[
‖g1‖BMO + ‖g2‖BMO

]
.

We conclude that

‖(−4)−1/2v‖BMO ≤ C0 inf
~g∈BMO×BMO, div~g=v

[
‖g1‖BMO + ‖g2‖BMO

]
= C0‖v‖F ,

and therefore the two norms are equivalent, since we have obtained

1

2C0

‖v‖F ≤ ‖(−4)−1/2v‖BMO ≤ C0‖v‖F .

Thus, for v ∈ F , the quantity ‖I−1v‖BMO = ‖(−∆)−1/2v‖BMO provides an equivalent
norm for ‖v‖F introduced in Definition 1. This isotropic norm can be used as an alternative
way to the models proposed and solved in [26]. Moreover, we are led to consider more general
cases, when v is modeled by the space ˙BMO

α
, α < 0, defined below.

Definition 3. (See Strichartz [42] and [43]) We say that a function (or distribution) v belongs
to the homogeneous space ˙BMO

α
= Iα(BMO), α ∈ R, if

‖v‖ ˙BMO
α := ‖Iαv‖BMO < ∞.

Equipped with ‖ · ‖ ˙BMO
α , ˙BMO

α
becomes a Banach space.

Elements in BMO or ˙BMO
α

that are different by a constant are identified. In other
words, we can assume that v has zero mean (

∫
v(x)dx = 0) if v ∈ BMO or v ∈ ˙BMO

α
.

The space ˙BMO
α

coincides with the classical Triebel-Lizorkin homogeneous space Ḟα
∞,2

[46]. An equivalent norm for ˙BMO
α

can also be obtained using the Carleson measure,
as in [22]: let Φ(x) = Ce−2π|x|2 , where C is chosen so that

∫
Φ(x) dx = 1, thus Φ(x) =

(e−2π|ξ|2)∨(x). Define Φt(x) = t−nΦ(x
t
), x ∈ Rn. For each v ∈ L1

loc, let wt(x) = Φ√
4t ∗ v(x).

We have the following characterization of BMO using Carleson measure [22], [41].
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Definition 4. We say that v ∈ BMO if

‖v‖BMO := sup
x,R

(
4π

Q(x, R)

∫
Q(x,R)

∫ R

0

t|∇(Φt ∗ v)|2 dtdy

)1/2

= sup
x,R

(
1

Q(x, R)

∫
Q(x,R)

∫ R2

0

|∇w|2 dtdy

)1/2

≈ sup
x,R

(
1

Q(x, R)

∫
Q(x,R)

∫ R2

0

∣∣(−∆)1/2w
∣∣2 dtdy

)1/2

< ∞,

(7)

where Q(x, R) denotes a square centered at x with side length R, and ”≈” denotes equivalent
norm.

Similarly, we have the following Carleson measure characterization of ˙BMO
α
, which could

be another alternative approach to the work in [26].

Definition 5. We say that v belongs to ˙BMO
α
, α ∈ R, if

‖Iαv‖BMO = sup
x,R

(
4π

Q(x, R)

∫
Q(x,R)

∫ R

0

t|∇(Φt ∗ (Iαv))|2 dtdy

)1/2

= sup
x,R

(
4π

Q(x, R)

∫
Q(x,R)

∫ R

0

t|∇(Iα(Φt ∗ v))|2 dtdy

)1/2

= sup
x,R

(
1

Q(x, R)

∫
Q(x,R)

∫ R2

0

|∇(Iαw)|2 dtdy

)1/2

≈ sup
x,R

(
1

Q(x, R)

∫
Q(x,R)

∫ R2

0

∣∣Iα+1/2w
∣∣2 dtdy

)1/2

< ∞.

(8)

Again, ”≈” denotes equivalent norms.

In the remaining part of this paper, we use Definition 3 for ˙BMO
α
. For comparison,

substituting BMO in Definition 3 by Lp, 1 ≤ p < ∞, we arrive to the homogeneous potential
Sobolev spaces, which we recall here.

Definition 6. We say that a function (or distribution) v belongs to the homogeneous po-
tential Sobolev space Ẇ α,p, for α ∈ R, 1 ≤ p ≤ ∞, if

‖v‖Ẇ α,p := ‖Iαv‖Lp < ∞.

Equipped with ‖ · ‖Ẇ α,p , Ẇ α,p becomes a Banach space.

Note that if g ∈ Ẇ α,p, α < 0, then
∫

Ω
g(x) dx = 0. Some useful properties of ˙BMO

α
and

Ẇ α,p are recalled below:
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• Is is an isometry from ˙BMO
α

and Ẇ α,p to ˙BMO
α−s

and Ẇ α−s,p, respectively, for all
s, α ∈ R.

• Let τδf(x) = f(δx), δ > 0, x ∈ Rn, be the dilation operator. We have

‖τδf‖Lp(Rn) = δ−
n
p ‖f‖Lp(Rn),

‖τδf‖ ˙BMO
α
(Rn) = δα‖f‖ ˙BMO

α
(Rn), ‖τδf‖Ẇ α,p(Rn) = δ−

n
p
+α‖f‖Ẇ α,p(Rn).

From this dilation property, we see that, for α < 0, ‖ · ‖Ẇ α,p provides a better separation
among different oscillations compared to ‖ · ‖Lp , and for the same α < 0, ‖ · ‖Ẇ α,p provides
a better separation among different oscillations compared to ‖ · ‖ ˙BMO

α . The experimental
results in this paper will support these remarks.

In [16], the authors have numerically considered the case when the oscillatory component
v belongs to Ḃα

p,∞, α < 0, as a generalization of the space E proposed by Y. Meyer. The

following remark shows that Ḃα
p,q and Ẇ α,p are in fact close [47].

Remark 1. If α ∈ R and p ≥ 1, then

Ḃα
p,1 ⊂ Ẇ α,p ⊂ Ḃα

p,∞. (9)

3 Modeling oscillations with ˙BMO
α

and Ẇ α,p

Given an image f , we would like to decompose it into u + v, where u ∈ BV , and v is
an element of ˙BMO

α
or Ẇ α,p, for α < 0 and 1 ≤ p < ∞. In other words, we consider

modeling oscillatory component v (of zero mean) as ∆g, where g ∈ ˙BMO
s

or Ẇ s,p, for
s < 2, 1 ≤ p < ∞, in the minimization problems for image decomposition

inf
u,g

{
|u|BV + µ‖f − u−∆g‖2

L2 + λ‖g‖ ˙BMO
s

}
, and (10)

inf
u,g

{
|u|BV + µ‖f − u−∆g‖2

L2 + λ‖g‖Ẇ s,p

}
. (11)

The model (10), when s = 1, is equivalent with the model (6). Since v belongs to ˙BMO
α

or
Ẇ α,p with α = s− 2, we will also consider the exact decomposition models,

inf
u
{|u|BV + λ‖f − u‖ ˙BMO

α} , and (12)

inf
u
{|u|BV + λ‖f − u‖Ẇ α,p} . (13)

Thus, when α = −1 in (12), we recover Meyer’s model (4). Theorems 1 and 2 from [16] can
be exactly carried out here to show existence of minimizers for the above models (10), (11),
(12) and (13).
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Remark 2. We note here the connections between the above decomposition models (12) and
(13) with the real and the complex methods of interpolation. These connections could be
applied to obtain additional information about the regularity of the data f .

In the real method of interpolation [38], we consider two Banach spaces X0, X1 which
are continuously embedded in a common Hausdorff topological vector space V . Given any
positive number λ, the K − functional is defined by

K(λ, f) = inf{‖u‖X0 + λ‖v‖X1 : f = u + v, u ∈ X0, v ∈ X1}, f ∈ X0 + X1.

Note that for each λ, K(λ, f) is a norm on X0 + X1 equivalent to ‖ · ‖X0+X1 .
Let 1 ≤ q ≤ ∞ and 0 < θ < 1. The real interpolation space (X0, X1)θ,q consists of all

f ∈ X0 + X1 which have finite norm

‖f‖θ,q =


(∫∞

0
(λ−θK(λ, f))q dλ

λ

)1/q

if 1 ≤ q < ∞,

supλ>0

{
λ−θK(λ, f)

}
if q = ∞.

Thus, we see that computing optimal decompositions f = u + v is necessary to study the
behavior of a given data f .

In the complex method of interpolation, introduced by A. Calderón [8], we consider a pair
of complex Banach spaces X0, X1, continuously embedded in a complex topological vector
space V . We then consider functions g(ξ), ξ = s + it defined on the strip 0 ≤ s ≤ 1 of
the ξ−plane, with values in X0 + X1 continuous and bounded with respect to the norm of
X0 + X1 in 0 ≤ s ≤ 1 and analytic in 0 < s < 1, and such that g(it) ∈ X0 is X0-continuous
and tends to zero as |t| → ∞, g(1+ it) ∈ X1 is X1−continuous and tends to zero as |t| → ∞.
In this linear space of functions denoted by G(X0, X1), we introduce the norm

‖g‖G = max[sup
t
‖g(it)‖X0 , sup

t
‖g(1 + it)‖X1 ].

Then G becomes a Banach space.
Given a real number s, 0 ≤ s ≤ 1, we consider the subspace Xs = [X0, X1]s of X0 + X1

defined by Xs = {f | f = g(s), g ∈ G(X0, X1)} endowed with the norm

‖f‖Xs = inf{‖g‖F , g(s) = f}.

Then Xs becomes a Banach space continuously embedded in X0 + X1.
We see that the complex method can also be used to analyze the behavior of the data

f ∈ X0 + X1, but without explicitly computing optimal decompositions f = u + v.

We discuss next scaling properties of the proposed minimization models. Recall the
dilating operator τδf(x) = f(δx), δ > 0. We have

|τδf |BV (Rn) = δ−n+1|f |BV (Rn), ‖τδf‖Lp(Rn) = δ−n/p‖f‖Lp(Rn), (14)

‖τδf‖ ˙BMO
α
(Rn) = δα‖f‖ ˙BMO

α,p
(Rn), ‖τδf‖Ẇ α,p(Rn) = δ−n/p+α‖f‖Ẇ α,p(Rn) (15)

Following [16], we would like to characterize the parameters µ and λ in the proposed models
(10), (11), (12) and (13) when the image f is being dilated by a factor δ (zoom in when
0 < δ < 1 and zoom out when δ > 1).
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Proposition 1. Denote

Jf,λ(u) = |u|BV (Rn) + λ‖f − u‖ ˙BMO
α
(Rn)

For a fixed f and λ > 0, let (uλ, vλ = f − uλ) be a minimizer for the energy Jf,λ. Then for
λ′ = λδ−n+1−α, (τδuλ, τδvλ) minimizes the energy Jτδf,λ′.

Proof. Since (uλ, vλ = f − uλ) is a minimizer, this implies

Jf,λ(uλ) = |uλ|BV (Rn) + λ‖vλ‖ ˙BMO
α
(Rn)

is minimal. Applying τδ to f , uλ and vλ using λ′, we have

Jτδf,λ′(τδuλ) = |τδuλ|BV (Rn) + λ′‖τδvλ‖ ˙BMO
α
(Rn)

= δ−n+1|uλ|BV (Rn) + λ′δα‖vλ‖ ˙BMO
α
(Rn).

We have δn−1Jτδf,λ′(τδuλ) is minimized when λ′ = λδ−n+1−α. Therefore, (τδuλ, τδvλ) is a
minimizer for Jτδf,λ′ with λ′ = λδ−n+1−α.

Similarly, when ‖ · ‖ ˙BMO
α is replaced by ‖ · ‖Ẇ α,p , we have the following result.

Proposition 2. For a fixed f and λ > 0, let (uλ, vλ = f −uλ) be a minimizer for the energy,

Kf,λ(u) = |u|BV (Rn) + λ‖f − u‖Ẇ α,p(Rn)

Then for λ′ = λδ(−n+1)−(−n/p+α), (τδuλ, τδvλ) minimizes Kτδf,λ′.

Using the same techniques, we obtain the following results for the models (10) and (11).

Proposition 3. Fix an f , µ > 0, and λ > 0.

1. Let (uµ,λ, vµ,λ) be a minimizer for the energy from (10), which can be rewritten as

Jf,µ,λ(u) = |u|BV (Rn) + µ‖f − u− v‖2
L2(Rn) + λ‖v‖ ˙BMO

α
(Rn)

Then for µ′ = µδ and λ′ = λδ−n+1−α, (τδuµ,λ, τδvµ,λ) minimizes Jτδf,µ′,λ′.

2. Let (uµ,λ, vµ,λ) be a minimizer for the energy from (11), which can be rewritten as

Kf,µ,λ(u) = |u|BV (Rn) + µ‖f − u− v‖2
L2(Rn) + λ‖v‖Ẇ α,p(Rn)

Then for µ′ = µδ and λ′ = λδ(−n+1)−(−n/p+α), (τδuµ,λ, τδvµ,λ) minimizes Kτδf,µ′,λ′.

4 Characterization of minimizers

In this section, we would like to show some results regarding the characterization of mini-
mizers for the exact decompositions (12) and (13) under some assumptions or minor modi-
fications. These can be seen as extensions and generalizations of the results from Lemma 4,
Thm. 3 (page 32), Proposition 4 (page 33) and Thm. 4 (page 4) from [32].
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4.1 The case |u|BV + λ‖Iα(f − u)‖2
BMO

We have the following equivalent formulations of BMO for different values of p ∈ [1,∞), see
[41] for example. For f ∈ L2

loc, we have

1

|Q|

∫
Q

|f(x)− fQ|dx ≤
( 1

|Q|

∫
Q

|f(x)− fQ|2dx
)1/2

,

thus if supQ

(
1
|Q| |f(x)−fQ|2dx

)1/2

≤ C, then f ∈ BMO. Conversely, if f ∈ BMO according

to Definition 2, then for any p < ∞, f is in Lp
loc and 1

|Q|

∫
Q
|f(x) − fQ|pdx ≤ cp‖f‖p

BMO, for
all squares Q.

Thus consider the problem with p = 2 in the definition of the equivalent BMO norm,
and we substitute (12) by

inf
u
F(u),

where

F(u) = |u|BV + λ sup
Q

1

|Q|

∫
Q

|kα ∗ (f − u)− (kα ∗ (f − u))Q|2dx, or

F(u) = |u|BV + λ sup
Q

1

|Q|
‖kα ∗ f − (kα ∗ f)Q − (kα ∗ u− (kα ∗ u)Q)‖2

L2(Q).

Denote 〈f, g〉L2(Q) :=
∫

Q
fg dx. Consider the quantity ‖ · ‖α,∗, (possibly attains ∞),

defined as

‖f‖α,∗ = sup
h∈BV,|h|BV 6=0

1
|Q̄|

〈
kα ∗ f − (kα ∗ f)Q̄, kα ∗ h− (kα ∗ h)Q̄

〉
L2(Q̄)

|h|BV

,

where Q̄ satisfies

Q̄ = arg max
Q

1

|Q|

∫
Q

|kα ∗ f − (kα ∗ f)Q|2dx, (16)

Definition 7. Let Q̄ satisfies (16). Given an α ∈ R, we say f satisfies property (P) if for
any h ∈ BV ,

lim
εn→0

1

|Qεn|
〈
kα ∗ f − (kα ∗ f)Qεn

, kα ∗ h− (kα ∗ h)Qεn

〉
L2(Qεn )

≥ 1

|Q̄|
〈
kα ∗ f − (kα ∗ f)Q̄, kα ∗ h− (kα ∗ h)Q̄

〉
L2(Q̄)

(17)

for some sequence of squares Qεn and of small parameters εn > 0 converging to zero, such
that

Qεn = arg max
Q

1

|Q|

∫
Q

|kα ∗ (f − εnh)− (kα ∗ (f − εnh))Q|2dx.

11



Proposition 4. Let α ∈ R and Q̄ be the square depending on α and f , such that

Q̄ = arg max
Q

1

|Q|

∫
Q

|kα ∗ f − (kα ∗ f)Q|2dx. (18)

(i) If ‖f‖α,∗ ≤ 1
2λ

, then u = 0 and v = f is a minimizer.
(ii) If u = 0 and v = f is a minimizer and if, in addition, f satisfies property (P) from

(17), then ‖f‖α,∗ ≤ 1
2λ

.

Proof.
(i) Let h ∈ BV such that

F(h) = |h|BV + λ sup
Q

1

|Q|

∫
Q

|kα ∗ (f − h)− (kα ∗ (f − h))Q|2dx < +∞.

Since ‖f‖α,∗ ≤ 1
2λ

, we have for all h ∈ BV ,

−2λ
1

|Q̄|
〈
kα ∗ f − (kα ∗ f)Q̄, kα ∗ h− (kα ∗ h)Q̄

〉
L2(Q̄)

≥ −|h|BV ,

Then

F(h) = |h|BV + λ sup
Q

1

|Q|
‖kα ∗ f − (kα ∗ f)Q − (kα ∗ h− (kα ∗ h)Q)‖2

L2(Q)

= |h|BV + λ sup
Q

1

|Q|

[
‖kα ∗ f − (kα ∗ f)Q‖2

L2(Q)

−2 〈kα ∗ f − (kα ∗ f)Q, kα ∗ h− (kα ∗ h)Q〉L2(Q) + ‖kα ∗ h− (kα ∗ h)Q‖2
L2(Q)

]
.

With Q̄ defined as in (18), we have

F(h) ≥ |h|BV + λ
1

|Q̄|
‖kα ∗ f − (kα ∗ f)Q̄‖2

L2(Q̄) +
1

|Q̄|
‖kα ∗ h− (kα ∗ h)Q̄‖2

L2(Q̄)

− 2λ
1

|Q̄|
〈
kα ∗ f − (kα ∗ f)Q̄, kα ∗ h− (kα ∗ h)Q̄

〉
L2(Q̄)

= |h|BV + λ sup
Q

1

|Q|
‖kα ∗ f − (kα ∗ f)Q‖2

L2(Q) +
1

|Q̄|
‖kα ∗ h− (kα ∗ h)Q̄‖2

L2(Q̄)

− 2λ
1

|Q̄|
〈
kα ∗ f − (kα ∗ f)Q̄, kα ∗ h− (kα ∗ h)Q̄

〉
L2(Q̄)

≥ F (0) +
1

|Q̄|
‖kα ∗ h− (kα ∗ h)Q̄‖2

L2(Q̄) ≥ F (0).

Therefore, u = 0 is a minimizer.
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(ii) Suppose now u = 0 and v = f is a minimizer and f satisfies property (P) from (17).
We have

|h|BV + λ sup
Q

1

|Q|

∫
Q

|(kα ∗ (f − h)− (kα ∗ (f − h))Q)|2dx

≥ λ sup
Q

1

|Q|

∫
Q

|kα ∗ f − (kα ∗ f)Q|2dx.

Thus

|h|BV + λ sup
Q

1

|Q|

{∫
Q

|kα ∗ k − (kα ∗ f)Q|2dx

− 2 〈kα ∗ f − (kα ∗ f)Q, kα ∗ h− (kα ∗ h)Q〉L2(Q)

+

∫
Q

|kα ∗ h− (kα ∗ h)Q|2dx
}
≥ λ sup

Q

1

|Q|

∫
Q

|kα ∗ f − (kα ∗ f)Q|2dx.

(19)

Let Q̂ be defined as the square depending on f and h that achieves the maximum in
supQ

1
|Q|

∫
Q
|kα ∗ (f − h)− (kα ∗ (f − h))Q|2dx.

Then we can rewrite (19) as

|h|BV + λ
1

|Q̂|

{∫
Q̂

|kα ∗ f − (kα ∗ f)Q̂|
2dx

− 2
〈
kα ∗ f − (kα ∗ f)Q̂, kα ∗ h− (kα ∗ h)Q̂

〉
L2(Q̂)

+

∫
Q̂

|kα ∗ h− (kα ∗ h)Q̂|
2dx
}
≥ λ sup

Q

1

|Q|

∫
Q

|kα ∗ f − (kα ∗ f)Q|2dx.

This implies

|h|BV + λ sup
Q

1

|Q|

∫
Q

|kα ∗ f − (kα ∗ f)Q|2dx

− 2λ
1

|Q̂|

〈
kα ∗ f − (kα ∗ f)Q̂, kα ∗ h− (kα ∗ h)Q̂

〉
L2(Q̂)

+ λ
1

|Q̂|

∫
Q̂

|kα ∗ h− (kα ∗ h)Q̂|
2dx ≥ λ sup

Q

1

|Q|

∫
Q

|kα ∗ f − (kα ∗ f)Q|2dx.

(20)

Changing h into εh in (20), dividing both sides by ε > 0, and taking ε → 0, we obtain that
for any h ∈ BV ,

1
|Q̄|

〈
kα ∗ f − (kα ∗ f)Q̄, kα ∗ h− (kα ∗ h)Q̄

〉
L2(Q̄)

|h|BV

≤ 1

2λ
.

Therefore, ‖f‖α,∗ ≤ 1
2λ

.
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Proposition 5. Assume now ‖f‖α,∗ > 1
2λ

.
(i) Suppose u is a minimizer and f − u satisfies the property (P) from (17). Then u

satisfies

1

2λ
|u|BV =

1

|Q̄|
〈
kα ∗ (f − u)− (kα ∗ (f − u))Q̄, kα ∗ u− (kα ∗ u)Q̄

〉
L2(Q̄)

and ‖kα ∗ (f − u)‖∗ =
1

2λ
,

(21)

where Q̄ = argmaxQ
1
|Q|‖kα ∗ (f − u)− (kα ∗ (f − u))Q‖2

L2(Q).

(ii) If u satisfies the properties in (21), then u is a minimizer.

Proof.
(i) Assume that u is a minimizer. Then, for any small ε and any h ∈ BV , we have

|u + εh|BV + λ sup
Q

1

|Q|
‖kα ∗ (f − (u + εh))− (kα ∗ (f − (u + εh)))Q‖2

L2(Q)

≥ |u|BV + λ sup
Q

1

|Q|
‖kα ∗ (f − u)− (kα ∗ (f − u))Q‖2

L2(Q).
(22)

Let Q̂ be the square that achieves the maximum in the left-hand-side of the above equation
(22), which depends on kα ∗ (f − (u + εh)). By triangle inequality we obtain

|u|BV + |ε||h|BV + λ
1

Q̂

[
‖kα ∗ (f − u)− (kα ∗ (f − u))Q‖2

L2(Q̂)

− 2ε
〈
kα ∗ (f − u)− (kα ∗ (f − u))Q̂, kα ∗ h− (kα ∗ h)Q̂

〉
L2(Q̂)

+ ε2‖kα ∗ h− (kα ∗ h)Q̂‖
2
L2(Q̂)

]
≥ |u|BV + λ sup

Q

1

|Q|
‖kα ∗ (f − u)− (kα ∗ (f − u))Q‖2

L2(Q).

Thus,

|ε||h|BV + λ sup
Q

1

|Q|
‖kα ∗ (f − u)− (kα ∗ (f − u))Q‖2

L2(Q)

− 2λε
1

|Q̂|

〈
kα ∗ (f − u)− (kα ∗ (f − u))Q̂, kα ∗ h− (kα ∗ h)Q̂

〉
L2(Q̂)

+ λε2 1

|Q̂|
‖kα ∗ h− (kα ∗ h)Q̂‖

2
L2(Q̂)

≥ λ sup
Q

1

|Q|
‖kα ∗ (f − u)− (kα ∗ (f − u))Q‖2

L2(Q).

14



Therefore,

|ε||h|BV + λε2 1

|Q̂|
‖kα ∗ h− (kα ∗ h)Q̂‖

2
L2(Q̂)

≥ 2λε
1

|Q̂|

〈
kα ∗ (f − u)− (kα ∗ (f − u))Q̂, kα ∗ h− (kα ∗ h)Q̂

〉
L2(Q̂)

.
(23)

Taking in (23) ε > 0, dividing by ε, and letting ε → 0, we have, for any h ∈ BV ,

|h|BV ≥ 2λ
1

|Q̄|
〈
kα ∗ (f − u)− (kα ∗ (f − u))Q̄, kα ∗ h− (kα ∗ h)Q̄

〉
. (24)

Similarly, with h = u in (23), ε < 0, dividing by ε, and letting ε → 0, we get

|u|BV ≤ 2λ
1

|Q̄|
〈
kα ∗ (f − u)− (kα ∗ (f − u))Q̄, kα ∗ u− (kα ∗ u)Q̄

〉
. (25)

Therefore, (24) and (25) imply (21).
(ii) Let w ∈ BV arbitrary, and let h = w − u ∈ BV , or w = u + h. We have

F(w) = |w|BV + λ sup
Q

1

|Q|
‖kα ∗ (f − w)− (kα ∗ (f − w))Q‖2

L2(Q)

= |u + h|BV + λ sup
Q

1

|Q|
‖kα ∗ (f − (u + h))− (kα ∗ (f − (u + h)))Q‖2

L2(Q)

= |u + h|BV + λ sup
Q

{ 1

|Q|
‖kα ∗ (f − u)− (kα ∗ (f − u))Q‖2

L2(Q)

− 2
1

|Q|
〈kα ∗ (f − u)− (kα ∗ (f − u))Q, kα ∗ h− (kα ∗ h)Q〉L2(Q)

+
1

|Q|
‖kα ∗ h− (kα ∗ h)Q‖2

L2(Q)

}
.

(26)

Let Q̄ be the square that achieves the supremum in

sup
Q

1

|Q|
‖kα ∗ (f − u)− (kα ∗ (f − u))Q‖2

L2(Q).

We have

|u + h|BV ≥ 2λ
1

|Q̄|
〈
kα ∗ (f − u)− (kα ∗ (f − u))Q̄, kα ∗ (u + h)− (kα ∗ (u + h))Q̄

〉
L2(Q̄)

.
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This implies

F(w) ≥ 2λ
1

|Q̄|
〈
kα ∗ (f − u)− (kα ∗ (f − u))Q̄, kα ∗ u− (kα ∗ u)Q̄

〉
L2(Q̄)

+ 2λ
1

|Q̄|
〈
kα ∗ (f − u)− (kα ∗ (f − u))Q̄, kα ∗ h− (kα ∗ h)Q̄

〉
L2(Q̄)

+ λ
1

|Q̄|
‖kα ∗ (f − u)− (kα ∗ (f − u))Q̄‖2

L2(Q̄)

− 2λ
1

|Q̄|
〈
kα ∗ (f − u)− (kα ∗ (f − u))Q̄, kα ∗ h− (kα ∗ h)Q̄

〉
L2(Q̄)

+ λ
1

|Q̄|
‖kα ∗ h− (kα ∗ h)Q̄‖2

L2(Q̄)

= |u|BV + λ
1

|Q̄|
‖kα ∗ (f − u)− (kα ∗ (f − u))Q̄‖2

L2(Q̄)

+ λ
1

|Q̄|
‖kα ∗ h− (kα ∗ h)Q̄‖2

L2(Q̄) ≥ F(u).

Therefore, u is a minimizer.

Property (P) from Definition 7 could hold for distributions f , when kα is a sufficiently
smooth kernel. If kα is not sufficiently smooth, we can introduce a very small amount of
smoothing by additional convolution with another kernel, say the Poisson kernel. In other
words, the quantity kα ∗ f could be substituted by Pδ ∗ kα ∗ f , where Pδ is the Poisson kernel
with some small δ > 0.

The following counter-examples in one dimension show that property (P) (with equality
or inequality) may not hold for instance for discontinuous functions f when α = 0 (thus
when kα ∗ f = f).

Example 1. Consider on R the intervals In = [2−n−1, 2−n], n ≥ 0, and let cn be the midpoint
of In. Let f : R → R be defined by f(x) = 0 outside of [0, 1], and

f(x) =


+(1− 2−n) if x ∈ [2−n−1, cn] (n ≥ 1),
−(1− 2−n) if x ∈ [cn, 2

−n] (n ≥ 1),
+1 if x ∈ [1

2
, 3

4
],

−1 if x ∈ [3
4
, 1].

Then ‖f‖BMO = 1 and [1
2
, 1] is the interval where the norm is attained. Now let h = −f

on [0, 1
2
] and h ≡ 0 otherwise. Then if ε > 0, f − εh attains its BMO norm on one of the

intervals [2−n−1, 2−n], n ≥ 1 (actually the norm increases to 1 + ε as n →∞).
But, for n ≥ 1,

1

2−n

∫
In

(f − fIn)(h− hIn)dx = 1,

while
1

2

∫
[ 1
2
,1]

(f − fI0)(h− hI0)dx = 0,
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thus (17) with equality = instead of inequality ≥ does not hold. A similar counter-example
can be constructed in two dimensions.

The following counter-example shows that inequality ≥ also may not hold in (17).

Example 2. Similarly, let In = [2−n−1, 2−n), n ≥ 0, and cn be the midpoint of the interval In.
Let Jn = [2−n−1, cn] and Kn = [cn, 2

−n). On I0 let f = h = χJ0 −χK0 and on In for n ≥ 1 let
f = (1 − 1

n
)(χJn − χKn). Splitting each Jn and each Kn into two half intervals denoted An

and Bn, let h = χAn − χBn . Then f and h have mean zero over all intervals In. Again we
assume that f and h are zero otherwise. We have Q̄ = I0 and

1

|Q̄|

∫
Q̄

f(x)h(x)dx = 1,

but for n ≥ 1,
1

|In|

∫
In

|f(x)− εh(x)|2dx = (1− 1

n
)2 + ε2

and
1

|In|

∫
In

f(x)h(x)dx = 0.

The following example shows that, at least in one dimension, if f and h are sufficiently
smooth (for example polynomials or analytic functions), then property (P) from Definition
7 holds with equality in (17).

Example 3. Let f and h be polynomials or analytic functions on a bounded interval I in
R. Let Q = [x0 − r, x0 + r], be an arbitrary interval included in I. Then the quantities
1
2r

∫
Q
|f − fQ|2dx, 1

2r
〈f − fQ, h − hQ〉L2(Q), and 1

2r

∫
Q
|h − hQ|2dx remain polynomials or

analytic functions of (x0, r). Let P (ε, x0, r) = 1
2r

∫
Q
|(f − εh)− (f − εh)Q|2dx, polynomial or

analytic function in (x0, r) and quadratic polynomial in ε. If (x0
0, r

0) achieves the maximum
of P (0, x0, r), and if (xε

0, r
ε), a bounded sequence, achieves the maximum of P (ε, x0, r), then

there is a subsequence (xεn
0 , rε) and εn → 0 such that limεn→0 P (εn, x

εn
0 , rεn) = P (0, x0

0, r
0),

thus property (P) is satisfied in this case.

4.2 The case of Ẇ α,p

Consider here the minimization

inf
u
{F(u) = |u|BV + λ‖f − u‖Ẇ α,p} , (27)

for some α < 0, and 1 ≤ p < ∞. Thus F(u) is the sum of two non-differentiable functionals
at the origin. Assume that we “regularize” the second term (this is often done in practice, for
valid computational calculations) by smoothing at the origin the Lp norm; thus substituting

‖f − u‖Lp by Rδ(f − u) =
{∫ √

δ2 + |f − u|2pdx
}1/p

, for small δ > 0.
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Therefore, substitute the problem (27) by the regularized functional

inf
u
{Fδ(u) = |u|BV + λRδ(Iα(f − u))} . (28)

Let f ∈ V = Ẇ α,p, and let V ′ be the topological dual of V . We have V ′ = Ẇ−α,p′
, where

p′ is the conjugate of p. Denote by 〈·, ·〉 the duality pairing for V and V ′.
Problem (28) can be seen as a particular case of a more general case, where Rδ is a

Gateaux-differentiable functional on the Banach space V , with continuous Gateaux deriva-
tive. For (any) fixed f ∈ V , we have R′

δ(f) ∈ V ′ and 〈R′
δ(f),−v〉 = limε→0

Rδ(f−εv)−Rδ(f)
ε

, for
any v ∈ V . For any f ∈ V , define now the quantity ‖ · ‖α,∗ (in [0, +∞]) as

‖f‖α,∗ = sup
h∈BV, |h|BV 6=0

〈R′
δ(kα ∗ f), kα ∗ h〉

|h|BV

.

We also assume that for any f, h ∈ V ,

Rδ(f − εh) = Rδ(f) + ε 〈R′
δ(f),−h〉+ O(ε2)

in a neighborhood of the origin. Using the notation g(ε) = Rδ(f − εh) for fixed f and h, this
is equivalent with

g(ε) = g(0) + εg′(0) + O(ε2),

where g′(0) = 〈R′
δ(f),−h〉.

We have the following characterizations of minimizers for (28), a more general case than
(27). Note that these are more general than the quadratic case considered in [32]. For the
converse implications below, to show that some u is a minimizer, we need more conditions

on Rδ related to convexity. The functional Rδ =
{∫ √

δ2 + |f − u|2pdx
}1/p

, defined in the

particular case of interest to us, satisfies the assumptions mentioned above and the additional
ones that are given below.

Proposition 6.
(i) Assume that u = 0 is a minimizer of (28). Then ‖f‖α,∗ ≤ 1

λ
.

(ii) Assume that ‖f‖α,∗ ≤ 1
λ
, and assume that R′′

δ exists and it is a continuous bilinear
form on V , satisfying R′′

δ (v)(h, h) ≥ 0, for any v, h ∈ V . Moreover, we assume that in a
neighborhood of the interval [−1, 1] we have

g(ε) = g(0) + εg′(0) +
ε2

2
g′′(ξε),

with ξε between 0 and ε, and g′′(ξε) = R′′
δ (f − ξεh)(−h,−h) ≥ 0.

Then u = 0 is a minimizer of (28).

Proof.
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(i) For any ε ∈ R and any h ∈ BV , we have

|εh|BV + λRδ(kα ∗ (f − εh)) ≥ λRδ(kα ∗ f),

|ε||h|BV + λ
[
Rδ(f) + ε 〈R′

δ(kα ∗ f),−kα ∗ h〉+ O(ε2)
]
≥ λRδ(f),

|ε||h|BV + λε 〈R′
δ(kα ∗ f),−kα ∗ h〉+ λO(ε2) ≥ 0.

Taking ε > 0, dividing by ε and letting ε → 0, we obtain

|h|BV ≥ λ 〈R′
δ(kα ∗ f), kα ∗ h〉 , thus

1

λ
≥ ‖f‖α,∗.

(ii) Conversely, take any h ∈ BV . Then using the assumptions, we have

|h|BV + λRδ(kα ∗ (f − h)) ≥ λ 〈R′
δ(kα ∗ f), kα ∗ h〉+ λRδ(kα ∗ f)

+ λ 〈R′
δ(kα ∗ f),−kα ∗ h〉+

λ

2
g′′(ξ1)

= λRδ(kα ∗ f) +
λ

2
g′′(ξ1) ≥ λRδ(kα ∗ f).

Therefore, u = 0 is a minimizer.

Proposition 7. Assume that ‖f‖α,∗ > 1
λ
.

(i) If u is a minimizer, then

1

λ
= ‖f − u‖α,∗ and

1

λ
|u|BV = 〈R′

δ(kα ∗ (f − u)), kα ∗ u〉 .

(ii) Suppose that u ∈ BV satisfies

1

λ
= ‖f − u‖α,∗ and

1

λ
|u|BV = 〈R′

δ(kα ∗ (f − u)), kα ∗ u〉 ,

and assume in addition the same conditions from Proposition 6 (ii) on the regularity and
convexity of Rδ. Then u is a minimizer.

Proof. By the assumption and the previous result, u = 0 cannot be a minimizer.
(i) If u ∈ BV is a minimizer, then

|u + εh|BV + λRδ(kα ∗ (f − (u + εh))) ≥ |u|BV + λRδ(kα ∗ (f − u)).

Thus

|u + εh|BV + λRδ(kα ∗ (f − u)) + λε 〈R′
δ(kα ∗ (f − u),−kα ∗ h〉+ O(ε2)

≥ |u|BV + λRδ(kα ∗ (f − u)).
(29)

By triangle inequality, we also obtain

|u|+ |ε||h|BV + λRδ(kα ∗ (f − u)) + λε 〈R′
δ(kα ∗ (f − u),−kα ∗ h〉+ O(ε2)

≥ |u|BV + λRδ(kα ∗ (f − u)).
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After terms cancellation and division by ε > 0, taking ε → 0, we obtain that for any h ∈ BV ,

|h|BV ≥ λ 〈R′
δ(kα ∗ (f − u), kα ∗ h〉 ,

therefore
1

λ
≥ ‖f − u‖α,∗. (30)

Taking now h = u in (29), with −1 < ε < 0, after cancellations and division by ε < 0 and
letting ε → 0, we obtain

|u|BV ≤ λ 〈R′
δ(kα ∗ (f − u), kα ∗ u〉 . (31)

Combining (30) and (31), we obtain the desired results,

1

λ
= ‖f − u‖α,∗,

1

λ
|u|BV = 〈R′

δ(kα ∗ (f − u), kα ∗ u〉 .

(ii) Conversely, by the assumptions and taking ε = 1, we have

|u + h|BV + λRδ(kα ∗ (f − (u + h))) = |u + h|BV + λRδ(kα ∗ (f − u))

+ λ 〈R′
δ(kα ∗ (f − u),−kα ∗ h〉+

λ

2
g′′(ξ1)

≥ λ 〈R′
δ(kα ∗ (f − u)), kα ∗ (u + h)〉+ λRδ(kα ∗ (f − u))

+ λ 〈R′
δ(kα ∗ (f − u),−kα ∗ h〉+

λ

2
g′′(ξ1)

= |u|BV + λRδ(kα ∗ (f − u)) +
λ

2
g′′(ξ1)

≥ |u|BV + λRδ(kα ∗ (f − u)),

thus u is a minimizer.

5 Numerical minimization algorithms

For numerical studies, we consider spaces of functions or distributions that are periodic
and Ω = [0, 1]2 is the fundamental domain in R2. We give in this section the ingredients
for minimizing in practice the proposed decomposition models from Section 3, in a gradient
descent and purely PDE approach. In other words, we formally compute the associated Euler-
Lagrange equations, which are then discretized and solved by finite differences. In a future
work, related minimization models will be described and solved in a non-PDE framework,
using a multiscale bottom-up approach.

5.1 Algorithms for the decompositions using BV and ˙BMO
α

For α < 0, recall the minimization problem (12) for exact decompositions

inf
u

{
E(u) = |u|BV (Ω) + λ‖Iα(f − u)‖BMO(Ω) = |u|BV (Ω) + λ‖kα ∗ (f − u)‖BMO(Ω)

}
, (32)
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where we recall that kα(x) = ((2π|ξ|)α)∨ (x), and here the dimension is n = 2.
We show the steps to solve (32). Using the classical definition of the BMO norm, we

re-write (32) as

inf
u∈BV (Ω)

{
E(u) =

∫
Ω

|∇u|dx + λ sup
Q

1

|Q|

∫
Q

|kα ∗ (f − u)− cQ|dx
}

,

where α < 0, Q is a square with sides parallel with the axes, and cQ denotes a constant which
depends on kα ∗ (f − u) in Q. Here we take cQ to be the median of kα ∗ (f − u) in Q.

The main steps of the algorithm are as follows (following [26]):

1. Start with an initial guess u0.

2. If un is computed, n ≥ 0, evaluate kα ∗ (f − un) using the Fast Fourier Transform and
find a square Q = Qn that achieves the BMO norm of kα ∗ (f − u) in Ω (by one of the
methods proposed in [26]; here, we use the dyadic squares and their 1/3 translations,
as explained in [15]).

3. Fix Q the square obtained at the previous step, denote by χQ the characteristic function
of this square Q, and minimize with respect to u = un+1 the energy

E(u) =

∫
Ω

|∇u|dx + λ
1

|Q|

∫
Ω

∣∣∣kα ∗ (f − u)− cQ

∣∣∣χQdx, (33)

and the associated Euler-Lagrange equation in u = un+1 can be computed, and we
obtain using gradient descent

∂u

∂t
=

λ

|Q|
kα ∗ sign [(kα ∗ (f − u)− cQ) χQ] + div

( ∇u

|∇u|

)
, (34)

with Q = Qn and u = un+1. Note that cQ is the median of kα ∗ (f − u) in Q.

4. Repeat steps 2, and 3 using equation (34), until convergence (update un+1 and Qn+1

each time and repeat).

Similarly, for the minimization problem (10), again with s < 2 (α = s− 2),

inf
u,g

{
A(u, g) = |u|BV (Ω) + µ‖f − u−∆g‖2

L2(Ω) + λ‖Isg‖BMO(Ω)

= |u|BV (Ω) + µ‖f − u−∆g‖2
L2 + λ‖ks ∗ g‖BMO(Omega)

}
,

(35)

re-written as

inf
u,g

{
A(u, g) =

∫
Ω

|∇u|dx + µ

∫
Ω

|f − u−4g|2dx + λ sup
Q

1

|Q|

∫
Q

|ks ∗ g − cQ|dx
}

,

where cQ is the median of ks ∗ g over the square Q, the main steps are as follows.

21



1. Start with initial guess u0, g0.

2. If un and gn are computed, n ≥ 0, evaluate ks ∗ gn using the Fast Fourier Transform
and find a square Q = Qn that achieves the BMO norm of ks ∗ g in Ω (by one of the
methods proposed in [26]).

3. Fix Q the square obtained at the previous step, denote by χQ the characteristic function
of this square Q, and minimize with respect to u = un+1 and g = gn+1 the energy

A(u, g) =

∫
Ω

|∇u|dx + µ

∫
Ω

|f − u−4g|2dx + λ
1

|Q|

∫
Ω

|ks ∗ g − cQ|χQdx,

by solving the associated Euler-Lagrange equations using gradient descent

∂u

∂t
= 2µ(f − u−4g) + div

( ∇u

|∇u|

)
,

∂g

∂t
= − λ

|Q|
ks ∗ sign [(ks ∗ g − cQ) χQ] + 2µ4(f − u−4g)

with Q = Qn and u = un+1, g = gn+1. Note that cQ is the median of ks ∗ (f − u) in Q.

4. Repeat steps 2, and 3 using equation (34), until convergence (update un+1, gn+1 and
Qn+1 each time and repeat).

5.2 Algorithms for the decompositions using BV and Ẇ α,p

For α < 0, recall the minimization problem (13)

inf
u

{
E(u) = |u|BV (Ω) + λ‖Iα(f − u)‖Lp(Ω) = |u|BV (Ω) + λ‖kα ∗ (f − u)‖Lp(Ω)

}
, (36)

which is again minimized using Euler-Lagrange equation and gradient descent, as follows.
Solve to steady state

∂u

∂t
= λ‖kα ∗ (f − u)‖1−p

Lp(Ω)kα ∗
[
|kα ∗ (f − u)|p−2kα ∗ (f − u)

]
+ div

( ∇u

|∇u|

)
,

computing the convolutions using the Fast Fourier Transform.
Finally, for the minimization problem (11), recalled here with s < 2 (α = s− 2),

inf
u,g

{
A(u, g) = |u|BV (Ω) + µ‖f − u−∆g‖2

L2(Ω) + λ‖Isg‖Lp(Ω)

= |u|BV (Ω) + µ‖f − u−∆g‖2
L2(Ω) + λ‖ks ∗ g‖Lp(Ω)

}
,

(37)

we use again the associated Euler-Lagrange equations and gradient descent, formally written
as

∂u

∂t
= 2µ(f − u−4g) + div

( ∇u

|∇u|

)
,
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∂g

∂t
= −λ‖ks ∗ g‖1−p

Lp(Ω)ks ∗
[
|ks ∗ g|p−2ks ∗ g

]
+ 2µ4(f − u−4g).

In practice, the above Euler-Lagrange equations are discretized using finite differences.
The calculations are stable and the numerical energy decreases versus iterations.

6 Numerical results and comparisons

Figure 1 shows three test Barbara images, to be used in our experimental calculations.
Figure 2 shows a decomposition of f1 from Figure 1 using the Rudin-Osher-Fatemi model

(3). Note the loss of intensity on the face area.
Figure 3 shows a decomposition of f1 from Figure 1 using the model (5) from [26]. Here

oscillatory component is modeled as v = div(~g), ~g ∈ (BMO)2. We a obtain an improvement
in the loss of intensity, however vertical and horizontal textures are still kept in u.

Figure 4 shows a decomposition of f1 from Figure 1 using the model (6) from [26]. Here
the oscillatory component is modeled as v = ∆g, ∇g ∈ (BMO)2. The decomposition is now
more isotropic, textures are well captured in v including non-repeated patterns. This comes
from the property of BMO.

Figure 5 shows a decomposition of f1 from Figure 1 using the model (11). Here the
oscillatory component is modeled as v = ∆g, g ∈ Ẇ s,p, s = 0.2, and p = 1. The parameters
used are: µ = 1, and λ = 1. Now, mostly repeated patterns are captured in v.

Figure 6 shows a decomposition of f2 from Figure 1 using the model (10). Here the
oscillatory component is modeled as v = ∆g, g ∈ ˙BMO

s
with s = 1. The parameters used

are: µ = 1, and λ = 0.0011. As remarked earlier, non-repeated patterns are also captured in
v.

Figures 7-8 show decompositions of f2 and f3 from Figure 1 using the model (11). Here
the oscillatory component is modeled as v = ∆g, g ∈ Ẇ s,p with s = 0, and p = 1. The
parameters used are: µ = 1, and λ = 1.

Figures 9-10 show decompositions of f2 and f3 from Figure 1 using the model (11). Here
the oscillatory component is modeled as v = ∆g, g ∈ Ẇ s,p with s = 1, and p = 1. The
parameters used are: µ = 1, and λ = 0.0005.

Figure 11 shows a decomposition of f2 from Figure 1 using the model (11). Here the
oscillatory component is modeled as v = ∆g, g ∈ Ẇ s,p with s = 1.5, and p = 1. The
parameters used are: µ = 10, and λ = 5e¬05.

Figure 12 shows a decomposition of f2 from Figure 1 using the model (12). Here the

oscillatory component v ∈ ˙BMO
−0.5

, λ = 200.
Figure 13 shows a decomposition of f2 from Figure 1 using the model (13). Here the

oscillatory component v ∈ Ẇ α,p, α = −0.1, p = 1, λ = 1.25.
Figure 14 shows a decomposition of f2 from Figure 1 using the model (13). Here the

oscillatory component v ∈ Ẇ α,p, α = −0.5, p = 1, λ = 15.
Figure 15 shows a decomposition of f2 from Figure 1 using the model (13). Here the

oscillatory component v ∈ Ẇ α,p, α = −0.6, p = 1, λ = 30.
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f1 f2

f3

Figure 1: Test images to be decomposed.
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u v+100

Figure 2: A decomposition of f1 from Figure 1 using the Rudin-Osher-Fatemi model (3). (3)

u2 v2+100

Figure 3: A decomposition of f1 from Figure 1 using the model (5) from [26]. Here oscillatory
component is modeled as v = div(~g), ~g ∈ (BMO)2.
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u3 v3+100

Figure 4: A decomposition of f1 from Figure 1 using the model (6) from [26]. Here the
oscillatory component is modeled as v = ∆g, ∇g ∈ (BMO)2.

u4 v4+100

Figure 5: A decomposition of f1 from Figure 1 using the model (11). Here the oscillatory
component is modeled as v = ∆g, g ∈ Ẇ s,p, s = 0.2, and p = 1. The parameters used are:
µ = 1, and λ = 1.
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u f−u+100

Figure 6: A decomposition of f2 from Figure 1 using the model (10). Here the oscillatory
component is modeled as v = ∆g, g ∈ ˙BMO

s
with s = 1. The parameters used are: µ = 1,

and λ = 0.0011.

u f−u+100

Figure 7: A decomposition of f2 from Figure 1 using the model (11). Here the oscillatory
component is modeled as v = ∆g, g ∈ Ẇ s,p with s = 0, and p = 1. The parameters used are:
µ = 1, and λ = 1.
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u

f−u+100

Figure 8: A decomposition of f3 from Figure 1 using the model (11). Here the oscillatory
component is modeled as v = ∆g, g ∈ Ẇ s,p with s = 0, and p = 1. The parameters used are:
µ = 1, and λ = 1.
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u f−u+100

Figure 9: A decomposition of f2 from Figure 1 using the model (11). Here the oscillatory
component is modeled as v = ∆g, g ∈ Ẇ s,p with s = 1, and p = 1. The parameters used are:
µ = 1, and λ = 0.0005.
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