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Abstract

We demonstrate, through separation of variables and estimates from the semi-
classical analysis of the Schrödinger operator, that the eigenvalues of an elliptic operator
defined on a compact hypersurface in Rn can be found by solving an elliptic eigenvalue
problem in a bounded domain Ω ⊂ Rn. The latter problem is solved using standard
finite element methods on the Cartesian grid. We also discuss the application of these
ideas to solving evolution equations on surfaces, including a new proof of a result due
to Greer (J. Sci. Comput. 29(3) 2006).

1 Introduction

In this paper we demonstrate that the eigenvalues of an elliptic operator

−∇S · (a(x)∇Su) = λu for all x ∈ Σ (1)

defined on a compact hypersurface Σ ⊂ Rn can be found by solving a related elliptic eigen-
value problem Lu = λu on a rectangular domain in Rn. Here, ∇S is the surface gradient
operator and ∇S· the surface divergence operator. From a computational point of view,
there are at least three benefits to this approach.

• Simplicity. No triangularization of Σ is needed. Σ is represented implicitly as the
zero level-set of a function φ and geometric quantities of interest related to Σ, such as
the directions of principal curvature, are calculated using standard finite differences on
the Cartesian grid.

• Ease of implementation. One finds the eigenvalues by solving a standard finite
element problem on the Cartesian grid.

• Dependence on reliable numerical schemes. The finite element method has well-
known convergence rate estimates for the eigenfunctions and eigenvalues of elliptic
problems [19].

Fast, accurate, and reliable methods for solving (1) are of interest in shape analysis and
medical imaging. In recent years, several numerical studies have been carried out investi-
gating how effectively the spectrum of the Laplace-Beltrami operator characterizes surfaces
[17]. The methods used in these studies typically rely on a triangulation or parametrization
of the surface. Such an approach is taken in [17]; in the words of the authors:

“Even though this method seems to be very simple, it is quite tricky to implement” [17],
p. 352.
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Our conversion of (1) to an eigenvalue problem defined in a domain containing Σ is
motivated by the success of the level-set method in computing moving fronts and solving
PDE on surfaces. The level-set method was introduced in [16] as a numerical method for
tracking interfaces. From a computational point of view, the effectiveness of the method
comes from its conversion of front-tracking problems to PDE which can be solved using
standard numerical methods. Given an initial interface Γ(0) = {x : φ(x, 0) = 0} and a
velocity law for the evolution of the interface, the level-set method evolves Γ(0) by first
finding g : Ω → R such that Γ(0) = {x : g(x) = 0} and then solving

φt + ~v · ∇φ = 0 in Ω such that φ(·, t = 0) = g(·) (2)

in a domain containing the interface. In (2), the velocity ~v represents an extension of the
velocity law by which the interface is known to evolve. The interface is recovered at each
time t through the formula Γ(t) = {x : φ(x, t) = 0}. By solving (2) on the Cartesian grid,
interface motion is computed without explicitly tracking points on the interface. For this
reason, the level-set method is considered an Eulerian approach to interface tracking.

Level-set methods for solving PDE on surfaces were introduced in [2]. Rather than solv-
ing such equations directly via triangulation or parametrization of the surface, the authors
represent the surface as the zero level set of a function ψ and solve a related problem using
finite differences in a domain containing the surface. The solution to the domain problem
solves the appropriate surface PDE on each level set simultaneously. Using this approach,
equations such as

ut = ∆Su and ut = ∇S ·
(
∇Su

|∇Su|

)
.

are solved using finite differences on the Cartesian grid and applied to problems in image
processing. As an example, the solution to ut = ∆Su is found by solving

ut =
1

|∇ψ|
∇ · (P∇ψ∇u|∇ψ|) (3)

in a domain containing the surface. Since P∇ψ is the projection I−∇ψ⊗∇ψ
|∇ψ|2 and ψ is a level-set

function of Σ, all quantities needed to solve the above equation can be computed easily and
accurately using finite differences. It can be shown [4] that the solution to (3) solves the heat
equation on each level-set of ψ. We see in this example, as well as in the level-set approach
to (2), that problems originally defined on surfaces may be extended to problems defined
on domains using implicit surfaces. The advantage of this approach is that sometimes the
domain problem can be solved using standard numerical schemes, such as finite difference
methods.

The methods introduced in [2] were applied to the computation of geodesics, Wulff shapes,
and other objects in [4]. Martin Burger extended the framework of [2] to solve elliptic PDE,
including those of the form

−∇S · (a∇Su) + cu = f, (4)

using finite elements in [3]. Given a level-set function ψ of Σ, Burger demonstrates that the
solution of (4) can be found as the restriction to Σ of the function u∗ which solves (4) on
each level-set of ψ in a domain Ω ⊃ Σ, subject to a Neumann boundary condition. Applying

2



integration by parts and the co-area formula, Burger shows that u∗ is the unique function
satisfying ∫

Ω

A〈P∇ψ∇u, P∇ψ∇v〉+ Cuv dx =

∫
Ω

Fv dx (5)

for all test functions v in the appropriate Sobolev space. Here A(x) = â(x)|∇ψ(x)|, C(x) =
ĉ(x)|∇ψ(x)|, F (x) = f̂(x)|∇ψ(x)|, and â, ĉ, f̂ : Ω → R are extensions of the functions
a, c, f : Σ → R. Using this weak formulation, Burger solves for u∗ using the finite element
method with a highly adaptive mesh which is fine near Σ and coarse far from Σ. This
approach provided some motivation for the weak formulation of our problem found in section
2.2.

The remainder of this paper is organized as follows. In Section 2.1, we construct an
elliptic differential operator L, defined in a tubular neighborhood Σδ of Σ, with the property
that the eigenvalues of

Lu = λu in Σδ and u = 0 on ∂Σδ (6)

are {λΣ
m + λrj}∞j,m=1. Here, {λΣ

m}∞m=1 are the eigenvalues of (1) and {λrj}∞j=1 are the eigen-
values of a known one dimensional problem. This result is established by separation of
variables, with motivation coming from the relation between the spherical harmonics, which
are eigenfunctions of the surface Laplacian on Sn−1, and the eigenfunctions of the Laplacian
in {x ∈ Rn : |x| < 1} subject to zero Dirichlet data [1, 6]. We proceed, in Section 2.2, to
introduce a weak formulation of (6), which we use for our numerical implementation.

In Section 3, we prove our main result, which demonstrates the existence of an elliptic
differential operator L, defined in an arbitrary domain Ω containing Σ, having the property
that the eigenvalues of

Lu = λu in Ω and u = 0 on ∂Ω (7)

are approximately {λΣ
m + λrj}∞j,m=1. This result extends the ideas from Section 2.1 to a

more general setting and demonstrates that the eigenvalues of (1) can be found numerically
by discretizing (7) on the Cartesian grid. The key idea is to design L in such a way that
eigenfunctions corresponding to small eigenvalues decay rapidly to zero away from Σ; it then
follows from the spectral theory of self-adjoint operators that the eigenvalues of (7) are close
to those of (6), for the same differential operator L, and the result follows. Using estimates
from the semi-classical analysis of the Schrödinger operator [13], we make this rigorous in
the case where L has a large single well potential concentrated near Σ.

In Section 4, we outline a simple finite element method for solving (7) based on the weak
formulation from section 2.2 and discuss different approaches to calculating the eigenvalues
of (1) from those of (7). Numerical results in two and three space dimensions, obtained by
solving (7) on a square (2-D) or cube (3-D), are presented in Section 5. Future challenges
are discussed in Section 6. We examine applications of the results from Section 2.1 to the
numerical solution of evolution equations on Σ in Appendices A and B. Appendix A contains
a simplified proof of a special case of the main result from [11] and Appendix B contains
useful formulas. In Appendix C we collect some results from spectral theory which are used
in Section 3.
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2 Local analysis

We use the following notation throughout the paper.

Notation.

• 〈·, ·〉 = Euclidean inner product.

• Rn ⊃ Σ = compact hypersurface.

• Ω = domain containing Σ.

• φ = signed distance function to Σ; φ < 0 inside of Σ.

• Σδ = {x : |φ(x)| < δ}.

• Pxv = v − 〈∇φ(x), v〉∇φ(x) = projection of v onto (∇φ(x))⊥.

• ∇S = surface gradient on Σ.

• ∇S· = surface divergence on Σ.

2.1 Separation of variables

In this section, we relate the eigenfunctions {fn} and eigenvalues {λΣ
n} of (1) to the eigen-

values of (6) using a separation of variables argument. Here, L is an elliptic operator in Σδ

which we define later and the separation of variables is performed by looking for eigenfunc-
tions of L which factor into the product of an eigenfunction of (1) and an eigenfunction of
a one dimensional problem related to L. In order to guarantee that the original eigenvalue
problem (1) is elliptic, we assume throughout this paper that

a ∈ L∞(Σ) and a ≥ c > 0. (8)

The main result of this section is Theorem 2.1, which states that the functions {fn ·gm}∞n,m=1,
where {gm} is a basis of eigenfunctions for a related one dimensional problem, form a com-
plete set of eigenfunctions for (6). As a result, the eigenvalues of (6) are {λΣ

n + λrm}∞n,m=1,
where {λrm} are the eigenvalues of the one dimensional problem. Later in this section, we
clarify what is meant by the expression fn ·gm. In Section 3, we extend Theorem 2.1 to more
general domains, providing justification for the numerical method presented in Section 4.

Our first step towards proving Theorem 2.1 is to define L and examine some of its
properties. In order to define L, we first mention some basic facts regarding the geometry of
Σδ and the formulation of these facts in terms of the signed distance function φ. The most
important of these is that for δ appropriately small, each x ∈ Σδ can be written uniquely as

x = s+ φ(x)ν(s), where s ∈ Σ and ν(s) = outer unit normal at s [10]. (9)

This decomposition can be written in terms of φ as

x = (x− φ(x)∇φ(x)) + φ(x)∇φ(x).
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We may also express the operator ∇S easily using φ. For x ∈ Σ and smooth u defined in a
neighborhood of Σ, we have that

∇Su(x) = ∇u− 〈∇u(x),∇φ(x)〉∇φ(x).

We are now nearly ready to define the linear differential operator L, which we write as L =
LΣ +Ln. The operators LΣ and Ln are defined so that if h(x) = f(x−φ(x)∇φ(x)) · g(φ(x)),
then

LΣ(h) = g · LΣ(f) and Ln(h) = f · Ln(g). (10)

We impose this requirement on LΣ and Ln in order to perform the separation of variables
used in the proof of Theorem 2.1. We make some preliminary definitions.

Definition 2.1. If u : Σδ → R is a smooth function, we define the function ur : Σ → R
according to ur(s) := u(s+ r∇φ(s)). We then set (∇r

Su)(s) := (∇Su
r)(s) for s ∈ Σ.

Geometrically, one obtains ur by taking the restriction of u to the r level-set and pro-
jecting it onto Σ using (9). We can express (∇r

Su) using the chain rule as

(∇r
Su)(s) = P∇φ(s)

[
∇u|s+r∇φ(s)(I + rD2φ(s))

]
. (11)

We now define LΣ and Ln by describing their action on smooth functions.

Definition 2.2. (Definition of LΣ and Ln) For any x ∈ Σδ and smooth function u : Σδ → R,
Ln(u) and LΣ(u) are calculated according to

Ln(u) |x = −〈D2u(x)∇φ(x),∇φ(x)〉+
1

ε2
· (φ(x))2 u(x)

and
LΣ(u) |x = −∇S ·

(
a∇S

(
uφ(x)

))
|x−φ(x)∇φ(x) .

In section 3 we discuss the significance of the 1
ε2

parameter appearing in the definition
of Ln. The analysis performed here is independent of ε. It follows from (9) that for smooth
functions u

〈D2u(x)∇φ(x),∇φ(x)〉 =
d2

dr2
u(x+ r∇φ(x)) |r=0 .

From this, we see that Ln is a second-order differential operator acting only in the normal
direction to Σ, while from Definition 2.2 we see that LΣ is a second-order differential operator
acting only “along Σ”. In Example 2.1, we compute ur,∇r

Su, Ln(u), and LΣ(u) in a particular
case.

Example 2.1

Let Σ = S1, so that φ(x) = |x| − 1, and set a :≡ 1. In this case, it can be shown that

LΣ = − d2

dθ2
and Ln = − d2

dr2
+

1

ε2
(r − 1)2.
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Define the function u : R2 → R using polar coordinates according to u(r, θ) = r2 cos θ.
Identifying the point (cos θ, sin θ) with θ ∈ [0, 2π), it follows from Definition 2.1 that

ul(θ) = (l + 1)2 cos θ and (∇l
Su)(θ) = −(l + 1)2 sin θ(− sin θ, cos θ).

We use these calculations to find that

LΣu |(r,θ) = r2 cos θ and Lnu |(r,θ) = −2 cos θ +
1

ε2
(r − 1)2r2 cos θ.

We now show that Ln and LΣ satisfy (10).

Proposition 2.1. (L separates variables) If h(x) = f(x−φ(x)∇φ(x))g(φ(x)), then LΣ(h) =
g · LΣ(f) and Ln(h) = f · Ln(g).

Proof. the result follows directly from Definition 2.2.

Applying Proposition 2.1 in the case u(x) = fn(x − φ(x)∇φ(x)), where fn is an eigen-
function of (1) with eigenvalue λn, we find that LΣu = λnu and Lnu = 1

ε2
(φ)2 u. We now

use Proposition 2.1 to prove Theorem 2.1, which relates the eigenvalues and eigenfunctions
of (6) to those of (1). Theorem 2.1 forms the basis of our numerical method, since it shows
how the eigenfunctions and eigenvalues of (1) can be computed from those of L with zero
Dirichlet boundary data.

Theorem 2.1. Let Σδ be such that (9) holds at every point. Then the eigenvalues {λm,n}∞m,n=1

and eigenfunctions {hm,n}∞m,n=1 of (6) factor and sum, respectively:

hm,n(x) = fn(x− φ(x)∇φ(x))gm(φ(x))

λm,n = λΣ
n + λrm.

Here, the {fn} are eigenfunctions of (1) and form an orthonormal basis for L2(Σ),
while the {λΣ

n} are the corresponding eigenvalues. The {gm} are eigenfunctions of the one-
dimensional problem

−y′′(t) +
1

ε2
· t2y(t) = λy for t ∈ (−δ, δ) and y(−δ) = y(δ) = 0 (12)

and form an orthonormal basis for L2((−δ, δ)), while the {λrm} are the corresponding eigen-
values.

Proof. We assume that a is smooth; by working with the weak form of the problem, discussed
in Section 2.2, we can prove the result for rougher a. First note that we may express any
eigenfunction u as

u(x) =
∞∑
n=0

fn(x− φ(x)∇φ(x))kn(φ(x)) (13)

for some functions {kn}, since the {fn} form an orthonormal basis of H1(Σ) [18]. Since L
is elliptic (see Corollary 8.1), any eigenfunction u ∈ C∞(Σ̄δ) [7] and uniformly rapid decay
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of the {kn} (with respect to φ) follows from integration by parts. This decay allows us to
differentiate (13) term by term pointwise and, applying Proposition 2.1, we find that

Lu =
∞∑
n=0

λΣ
nfnkn − fnk

′′
n +

1

ε2
(φ2)fnkn.

Since by hypothesis Lu = λu, we then have

∞∑
n=0

λΣ
nfnkn − fnk

′′
n +

1

ε2
(φ2)fnkn = λ

∞∑
n=0

fnkn

and the result follows.

We remark here that the design of L was motivated by the solution of the eigenvalue
problem

−∆u = λu x ∈ {z ∈ R3 : |z| < 1} such that u = 0 for x ∈ S2. (14)

Separating variables and looking for eigenfunctions of the form

f(x) = g

(
x

|x|

)
h(|x|)

we find [1, 6] that g : S2 → R is a spherical harmonic, i.e. it satisfies, for a constant α,

−∆Sg = αg x ∈ S2,

while h : [0, 1] → R is a function which is regular at r = 0 and satisfies

(r2h′)′ − αh+ λr2h = 0 and h(1) = 0.

This demonstrates that (14) can be reduced to solving an eigenvalue problem on the unit
sphere and another one on an interval. Our approach to (1) proceeds in the opposite direc-
tion, since we convert a problem originally defined on Σ into one defined in a domain. We
are faced with additional complications which do not arise in the study of (14) since we make
no assumptions on the curvature of Σ. While it may appear that our approach complicates
the matter, our goal is to convince the reader that it yields computational benefits.

2.2 Weak formulation

We now provide a weak formulation of (7) valid for domains Ω which are not necessarily
tubular neighborhoods of Σ but in which (9) holds. We use this weak form in Section 4 to
solve a modified version of (6) numerically using the finite element method. Our first step
is to introduce an inner product, which we denote by (·, ·)Ω, in which L is symmetric. This
is the content of Definition 2.3 and Proposition 2.2. All definitions in this section are given
for domains in which (9) holds.

7



Definition 2.3. Let u and v be bounded functions. We define (u, v)Ω by the formula

(u, v)Ω =

∫ ∞

−∞

∫
Ω

⋂
{x:φ(x)=r}

u(s+ r∇φ(x))v(s+ r∇φ(x)) dS(s) dr.

Here, dS is surface measure on Σ. Using the notation introduced in Definition 2.2, the above
can be rewritten as

(u, v)Ω =

∫ ∞

−∞

∫
Ω

⋂
{x:φ(x)=r}

ur(s)vr(s) dS(s) dr.

The inner product (·, ·)Ω can be written as a weighted L2(Ω) inner product. Before we
give the general result, we consider a special case.

Example 2.2.

Let Σ = Sn−1 and Ω = Rn. By a change of variables, we have

(u, v)Ω =

∫ ∞

0

∫
Sn−1

u(rs)v(rs) dS(s) dr

which can be rewritten as

(u, v)Ω =

∫
Rn

u(x)v(x)

|x|n−1
dx.

The following result is a generalization of Example 2.2 to smooth surfaces Σ.

Proposition 2.2. Suppose that (9) holds inside Ω. For x ∈ Ω, let {κi(x)}n−1
i=1 be the principal

curvatures of the level-set φ(x) at x and let u and v be bounded measurable functions. Then

(u, v)Ω =

∫
Ω

[
n−1∏
i=1

(1− φ(x)κi(x))

]
u(x)v(x) dx (15)

The proof relies on (9) and consists of an application of the coarea formula and a formula
relating surface measure on {x : φ(x) = r}, dSr, to dS. We relate dSr to dS in the following
lemma.

Lemma 2.1. Let dSr be surface measure on {x : φ(x) = r}. Then

dSr(x) =

[
n−1∏
i=1

(1− φ(x)κi(x))

]−1

dS(x− r∇φ(x)).

Proof. If γ(u1, ..., un−1) is a local parameterization of Σ, then γ(u1, ...un−1)+r∇φ(γ(u1, ..., un−1))
is a local parametrization of {x ∈ Rn : φ(x) = r}. For vectors v = (v1, ...vn−1) we define
A(v) as the matrix with columns {γu1(v), ..., γun−1(v)}; it follows that dS is given locally by

dS(γ(u)) =
[
det (A(u) · A(u)t)

]1/2
du1...dun−1
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and dSr is given locally by

dSr(γ(u) + r∇φ(γ(u))) =
[
det ((I + r ·D2φ)(A)(At)(I + r ·D2φ)t)

]1/2
du1...dun−1

= det[I + r ·D2φ(γ(u))] dS. (16)

We now rewrite (16) in terms of the principal curvatures of Σ at γ(u). Recall that D2φ(γ(u))
is the Gauss map of Σ at γ(u) and so can be written as [14]

D2φ(γ(u)) =


κ1(γ(u))

κ2(γ(u))
.

.
κn−1(γ(u))

0

 (17)

with respect to the basis {e1, ..., en−1,∇φ}, where the {ei} are directions of principal curva-
ture. Substituting (17) into (16), we find that

dSr =

[
n−1∏
i=1

(1 + rκi(γ(u)))

]
du1...dun−1 (18)

Next, recall the following relationship between the principal curvatures {κi} at the points
x ∈ Σ and x+ r∇φ(x) [10]:

κi(x+ r∇φ(x)) =
κi(x)

1 + rκi(x)
(19)

We can establish (19) by differentiating the identity

∇φ(x) = ∇φ(x+ r∇φ(x))

to arrive at
D2φ(x) = D2φ(x+ r∇φ(x))[I + rD2φ(x)].

Substituting (19) into (18), the lemma is proven.

Proof of Proposition 2.2. Use Lemma 2.1 to rewrite the integrals over Σ which define (·, ·)Ω

as integrals over level-sets {x : φ(x) = r}. Recalling that |∇φ(x)| ≡ 1 for x ∈ Ω, the
proposition then follows from the co-area formula [1, 8, 22].

The key feature of (·, ·)Ω is that L is symmetric with respect to it. This follows from
integration by parts, as we now show.

Proposition 2.3. Suppose that (9) holds inside Ω. Then L is symmetric with respect to
(·, ·)Ω: if u, v ∈ C2

c (Ω), then (Lu, v)Ω = (u, Lv)Ω.
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Proof. Applying Fubini’s theorem and the divergence theorem for Riemannian manifolds,
we integrate by parts and find that (Lu, v)Ω equals∫ ∞

−∞

∫
Ω

⋂
{x:φ(x)=r}

a(s)〈∇r
Su,∇r

Sv〉+
(
∂

∂r
u · ∂

∂r
v

)
|s+r∇φ(s)+

1

ε2
·r2ur(s)vr(s) dS(s) dr. (20)

which is symmetric in u and v. In the above, ∂
∂r
u = 〈∇u,∇φ〉.

Note that the above integration by parts could not be performed if we worked with the
standard L2 inner product on Ω. Motivated by Proposition 2.3, we define the following
function space and bilinear form used for a weak formulation of (7).

Definition 2.4. For u ∈ C2(Ω̄), we set

‖u‖2
Ω := (Lu, u)Ω and a(u, v)Ω := (Lu, v)Ω.

We define W (Ω) to be the closure of C2
c (Ω) with respect to ‖ · ‖Ω.

We now give the weak formulation of (7). In Section 4, we use this formulation to solve
(7) using the finite element method.

Definition 2.5. u ∈ W (Ω) is a weak solution of (7) if

a(u, v)Ω = λ(u, v)Ω for all v ∈ W (Ω). (21)

The following example demonstrates how to express a(·, ·)Ω as an integral over Ω. We
use a modified version of this expression for a(·, ·)Ω in Section 4 when we solve (7) using the
finite element method. A discussion of these modifications can be found in a remark after
the example.

Example 2.3.

In this example, we use (11) and Proposition 2.2 to write a(·, ·)Ω as an integral over Ω. For
simplicity, we work in three space dimensions. We assume the domain of definition of a has
been extended to Ω by defining the function a to be constant along normals to Σ:

a(x) = a(x− φ(x)∇φ(x)) for x ∈ Ω. (22)

Recalling (20), we break up a(u, v) according to∫ ∞

−∞

∫
Ω∩{x:φ(x)=r}

a(s)〈∇r
Su,∇r

Sv〉+
∂

∂r
u|s+r∇φ(s) ·

∂

∂r
v|s+r∇φ(s) +

1

ε2
· r2ur(s)vr(s) dS(s) dr

= I + II + III.

It follows immediately from Proposition 2.2 that

II =

∫
Ω

[(1− φ(x)κ1(x))(1− φ(x)κ2(x))] 〈∇u(x),∇φ(x)〉〈∇v(x),∇φ(x)〉 dx.
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Next, we express I as an integral over Ω. Let {e1(x), e2(x)} be the directions of principal
curvature for the φ(x) level-set at the point x. Since the directions of principal curvature at
x are the same as those at x− φ(x)∇φ(x) [10], we apply (17) and (11) to find that

(∇r
Su)(s) = (1 + rκ1(s))〈∇u|s+r∇φ, e1〉e1 + (1 + rκ2(s))〈∇u|s+r∇φ, e2〉e2.

Using (19) to rewrite the above expression in terms of the {κi(x)}, it follows from Proposition
2.2 that

I =

∫
Ω

a(x)
1− φ(x)κ2(x)

1− φ(x)κ1(x)
〈∇u(x), e1〉〈∇v(x), e1〉+a(x)

1− φ(x)κ1(x)

1− φ(x)κ2(x)
〈∇u(x), e2〉〈∇v(x), e2〉 dx.

Remark 2.1. in practice, we often work in domains for which (9) does not hold everywhere.
In such cases, we solve a modified form of (21), which comes from regularizing (·, ·)Ω and
a(·, ·)Ω. Justification for this regularization is found in Section 3. Using the notation from
the previous example, we regularize a(·, ·)Ω according to

I =

∫
Ω

a(x)
|1− φ(x)κ2(x)|

|1− φ(x)κ1(x)|+ α
〈∇u(x), e1〉〈∇v(x), e1〉 dx

+

∫
Ω

a(x)
|1− φ(x)κ1(x)|

|1− φ(x)κ2(x)|+ α
〈∇u(x), e2〉〈∇v(x), e2〉 dx

and

II =

∫
Ω

|(1− φ(x)κ1(x))(1− φ(x)κ2(x))|〈∇u(x),∇φ(x)〉〈∇v(x),∇φ(x)〉 dx.

Here, α << 1 is a small parameter used to avoid division by zero. We introduce absolute
value signs in order to ensure the positivity of (u, u)Ω and a(u, u)Ω. The regularized bilinear
form is computed easily using standard finite differences on the Cartesian grid.

3 Global analysis

In this section we prove Theorem 3.1, an extension of Theorem 2.1 to smooth domains Ω ⊃ Σ
in which (9) may not hold everywhere. An important consequence of Theorem 3.1, which we
pursue in sections 4 and 5, is that the eigenvalues of (1) can be found numerically by solving
certain elliptic eigenvalue problems defined on a square (2-D) or cube (3-D) containing Σ.

Because we work with general smooth domains Ω ⊃ Σ for which (9) does not necessarily
hold, the differential operator L may not be well-defined throughout our domain. For this
reason, we consider in this section the eigenvalue problem L̃u = λu where L̃ represents an
extension of L to Ω. We assume this eigenvalue problem can be written as

L̃u := − 1

w(x)

n∑
i,j=1

(bijuxj
)xi

+
1

ε2
ψ2(x)u = λu in Ω and u = 0 on ∂Ω (23)

and make several assumptions regarding the coefficients of L̃. In Appendix B, we demonstrate
how to write L in divergence form. In order that weak solutions of (23) satisfy (23) pointwise

11



a.e., we assume that the coefficients bij : Ω → R are Lipschitz continuous, ψ : Ω → R is a
bounded measurable function, and w : Ω → R is a bounded measurable function which also
satisfies w(x) ≥ c > 0. We also assume that bij = bji and

c1|ξ|2 ≤
n∑

i,j=1

bijξiξj ≤ c2|ξ|2 in Ω

so that L̃ is an elliptic operator which is self-adjoint with respect to the inner product

〈u, v〉L2(Ω,w) =

∫
Ω

w(x)u(x)v(x) dx.

Our final assumption is that L̃ = L in Σδ∗ for some δ∗ > 0 and ψ(x) · φ(x) ≥ 0 for all x ∈ Ω,
with equality only on Σ.

Throughout this section, {λεj(Ω)}∞j=1 refers to the eigenvalues of (23) and {λεj(Σδ∗)}∞j=1

the eigenvalues of (6). We let {uεj(Ω)}∞j=1 be a set of eigenfunctions of (23) which form an
orthonormal basis of L2(Ω) with respect to 〈·, ·〉L2(Ω,w) and {uεj(Σδ∗)}∞j=1 be a set of eigen-
functions of (6) which form an orthonormal basis of L2(Σδ∗) with respect to 〈·, ·〉L2(Σδ∗ ,w) =
(·, ·)Σδ∗ .

We now state our main result.

Theorem 3.1. Let Ω ⊃ Σ be a smooth domain. For each j ∈ N, λεj(Ω) → 1
ε
+ λΣ

j as ε→ 0
in the sense that

lim
ε→0

∣∣∣∣λεj(Ω)−
(

1

ε
+ λΣ

j

)∣∣∣∣ · eDj
ε = 0

for some constant Dj > 0.

The first step in the proof of Theorem 3.1 is to show that, as ε→ 0 in (23), the eigenvalues
of (23) become exponentially close to those of (6) for δ = δ∗. This is the content of Lemmas
3.1 and 3.2, the proofs of which depend heavily on the rapid decay of the eigenfunctions
of (23) to zero away from Σ. These lemmas use the decay estimates from the semiclassical
analysis of the Schrödinger operator stated in Proposition C.4. The second step of the proof
of Theorem 3.1 is to establish, using Theorem 2.1, that as ε → 0 the eigenvalues of (6) are
approximately 1

ε
+ λΣ

j . This is the content of Lemma 3.3.

Remark 3.1. The effect of the single well potential can be seen graphically in Figure 12.

Proof of Theorem 3.1. We break the proof up into the three lemmas mentioned above.
Throughout, we refer to results from Appendix C. Our first result bounds the distance
between each eigenvalue of (23) and the spectrum of (6).

Lemma 3.1. Let spec(L|Σδ∗ ) be the set of eigenvalues of (6). There exists positive constants
Cj and Dj such that

dist
(
λεj(Ω), spec(L|Σδ∗ )

)
≤ Cje

−Dj/ε. (24)
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Proof. Let χ ∈ C∞(R) be a smooth cutoff function such that χ ≡ 1 for x ∈ [−δ∗/2, δ∗/2]
and χ ≡ 0 for |x| ≥ δ∗. By Lemma 3.3 and Proposition C.1 we have that

λεj(Ω) ≤ λεj(Σδ∗) ≤ Kj

(
1

ε
+ λΣ

j

)
. (25)

It then follows from Proposition C.4 that there exists positive constants Cj and Dj such that

‖χ · uεj(Ω)‖L2(Σδ∗ ,w) ≥ 1− Cje
−Dj/ε. (26)

Estimates (25) and (26), along with standard estimates for second order elliptic PDE [10],
imply that

‖(L− λεj(Ω))(χ · uεj(Ω))‖L2(Σδ∗ ,w) ≤ Cje
−Dj/ε.

Proposition C.2, applied to L : H2(Σδ) ∩H1
0 (Σδ) → L2(Σδ), then implies that

dist(λεj(Ω), spec(L|Σδ∗ )) ≤
Cje

−Dj/ε

1− Cje−Dj/ε
≤ C ′

je
−D′

j/ε.

Our next result improves Lemma 3.1 and provides an upper bound on |λεj(Ω)− λεj(Σδ∗)|.

Lemma 3.2. For all j ∈ N there exists positive constants Cj and Dj such that

|λεj(Ω)− λεj(Σδ∗)| ≤ Cje
−Dj/ε. (27)

Proof. The result follows from a proof by contradiction. Let m∗ be the first index for
which (27) does not hold for any constants Cj, Dj > 0, and pick M large and α small. By
assumption we can find a sequence {εk} converging to zero such that

|λεkm∗(Ω)− λεkm∗(Σδ∗)| > Me
−α
εk . (28)

It then follows from (28) and Proposition C.1 that

|λεkl (Ω)− λεkn (Σδ∗)| > Me
−α
εk for n ≥ m∗ and l ≤ m∗.

We recall (26) and apply Proposition C.2 to find that for some positive constants C and D

∞∑
j=m∗

〈χuεkl (Ω), uεkj (Σδ∗)〉2L2(Σδ∗ ,w) ≤ Ce−D/εk for all l ≤ m∗. (29)

Estimates (29) and (25) imply that {χuεk1 (Ω), ..., χuεkm∗(Ω)} are approximately linear combina-
tions of {uεk1 (Σδ∗), ..., u

εk
m∗−1(Σδ∗)}. Next, we show that the functions {χuεk1 (Ω), ..., χuεkm∗(Ω)}

are approximately orthogonal with respect to 〈·, ·〉L2(Σδ∗ ,w):∣∣〈χuεkj (Ω), χuεkl (Ω)〉L2(Σδ∗ ,w)

∣∣ ≤ δjl + Ce−D/εk for j, l ≤ m∗. (30)

In order to show this, note that Proposition C.4 implies that

〈(1− χ)uεkj (Ω), (1− χ)uεkj (Ω)〉L2(Ω,w) ≤ Ce−D/εk for j ≤ m∗ (31)
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and so it follows from the Cauchy-Schwartz inequality that∣∣〈(1− χ)uεkj (Ω), χuεkl (Ω)〉L2(Ω,w)

∣∣ ≤ Ce−D/εk for j, l ≤ m∗. (32)

Estimate (30) follows from (31), (32), and the orthonormality of the {uεj(Ω)} with respect
to 〈·, ·〉L2(Ω,w).

We now use (26), (29), and (30) to derive a contradiction. For 1 ≤ j ≤ m∗ define the
vector uεj ∈ Rm∗−1 according to

uεj = (〈χuεj(Ω), uε1(Σδ∗)〉L2(Σδ∗ ,w), ..., 〈χuεj(Ω), uεm∗−1(Σδ∗)〉L2(Σδ∗ ,w)).

Let 〈·, ·〉 denote the Euclidean inner product on Rm∗−1. It follows from (25), (29), and (30)
that for any δ > 0, we can find k0 so that k > k0 implies that∣∣〈uεkj , uεkl 〉∣∣ ≤ δjl + δ and

∣∣〈uεkj , uεkj 〉∣∣ ≥ 1− δ for 1 ≤ j, l ≤ m∗. (33)

Since we have m∗ vectors, {uεkj }m
∗

j=1, which belong to Rm∗−1, the vectors are linearly depen-
dent. We write

uεkm∗ = cεk1 u1 + ...+ cεkm−1um∗−1

and note that (33) implies that

1 ≥ 〈uεkm∗ , u
εk
m∗〉 = 〈

m∗−1∑
i=1

cεki u
εk
i ,

m∗−1∑
i=1

cεki u
εk
i 〉

=
m∗−1∑
i,j=1

cεki c
εk
j 〈u

εk
i , u

εk
j 〉 ≥ (1− δ)

m∗−1∑
i=1

(cεki )2 − (m∗ − 1)(m∗ − 2)(δ)

from which it follows that

m∗−1∑
i=1

(cεki )2 ≤ 1 + (m∗ − 1)(m∗ − 2)(δ)

1− δ
≤ K

for some fixed constant K. This implies that for k > k0

〈uεkm∗ , u
εk
m∗〉 = 〈uεkm∗ ,

m∗−1∑
i=1

cεki u
εk
i 〉 ≤ (m∗ − 1)δ

√
K

which contradicts (33) if δ is chosen sufficiently small.

Lemmas 3.1 and 3.2 relate the eigenvalues of (23) to those of (6). Our final lemma, which
completes the proof of Theorem 3.1, describes the behavior of the eigenvalues of (6) as ε→ 0.

Lemma 3.3. For each j ∈ N there exists positive constants Cj and Dj such that

|λεj(Σδ∗)− (
1

ε
+ λΣ

j )| ≤ Cje
−Dj/ε. (34)
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Proof. Let {λjε}∞j=1 be the the eigenvalues of the one dimensional problem

−y′′(x) +
1

ε2
x2y(x)− λy(x) = 0 for all x ∈ (−δ∗, δ∗) and y(−δ∗) = y(δ∗) = 0. (35)

In order to prove Lemma 3.3 it suffices, by Theorem 2.1, to show that for j = 1, 2∣∣∣∣λjε − 2j − 1

ε

∣∣∣∣ ≤ Cje
−Dj/ε. (36)

We will in fact outline how to establish (36) for all j ∈ N. The proof of (36) follows from a
comparison of the eigenvalues of (35) and those of

−y′′(x) +
1

ε2
x2y(x)− λy(x) = 0 for all x ∈ (−∞,∞). (37)

Recall that the eigenvalues of (37) are
{

2j+1
ε

}∞
j=0

, which correspond to normalized eigenfunc-

tions
{√

ε hj

(
x√
ε

)}∞
j=0

[9]. The functions {hj}∞j=0 are the Hermite functions [9] and can be

written as

hj(x) = pj(x)e
−x2

2 (38)

where pj is a polynomial of degree j. These functions form an orthonormal basis for L2(R)
and satisfy

−h′′j (x) + x2hj(x)− (2j + 1)hj(x) = 0 for all x ∈ (−∞,∞).

Let Sε denote the set of eigenvalues of (35). Our first step towards proving (36) is to show
that for all j ∈ N

dist

(
2j − 1

ε
, Sε

)
≤ Cje

−Dj
ε (39)

for some positive constants Cj and Dj. Due to the rapid decay of the
√
ε hj

(
x√
ε

)
away from

the origin, (39) follows just as in the proof of Lemma 3.1. We may then prove (36) in the
same manner as Lemma 3.2.

4 Finite element implementation

In Section 3 we proved Theorem 3.1, which relates the eigenvalues of (23) for a bounded
domain Ω ⊃ Σ to those of (1). In practice, we solve the regularized weak eigenvalue problem
discussed in Remark 2.1. The regularized problem is solved using the finite element method,
chosen because of its well-known convergence estimates for elliptic eigenvalue problems. For
completeness, we include one such result here.

Theorem 4.1. ([19], p.230) Let L be a second order elliptic operator with smooth coefficients
and let our finite element space F be of degree (k − 1). If we denote the eigenvalues of L
by {λl} and the approximate eigenvalues by {λhλ}, where h is the mesh size, then there is a
constant δ such that

λl ≤ λhl ≤ λl + 2δh2(k−1)(λl)
k
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We now outline the main steps of our approach, and then discuss each in detail.

Overview of numerical method.

1. Choose mesh and finite dimensional subspace W (Ω)h.

2. Compute φ.

3. Construct the stiffness and load matrices, S and I.

S = (Sij) where Sij = a(ui, uj)Ω

and
I = (Iij) where Iij = (ui, uj)Ω

where {uk} is a basis for W (Ω)h and (·, ·)Ω, a(·, ·)Ω are the regularized bilinear forms
discussed at the end of Section 2.2.

4. Solve Sx = λIx.

5. Use the output of the step 4 to solve (1).

Details of numerical method.

1. Throughout the examples in the section 5, Ω is a square (2-D) or cube (3-D), and
we use the Cartesian grid with spacing h as our mesh. Our space of finite elements,
W (Ω)h, is given, for general space dimension n, by

W (Ω)h = {f : Ω → R : f ∈ C(Ω̄) and n-linear on each cube with side length h}.

Theorem 4.1 suggests that second order accuracy is possible.

2. As suggested by Theorem 3.1, the signed distance function used in computations only
needs to be accurate near Σ. Such a function can be found, for example, as the solution
of

φt + sgn(φ)(|∇φ| − 1) = 0 (40)

with initial data of the form

φ(x, 0) =

{
< 0 if x is inside Σ

> 0 if x is outside Σ

after a short amount of time. This follows from the method of characteristics. We
solve (40) using second order ENO [15].

3. Recall from example 2.2 that in order to compute a(·, ·)Ω, the function a : Σ → R
needs to be extended to a function defined on Ω which satisfies (22) near Σ. We take
our extension to be the solution of

∂u

∂t
+ sign(φ)〈∇u,∇φ〉 = 0 x ∈ Ω (41)
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u(·, t = 0) is an arbitrary extension of a.

after a short amount of time. This method was introduced in [5].

Computing (·, ·)Ω and a(·, ·)Ω requires computing integrals over Ω. We compute these
integrals over each cube with side length h using the trapezoidal rule. Since one needs to
know the value of φ and its derivatives at each point used in the integration, we felt this
choice of integration scheme was a good compromise between accuracy and efficiency.
All relevant geometric quantities are computed using standard finite differences on the
Cartesian grid.

4. We solve Sx = λIx using Matlab’s eigs routine. The eigs routine can calculate the
first five eigenvalues of a sparse 45, 000× 45, 000 matrix in a few minutes on a desktop
PC.

5. The final step is to calculate the eigenvalues of (1) from those computed in the previous

step, {λcomputed
i } . Let λ̃Σ

i refer to our numerical approximation of λΣ
i ; in light of

Theorem 3.1, it is reasonable to set

λ̃Σ
i = λcomputed

i − 1

ε
(42)

for small i. In practice, this approximation performs poorly. A general rule for eigen-
value calculations, supported by Theorem 4.1, is that larger (in magnitude) eigenvalues
are more difficult to compute than smaller ones. It appears that part of the reason for
the poor performance of the approximation (42) is the size of the {λcomputed

i }, each of
which is of the order of 1

ε
, where ε << 1.

One simple solution to this is to rescale the coefficients of L in order to reduce the size
of the {λcomputed

i }. We achieve this by setting

Lν = LΣ − (ε)ν〈D2u(x)∇φ(x),∇φ(x)〉+
1

ε2−ν
· (φ(x))2u2(x), (43)

where 0 < ν < 1, and solving the weak eigenvalue problem for Lν . Since the eigenvalues
of Lν are roughly {2n−1

ε1−ν + λΣ
m}∞m,n=1, it is reasonable to set

λ̃Σ
i = λcomputed

i − 1

ε1−ν
(44)

for small i. However, we achieved much better results using the approximation

λ̃Σ
i = λcomputed

i − λcomputed
1 . (45)

We do not have an entirely satisfactory explanation for the improvement of (45) over
(44). By Theorems 2.1 and 3.1, we may decompose λcomputed

i into radial and surface
components, which we write as

λcomputed
i ≈ λΣ

i + λcomputed,r
i ,
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where λcomputed,r
i ≈ 1

ε1−ν . Using this terminology, the drastic improvement of (45) over
(44) is due to ∣∣∣λcomputed,r

i − λcomputed,r
1

∣∣∣ << ∣∣∣∣ 1

ε1−ν
− λcomputed,r

i

∣∣∣∣ .
Choosing ν in (43) is a compromise. As ν increases, the eigenvalues of Lν decrease,
which translates to quicker convergence. However, ν needs to be chosen small enough
to ensure that the initial eigenvalues of Lν are approximately

1

ε1−ν
,

1

ε1−ν
+ λΣ

2 ,
1

ε1−ν
+ λΣ

3 , ... (46)

In order to chose ν effectively, one needs to have a good estimate of the magnitude
of the λΣ

i that one is interested in computing. One way to get such an estimate is to
choose ε very small and ν = 0.

5 Numerical results

In this section, we examine the results of computations carried out using the method dis-
cussed in Section 4. We use (45) to approximate the

{
λΣ
i

}
from the {λcomputed

i }.

5.1 Examples and results

Laplacian on the unit circle. For our first example, Σ = S1, a ≡ 1, ν = .6, and
Ω = [−1.5, 1.5]2. See Figures 1 and 2 for pictures of the eigenfunctions and Table 1 for error
analysis.

Laplacian on an ellipse. Our next example is the ellipse

Σ =

{
(x, y) :

( x

0.8

)2

+
( y

0.4

)2

= 1

}
with a(x) ≡ 1 and Ω = [−1, 1]2. We set ν = .6. See Figures 3 and 4 for pictures of the
eigenfunctions and Table 2 for error analysis.

Piecewise constant a(x) on the unit circle. In this example Σ = S1,

a(x, y) =

{
1 if y > 0

2 if y < 0

and Ω = [−1.5, 1.5]2. Again, we set ν = .6. See Figures 5 and 6 for pictures of the
eigenfunctions and Table 3 for error analysis.

Laplacian on two circles. Here we consider the case of the Laplacian on

Σ = {(x, y) : (x− .75)2 + y2 = .32} ∪ {(x, y) : (x+ .75)2 + y2 = .32}
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and set ν = .6. See Figures 7 and 8 for pictures of the eigenfunctions and Table 4 for error
analysis. Note that our method captures the multiplicity of the eigenvalues

Laplacian on a flower. We now consider the case of a more challenging curve, given in
polar coordinates by

r(θ) = 2cos2(θ)sin2(θ) + .3 (see Figure 9).

We set a ≡ 1 and Ω = [−1, 1]2. For ε = 1/100 and 1/200, we set ν = .6; for ε = 1/400 we
set ν = .8. See Figures 10 and 11 for pictures of the eigenfunctions and Table 5 for error
analysis. It appears that ε needs to be chosen quite small in this example due to the flower’s
cusps.

Laplacian on the unit sphere. Now we consider the simplest three dimensional case,
Σ = S2 and a ≡ 1. We set ν = .8. See Table 6 for results.

Laplacian on the union of two unit spheres. We now consider the more complicated
case

Σ = {(x, y, z) : (x− 1.5)2 + y2 + z2 = 1} ∪ {(x, y, z) : (x+ 1.5)2 + y2 + z2 = 1}

with a ≡ 1 and ν = .8. See Table 7 for results.

Table 1: Laplacian on the unit circle.
1
ε

dx % relative error λΣ
1 % relative error λΣ

2 % relative error λΣ
3 % relative error λΣ

4

100 .075 1.06 1.06 3.22 5.87
.0375 0.33 0.33 1.15 1.74
.025 0.15 0.15 0.47 0.80

.01875 0.09 0.09 0.27 0.45
.015 0.06 0.06 0.19 0.31
.0125 0.04 0.05 0.14 0.22

200 .075 0.63 0.63 11.35 16.68
.0375 0.44 0.44 4.28 5.70
.025 0.25 0.25 2.14 2.77

.01875 0.15 0.15 1.27 1.63
.015 0.10 0.10 0.86 1.06
.0125 0.07 0.07 0.60 0.76
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Table 2: Laplacian on an ellipse.
1
ε

dx % relative error λΣ
1 % relative error λΣ

2 % relative error λΣ
3 % relative error λΣ

4

100 .05 8.00 11.89 0.71 2.31
.025 3.20 4.97 0.37 1.16
.0167 1.96 3.42 0.30 0.94
.0125 1.53 2.79 0.32 0.81
.01 1.27 2.45 0.32 0.74

200 .05 9.89 15.21 2.10 2.70
.025 2.55 4.66 0.92 1.17
.0167 0.92 2.50 0.74 0.85
.0125 0.33 1.65 0.64 0.68
.01 0.50 1.25 0.59 0.61

Table 3: Piecewise constant a(x) on the unit circle.
1
ε

dx % relative error λΣ
1 % relative error λΣ

2 % relative error λΣ
3 % relative error λΣ

4

100 .0625 0.87 0.27 3.77 1.56
.0313 0.23 0.21 1.31 0.17
.0206 0.31 0.32 0.80 0.21
.0156 0.38 0.38 0.61 0.37
.0125 2.03 1.03 1.90 0.75
.0104 0.29 0.33 0.89 0.07

200 .0625 6.92 2.36 4.08 0.64
.0313 0.50 0.07 3.75 2.34
.0206 0.77 0.07 2.03 0.10
.0156 0.14 0.16 1.38 0.40
.0125 1.96 1.18 2.56 1.27
.0104 0.29 0.33 0.89 0.07
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Table 4: Laplacian on the union of two circles.
1
ε

dx % relative error λΣ
1 % relative error λΣ

2 % relative error λΣ
3

100 .075 1.65 1.65 1.65
.0375 0.34 0.34 0.34
.025 0.18 0.18 0.18
.0187 0.12 0.12 0.12
.015 0.09 0.09 0.09
.0125 0.08 0.08 0.08

200 .075 1.84 1.84 1.84
.0375 0.58 0.58 0.58
.025 0.28 0.28 0.28
.0187 0.16 0.16 0.16
.015 0.11 0.11 0.11
.0125 0.07 0.07 0.07

Table 5: Laplacian on a flower.
1
ε

dx % relative error λΣ
1 % relative error λΣ

2 % relative error λΣ
3 % relative error λΣ

4

100 .05 11.35 11.35 8.41 14.09
.025 7.81 7.81 6.37 7.71
.0167 6.86 6.93 3.94 8.00
.0125 6.66 6.66 2.93 8.55
.01 6.30 6.30 2.27 9.04

200 .05 10.77 10.77 9.78 12.10
.025 5.33 5.33 3.65 7.01
.0167 3.81 3.81 0.84 6.81
.0125 3.35 3.35 0.31 7.09
.01 3.15 3.15 0.91 7.34

400 .05 11.02 11.02 7.30 14.95
.025 4.81 4.81 2.74 6.84
.0167 3.03 3.03 2.22 3.73
.0125 2.47 2.47 1.90 3.00
.01 2.09 2.09 1.60 2.47
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Table 6: Laplacian on the unit sphere.
1
ε

dx % relative error λΣ
1 % relative error λΣ

2 % relative error λΣ
3

100 .25 5.21 5.21 5.21
.167 3.13 3.13 3.13
.125 2.08 2.08 2.08
.1 1.49 1.49 1.49

200 .25 6.35 6.35 6.35
.167 4.07 4.07 4.07
.125 2.78 2.78 2.78
.1 2.04 2.04 2.04

Table 7: Laplacian on the union of two unit spheres.
1
ε

dx % relative error λΣ
1 % relative error λΣ

2 % relative error λΣ
3

100 .25 77.35 75.00 123.00
.167 5.13 5.21 5.37
.125 6.40 6.48 6.50
.1 2.32 2.49 6.43

200 .25 62.00 53.00 207.00
.167 2.30 2.30 2.00
.125 7.23 7.32 7.36
.1 6.23 5.93 13.93

5.2 Discussion of results

Due to the steep gradients of the eigenfunctions of the domain problem near Σ, our method,
in its current form, is ineffective for 3-D calculations. In order to remedy this, we need
to develop numerical methods which are better able to resolve the steep gradients of the
eigenfunctions of (7). A natural approach would be to use a non-uniform mesh, fine near
Σ and rough far from Σ, to solve (7). Such a mesh was used in [3] for solving elliptic
PDE on surfaces. Figures 13 and 14 demonstrate the poor resolution which results from an
insufficiently fine mesh near Σ.

6 Conclusion and future work

In this paper, we have shown how the eigenvalues of (1) can be found by solving a regularized
version of the elliptic eigenvalue problem (7) in a domain containing the surface Σ. The
main results used to justify this approach are Theorem 2.1, which follows from a standard
separation of variables argument, and Theorem 3.1, the proof of which relies on estimates
from the semiclassical analysis of the Schrödinger operator.

One challenge for the future is solving elliptic PDE, including eigenvalue problems, on
hypersurfaces with boundary. We describe here one approach, which combines ideas from
this paper with the fictitious domain method, to handle Dirichlet or Neumann boundary
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conditions. In order to solve (1) with Dirichlet boundary conditions, we first extend Σ to a
closed surface Σ̃, and then solve

−∇S · (ã(x)∇Su) + V (x)u = λu

on Σ̃ using the method discussed in Section 4. Here, ã : Σ̃ → R is an extension of a : Σ → R
and the potential V satisfies

V (x) = 0 if x ∈ Σ and V (x) = C for x ∈ Σ̃ \ Σ where C >> 1.

In order to solve (1) with Neumann boundary conditions, we propose solving

−∇S · (ã(x)∇Su) = λu for x ∈ Σ̃

where ã is an extension of a which satisfies

ã(x) = δ << 1 for x ∈ Σ̃ \ Σ.
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A Solving parabolic equations on surfaces

In [11], Greer proposed a method for solving parabolic equations on surfaces using finite
differences which improved on the approach of [2]. In order to solve

ut = ∇S · (a∇Su) (47)

on Σ, Greer’s method solves

ut = −LΣu+ ε〈D2u∇φ,∇φ〉 (48)

in a domain Ω containing Σ using finite differences. We now prove Greer’s main result, which
justifies his approach, for linear PDE of the form (47). The proof uses Proposition 2.1 and
the completeness of the eigenfunctions of −∇S · a∇S in H1(Σ). We first state the result.

Theorem A.1. [11] Let Ω = Σδ for δ small enough so that (9) holds. Let u ∈ C2(Rn×[0, T ])
be a solution to

ut = −LΣu+ c(x)〈D2u∇φ,∇φ〉 with initial data u(·, t = 0) = g(·). (49)

Here, c ≥ c1 > 0, for some constant c1. If g is constant in the normal direction, i.e.
〈∇g,∇φ〉 ≡ 0, then 〈∇u,∇φ〉 ≡ 0 for all time t > 0.
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We learned about Greer’s work only after establishing the results in Section 2 and Ap-
pendix B. Greer’s result holds for more general PDE than those discussed here, including
certain nonlinear PDE.

Earlier methods for solving (47) based on implicit surfaces did not possess the orthog-
onality property described in Theorem A.1 [2]. As a result, solutions obtained from these
methods develop variation in the normal direction, which can lead to numerical error when
computing ∇S and ∇S·. One technique for minimizing this variation is to frequently re-
initialize solutions off of Σ to be constant along normals to Σ [12, 21]; an advantage of
Greer’s method is that in practice it requires fewer re-initializations. See [11] for more on
this and other advantages of Greer’s method.

Proof of Theorem A.1. By uniqueness, it suffices to find a solution to (49) which remains
constant in the normal direction. Because of the completeness of the eigenfunctions of
−∇S · a∇S and (9) we can decompose any smooth function u : Σδ → R as

u(x, t) =
∞∑
n=0

fn(x− φ(x)∇φ(x))kn(φ(x), t).

Here, the {fn} are eigenfunctions of −∇Sa · ∇S, with eigenvalues {λΣ
n}, which form an

orthonormal basis for L2(Σ), and each kn : [−δ, δ] × [0,∞) → R is a smooth function.
Because of our hypothesis on the initial data, we have that

u(x, t = 0) =
∞∑
n=0

fn(x− φ(x)∇φ(x))gn

where the {gn} are constants. Separating variables as in the proof of Proposition 2.1, we
have that

u(x, t) =
∞∑
n=0

fn(x− φ(x)∇φ(x))gne
−λΣ

n t

solves (49).

B Computing L

In this appendix, we provide formulas for L, valid in domains Ω in which (9) holds, which
demonstrate that L can be written in divergence form. Ellipticity of L follows from these
results. Proposition B.1 expresses LΣ and Ln in terms of the differential operators ∂

∂xi
,

where {xi} is the standard basis for Rn, while Proposition B.2 expresses LΣ in terms of the
operators ∂

∂ei
, where {ei(x)} represent the directions of principal curvature of the φ(x) level-

set at x. We work in three space dimensions in Proposition B.1 for simplicity, and assume
throughout this section that a, originally defined only on Σ, is defined in all of Ω according
to (22).

Proposition B.1. Let Ω ⊂ R3 be a domain such that (9) holds and let u ∈ C2(Ω). Then
for all x ∈ Ω,

LΣu = −w(x)
3∑

i,j=1

[(
1− φ(x)κ2(x)

1− φ(x)κ1(x)
〈xi, e1〉〈xj, e1〉+

1− φ(x)κ1(x)

1− φ(x)κ2(x)
〈xi, e2〉〈xj, e2〉

)
a(x)uxi

]
xj
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and

Lnu = −w(x)
3∑

i,j=1

[(
1

w(x)
〈xi,∇φ(x)〉〈xj,∇φ(x)〉uxi

)]
xj

where w(x) = 1
(1−φ(x)κ1(x))(1−φ(x)κ2(x))

and {xi} is the standard basis for Rn.

Proof. The proof follows from integration by parts and an application of the geometric
identities discussed in Section 2.2. We first consider the identity for LΣ. Let v ∈ C2

c (Ω);
from (15) we have

(LΣu, v)Ω =

∫
Ω

(1− φ(x)κ1(x))(1− φ(x)κ2(x))LΣ(u) · v dx. (50)

On the other hand, by (20), (11), and (19), we have that (LΣu, v)Ω equals∫
Ω

a(x)
1− φ(x)κ2(x)

1− φ(x)κ1(x)
〈∇u(x), e1〉〈∇v(x), e1〉+ a(x)

1− φ(x)κ1(x)

1− φ(x)κ2(x)
〈∇u(x), e2〉〈∇v(x), e2〉 dx

=

∫
Ω

a(x)
3∑

i,j=1

[
1− φ(x)κ2(x)

1− φ(x)κ1(x)
〈xi, e1〉〈xj, e1〉+

1− φ(x)κ1(x)

1− φ(x)κ2(x)
〈xi, e2〉〈xj, e2〉

]
uxi
vxj

dx.

Integrating the above expression by parts we find that (LΣu, v)Ω equals∫
Ω

−
3∑

i,j=1

[(
1− φ(x)κ2(x)

1− φ(x)κ1(x)
〈xi, e1〉〈xj, e1〉+

1− φ(x)κ1(x)

1− φ(x)κ2(x)
〈xi, e2〉〈xj, e2〉

)
a(x)uxi

]
xj

v dx

Setting the above equation equal to (50) and noting that v ∈ C2
c (Ω) is arbitrary, the result

follows.
The identity for Ln follows a similar approach. First note that by (15) we have

(Lnu, v)Ω =

∫
Ω

1

w(x)
Lnu · v dx. (51)

Next, note that (9) and integration by parts yield

(Lnu, v)Ω =

∫
Ω

1

w(x)
〈∇u(x),∇φ(x)〉〈∇v(x),∇φ(x)〉 dx

= −
∫

Ω

3∑
i,j=1

[(
1

w(x)
〈xi,∇φ(x)〉〈xj,∇φ(x)〉uxi

)]
xj

v dx. (52)

The identity for Ln follows by equating (51) and (52).

The next proposition expresses LΣ in terms of the differential operators ∂
∂ei

.

Proposition B.2. Let Ω ⊂ Rn be a domain such that (9) holds and let u ∈ C2(Ω). Then
for all x ∈ Ω,

LΣu|x =
n−1∑
i=1

1

1− φ(x)κi(x)

∂

∂ei

(
a(x)

1− φ(x)κi(x)

∂

∂ei
u

)
.
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Proof. First note that (11) and (19) imply

(∇r
Su) (s) =

n−1∑
i=1

1

1− rκi(s+ r∇φ(s))

(
∂

∂ei
u|s+r∇φ(s)

)
ei. (53)

Next, note that if g ∈ C1(Ω), f = gφ(x), and e is a direction of principal curvature at x, then
by the chain rule and (19)

∂

∂e
f |x−φ(x)∇φ(x) = 〈∇g|x, [I + φ(x)D2φ|x−φ(x)∇φ(x)]e〉 =

1

1− φ(x)κ(x)

∂

∂e
g|x.

The proposition follows from (53) by setting g(x) = a(x)
1−φ(x)κi(x)

∂
∂ei
u in the above formula.

Corollary B.1. Let Ω ⊂ Rn be a domain such that (9) holds. Then L is elliptic in Ω.

Proof. The result follows immediately from Proposition B.1, since {e1, e2,∇φ} form an or-
thonormal basis and 1 − φ(x)κi(x) > 0. The result also follows from Proposition B.2 by a
change of coordinates.

C Some results from spectral theory

We collect here some well-known results from elliptic PDE, the spectral theory of self-adjoint
operators, and the semi-classical analysis of the Schrödinger operator.

Proposition C.1. (Monotonicity of Dirichlet eigenvalues with respect to domain) Let L
be a symmetric second-order linear elliptic operator, and let {λΩ

n} be the eigenvalues of the
problem Lu = λu subject to the boundary condition u = 0 on ∂Ω. Then for j = 1, 2, ...

λΩ1
j ≤ λΩ2

j if Ω1 ⊃ Ω2 (54)

Proof. The result follows from the min-max formula for the {λΩ
l } [19]:

λΩ
l = inf

Sl

sup
v∈Sl

R(v).

Here, Sl = {V ⊂ H1
0 (Ω) : V is an l-dimensional subspace of H1

0 (Ω)} and R(v), the Rayleigh
quotient, is defined as

R(v) =
(Lv, v)

(v, v)
.

Proposition C.2. (Distance to the spectrum) Let H be a Hilbert space, D a dense subspace
of H, and T : D → H a self-adjoint linear operator. Then for z ∈ spec(T )c

‖(T − zI)−1‖ =
1

dist(z, spec(T ))

which implies

dist(z, spec(T )) ≤ ‖(T − zI)u‖
‖u‖

. (55)
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Corollary C.1. If ‖u‖ ≈ 1 and ‖(T − zI)u‖ << 1, then dist(z, spec(T )) << 1.

Proof. The result follows directly from Proposition C.2.

Under the assumption that a linear operator T has a basis of eigenfunctions, Proposition
C.3 states that if ‖(T − zI)u‖ << 1 and ‖u‖ ≈ 1, then u is nearly a linear combination of
those eigenfunctions with eigenvalues near z.

Proposition C.3. Let H be a Hilbert space and T : H → H a linear operator. Assume
that there exists an orthonormal basis {fj} of H consisting of eigenfunctions of T with
eigenvalues {λj}. Let u ∈ H and assume ‖(T − zI)u‖ < ε for some z ∈ R. Fix δ > 0 and let
I = {j : |λj − z| ≥ δ}. Then ∑

j∈I

〈u, fn〉2 <
ε2

δ2
. (56)

Proof. The result follows from the Pythagorean theorem:

(T − zI)u =
∞∑
j=1

(λj − z)〈u, fn〉fn ⇒
∞∑
j=1

(λj − z)2〈u, fn〉2 = ε2 ⇒

δ2
∑
j∈I

〈u, fn〉2 ≤
∑
j∈I

(λj − z)2〈u, fn〉2 < ε2.

Next, we state a result which provides very useful information regarding the behavior of
eigenfunctions uh of

−h2∆uh + V (x)uh = λhuh for x ∈ Ω and uh = 0 on ∂Ω (57)

as h→ 0 [13]. Here, 0 ≤ V (x) ∈ C(Ω̄) is a potential. We use a variant of this result in the
proof of Theorem 3.1 to describe the behavior of eigenfunctions of (23) as ε → 0. We first
make a definition.

Definition C.1. (Agmon distance) The Agmon distance d(x, y) between two points x and
y is defined to to be

d(x, y) = inf
γ∈C

∫
γ

√
V ds

where C is the set of all piecewise C1 curves connecting x and y [13]. If T ⊂ Ω, we define
d(x, T ) to be

d(x, T ) = inf
y∈T

d(x, y).

Note that the Agmon distance depends on the potential V . We now state a result,
Proposition C.4, which provides an estimate of the decay of eigenfunctions of (57) away
from U = {x ∈ Ω : V (x) = minz∈Ω̄ V (z)} as h→ 0.
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Proposition C.4. (See Proposition 3.3.1 and Corollary 3.3.2 in [13]) Let {uh}h∈J where
J ⊂ [0, h0] be a family of eigenfunctions of (57) normalized so that ‖uh‖L2(Ω) = 1. Assume
that λh → 0 as h → 0. Let U = {x ∈ Ω : V (x) = minz∈Ω̄ V (z)}. Then for each δ > 0 there
exists Cδ > 0 such that for all h ∈ J∥∥∥∇(

e
d(x,U)

h uh

)∥∥∥
L2(Ω)

+
∥∥∥e d(x,U)

h uh

∥∥∥
L2(Ω)

≤ Cδe
δ
h . (58)

It follows from (58) that the L2 norm of uh is concentrated in U : for each open neighborhood
V ⊃ U we have

‖uh‖L2(V ) = 1 +O
(
e
−δ
h

)
. (59)

One can check that a variant of Proposition C.4 applies to the eigenvalue problem (23)
under the assumptions outlined at the beginning of Section 3. In the context of (23), h = ε,
V = ψ and U = Σ.
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Figure 1: First eigenfunction, Σ = S1, a ≡ 1, 1
ε

= 200.

Figure 2: Second eigenfunction, Σ = S1, a ≡ 1, 1
ε

= 500.
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Figure 3: First eigenfunction, Σ = ellipse, a ≡ 1, 1
ε

= 300.

Figure 4: Second eigenfunction, Σ = ellipse, a ≡ 1, 1
ε

= 300.

31



Figure 5: Second eigenfunction, Σ = S1, piecewise constant a(x), 1
ε

= 200.

Figure 6: Third eigenfunction, Σ = S1, piecewise constant a(x), 1
ε

= 200.
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Figure 7: First eigenfunction, Σ = union of two circles, a(x) ≡ 1, 1
ε

= 400.

Figure 8: Second eigenfunction,Σ = union of two circles, a(x) ≡ 1, 1
ε

= 400.
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Figure 9: The flower r(θ) = 2 cos2(θ) sin2(θ) + .3.

Figure 10: First eigenfunction, Σ = flower, a(x) ≡ 1, 1
ε

= 800
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Figure 11: Fifth eigenfunction, Σ = flower, a(x) ≡ 1, 1
ε

= 200
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Figure 12: The effect of the parameter ε: displayed are the first eigenfunction for Σ = S1

and 1
ε

= 1, 20, 100.
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Figure 13: The importance of choosing dx properly. Displayed is the fifth eigenfunction for
Σ = flower, 1

ε
= 200, dx = 0.0133

Figure 14: The importance of choosing dx properly. Displayed is the fifth eigenfunction for
Σ = S1, 1

ε
= 800, dx = .05
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