
FAST DUAL MINIMIZATION OF THE VECTORIAL TOTAL

VARIATION NORM AND APPLICATIONS TO COLOR IMAGE

PROCESSING

X. BRESSON AND T.F. CHAN⋆

REVISED VERSION OCT. 2008

Abstract. We propose a regularization algorithm for color/vectorial images which
is fast, easy to code and mathematically well-posed. More precisely, the regulariza-
tion model is based on the dual formulation of the vectorial Total Variation (VTV)
norm and it may be regarded as the vectorial extension of the dual approach de-
fined by Chambolle in [13] for gray-scale/scalar images. The proposed model offers
several advantages. First, it minimizes the exact VTV norm whereas standard
approaches use a regularized norm. Then, the numerical scheme of minimization
is straightforward to implement and finally, the number of iterations to reach the
solution is low, which gives a fast regularization algorithm. Finally, and maybe
more importantly, the proposed VTV minimization scheme can be easily extended
to many standard applications. We apply this L1 vectorial regularization algo-
rithm to the following problems: color inverse scale space, color denoising with the
chromaticity-brightness color representation, color image inpainting, color wavelet
shrinkage, color image decomposition, color image deblurring, and color denoising
on manifolds. Generally speaking, this VTV minimization scheme can be used in
problems that required vector field (color, other feature vector) regularization while
preserving discontinuities.

Keywords: Vector-valued TV norm, dual formulation, BV space, image denoising,
ROF model, inverse scale space, chromaticity-brightness color representation, image
decomposition, image inpainting, image deblurring, wavelet shrinkage, denoising on
manifold.

1. Introduction

This paper is devoted to the regularization of multidimensional/vectorial signals, such
as color images or other vector fields (vector of features, normal of level sets, etc.), based
on the vectorial TV norm. The regularization of vectorial images in the context of con-
tinuous models have already been proposed in the literature. In [35], Sapiro and Ringach
proposed an anisotropic diffusion model for vectorial images based on the computation of
the eigenvalues of the M -D image defined as a 2-D manifold. The eigenvectors determine
the directions of maximal and minimal change of the vectorial image, and their associated
eigenvalues give their rate of change. In [8], Blomgren and Chan defined a definition of
the VTV norm which satisfies several good properties. Sochen, Kimmel and Malladi in
[37] defined a vectorial image denoising models based on a 2-D manifold embedded in a
(M + 2)-D space and the Polyakov energy. We propose in this paper a vectorial regu-
larization algorithm that is as efficient as [37] and improve the regularization algorithms
[35, 8].

The proposed VTV minimization model is based on the dual formulation of the vectorial
TV norm. The idea of dualizing the (scalar) TV norm was introduced by Chan, Golub
and Mulet (CGM) in [15] to solve the denoising Rudin-Osher-Fatemi (ROF) model [34]
for gray-scale images in a faster way than the previous models. CGM introduced in the
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TV minimization model an extra maximization problem w.r.t. a new (dual) variable.
The new minimization-maximization problem can be solved using the Sion’s theorem [36].
Sion’s theorem is a generalization of John Von Neumann’s minimax theorem [32] (see also
[2, 22]) introduced in game theory for minimizing the maximum possible loss.

Based on the CGM model, Chambolle (C) in [13] developed an efficient dual approach
to minimize the scalar ROF model. C’s algorithm is faster than CGM even if the con-
vergence of C’s scheme is linear and the CGM’s scheme is quadratic. C’s algorithm is
faster because the cost per iteration to use CGM is higher (CGM needs to solve a linear
system at each iteration). A recent fast minimization algorithm for the scalar ROF model
was proposed by Darbon and Sigelle (DS) in [20] based on graph cuts. Although C’s
algorithm is not as fast as the model of DS to solve the variational scalar ROF model, it
is still fast and presents some advantages compared with CGM and DS. First, C’s model
use the exact scalar TV norm whereas CGM model regularizes it to minimize it. Then,
the numerical scheme of [13] is straightforward to implement unlike the CGM and DS
algorithms. Besides, the TV norm of DS is anisotropic whereas the TV norm of C is
isotropic. Finally, we will see that the C’s model extends nicely to color/vector images
whereas the question of extension is open for the CGM model and the generalization of
DS model to color images is not as efficient as in the scalar case (see [19]).

This paper proposes these two following contributions:
• Extension of Chambolle’s model [13] to multidimensional/vectorial images. We will
see that the extended algorithm presents the same nice properties than the scalar algo-
rithm since the VTV minimization algorithm is fast, easy to code and well-posed. Unlike
[8, 4, 16], the proposed vectorial scheme does not regularize the VTV to minimize it.
Finally, the numerical solution converges to the continuous minimizing solution in the
vectorial BV space.
• Extension of the proposed VTV minimization scheme to several standard applications
such as deblurring, inpainting, decomposition, denoising on manifolds. In fact, this vecto-
rial regularization scheme can be applied to any problems that require a L1 regularization
process for vectorial components.

The paper is organized in two parts. The first part is the introduction of the VTV
minimization algorithm. We introduce some notations and the dual formulation of the
VTV. We then introduce the VTV minimization algorithm and prove its convergence to
the continuous minimizing solution. Then, we compare our model to related denoising
models. The second part of this paper aims at showing that this vectorial regularization
process can be easily extended to any problems that require L1 vector field regularization.
We will focus on color image processing problems such as color inverse scale space, color
denoising with the chromaticity-brightness color representation, color inpainting, color
wavelet shrinkage, color decomposition, color deblurring or color denoising on manifold.
But we can also extend this algorithm to other problems such as the vector field regular-
ization of diffusion tensors in medical imaging.

2. Part I: Dual Vectorial TV Minimization Algorithm

2.1. Notation and Definition.

In this paper, we are interested in the standard dual definition of the VTV in order
to extend the Chambolle’s scalar algorithm [13] to vectorial images such as color images
or any vector fields. This section introduces some notations and definitions regarding the
vector-valued TV norm used throughout the paper. Let us consider a vectorial (or M -
dimensional or multichannel) function u, such as a color image or a vector field, defined
on a bounded open domain Ω ⊂ R

N , as follows:

u : Ω → R
M ,

x → u(x) := (u1(x), ..., uM (x)),
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where each scalar function ui : Ω → R, 1 ≤ i ≤ M is one of the M components (or
channels) of the vector valued function u.

Definition 2.1.1. For a given vector valued function u : Ω → R
M , the vectorial TV norm

is denoted the finite positive measure:

∫

Ω

|Du| := sup
p∈P

{ ∫

Ω

< u,∇ · p > dx

}

(1)

where p := (p1, ...,pM ) : Ω → R
M×N , pi := (px1

i , ..., p
xN
i ) : Ω → R

N , ∀i ∈ [1,M ], ∇·
is the divergence operator such that ∇ · q := (∇ · q1, ...,∇ · qN ) : Ω → R

M , ∀q : Ω →
R
M×N , ∇ · qi :=

∑N
j=1 ∂xj q

xj

i : Ω → R, ∀i ∈ [1,M ], the product < ., . > is the Euclidean

scalar product defined as < v,w >:=
∑M
i=1 < vi, wi >, ∀(v,w) ∈ (RM )2, which implies

that < u,∇·p >=
∑M
i=1 < ui,∇·pi >, and the L2/Euclidean norm |.| is naturally defined

by |v| :=
√
< v,v > =

√
∑L
i=1 v

2
i , ∀v ∈ R

L.

Thus, the VTV norm (1) can be defined of different ways, depending on the set P of
functions of the dual variable p. Let us consider two sets:

P1 := {p ∈ C1
c (Ω; RM×N ) : |p|∞ ≤ 1}

P2 := {p ∈ C1
c (Ω; RM×N ) : |p| ≤ 1}

where |.|∞ in P1 is the infinity norm such that |p|∞ = max
i=1,...,M

|pi| and |.| in P2 is the

L2 norm such that |p| =
√

∑M
i=1 < pi,pi > =

√
∑M
i=1

∑N
j=1(p

xj

i )2. If we assume that

u ∈ C1(Ω; RM ), i.e. u are smooth functions, and p ∈ C1
c (Ω; RM×N ) are with compact

support, then integration by parts gives:
∫

Ω

|Du| = sup
p∈P

{ ∫

Ω

< u,∇ · p > dx

}

= sup
p∈P

{ ∫

Ω

M∑

i=1

< ∇ui,pi > dx

}

.

Then if p ∈ P1 then the supremum of (1) is obtained for:

pi =

{ ∇ui

|∇ui| if ∇ui 6= 0

any if ∇ui = 0
, 1 ≤ i ≤M,

which defines the vectorial TV norm for smooth functions u as:
∫

Ω

|Du| =
M∑

i=1

∫

Ω

|∇ui|dx =
M∑

i=1

TV (ui),(2)

i.e. the sum of the TV of each channel. Then if p ∈ P2 then the supremum is obtained
for:

pi =

{ ∇ui

|∇u| if ∇u 6= 0

any if ∇u = 0
, 1 ≤ i ≤M, ,

where the vectorial gradient of u is defined as ∇u := (∇u1, ...,∇uN ) : Ω → R
M×N and

|∇u| =
√

∑M
i=1 < ∇ui,∇ui >. Thus, the vectorial TV norm given by P2 for smooth

functions u is:

∫

Ω

|Du| =

∫

Ω

∑M
i=1 < ∇ui,∇ui >

|∇u| dx =

∫

Ω

√
√
√
√

N∑

i=1

|∇ui|2dx =

∫

Ω

|∇u|dx.(3)

Hence, the VTV defined in (1) have different expressions for smooth functions u for
different sets P1 or P2. The difference between sets P1 or P2 is important in the denoising
context. Indeed, the vectorial TV based on P1 is defined as the sum of the TV of each
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channel. This means that channels are considered as independent in the denoising pro-
cess, which is not true on real-world images. The vectorial TV based on P2 introduces a
coupling between channels. Each channel use information coming from other channels to
improve the denoising model as we will see in Section 2.5.

Finally, we want to emphasize that the vector valued TV norm defined by the set P2,
i.e. the L2-norm, is the most standard definition of the VTV norm as introduced in the
book of Ambrosio, Fusco and Pallara [1]. From this point, we will use the L2-norm for
the VTV norm throughout this paper.

We now present standard results regarding the VTV. These results can be found e.g.
in [1, 28, 25].

Definition 2.1.2. Definition of Vector Valued Space BV (Ω; RM ), M ≥ 1.
We define the space BV (Ω; RM ) of vector valued functions as the set of functions

u ∈ L1(Ω; RM ) such that
∫

Ω
|Du| < ∞, where the vectorial TV norm

∫

Ω
|Du| is defined

in Definition 2.1.1 with the set of functions p ∈ P2. The space BV (Ω; RM ) endowed with
the following norm:

‖u‖L1(Ω;RM ) + ‖u‖BV (Ω;RM ),

where ‖u‖BV (Ω;RM ) :=
∫

Ω
|Du|, is a Banach space.

Theorem 2.1.1. Lower Semicontinuity Property.
Let {un} a sequence of vector valued functions in BV (Ω; RM ) which converge in

L1(Ω; RM ) to a function u. Then

‖u‖BV (Ω;RM ) ≤ lim inf
n→∞

‖un‖BV (Ω;RM ).

Theorem 2.1.2. Compactness Property.
Every sequence {un} ∈ BV (Ω; RM ) such that ‖un‖L∞(Ω;RM ) ≤ M, ∀n ∈ N, admits a

subsequence {unk
} converging in L1(Ω; RM ) to a function u ∈ BV (Ω; RM ).

Theorem 2.1.3. Decomposition of ‖u‖BV (Ω;RM ) =
∫

Ω
|Du|.

Functional
∫

Ω
|Du| can be decomposed as follows:

∫

Ω

|Du| =

∫

Ω

|∇u|dx + |Dcu|(Ω) +

∫

Ju∩Ω

|u+ − u−|dHN−1,

where ∇u is the standard gradient of u with
∫

Ω
|∇u|dx =

∫

Ω

√
∑N
i=1 |∇ui|2dx for u ∈

C1(Ω; RM ), Dcu is the Cantor part of Du, Ju is the set of all jump points of u, u+, u−

are the jump functions and HN−1 denotes the (N − 1)-dimensional Hausdorff measure in
R
N .

2.2. Vectorial Rudin-Osher-Fatemi (VROF) Model.

The Rudin-Osher-Fatemi model [34] is one of the most influential variational and PDE-
based image denoising models in image processing. This denoising model removes noise
in gray-scale images while preserving main features such as edges. In the case of vector-
valued images, the ROF model is naturally extended as follows:

inf
u

{

F (u) := ‖u‖BV (Ω;RM ) +
1

2λ
‖f − u‖2

L2(Ω;RM )

}

,(4)

where f ∈ L∞(Ω; RM ), f := (f1, ..., fM ) is the given (noisy) vector valued image and
‖f − u‖2

L2(Ω;RM ) =
∫

Ω
|f − u|2 dx is the L2 fidelity norm.
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Existence of a minimizer for the variational vectorial ROF model (4) can be proved
by standard arguments of the vectorial BV space. We include the existence proof in this
section for the sake of completeness. First, let us introduce truncated vectorial functions:

Theorem 2.2.1. Truncated Functions.
Let f ∈ L∞(Ω; RM ) and u : Ω → R

M . We define the truncated function û :=
(‖fi‖L∞(Ω;R) ∧ ui ∨ −‖fi‖L∞(Ω;R))

M
i=1.

For any u ∈ BV (Ω; RM ), we have û ∈ BV (Ω; RM ) and
(j)

∫

Ω
|f − û|2 dx ≤

∫

Ω
|f − u|2 dx,

(jj) ‖û‖BV (Ω;RM ) ≤ ‖u‖BV (Ω;RM ).

Proof. The proof is, for example, based on [24]. The definition of the truncated function
implies that |f − û| ≤ |f − u| from which follows (j).
The truncated function is given by ûi = hi ◦ ui where hi : R → R is a Lipschitz function
such that:

hi(t) =







t if − ‖fi‖L∞ ≤ t ≤ ‖fi‖L∞

‖fi‖L∞ if t > ‖fi‖L∞

−‖fi‖L∞ if t < −‖fi‖L∞

.

Using the chain rule, we have û ∈ BV (Ω; RM ).
Following [24], we have |∇ûi(x)| ≤ |∇ui(x)| then

∫

Ω
|∇û|dx <

∫

Ω
|∇u|dx. Since u+(x) ≥

u−(x) by construction and by definition of the function hi we have Jûi
⊆ Jui and

û+(x)−û−(x) ≤ u+(x)−u−(x), ∀x ∈ Jûi
. Then it follows that

∫

Jû∩Ω
|û+−û−|dHN−1 ≤

∫

Ju∩Ω
|u+ − u−|dHN−1. We also have |Dcûi| ≤ |Dcui|, i.e. |Dcû| ≤ |Dcu|. The terms

are summed over and we obtain (jj). 2

Then, it is easy to prove the existence of a minimizer for the VROF:
Theorem 2.2.2. Existence of a Solution for the Vectorial ROF Model (4).

The vectorial ROF model

inf
u

{

F (u) := ‖u‖BV (Ω;RM ) +
1

2λ
‖f − u‖2

L2(Ω;RM )

}

,

where f ∈ L∞(Ω; RM ), has a solution in BV (Ω; RM ).

Proof. Let {un} be a minimizing sequence in BV (Ω; RM ) . By definition of the total
variation norm, ‖un‖BV (Ω;RM ) is uniformly bounded by a strict positive constant M such

that ‖un‖BV (Ω;RM ) ≤M, ∀n ∈ N.
By Theorem 2.2.1, we can modify the minimizing sequence by truncation, obtaining a new
minimizing sequence ûn that is uniformly bounded in BV (Ω; RM ), i.e.

‖ûn‖L∞(Ω;RM ) ≤ K, ‖ûn‖BV (Ω;RM ) ≤M, ∀n ∈ N,

where K = max
i=1,...,M

‖fi‖L∞(Ω;R).

Therefore, according to Theorem 2.1.2, there exists a subsequence {ûnk
} converging to a

function u ∈ BV (Ω; RM ). Since TV is lower semicontinuous in BV (Ω; RM ) by definition,
we have:

‖u‖BV (Ω;RM ) ≤ lim inf
k→∞

‖ûnk
‖BV (Ω;RM ) ≤ lim inf

k→∞
‖unk

‖BV (Ω;RM ),

and from Fatou’s Lemma:

‖f − u‖2
L2(Ω;RM ) ≤ lim inf

k→∞
‖f − ûnk

‖2
L2(Ω;RM ) ≤ lim inf

k→∞
‖f − unk

‖2
L2(Ω;RM ),

which implies that

F (u) ≤ lim inf
k→∞

F (unk
).

It follows that u ∈ BV (Ω; RM ) is a minimizer of F and the vectorial ROF model (4). 2
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Finally, the VROF model (4) is convex, which guaranties the uniqueness of the mini-
mizer.

2.3. Proposed Algorithm for VROF Minimization.

In this section, we present the solution minimizing the vectorial ROF model (4). Us-
ing the dual definition of the vectorial TV norm given in (1), the variational model (4)
can be written as

inf
u

sup
|p|≤1

{

< u,∇ · p >L2(Ω;RM ) +
1

2λ
‖f − u‖2

L2(Ω;RM )

}

(5)

Using the minimax theorem [2, 22], inf and sup can be swapped since (5) is convex in u
and concave in p and the set {|p| ≤ 1} is bounded and convex. Thus (5) is first minimized
w.r.t. u using the Euler-Lagrange’s technique, which gives the minimizing solution of the
VROF model:

u = f − λ∇ · p,(6)

and for each channel:

ui = fi − λ∇ · pi, 1 ≤ i ≤M.

Substituting solution (6) in (5), we get the constrained maximization problem:

sup
|p|≤1

{

< f ,∇ · p >L2(Ω;RM ) −
λ

2
‖∇ · p‖2

L2(Ω;RM )

}

,

which is equivalent to this minimization problem:

inf
|p|≤1

‖∇ · p − f/λ‖2
L2(Ω;RM ).(7)

The Euler-Lagrange’s technique gives the necessary condition for optimality at each x:

−∇
(
λ∇ · p − f

)
+ αp = 0,(8)

where α(x) is the Lagrange multiplier associates with the constraint |p| ≤ 1. As noticed
by Chambolle in [13] for the scalar case, it can also be eliminated in the vectorial case as
follows. If |p| < 1, then the Lagrange multiplier is not active, i.e. α = 0 and ∇

(
λ∇·p−f

)
=

0 and if |p| = 1, then the Lagrange multiplier becomes active and α = |∇
(
λ∇·p− f

)
| > 0.

In any case, the Lagrange multiplier is equal to:

α = |∇
(
λ∇ · p − f

)
|.(9)

Introducing (9) in (8), we get:

∇
(
λ∇ · p − f

)
− |∇

(
λ∇ · p − f

)
| p = 0,

which can be solved as in [13] with a semi-implicit gradient descent scheme as follows:
pn=0 = 0,

∇
(
∇ · pn − f/λ

)
− |∇

(
∇ · pn − f/λ

)
| pn+1 = (pn+1 − pn)/δt,(10)

such that:

pn+1 =
pn + δt∇

(
∇ · pn − f/λ

)

1 + δt|∇
(
∇ · pn − f/λ

)
| ,(11)

which means for each channel:

pn+1
i =

pni + δt∇
(
∇ · pni − fi/λ

)

1 + δt
√

∑M
j=1 |∇

(
∇ · pnj − fj/λ

)
|2
, 1 ≤ i ≤M.(12)

As in [13], the convergence of the iterative scheme (11) also holds since we have the fol-
lowing theorem:
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Theorem 2.3.1. Let f ∈ L∞(Ω; RM ), the iterative scheme (11) converges to the mini-
mizing solution (7) for δt ≤ 1/8.

Proof. We follow the proof given by Chambolle in [13] in the case of gray-scale im-
ages. Let us denote |.|X,Y , < ., . >X,Y the Euclidean norm and inner product defined

in X := L2(Ω; RM ) and Y := L2(Ω; RM×N ) with |f |X :=
√

∑M
i=1 f

2
i and |p|Y :=

√
∑M
i=1

∑N
j=1(p

xj

i )2. We call η := (pn+1 − pn)/δt and we have:

|∇ · pn+1 − f/λ|2X = |∇ · pn − f/λ|2X +

2δt < ∇ · η,∇ · pn − f/λ >X +δt2|∇ · η|2X ,
≤ |∇ · pn − f/λ|2X −

δt
(
2 < η,∇(∇ · pn − f/λ) >Y −δtτ2|η|2Y

)
,

where τ := |∇ · |X is the norm of the divergence operator ∇· : Y → X. From (10), we
denote ρ := |∇(∇ · pn − f/λ)|Y pn+1 = ∇(∇ · pn − f/λ) − η such that we have:

2 < η,∇(∇ · pn − f/λ) >Y −δtτ2|η|2Y =

(1 − δtτ2)|η|2Y + (|∇(∇ · pn − f/λ)|2Y − |ρ|2Y ).

We have |∇(∇·pn− f/λ)|2Y −|ρ|2Y = |∇(∇·pn− f/λ)|2Y (1−|pn+1|2Y ) ≥ 0 since |pn|Y ≤ 1
for n ≥ 0. Hence, if δt ≤ 1/τ2, we see that |∇ · pn+1 − f/λ|2 is decreasing with n, unless
η = 0, which means that pn+1 = pn. It is clear for δt < 1/τ2. For the case δt = 1/τ2, i.e.
|∇ · pn+1 − f/λ|2 = |∇ · pn − f/λ|2, we have |ρ|Y = |∇(∇ · pn − f/λ)|Y such that either
|∇(∇ · pn − f/λ)|Y = 0 or |pn+1|Y = 1, which means that pn+1 = pn in both cases.

Let m := lim
n→∞

|∇ · pn − f/λ|2X and p̄ be the limit of a converging subsequence {pnk}
of {pn}. If p̄′ is the limit of {pnk+1} then we have:

p̄′ =
p̄ + δt∇

(
∇ · p̄ − f/λ

)

1 + δt|∇
(
∇ · p̄ − f/λ

)
|Y
,

and if the previous calculation is repeated then we see that m = |∇ · p̄− f/λ|X = |∇ · p̄′ −
f/λ|X , which implies that η̄ = (p̄′ − p̄)/δt = 0 and p̄′ = p̄. Hence,

∇
(
∇ · p̄ − f/λ

)
− |∇

(
∇ · p̄ − f/λ

)
|Y p̄ = 0,

which is the Euler-Lagrange equation of (7). Hence p̄ solves (7). Finally, since (7) is
convex, then all sequences λ∇ · pn converge to λ∇ · p̄.

It remains to show that δt ≤ 1/8. Let us define the discrete divergence operator applied
to a vector pi = (pxi , p

y
i ), 1 ≤ i ≤ M , M being the number of channels, at the grid point

(ix, iy) (following [13]):

(∇ · pi)ix,iy =







(pxi )ix,iy − (pxi )ix−1,iy
if 1 < ix < Nx,

(pxi )ix,iy if ix = 1,

−(pxi )ix−1,iy
if ix = Nx,

+







(pyi )ix,iy − (pyi )ix,iy−1 if 1 < iy < Ny,

(pyi )ix,iy if iy = 1,

−(pyi )ix,iy−1 if iy = Ny,

Then, the norm of the divergence operator is defined by τ2 := sup|p|≤1 |∇ · p|2. The
discrete square norm of p is

|p|2 =
∑

1≤i≤M

∑

1≤ix≤Nx

∑

1≤iy≤Ny
(pxi )

2
ix,iy + (pyi )

2
ix,iy .
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We have:

|∇ · p|2 =
∑

1≤i≤M

∑

1≤ix≤Nx

∑

1≤iy≤Ny

(

(pxi )ix,iy − (pxi )ix−1,iy + (pyi )ix,iy − (pyi )ix,iy−1

)2

≤ 4
∑

1≤i≤N

∑

1≤ix≤Nx

∑

1≤iy≤Ny
(pxi )

2
ix,iy + (pxi )

2
ix−1,iy + (pyi )

2
ix,iy + (pyi )

2
ix,iy−1

≤ 8 |p|2,
using the zero boundary condition p0,iy = pNx,iy = pix,0 = pix,Ny = 0, ∀(ix, iy), which

implies that τ2 = 8 and so δt = 1/8. We notice that the temporal bound does not depend
on the number of channels. 2

2.4. Convex analysis and Projection Point of View.

The VROF minimization algorithm introduced in the previous section can also be deduced
from convex analysis. Indeed, the projection algorithm of Chambolle [13] for gray-scale
images can be easily extended to the vectorial case.
Theorem 2.4.1. (VROF Minimization Through Projection) Let f ∈ L∞(Ω; RM ),
u : Ω → R

M , λ > 0, then the minimizer of

||u||BV (Ω;RM ) +
1

2λ
||f − u||2L2(Ω;RM ),(13)

is given by

u = (1 − ΠλK
BV (Ω;RM )

)f ,(14)

where ΠλK
BV (Ω;RM )

is the orthogonal projection operator onto the closed convex set as-

sociated to ||.||BV (Ω;RM ) and defined as follows:

KBV (Ω;RM ) =
{
∇ · p ∈ L2(Ω; RM ), ∀p ∈ L2(Ω; RM×N ) : |p| ≤ 1

}
.

Proof. Let us call JBV (u) = ||u||BV (Ω;RM ). The Euler-Lagrange of (13) is equal to:

∂JBV (u) +
u − f

λ
∋ 0,(15)

where ∂JBV is called the sub-differential of JBV . The sub-differential ∂J(u) of a functional
J at u ∈ X is defined by z ∈ ∂J(u) ⇔ J(v) ≥ J(u)+ < z,v − u >X , ∀v ∈ X. If
J(u) <∞ and J is differentiable at u, then ∂J(u) = {∇J(u)}. (15) can be re-written as
f−u

λ
∈ ∂JBV (u), which, according to convex analysis [23], is equivalent to

u ∈ ∂J⋆BV (
f − u

λ
),(16)

where J⋆BV is the Legendre-Fenchel (LF) transform (or conjugate function) of JBV . In
convex analysis [23], the LF of a function J 6= ∞ convex, one-homogeneous (J(λu) =
λJ(u), λ > 0, ∀u ∈ X) and lower semi-continuous, defined as J⋆(v) = sup

u
< u,v >X

−J(u), is the characteristic function of a closed convex set KJ :

J⋆(v) = χKJ
(v) =

{
0 if v ∈ KJ ,
+∞ otherwise

(17)

where KJ is defined as:

KJ =
{
s ∈ X| ∀x ∈ X, < s,x >X≤ J(x)

}
.(18)

Writing (16) as f

λ
∈ z + 1

λ
∂J⋆BV (z), defining z = f−u

λ
. We get that z is the minimizer

of 1
2
||z − f

λ
||2 + 1

λ
J⋆BV (z). Since J⋆BV is given by (17), we deduce that z is the orthog-

onal projection of f/λ on KBV . ΠKBV
is the projection operator onto KBV . We have

z = ΠλKBV
( f

λ
) = f−u

λ
and finally u = (1 − ΠλKBV

)f .
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The closed convex set KBV can be defined according to (18):

KBV =
{
s ∈ L2(Ω; RM )| ∀x ∈ L2(Ω; RM ), < s,x >L2(Ω;RM )≤ ||x||BV (Ω;RM ) =

sup
|p|≤1

< p,∇x >L2(Ω;RM )= sup
|p|≤1

< ∇ · p,x >L2(Ω;RM )

}
,

which naturally gives:

KBV =
{
∇ · p ∈ L2(Ω; RM ), ∀p ∈ L2(Ω; RM ) × L2(Ω; RM ) : |p| ≤ 1

}
.

Finally, since (6) gives u = f − λ∇ · p, then the projection operator in (14) is determined
by the iterative scheme λ∇·pn → λ∇· p̄ = ΠλKBV

(f), introduced in the previous section.
2

2.5. Code and Results.

The iterative scheme (12) is straightforward to implement1. We already defined in the pre-
vious section the discrete divergence operator. It remains to define the discrete gradient
operator applied to a function v at the point (ix, iy) (following [13]):

(∇v)ix,iy =
(
(∇v)xix,iy , (∇v)

y
ix,iy

)

with

(∇v)xix,iy =

{
vix+1,iy − vix,iy if ix < Nx,
0 if ix = Nx,

(∇v)yix,iy =

{
vix,iy+1 − vix,iy if iy < Ny,
0 if iy = Ny.

The iterative process (12) is stopped if max(|un+1−un|) ≤ r, where r is a given residue
and we recall that un+1 = f − λ∇ · pn+1. In all experiments, initial values are chosen to
be p = 0, the residual r = 10−4.

Before testing the vectorial denoising ROF model, we come back to (12) where it is
interesting to notice that a coupling term between the M channels appears, precisely
√

∑N
j=1 |∇

(
∇ · pnj − fj/λ

)
|2. Blomgren and Chan have already noticed in [8] the exis-

tence of a coupling term in the minimization equation of the vectorial ROF model. They
observed that the coupling improves the denoising process compared with a direct appli-
cation of the scalar ROF model channel-by-channel. Figure 1 gives an illustrative example
of comparison between the vectorial ROF model and the scalar ROF model channel-by-
channel. Globally speaking the coupling term helps to better restore parts in images where
intensities are weak.

As a summary of the first part of this paper, the standard dual definition of the vec-
torial TV norm, introduced in (1), will be our basic tool to develop different color image
processing models such as image denoising, vector field denoising, image decomposition,
image deblurring and image inpainting. This definition of the vectorial TV norm uses
many advantages. First of all, there is no need to introduce a regularization parameter
of the TV norm as it was done in [8, 4, 16] and many other papers to carry out the min-
imization process. Indeed, the vectorial TV norm is usually not directly minimized but
the regularized version

∫

Ω

√

|∇u|2 + ǫ dx, ǫ being a very small parameter to be faithful
to the original norm and useful to avoid numerical instabilities in the minimization flow.
Secondly, the minimization process based on the dual approach is much faster than in
a standard regularized approach [8] (explicit gradient descent flow). Indeed, the direct
consequence of the regularization parameter ǫ is the obligation to use a very small tem-
poral step to ensure a correct and stable minimization process. Thus the minimization
process is slow because a large number of iterations is necessary to reach the steady state
minimizing solution. Figure 3 presents a comparison between our dual-based ROF model

1A Matlab version is available at http://www.math.ucla.edu/∼xbresson
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and the standard ǫ-based ROF model used in [8]. Our model converges fast to the de-
noising result whereas the standard model converges slowly because of the regularization
parameter. Besides, the quality of the denoising process is slightly better with our model,
still because of the ǫ parameter. Finally, another advantage of our approach is to provide
a numerical minimization scheme easy to code.

2.6. Other Vectorial Image Denoising Models.

2.6.1. Sapiro-Ringach and Blomgren-Chan’s Models.

In [35], Sapiro and Ringach propose an anisotropic diffusion model for vectorial im-
ages based on Riemannian geometry. From a Riemannian point of view, the vectorial
image u : (x, y) → (u1(x, y), ..., uM (x, y)) can be seen as a parametric 2-D manifold
embedded in a M -D Euclidean space. The (square) distance between two close points
on the 2-D Riemannian manifold is given by ds2 :=

∑

µ,ν gµνdµdν, µ, ν = {x, y}, and

gµν :=< ∂µu, ∂νu >, ∂µu := ∂u/∂µ, is the first fundamental form or metric tensor [29].
The metric tensor gµν is considered as a ”vectorial edge” indicator function, i.e. a detec-
tor of discontinuities for vectorial images. More precisely, the eigenvectors of the image
metric gµν determine the directions of maximal and minimal change at a give point on the
manifold-image, and their associated eigenvalues give their rate of change. Eigenvalues of
gµν are provided by:

λ± =
1

2

(

gxx + gyy ±
√

(gxx − gyy)2 + 4g2
xy

)

and the eigenvectors are (cos θ±, sin θ±), where θ+ = 1
2

arctan
2gxy

gxx−gyy
and θ− = θ+ + π

2
.

Based on the previous analysis of the image metric gµν , Sapiro and Ringach propose to
define the anisotropic diffusion for vectorial images by smoothing in the direction of min-

imal change, θ−, i.e. parallel to the ”vectorial” edge, using the flow: ∂u
∂t

= g(λ+, λ−) ∂
2u

∂θ2
−

.

This approach is consistent with the scalar case presented in [12]. Indeed, in the case of
gray-scale images, i.e. M = 1, it is easy to show that (cos θ−, sin θ−) = ∇u

|∇u| which implies

that ∂u
∂t

= ∂2u
∂θ2

−

= ∇ · ( ∇u
|∇u| ) and the TV norm is equal to TV (u) =

∫

Ω

√
λ+dx since

λ+ = |∇u|2 and λ− = 0. From the latter scalar approach, Sapiro and Ringach propose in
[35] the following vectorial TV norm:

TVSR(u) =

∫

Ω

f(λ+, λ−) dx.(19)

However, they do not recommend a specific f . One natural choice, as proposed by Blom-
gren and Chan in [8], is f :=

√
λ+ + λ− because it is equivalent to the TV norm for the

scalar case and it is a non-decreasing function of λ±.

We notice that (19) while considering f =
√
λ+ + λ− is strictly equal to the definition

of the vectorial TV norm used in this paper and presented in Equation (3) for smooth

functions u ∈ C1(Ω; RM ). Indeed,
√
λ+ + λ− =

√
gxx + gyy, gxx =

∑M
i=1(∂xui)

2 and

gyy =
∑M
i=1(∂yui)

2 implies that

TVSR(u) =

∫

Ω

√

λ+ + λ−dx =

∫

Ω

√
√
√
√

M∑

i=1

|∇ui|2dx = ‖u‖BV (Ω;RM ).(20)

Finally, Blomgren and Chan noticed that the norm (20) has the tendency to pro-
duce a color smearing contrary to their definition of vectorial TV given by TVBC(u) =
√

∑M
i=1

( ∫

Ω
|∇ui|dx

)2

. Since our model corresponds to the norm (20) for smooth func-

tions u, our algorithm still gets the color smearing. However, despite of this drawback, as
we have already said, the norm (20) offers many important advantages. We remind that
no regularization of the TV norm is done. Besides, the number of iterations to converge
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to the denoised vectorial image is much less important in our approach than in [35, 8]
as shown on Figure 3 and our numerical scheme is straightforward to implement. Fi-
nally, a dual formulation of the vectorial TV norm provides the basic element to prove the
existence of a denoising solution in Section 2.2, which is difficult to prove with TVBC in [8].

2.6.2. Sochen-Kimmel-Malladi’s Model.

In [37], Sochen, Kimmel and Malladi introduce another Riemannian framework to smooth
vectorial images such as color or texture images. In their approach, they represent the
given vectorial image as a parametric 2-D manifold embedded in a (M + 2)-D space, M
being the dimension of the vectorial image. The core of their framework is the Polyakov
functional, which measures the weight of a mapping X : Σ → M between an embedded
manifold (the image manifold) Σ and an embedding manifold M as follows:

P (X,Σ,M) =

∫

Σ

dΣ
√
ggµν∂µX

i∂νX
jhij ,(21)

where gµν is the first fundamental form of the manifold Σ, dΣ is the integration element
w.r.t. the local coordinates on Σ, hij is the metric tensor of the embedding space M, gµν

is the inverse metric of gµν , g is the determinant of gµν , µ, ν = x, y and i, j = 1, ...,M
in our paper and ∂µX

i := ∂Xi/∂µ. Finally, the Einstein summation convention is used
in (21), which means that when identical indices appear one up and one down, they are
summed over. The Polyakov functional is related with harmonic maps which are geodesics
or minimal surfaces for curves and surfaces. Indeed, if the metric tensor of the embedded
manifold Σ is chosen to be the induced metric tensor, gµν := ∂µX

i∂νX
jhij , by pullback

procedure, then X which minimizes the Polyakov action are called harmonic maps and
the Polyakov functional is reduced to the Euler functional:

S =

∫

Σ

dΣ
√
g,

which describes the length/(hyper-)area of a curve/(hyper-)surface Σ and
√
g being the

invariant-area element on Σ.
In the case of vectorial images, we have X : (x, y) → (x, y, u1(x, y), ..., uM (x, y)) and the

components of the metric tensor are thus: gxx = 1+
∑M
i=1(∂xui)

2, gyy = 1+
∑M
i=1(∂yui)

2

and gxy =
∑M
i=1 ∂xui∂yui. This implies the denoising functional for vectorial images [37]:

S =

∫

Ω

√
√
√
√1 +

M∑

i=1

|∇ui|2 +
1

2

M∑

i,j=1

< ∇ui,∇uj >2 dx,(22)

where the term
∑M
i,j=1 < ∇ui,∇uj >2 is a cross-correlation term of orientation between

different channels that directs different channels to align together. Minimizing (22) w.r.t.

ui gives the Beltrami flow: ∂ui

∂t
= 1√

g
∂µ(

√
ggµν∂νui) =: ∆gui, where ∆g is the Laplace-

Beltrami operator.

There exist some connections between the previous model and the dual TV norm. If
we define a new vectorial image as u : (x, y) → ( 1√

2
x, 1√

2
y, u1(x, y), ..., uM (x, y)), then the

dual vector TV norm is equal to:

‖u‖BV (Ω;RM ) =

∫

Ω

√
√
√
√1 +

M∑

i=1

|∇ui|2 dx.(23)

Functional (23) is equal to (22) when the cross-correlation term is null. The solution of the
vectorial ROF model inf

u
‖u‖BV (Ω;RM )+

1
2λ

‖f−u‖2
L2(Ω;RM ), where f = ( 1√

2
x, 1√

2
y, f1, ..., fM )

as the given image, is given by:

ui = fi − λ∇ · pi, 1 ≤ i ≤M,(24)
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and pi is the steady state solution of the following flow:

pn+1
i =

pni + δt∇
(
λ∇ · pni − fi

)

1 + δt
√

1 +
∑M
j=1 |∇

(
λ∇ · pnj − fj

)
|2
, 1 ≤ i ≤M.(25)

An interesting application of (24) and (25) is for gray-scale images. Indeed, Functionals

(22) and (23) are equal for gray-scale images, S(u) = ‖u‖BV (Ω) =
∫

Ω

√

1 + |∇u|2dx, since
the cross-correlation term is null. This means that the Beltrami flow can be ”dualized”
in the case of gray-scale images as proposed by Chambolle in [13]. In other words, the
minimizing solution of

∫

Ω

√

1 + |∇u|2dx +
1

2λ
‖f − u‖2

L2(Ω),(26)

where u : Ω → R, is given either in the standard Euler-Lagrange approach by:

∂u

∂t
=

(1 + u2
y)uxx − 2uxuyuxy + (1 + u2

x)uyy

(1 + u2
x + u2

y)2
︸ ︷︷ ︸

∆gu

+
1

2λ
(u− f).(27)

or in the dual approach by:

u = f − λ∇ · p,(28)

where p is the steady state of:

pn+1 =
pn + δt∇(λ∇ · pn − f)

1 + δt
√

1 + |∇(λ∇ · pn − f)|2
.

We have noticed that the dual approach (28) is faster than the Euler-Lagrange (EL)
approach (27). We mean that the computation of the minimum of (26) is obtained faster
with solution (28) than solution (27), even if we consider an explicit steepest gradient
descent scheme for both approaches. We think that the explicit computation of the La-
grange multiplier in the dual approach helps to speed up the minimization speed. We
have already observed that the dual approach is faster than the EL approach in the ROF
denoising model. Indeed, Figure 3 presents a comparison between the dual and the EL
approaches, where the dual is clearly faster. Finally, we have also noticed that the semi-
implicit scheme does not really speed up the minimization in the dual approach. Similar
minimization speeds are obtained with the implementation of the explicit gradient descent
scheme.

3. Part II: Extension to Standard Color Image Processing

In the first part of this paper, we have introduced a regularization algorithm for
color/vectorial images based on the VTV norm. In the second part of this paper, we
extend this L1 vectorial regularization algorithm to standard color image processing prob-
lems. We will see that the extension works well for many color problems such as the color
inverse scale space, the color denoising with the chromaticity-brightness color representa-
tion, the color wavelet shrinkage, the color inpainting, the color decomposition, the color
deblurring and finally the color denoising on manifolds. Generally speaking, the proposed
VTV minimization algorithm can be used in problems that required vector field (color,
other vector features) L1 regularization while preserving discontinuities.
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3.1. Color Inverse Scale Space.

In this section, we improve the VROF model, introduced in Section 2.2, with the iterative
regularization process proposed by Osher, Burger, Goldfarb, Xu and Yin in [33]. This
process, also called inverse scale space, enhances the denoising task defined by the ROF
model by better preserving the contrast. The proposed iterative regularization process
is based on geometry. The basic idea is to match not only the intensity values between
the denoising image and the noisy one but also the normals of level sets in each image
while applying the TV norm which preserves the location of edges while smoothing out
the noise. In this section, we improve the VROF model by extending the iterative regu-
larization scheme [33] to color images.

We consider u ∈ C1(Ω; RM ) to explain the model. Given the noisy vectorial image
f ∈ L∞(Ω,RM ), an ”approximation of normals of level sets” can be computed by carrying
out the minimization model:

u1 = arg inf
u

‖u‖BV (Ω;RM ) +
1

2λ
‖f − u‖2

L2(Ω;RM ),

where n1 := ∇u1
|∇u1| is called the approximation of ”normals of level sets”. The Euler-

Lagrange equation of the previous equation is equal to:

M∑

i=1

∇ · ∇u1i

|∇u1|
+

1

λ
vi = 0,(29)

where vi := fi − ui, ∀i. We now introduce n1 in the following minimization model:

u2 = arg inf
u

‖u‖BV (Ω;RM )− < n1,∇u >L2(Ω;RM ) +
1

2λ
‖f − u‖2

L2(Ω;RM ).

In the previous equation, we have:

− < n1,∇u >L2(Ω;RM )=

∫

Ω

−
M∑

i=1

< n1i,∇ui >

=

∫

Ω

M∑

i=1

ui∇ · n1i =

∫

Ω

M∑

i=1

ui∇ · ∇u1i

|∇u1|
.

Using (29), we obtain:

∫

Ω

M∑

i=1

ui∇ · ∇u1i

|∇u1|
=

∫

Ω

M∑

i=1

ui
(
− 1

λ
v1i

)
,

which gives:

u2 = arg inf
u

‖u‖BV (Ω;RM ) + 1
2λ

∫

Ω

∑M
i=1

(

− 2uiv1i + (fi − ui)
2
)

arg inf
u

‖u‖BV (Ω;RM ) + 1
2λ

∫

Ω

∑M
i=1

(

(fi + v1i − ui)
2 + η

)

,

where η is independent of u and therefore useless in the minimization process. Finally,
we end up with the modified vectorial ROF model:

u2 = arg inf
u

‖u‖BV (Ω;RM ) +
1

2λ
‖f + v1 − u‖2

L2(Ω;RM ),

where v1 := f − u1. Hence, the implementing iterative procedure for the vectorial image
case is as follows:

(1) Initialize: u0 = 0 and v0 = 0.
(2) For k = 0, 1, 2, ...: compute uk+1 as a minimizer of the modified vectorial ROF

model:

uk+1 = arg min
u

‖u‖BV (Ω;RM ) +
1

2λ
‖f + vk − u‖2

L2(Ω;RM ),

and update vk+1 := vk + f − uk+1.
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Figure 4 presents an application of the proposed iterative regularization process, which
better preserve the color contrast.

3.2. Color Denoising With the Chromaticity-Brightness Representation.

In Section 2.2, the color denoising model has been formulated as a vectorial model in
the RGB representation of color images. In [16], authors showed that the Chromaticity-
Brightness model or the Hue-Saturation-Value (HSV) enable to better restore color images
because these models are closer to human perception. In this section, we propose to per-
form the color image denoising in the CB representation of color images. In the RGB color
model, the given image is given by f := (f1, ..., fM ) : Ω → R

M , fi ≥ 0, 1 ≤ i ≤M . In the
CB color model, the image f is separated into the brigthness component Bf := |f | : Ω → R

and the chromaticity component Cf := f/|f | = f/Bf : Ω → S
2. Thus, the brightness com-

ponent is a gray-scale image and the chromaticity component stores the color information
which takes values on the unit sphere. Following [28], the previous constraint on the
sphere is introduced as a penalization term in the variational model:

inf
C

{

‖C‖BV (Ω;RM ) +
1

2λ
‖C − Cf‖2

L2(Ω;RM ) +
1

2α
‖|C|2 − 1‖2

L2(Ω;RM )

}

,(30)

which denoises the chromaticity component. (30) is regularized using the Ginzburg-
Landau functional [11] as follows:

inf
C,D

{

‖C‖BV (Ω;RM ) +
1

2λ
‖C − Cf‖2

L2(Ω;RM ) +
1

2α
‖|D|2 − 1‖2

L2(Ω;RM ) +

1

2β
‖D − C‖2

L2(Ω;RM )

}

,

The Ginzburg-Landau functional (‖|D|2 −1‖2
2) is introduced in order to use the fast mini-

mization algorithm proposed in Section 2.3. Indeed, we have two minimization problems.
The first one is the VROF:

inf
C

‖C‖BV (Ω;RM ) +
β + λ

2λβ
‖C − (

β

λ+ β
Cf +

λ

λ+ β
D)‖2

L2(Ω;RM ),

and the second one is defined by:

inf
D

1

2α
‖|D|2 − 1‖2

L2(Ω;RM ) +
1

2β
‖D − C‖2

L2(Ω;RM ),(31)

whose the Euler-Lagrange equation is given by D( 2β
α

(|D|2 − 1) + 1) + C = 0. We use the
following semi-implicit iterative scheme to minimize (31):

Dn+1 =
Dn + δtC

1 + δt( 2β
α

(|Dn|2 − 1) + 1)
.

The brightness component is a gray-scale image that can be denoised with the model
[13]. Finally, the denoised image is given by u = C/B, where C and B are respectively
the denoised chromaticity component and the denoised brightness component.

Figure 5 presents the denoised color image with the CB color representation. The SNR
is 14.57 with the RGB color representation and 14.72 with the CB representation.

3.3. Color Image Inpainting.

Image inpainting consists in recovering/interpolating an image in regions where the orig-
inal information is missing, see [6, 17]. Given the image domain Ω, a color image
f ∈ L∞(Ω,RM ), a region ΩI ⊂ Ω where the image will be inpainted, the variational
color image inpainting model is as follows:

{

inf
u

‖u‖BV (ΩI ;RM )

u|∂ΩI
= f

.
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We propose to solve the previous minimization problem with boundary condition with
the following convex variational model:

{

inf
u,v

‖u‖BV (Ω;RM ) + 1
2λ

‖u − v‖2
L2(Ω;RM )

v|Ω\ΩI
= f

.

The minimization problem w.r.t. u is the vectorial ROF model and the minimization
w.r.t. v gives v|ΩI

= u and v|Ω\ΩI
= f .

Figure 8 presents a color image inpainting result.

3.4. Color Wavelet Shrinkage.

In this paper, we have considered for vectorial images the space of regularization as the
BV space. However, other spaces of smoothness can obviously be used. A popular regu-
larization space is L2(Ω; RM ). In this case, the minimizer (not really useful for denoising)
of ||u||2L2(Ω;RM ) + 1

2λ
||f − u||2L2(Ω;RM ) is given by the Tikhonov method [39]. In this sec-

tion, we consider the Besov space for color images, which will relate variational model to
wavelet shrinkage through a denoising process as shown in [14].

Theorem 3.1. (Color Wavelet Shrinkage) Let f ∈ L∞(Ω; RM ), u : Ω → R
M , λ > 0,

then the minimizer of

||u||p
Bα

p (Lp(Ω;RM ))
+

1

2λ
||f − u||2L2(Ω;RM ),(32)

is given by

u = (1 − ΠλK
Bα

p (Lp(Ω;RM )
)f ,(33)

where Bαp (Lp(Ω; RM )) is a Besov space. In the case of p = 1, α = 1, the closed convex set
KBα

p
is given by:

KB1
1(L1(Ω;RM )) =

{
s ∈ L2(Ω; RM )| ∀i, j, k, ψ, |csi

j,k,ψ| ≤ 1
}
.

Proof. The proof is the straightforward extension of the paper [14]. In this paper, Cham-
bolle, DeVore, Lee and Lucier showed relations between wavelet-based algorithms and
variational models in the case of the Besov space and gray-scale images. Let us express
the vectorial image u : Ω → R

M in an orthogonal wavelet basis for L2(Ω) that we denote
ψj,k, then for f ∈ L2(Ω; RM ), we have:

f =
∑

j,k,ψ

cfj,k,ψψj,k,

where cfj,k,ψ : Ω → R
M . The norm of f in L2(Ω; RM ) is:

||f ||L2(Ω;RM ) =
∑

i,j,k,ψ

|cfi
j,k,ψ|

2,

where i ∈ [1,M ] and the norm of f in Bαp (Lp(Ω; RM )) is ([14]):

||f ||Bα
p (Lp(Ω;RM )) =

( ∑

i,j,k,ψ

|cfi
j,k,ψ|

p
)1/p

.

It can be shown that minimizing (32) is equivalent to the wavelet shrinkage algorithm
of Donoho and Johnstone defined in [21]. If we consider f =

∑

j,k,ψ c
f
j,k,ψψj,k and u =

∑

j,k,ψ c
u
j,k,ψψj,k, then (32) is equal to:

∑

i,j,k,ψ

|cui
j,k,ψ|

p +
1

2λ

∑

i,j,k,ψ

|cfi
j,k,ψ − cui

j,k,ψ|
2,

which implies the minimization of

|cui
j,k,ψ|

p +
1

2λ
|cfi
j,k,ψ − cui

j,k,ψ|
2,(34)
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for each i, j, k, ψ. (34) is equivalent to minimize E(s) = |s|p + 1
2λ

|s − t|2. In the special

case of p = 1, the exact minimizer is given by s = t
|t| max(|t| −λ, 0). Thus the wavelet co-

efficients cui
j,k,ψ are shrinked toward zero by an amount of λ to obtain the exact minimizer.

This corresponds to the wavelet shrinkage algorithm of Donoho and Johnstone. Thus,
wavelet shrinkage can be obtained with the variational model (32). And the minimizer
of the minimization problem (32) can be obtained by a projection algorithm, whose the
closed convex set KB1

1(L1(Ω;RM )) (with p = 1, α = 1) is defined as follows:

KB1
1(L1(Ω;RM )) =

{
s ∈ L2(Ω; RM )| ∀x ∈ L2(Ω; RM ), < s,x >L2(Ω;RM )≤

||x||B1
1(L1(Ω;RM )) =

∑

i,j,k,ψ

|csi
j,k,ψ|

}
,

and so:

KB1
1(L1(Ω;RM )) =

{
s ∈ L2(Ω; RM )| ∀i, j, k, ψ, |csi

j,k,ψ| ≤ 1
}
. 2

3.5. Color Image Decomposition.

In this section, we consider the color image decompsition task introduced by Aujol and
Kang introduced in [4] (another relevant work is [40]). Image decomposition aims at
splitting an image into a smooth/geometrical component and a textural/oscillating com-
ponent. This decomposition can be used to enhance image processing tasks such as the
denoising [3], segmentation [10] or inpainting [7]. The model of Aujol and Kang considers

a regularized version of the vectorial TV norm,
∫

Ω

√

|∇u|2 + ǫ dx, ǫ > 0, which induces
a slow decomposition process as we explained in Section 2.1. We will use the vectorial
dual approach introduced in this paper to speed up the color image decomposition process.

Theorem 3.2. (Color Image Decomposition) Let f ∈ L∞(Ω; RM ), u,v : Ω → R
M ,

λ > 0, then the minimizer of

Ju(u) + Jv(v) +
1

2λ
||f − (u + v)||2L2(Ω;RM ),(35)

is given by
{

u = (1 − ΠλKu
)(f − v),

v = (1 − ΠλKv
)(f − u),

(36)

where Ju, Jv are the functionals whose describe the smooth and textural parts of f . Since
we are interested in the image decomposition algorithm proposed by Aujol and Kang, then
Ju = ||u||BV (Ω;RM ) and Jv = ||v||BV ⋆(Ω;RM ) such that:

{

u = (1 − ΠλK
BV (Ω;RM )

)(f − v),

v = ΠλK
BV (Ω;RM )

(f − u),
(37)

We observe that the norm ||.||BV ⋆(Ω;RM ) was introduced by Aujol and Kang in [4] and it

corresponds to the multidimensional version of the G-norm introduced by Meyer in [31]
to capture oscillating patterns in gray-scale images.

Proof. It is easy to prove (37) using the following result. The minimizer of JBV (u) +
1
2
||u − g||2 is also the minimizer of JBV ⋆(z1) + 1

2
||z1 − g||2 with z1 = ΠKBV

(g). Hence,

the minimizer of JBV ⋆(u) + 1
2λ

||u − g||2 is the minimizer of JBV ⋆⋆(z2) + 1
2
||z2 − g||2

with z2 = ΠλKBV ⋆ (g). Since we have JBV ⋆⋆ = JBV , this implies that we also have
z2 = (1 − ΠλKBV

)(g). This means that ΠλKBV ⋆ = 1 − ΠλKBV
, which gives (37). 2

Figure 6 and 7 present two color image decomposition results.
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3.6. Color Image Deblurring.

We consider the fidelity term like ||f −Au||2, where A : X → X is a linear self-adjoint and
positive operator satisfying ||A|| < 1. This new fidelity term allows to deal with the image
deblurring problem. We remind that image deblurring aims at compensating the motion
of the camera during the exposure, see [18, 26] for gray-scale TV deblurring. Given a color
blurred and noisy image f , we propose the following variational color image deblurring
and denoising model:
Theorem 3.3. (Color Image Deblurring) Let f ∈ L∞(Ω; RM ), u,v : Ω → R

M ,
A : R

M → R
M , ||A|| < 1, Au := (A1u1, ..., ANuN ) : Ω → R

M , λ, η > 0, then the
minimizer of

||u||BV (Ω;RM ) +
1

2λ
||f −Au||2L2(Ω;RM ),(38)

is computed via the following regularized energy:

||u||BV (Ω;RM ) +
1

2λ
||f −Av||2L2(Ω;RM ) +

1

2η
||u − v||2L2(Ω;RM ),(39)

Since (38) is convex, the minimizer is given by:
{

u = (1 − ΠηK
BV (Ω;RM )

)(v),

v = (1 + λ
η
A⋆A)−1(u + λ

η
A⋆f),

where A⋆ is the L2−conjugate of A such that A⋆f := (A⋆1f1, ..., A
⋆
NfN ) : Ω → R

M .

Proof. The proof is immediate using the VROF model and computing the Euler-Lagrange
of (39) w.r.t. v.

Figure 9 presents a color image deblurring and denoising result. The deblurring process
is a non-blind deblurring process since the kernel A is assumed to be known.

3.7. Generalized Projection Algorithm of Chambolle.

Based on the work of Bect, Blanc-Feraud, Aubert and Chambolle [5], the regulariza-
tion operator can be generalized to any linear operator for color images.

Theorem 3.4. (Generalized Projection Algorithm of Chambolle) In the case of
a regularization term defined as J(u) = ||Qu||1, where Q is a linear operator Q : X → Y ,
the projection ΠλK onto the convex set closed set λK can be numerically computed by a
fixed point method. We consider vectors p ∈ {p ∈ Y : |p| ≤ 1} such that:

J(u) = ||Qu||1 = sup
|p|≤1

∫

< Qu,p > .

The projection ΠλK in the case of ||Qu||1 + 1
2λ

||f −u||2 is given by the iterative sequence:

pn+1 =
pn + τQ(Q⋆pn − f/λ)

1 + τ |Q(Q⋆pn − f/λ)| .(40)

The previous iterative algorithm converges assuming that the time step τ ≤ 1
||Q⋆||2 and

we have λQ⋆pn → λQ⋆p̄ = ΠλKJ
(f).

Proof. The proof is similar to the proof of Theorem 2.3.1. We have:

inf
u

||Qu||1 +
1

2λ
||f − u||2L2 ,

inf
u

sup
|p|≤1

< Qu,p >L2 +
1

2λ
||f − u||2L2 ,

inf
u

sup
|p|≤1

< u, Q⋆p >L2 +
1

2λ
||f − u||2L2 ,(41)
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inf and sup can be swapped using the minimax theorem. The Euler-Lagrange equation
w.r.t. u is u = f − λQ⋆p, introduced in (41) gives sup

|p|≥1

< f , Q⋆p >L2 −λ
2
||Q⋆p||2L2 .

The constrained Euler-Lagrange equation is −Q(Q⋆p− f/λ) +αp = 0. Following Section
2.3, we have (40). Besides, Section 2.3 shows that the temporal step that guarantees the
stability is δt ≥ 1/τ2 with τ = ||Q⋆||.

Application 1: VTV. In this case, we have Q = ∇, Q⋆ = −∇·.

Application 2: VTV on Manifold. Using Theorem 3.4, the VROF model can also be
used to denoise color/vectorial images defined on a manifold Σ:

||u||BV (Σ;RM ) +
1

2λ
||f −Au||2L2(Σ;RM ),(42)

where λ > 0, f is the given (noisy) vectorial image on Σ, ||u||BV (Σ;RM ) =
∫

Σ
|∇Σu|, ∇Σ

is the gradient operator on Σ and ||f − Au||2L2(Σ;RM ) =
∫

Σ
|f − u|2 dΣ where dΣ is the

invariant-area element. It follows from the Stokes’ theorem (integration by parts on the
manifold Σ) that < ∇Σu,p >= − < u,∇Σ · p >, where ∇Σ· is the divergence operator
on Σ, which is the adjoint of the gradient operator ∇Σ. This implies that the solution of
(42) is equal to:

u = f − λ∇Σ · p,(43)

where p is the steady state of the following flow:

pn+1 =
pn + δt∇Σ

(
λ∇Σ · pn − f

)

1 + δt|∇Σ

(
λ∇Σ · pn − f

)
| ,(44)

given Q = ∇Σ and Q⋆ = −∇Σ·.
Gradient operator and divergence operator in (43) and (44) can be defined in a two
different ways. If the manifold Σ is defined as a parametric manifold, then the gradient of
a function h : Σ → R and the divergence of a vector field V = (Vx, Vy) : Σ → R

2 in local
coordinates are given by [29]:

{
(∇Σ h)µ =

∑

ν g
µν∂νh

∇Σ · V = 1√
g

∑

ν ∂ν(
√
gVν)

,

where µ, ν = {x, y}, gµν is the inverse of the first fundamental form gµν of the parametric
manifold Σ and

√
g is the square root of the determinant of gµν .

If the manifold Σ is represented by an implicit level set function as described in [30], then
the gradient and the divergence operator are given by:

{
∇Σ h = P∇φΣ∇h
∇Σ · V = 1

|∇φΣ|∇ ·
(
P∇φΣ

V

|P∇φΣ
V| |∇φΣ|

)
,

where φΣ is a level set function representing the surface Σ := {x : φΣ(x) = 0} and

P∇φΣ := I − ∇φΣ⊗∇φΣ
|∇φΣ|2 is a projector operator onto the plane orthogonal to ∇φΣ, which

is the normal to the surface Σ.
One interesting application of the previous denoising model is for omnidirectional images,
which contain information of a scene in all directions simultaneously without rotating a
camera. Figure 10 presents the denoising of a color omnidirectional image. The manifold
considered is a paraboloid. Its metric, developed in [9], is:

gµν =

(
1 + 4x2 4xy

4xy 1 + 4y2

)

,

which implies the following components of the gradient operator:
{

(∇Σ h)x = gxx∂xh+ gxy∂yh
(∇Σ h)y = gxy∂xh+ gyy∂yh

,

and the divergence operator:

∇Σ · V =
1√
g

(

∂x(
√
gVx) + ∂y(

√
gVy)

)

.
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4. Conclusion

In this paper, we have presented a regularization algorithm for color/vectorial images
based on the dual definition of the vectorial TV norm. Unlike the CGM model [15] or the
DS model [20], the dual approach of Chambolle [13] extends nicely to a variety of vector
models, producing useful results which are better than standard methods in many cases.

Indeed, this regularization algorithm offers important advantages. Firstly, it minimizes
the exact TV norm unlike usual approaches such as [8, 4, 16]. Secondly, the numerical
scheme to carry out the minimization process is easy to code. Then, the number of
iterations to reach the steady state solution is low, which offers a fast color denoising
model compared with other related models such as [8, 35]. Finally, the dual formulation
of the vectorial TV norm offers well-founded mathematical theorems to prove the existence
of a minimizing solution.

We have compared our approach to related vector denoising models such as the model
of Sapiro and Ringach in [35]. In our case, a fast and easy to implement denoising scheme
is proposed. We have also proved the existence of a minimizer in the vector valued BV
space. In [8], Blomgren and Chan propose a different version of the vectorial TV norm,
which produces less color smearing than our model. However [8] does not minimize the
exact TV norm and the minimization scheme is slow as shown in Figure 3. In [37], Sochen,
Kimmel and Malladi propose a variational model which shares some connections with our
model except the existence of a cross-correlation term in their energy which does not exist
in ours. However, the cross-correlation term vanishes for gray-scale images, which induces
the equivalence of our model with the Beltrami model. This also means that the Beltrami
flow can be ”dualized” for gray-scale images. Besides, it is difficult to study the existence
of a denoising solution in the Beltrami framework unlike the TV framework.

We have also showed that the proposed fast vectorial regularization scheme can be
easily applied to several standard color image processing such as the color inverse scale
space, color denoising with the chromaticity-brightness color representation, color image
inpainting, color wavelet shrinkage, color image decomposition, color image deblurring,
and color denoising on manifolds.

Finally, and maybe more importantly, we would like to emphasize that this proposed
L1 vectorial regularization algorithm can be used in problems that required vector field
regularization while preserving discontinuities. A potential interesting application of vec-
tor field denoising is in medical imaging where the proposed regularization process can be
used to denoise Diffusion Tensor Images (DTI). Figure 11 presents the regularization of
a synthetic vector field that has been damaged by noise. Note that the regularization is
able to restore the four regions with same orientation although it is very difficult to see
them in Figure 11(e). Other applications may be optical flow regularization [27], image
colorization [28], image inpainting [41], multiscale hierarchical decomposition of color im-
ages [38], etc.
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(a) Channel-By-
Channel ROF:
Channel #1.

(b) Channel-By-
Channel ROF:
Channel #2.

(c) Vectorial ROF:
Channel #1.

(d) Vectorial ROF:
Channel #2.

Figure 1. Comparison between the vectorial ROF model and the scalar
ROF model channel-by-channel. The blue plot is the original signal, the
red plot is the noisy signal and the black plot is the denoised signal.
Figures (a-b) present the denoising result carried out by the scalar ROF
model channel-by-channel. Figures (c-d) show the result obtained with
the vectorial ROF model. The coupling term of channels in the vectorial
ROF model allows to better restore Channel #2 on Figure (d) compared
with Figure (b) where the direct scalar ROF model can not completely
restore the weak signal.

(a) Original Color Image. (b) Noisy Image. (c) Denoised Image with ROF.

Figure 2. Denoising of a color picture with the vectorial ROF model.
The denoising process takes 1.8sec and 60 iterations. The picture size
is 250x303. (Note: All pictures are in color.)
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(a) Original Color Image. (b) Noisy Image. (c) Denoised Image with the
CB Representation.
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u.

(c) Oscillating/Textural Part:
v.

Figure 6. Color image decomposition process. Figure (b) presents the
smooth/geometrical part of (a) and Figure (c) the oscillating/textural
part of (a). The decomposition process takes 19sec and 60 iterations.
The picture size is 512x512. (Note: All pictures are in color.)
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(a) Original Color Image. (b) Smooth/Geometrical Part:
u.

(c) Oscillating/Textural Part:
v.

Figure 7. Color image decomposition process. Figure (b) presents the
smooth/geometrical part of (a) and Figure (c) the oscillating/textural
part of (a). The decomposition process takes 27sec and 300 iterations.
The picture size is 253x253. (Note: All pictures are in color.)
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(a) Original Color Image.

(b) Image which lost 56%
of original information.

(c) Inpainting Result.

(d) Image which lost 79%
of original information.

(e) Inpainting Result.

Figure 8. Color image inpainting process. Figures (b,c) present the
image which lost 56% of original information and the inpainting result.
The inpainting process takes 2.3sec and 60 iterations and the picture
size is 250x303. Figures (d,e) show the image which lost 79% of original
information and the inpainting result. The inpainting process takes
5.9sec and 150 iterations. (Note: All pictures are in color.)
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(a) Original Color Image.

(b) Blurred and Noisy Image #1. (c) Deblurred and Denoised Result
#1.

(d) Blurred and Noisy Image #2. (e) Deblurred and Denoised Result
#2.

Figure 9. Color image deblurring and denoising process. The simulta-
neous denoising and deblurring process takes 205sec and 600 iterations.
(Note: All pictures are in color.)
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(a) Noisy Omnidirectional Image
on a Parabolic Manifold.

(b) Denoised Omnidirectional
Image.

(c) Noisy Omnidirectional
Image on the Parametric
Plane.

(d) Zoom In the Noisy Im-
age.

(e) Zoom In the Denoised
Image.

Figure 10. Denoising of a color image defined on a manifold: an om-
nidirectional image painted on a parabolic manifold. The denoising
process takes 19.7sec and 130 iterations and the picture size is 574x574.
(Note: All pictures are in color.)
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(a) Clean Vector Field. (b) Noisy Vector Field #1. (c) Denoised Vector Field #1
with ROF.

(d) Clean Vector Field. (e) Noisy Vector Field #2. (f) Denoised Vector Field #2
with ROF.

Figure 11. Denoising of a vector field with the vectorial ROF model.
The denoising process takes less than 0.1sec, 30 iterations for #1 and
100 iterations for #2. The picture size is 30x30. We can notice the
good performance of our denoising model with the noisy vector field (e),
which has lost the main directions (d). Our model is able to recover the
main structure (f).


