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Abstract. In this work, we address the problem of segmenting multiple objects, under possible
occlusions, in a level set framework. A variational energy that incorporates a piecewise constant
representation of the image in terms of the object regions and the object spatial order is proposed.
To resolve occluded boundaries, prior knowledge of shape of objects is also introduced within the
segmentation energy. By minimizing the above energy, we solve the segmentation with depth problem,
i.e. estimating the object boundaries, the object intensities, and the spatial order. The segmentation
with depth problem was originally dealt with by the Nitzberg-Mumford-Shiota (NMS) variational
formulation which proposes segmentation energies for each spatial order. We discuss the relationships,
and show the computational advantages of our formulation over the NMS model, mainly due to our
treatment of spatial order estimation within a single energy. A novelty here is that the spatial order
information available in the image model is used to dynamically impose prior shape constraints only
to occluded boundaries. Also presented are experiments on synthetic and real images with promising
results.
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1. Introduction. Image segmentation is an important step in understanding
the composition of the original 3D scene that gave rise to the image. However, it
is often considered a difficult problem due to noise which results in spurious edges
and boundary gaps, and occlusions which leads to a overlap of object boundaries.
Low-level visual features such as intensity, color and texture are generally not suffi-
cient to overcome such difficulties that would make purely bottom-up segmentation
approaches unsuccessful. This naturally leads to a need for integrating low-level fea-
tures and high-level information in segmentation. Enforcing a prior knowledge on
the shape of objects is a common way to facilitate segmentation especially under low
contrasts, occlusions and other undesirable noisy conditions.

In this paper, we address the problem of segmenting multiple objects with pos-
sible occlusions, and recover the object spatial order whenever possible. Here, a seg-
mentation energy incorporating shape prior knowledge is presented in a variational
framework. The novelty here is that we identify the spatial order to be encoded within
a piecewise constant representation of the given image, and hence are able to recover
the spatial order as part of the segmentation process. We demonstrate how the above
spatial order information can be used within the energy to impose the shape prior
only to occluded boundaries.

Our model solves the segmentation with depth problem that aims to determine
the boundaries of overlapping objects, along with their spatial ordering, based on
intensity distributions in the object regions. The segmentation with depth problem
has been addressed before in a variational framework by Nitzberg, Mumford and
Shiota (NMS) in [28, 29] and numerical methods for minimizing the NMS model have
been presented in [16, 36]. In the NMS approach, for each spatial order of the objects,
a segmentation energy is minimized using curvature continuity to complete occluded
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boundaries. Then the smallest of the above energy-minima would give the spatial
order of the objects along with their boundaries and intensities. In contrast, our
formulation involves only one segmentation energy with the spatial order given by
the estimation of a sequence of constants. Thus the main computational expense in
the NMS approach which is of the order of N.N ! shape optimizations (for N objects
in the scene) is reduced to just N shape optimizations in our case. We will provide a
detailed comparison of our model with the NMS approach in the following sections.

In our work, the contours that segment the object-boundaries are represented
using the level set method [14, 15, 30], and are evolved by gradient descent of our
variational energy. Deformable models, often called Snakes, initially proposed by Kaas
et al. [19] evolve an explicitly parametrized contour based on external and internal
energies. Despite wide use and popularity due to its simplicity and speed, the Snakes
approach has the drawbacks of being dependent on the initial contour placement, and
is restricted by the topology of the contour. There have been some works to overcome
these limitations [2, 10, 17, 1, 24, 13].

In the level set framework, the contour is represented implicitly as the zero level of
a higher dimensional embedding function, and the contour propagation is performed
by evolving the embedding function. This enables one to handle topological changes
of the boundary such as splitting and merging easily. Segmentation algorithms us-
ing the level set method have been developed based on the geometric heat equation
taking into account the strength of the edgeness by Caselles et al. [3], Chopp [9], and
Malladi et al. [23]. The modified edge-based energy formulations of the above equa-
tion termed geodesic active contours have been proposed by Caselles et al. [4] and by
Kichenassamy et al. [20, 21]. However, these approaches based on local image gra-
dient features are still highly sensitive with respect to the initial contour placement.
In order to overcome this undesired behavior, region-based energy formulations have
been introduced in [26, 37, 6, 34, 31].

Most of the region-based approaches are based on the popular Mumford-Shah

functional [26, 27] which finds a piecewise smooth representation for a given noisy
image. A level-sets based active-contour implementation of the piecewise constant,
two-phase version of the Mumford-Shah functional has been developed by Chan and
Vese (CV) [6]. Their use of region-based information within an implicit framework
gave the advantages of segmenting objects of unknown topology, robustness to noise,
dis-continuous edges and contour initialization, and detection of interior of objects.
The CV model has also been extended to allow the segmentation of multiple disjoint
objects/phases using a multiphase level set formulation [35]. Our segmentation model
is similar to some of the above region based approaches in seeking for a piecewise
constant representation of the given image. But in addition to this representation,
we also want to recover the actual object boundaries (possibly occluded) along with
their spatial order (whenever well-defined).

The above segmentation methods solely rely on image intensity which is not suf-
ficient to detect missing edges that could occur due to occlusions/low-contrast often
observed in many practical applications. This consequently leads to the efforts that
introduce prior shape information into segmentation schemes [18]. Chen et al. [7, 8]
propose a level set segmentation algorithm based on geodesic active contours, incorpo-
rating an explicit registration term measuring shape similarity between the segmenting
curve and a prior shape that is modeled by the distance function. The active shape
model [11] using principal component analysis from a set of training shapes has been
used as prior shape information. The level set segmentation algorithm incorporating
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statistical shape priors has been proposed in [34, 33, 22, 25] where principal compo-
nent analysis is performed based on a set of training shapes in the form of signed
distance functions. In contrast to a conventional linear PCA, a nonlinear statistics by
means of kernel PCA is considered as a shape model in [12]. In most works, a rigid
transformation is considered in the comparison of the shape between the evolving level
set function and the shape prior model, but a projective transformation is considered
by slicing the signed distance function at various angles in [32]. A region-based level
set segmentation algorithm with shape priors has been proposed by Chan et al [5].

Although incorporating a shape prior within our segmentation model was inspired
by the above works, our method has a novelty in that, the use of shape prior knowledge
is automatically restricted only to occluded parts of the object boundaries. That is,
the algorithm selectively activates the shape term within the energy functional only

for occluded regions. Thus, the evolution of the segmenting level set function for
the unoccluded regions is solely driven by image intensity, even though the governing
energy functional also includes the shape term. This selective use of local prior shape
avoids enforcing shape constraints on regions where the object boundary is clearly
defined by image intensity.

The focus of this paper is to solve the segmentation from depth problem using
prior knowledge of shape of objects. Using the spatial order information, we demon-
strate one possible application where the shape constraints are activated only for
occluded boundaries. The question on the kind of shape prior knowledge to be used
depends on the application, and is not dealt with here. In this work, for convenience,
we deal with object boundaries that can be characterized by an explicit prior-shape

(given by a binary image). While assuming the availability of such a prior knowledge
may seem restrictive, its use has been demonstrated before by many shape-based
segmentation methods, especially for medical imaging applications.

To summarize, we first present a piecewise constant image representation of an
occlusion scene, in terms of the object regions and their intersection regions. We then
identify from the above representation that the sequence of constants corresponding
to the intersection regions is unique to the object spatial order. The inverse problem
is given by a constrained energy minimization that estimates the object boundaries,
intensities, and the sequence of constants which determines the spatial order. We
show that this constrained minimization is identical to the NMS minimization, but is
computationally less expensive. Also, in our experiments, we approximate the above
problem as an unconstrained energy minimization and have obtained identical results
for images corrupted with white noise. A key contribution here is that the spatial
order information available through the sequence of constants can be used within the
energy to dynamically impose the shape prior only to occluded boundaries.

2. Nitzberg-Mumford-Shiota formulation. We will briefly review the re-
lated formulation of NMS [29] for segmentation with depth. In a later section, we will
present detailed comparisons with our approach. We start with some basic definitions
and assumptions. Suppose that I : Ω → R, Ω ⊂ R2 is a 2D image of a scene composed
of N objects {Op}

N
p=1. We define an occlusion relation ‘>’ on object indices given by

i > j when Oi is in front of Oj (from the viewer’s perspective). We denote a spatial

order of the objects by the ordered set of object indices Qk = {i1 > i2 > .. > iN},
and by Q = {Q1, Q2, ..., QN !} the set of N ! possible spatial orders. Let {Ap}

N
p=1 be

the regions formed on the image domain by the objects. Now suppose that we have
the following assumptions:
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• The image intensity formed by the objects Ok is close to a constant ck, and
the background intensity is close to a constant, c̃.

• The objects are not twisted between themselves.
Due to the assumptions listed above, for a spatial order {i1 > i2 > .. > iN}, Ak −
∪j>kAj is the visible portion of the object Ok, with image intensity close to a constant
ck. For the topmost object, Oi1 , let ∪j>i1Aj = {φ}. Thus for a given spatial order
Qk, the image I of the scene can be represented in terms of the visible object regions,

I =
N

∑

q=1

cqχAq−∪j>qAj
+ c̃

N
∏

q=1

(1 − χAk
) (2.1)

where χS is the characteristic function of a set S.

2.1. NMS minimization. Given an image I0, for each spatial ordering Qk of
objects, (k = 1, 2, .., N !), the NMS segmentation-energy for Qk is written with respect
to object regions Ap, constant intensities cp and background intensity c̃. Denote
A = {A1, A2, .., AN}, Cobj = {c1, c2, ..cN , c̃},

ẼQk [A, Cobj ] =

N
∑

p=1

∫

Ap−∪j>pAj

(I0 − cp)
2dx +

∫

∩N
k=1

Ac
k

(I0 − c̃)2dx

+
N

∑

p=1

λ

∫

∂Ap

ds + β

∫

Ω

Ŝ(Ap)dx (2.2)

Here, the fourth term is the prior knowledge that the NMS model incorporates to re-
solve occlusions. Specifically in their work, Ŝ is used to complete occluded boundaries
by continuity of curvature, and is given by

Ŝ(Ap) = φ(κp),

where the function φ(x) is to be a positive, convex, even function. κp is the curvature
of ∂Ap. Our model also uses a prior shape term to resolve occlusions, although for a

different choice of Ŝ.
The NMS model is the following minimization problem

min
k∈{1,2,..,N !}

min
A,Cobj

ẼQk (2.3)

A minimizer m determines the spatial ordering Qm, the object regions Am, and
the intensities Cm

obj .

3. Occlusion Model. In the NMS model (2.3), the spatial order estimation is
done via N ! segmentation-energy minimizations, and turns out to be computationally
expensive in spite of a close initial guess for the object regions. The reason is that
the spatial order is not characterized within the image model (2.1) and hence cannot
be “adapted” based on the object regions.

To deal with the issue of spatial order estimation, we want to first look at an image
representation that is rich enough to hold information on the object regions, object
intensities, and the spatial order. In the following discussion, we observe a dependence
between intensities in the intersection regions and the spatial order. Later, we utilize
this dependence to incorporate spatial order within a single segmentation-energy.
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Fig. 3.1. Image formed for 3 objects, Ak with constant intensity ck, for spatial order 1 > 3 > 2.
The dotted lines are the occluded boundaries of A2 and A3.

Fig. 3.2. Intersection regions Pp,k (gray colored) and corresponding constants cp,k. (I) P2,1

(II) P2,2 (III) P2,3 (IV) P3,1. For spatial order 1 > 3 > 2 as in Fig. 3.1,
`

c2,1 = c2, c2,2 = c2,

c2,3 = c3, c3,1 = c2
´

.

To motivate the form of the image I, in the case N = 3, suppose that (WLOG)
1 > 3 > 2 is the spatial order of the objects, A1, A3 − A1 and A2 − (A1 ∪ A3) are
the parts of the objects O1, O3 and O2 visible in the image (Fig. 3.1). Thus we have
from (2.1),

I = c1χA1
+ c2χA3−A1

+ c3χA2−(A1∪A3) + c̃(1 − χA1
)(1 − χA2

)(1 − χA3
)

= c1χA1
+ c2χA2

+ c3χA3
− c2χA1∩A2

− c2χA2∩A3
− c3χA1∩A3

+ c2χA1∩A2∩A3

+c̃(1 − χA1
)(1 − χA2

)(1 − χA3
) (3.1)

In the above expression, for each intersection region, the corresponding constant factor
equals the intensity of the farthest object in that intersection. Hence the spatial order
is encoded within the sequence of intersection-constants {c2, c2, c3, c2}.

For the general case of N objects with a spatial order i1 > i2 > .. > iN , the image
I of the scene in terms of the visible object-regions is given by

I =
N

∑

k=1

ckχAk−∪j>kAj
+ c̃

N
∏

k=1

(1 − χAk
)

Similar to (3.1), rewriting the above expression in terms of the regions Ak and their
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Table 3.1

N = 3 case: Constants cp,k corresponding to intersection regions P2,1 = A1 ∩ A2,
P2,2 = A1 ∩ A3, P2,3 = A2 ∩ A3, P3,1 = A1 ∩ A2 ∩ A3

Spatial Order Qk Sk = {c2,1, c2,2, c2,3, c3,1}

1 > 2 > 3 {c2, c3, c3, c3}
1 > 3 > 2 {c2, c2, c3, c2}
2 > 1 > 3 {c1, c3, c3, c3}
2 > 3 > 1 {c1, c1, c3, c1}
3 > 2 > 1 {c1, c1, c2, c1}
3 > 1 > 2 {c2, c1, c2, c2}

intersection regions, gives the following general form of I, valid for any spatial ordering
between the objects,

I =
N

∑

p=1

cpχAp
+

N
∑

p=2

(N

p)
∑

k=1

(−1)pcp,kχPp,k
+ c̃

N
∏

k=1

(1 − χAk
) (3.2)

Here, Pp,k, (p = 2, 3..N, k = 1, 2, ..
(

N
p

)

) is the kth unordered intersection of, p regions

from A1, A2, ..., AN . cp,k are positive constants and take one of the values c1, c2, ...cN .
In fact, cp,k takes the intensity of the farthest object appearing in the intersection,
Pp,k. For N = 3, the regions Pp,k and the constants cp,k are shown in Fig. 3.2.

Thus, there are N ! possible sequences for cp,k, with each sequence corresponding
to a unique spatial ordering of the objects. For i = 1, 2, .., N !, let Si denote the
sequence of constants cp,k, corresponding to the spatial ordering of the objects, Qi.
We denote S = {S1, S2, ..., SN !}, the set of spatial order sequences corresponding to
the set of spatial orders Q = {Q1, Q2, ..., QN !}.

For the N = 2 case,

I = c1χA1
+ c2χA2

− c2,1χA1∩A2
+ c̃(1 − χA1

)(1 − χA2
).

Here, c2,1 = c2 iff 1 > 2, and c2,1 = c1 iff 2 > 1.

Similarly for N = 3,

I = c1χA1
+ c2χA2

+ c3χA3
− c2,1χA1∩A2

− c2,2χA2∩A3
− c2,3χA1∩A3

+ c3,1χA1∩A2∩A3

+c̃(1 − χA1
)(1 − χA2

)(1 − χA3
),

and Table 3.1 shows the values cp,k for possible occlusion scenario.

4. Energy formulation. As seen above, (3.2) gives a piecewise constant repre-
sentation of the image in terms of the objects in the scene, along with their spatial
order. Given an image I0, we solve the inverse problem of recovering the object re-
gions {Ap}

N
p=1, the object intensities c1, c2, ..cN , the background intensity c̃, and the

intersection intensities cp,k. Denote A = {A1, A2, .., AN}, Cobj = {c1, c2, ..cN , c̃}, and

sequence Cint = {cp,k| p = 2, 3..N, k = 1, 2, ..
(

N
p

)

}. The sequence Cint is constrained

to adhere to one of the N ! possible spatial order sequences Si. We formulate the above
problem as the following energy minimization. Here, a prior shape term is introduced
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within the energy to resolve occluded object boundaries.

E[A, Cobj , Cint] =

∫

Ω

(

I0 − (

N
∑

p=1

cpχAp
+

N
∑

p=2

(N

p)
∑

k=1

(−1)pcp,kχPp,k
+ c̃

N
∏

k=1

(1 − χAk
))

)2
dx +

N
∑

p=1

(

λ

∫

∂Ap

ds + β

∫

Ω

Ŝ(Ap)dx
)

s.t, Cint ∈ S = {S1, S2, ..., SN !}.
(4.1)

We note that the above energy is quadratic with respect to the constants Cobj and
Cint. Since the sequence of constants Sk corresponds to spatial order Qk, a minimizing
Cmin

int for the energy would determine a spatial order for the objects. Whether a unique
solution Cmin

int exists or not would depend on the number of non-empty intersection
regions between objects A. However, as in many cases to be discussed in Section 7,
even partial information of elements of the sequence Cmin

int is sufficient to give a unique
projection onto the set S (thus solving the segmentation with depth problem). For
example, we see from Table 3.1 that just estimating the first two elements of Cint,
c2,1 = c2 and c2,2 = c3 would determine the spatial order as 1 > 2 > 3.

The second term is a length regularization term, commonly used in shape op-
timization problems, and the third term constrains the shape of the boundaries of
Ap. There are various choices for the shape term such as the Euler’s elastica energy
(to enforce curvature continuity of Ap), statistical/explicit shape priors depending on
the kind of application. In this work, we mainly consider the application of shape
explicitly, with the term

∫

Ω

Ŝ(Ap) measuring the area dissimilarity of the object Ap

from a given binary shape S. λ and β are parameters that balance the terms. Later,
in Section 8, we also show how one can selectively impose shape constraints, only to
occluded object boundaries.

In our work, for computational simplicity, we have assumed the constants cp,k to
be independent, and minimize (4.1) without constraints

min
A,Cobj ,Cint

E (4.2)

Then, the minimizing constants Cm
int can be post-processed to deduce a unique

spatial order for images with unambiguous occlusions. Our experiments indicate that,
for images with uncorrelated noise, the above simplified approach (4.2) takes solutions
very close to that of the original constrained minimization problem (4.1).

5. Related Works. The form of (4.1) indicates its relationship to some of the
region-based segmentation approaches e.g. [35]. Without the constraint on Cint and
for β = 0, (4.1) is just the cartoon Mumford-Shah functional that seeks a piecewise
constant approximation to a given I0. But this is not sufficient to recover object
boundaries that are occluded. For a non-zero β, one can also recover occluded bound-
aries due to the shape term, and the estimated Cint in many cases defines a unique
spatial order. The constraint on Cint gives the model additional robustness to the
segmentation of non-white noise images. However as observed in Section 11, the
minimizers obtained for white noise images do not depend on the constraint.
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5.1. Comparisons with the NMS model. Here, we compare our energy (4.1)
with the NMS model (2.3). The NMS segmentation-energy for a spatial order Qk,
(2.2), is given by

ẼQk [A, Cobj ] =

N
∑

p=1

∫

Ap−∪j>pAj

(I0 − cp)
2dx +

∫

∩N
k=1

Ac
k

(I0 − c̃)2dx

+

N
∑

p=1

λ

∫

∂Ap

ds + β

∫

Ω

Ŝ(Ap)dx

The first term of the above energy is rewritten as follows

N
∑

p=1

∫

Ap−∪j>pAj

(I0 − cp)
2dx =

∫

Ω

(I0 −
N

∑

p=1

cpχAp−∪j>pAj
)2dx

=

∫

Ω

(I0 − (

N
∑

p=1

cpχAp
+

N
∑

p=2

(N

p)
∑

k=1

(−1)pcp,kχPp,k
))2dx

where the above sequence Cint = {cp,k| p = 2, 3..N, k = 1, 2, ..
(

N
p

)

} = Sk, corresponds

to the spatial order Qk. Thus we have

ẼQk [A, Cobj ] = E[A, Cobj , Cint = Sk].

It follows that

min
k∈{1,2,...N !}

min
A,Cobj

ẼQk = min
k∈{1,2,...N !}

min
A,Cobj ,Cint=Sk

E

= min
A,Cobj ,Cint∈{S1,S2,...,SN!}

E

Hence the NMS model (2.3) and the minimization of (4.1) are equivalent. The key con-
tribution here is that we have written the N ! minimizations of energies ẼQk [A, Cobj ]
as a single energy minimization of E[A, Cobj , Cint ∈ {S1, S2, ..., SN !}] by introducing
additional variables Cint to estimate the spatial ordering of the objects. The main
computational expense in both models (4.1) and (2.2) is the minimization with re-
spect to regions A. The (NMS) model is more expensive because of the N.N ! shape
minimizations it has to deal with, in contrast to just N shape minimizations in our
case. Further, in the (NMS) model, in spite of a close initial guess for object bound-
aries, one has to go through each of the N ! minimizations in order to find the correct
spatial order. Whereas in our energy, which is quadratic with respect to the variable
Cint, allows one to utilize projection-gradient type algorithms for fast convergence to
the correct spatial order even for rough initial guesses for object boundaries. The
problem is further simplified for white noise images when the unconstrained energy
(4.2) can be used, and the estimated Cint can be post-processed to infer the spatial
order.

We will further illustrate the above differences through examples in the experi-
ments section. In the subsequent sections, we discuss the implementation details and
experimental results for the unconstrained energy (4.2).
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6. Level Set Formulation. The regions Ak are represented as the interior of
level set functions φk, i.e. H(φk) = χAk

, k = 1, 2, ..., N , where H(t) is the Heaviside
function. Thus, we try to recover φk from I0. Let Φ = (φ1, φ2, .., φN ), and as before
Cobj = {c1, c2, ..cN , c̃}, and sequence Cint = {cp,k| p = 2, 3..N, k = 1, 2, ..

(

N
p

)

}. We

reformulate the problem (4.2) as the minimization with respect to Φ and Cobj , Cint,
of following energy:

E[Φ, Cobj , Cint] =

∫

Ω

(

I0 −
N

∑

p=1

(N

p)
∑

k=1

(−1)p−1cp,kSp,k − c̃S̃b

)2
dx + λ

∫

Ω

N
∑

k=1

|∇H(φk)|

+β

∫

Ω

N
∑

k=1

Ŝ(φk)dx (6.1)

where, Sp,k is kth unordered product of p functions from H(φ1),H(φ2), ...,H(φN ) and

S̃b =
∏N

k=1(1 − H(φk)). The second term regularizes Φ, and the last term constrains
the shape of the 0-levelset of φk. λ and β balance the three terms.

For simplicity, we will illustrate the N = 2 case. The above energy reduces to:
E[φ1, φ2, c1, c2, c2,1, c̃] =

∫

Ω

(

I0 − (c1H(φ1) + c2H(φ2) − c2,1H(φ1)H(φ2) + c̃(1 − H(φ1))(1 − H(φ2)))
)2

dx

+λ
(

∫

Ω

|∇H(φ1) +

∫

Ω

|∇H(φ2)|
)

+ β

∫

Ω

Ŝ(φ1) + Ŝ(φ2)dx

(6.2)

The fourth term is used to impose shape-based constraints such as curvature, and
explicit shape on the objects H(φi). This term is used to avoid local minima of the
first term in (6.2) that occur particularly under occlusions. In our implementation,
we only deal with imposing constraints on length (to resolve linear edges that are
occluded) and explicit shape (given by a binary image).

Note: In (6.1), the N level set functions are used to partition Ω into 2N piecewise
constant, disjoint regions, i.e. N visible regions of the objects, 2N − N − 1 occlu-
sion regions, and the background. Here N level set functions are used for N objects
to allow for the maximum possible number of 2N − N − 1 occlusions between the
objects. In fact to represent an occlusion scenario of N objects with M occlusions
(M ≤ 2N−N−1), and the background, we need an optimal number of log2(N+M+1)
level set functions. For instance, the multi-phase version of the CV model assumes
the objects/phases to be disjoint, and hence needs only log2 N (the background is
also treated as an object) level set functions to partition Ω.

7. Spatial Order Estimation. Once (6.1) is minimized, the solutions Cmin
int and

Cmin
obj are compared to infer the spatial order. To start with, we consider non-empty

intersection regions to infer the occlusion relation ‘>’ for possible object pairs. Then,
for certain classes of images without occlusion ambiguities and with sufficient number
of non-empty object intersections, the occlusion relation determines the spatial order.

7.1. Dis-Occluding intersection regions. First, the mean intensities in non-
empty intersection regions are compared with the object intensities, to infer the object
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Fig. 7.1. Spatial order estimation. Non-empty, disjoint intersections P1 = (A1 ∩ A3) − A2,
P2 = (A2 ∩ A3) − A1, P3 = (A1 ∩ A2) − A3, P4 = A1 ∩ A3 ∩ A2 shown.

in front. For instance in Fig. 7.1, we can infer that 1 > 3 since the mean intensity in
P1, is closer to c1 than to c3. A similar comparison of the mean intensity in P4 with
c2 and c3, gives 1 > 2 and 1 > 3. For the mean-intensity in an intersection to give
consistent information about object occlusions, we need the following assumptions:

• The intensity in the regions Ap formed by the objects is close to a constant cp,
and is different for objects that occlude each other. This allows us to identify
based on mean intensity, the object that an intersection region is part of.

• Objects do not twist between themselves, i.e. if Oi occludes Oj in some re-
gion, Oi is not occluded by Oj in any region. This is to define a valid order
relation for the objects based on their intersection regions.

Then the region covering all the objects, A =
⋃N

p=1 Ap, can be written down as

a disjoint union of 2N − 1 regions, where the image intensity is close to a constant in
each of those regions. Of these regions, N regions are the visible parts of the objects
Ok, with intensity ck. The rest of the 2N − N − 1 regions is where occlusions can
possibly occur. The intensities in these regions are close one of the object intensities,
ck, i.e. the intensity of the object in front. So we look at the mean-intensity µP in
a non-empty intersection region P , and infer that the object say, Of whose intensity
cf is the closest to µP , is in front of the other objects that occur in the intersection.

If P is an intersection of p objects, (WLOG),

P = {∩p
s=1As} − {∪N

s=p+1As}, p > 1,

we can infer that the object in front, Of , from

f = min
1≤s≤p

(µP − cs)
2, (7.1)

µP , the mean image intensity in P , can be linearly expressed in terms of the constants
cq, cq,k, q ≤ p. Thus inspecting the intersection region P gives f > s, (s = 1, 2, ..f −
1, f + 1, ..p).
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To illustrate the procedure, for N = 2 case, from (3.2), we have:

I = c1χA1
+ c2χA2

− c2,1χA1∩A2
+ c̃χAc

1
∩Ac

2

= c1χA1−A2
+ c2χA2−A1

+ (c1 + c2 − c2,1)χA1∩A2
+ c̃χAc

1
∩Ac

2
.

Thus, if P = A1 ∩ A2 6= {φ}, then,

µP =

∫

P
Idx

∫

P
dx

= c1 + c2 − c2,1 (7.2)

To infer the occlusion relation for O1 and O2, we notice that if

(c2 − c2,1)
2 = (µP − c1)

2 < (µP − c2)
2 = (c1 − c2,1)

2,

then O1 occludes O2 (1 > 2) and vice versa.

7.2. Spatial order. Previously, we deduced the occlusion relation from intersec-
tion regions. Now for the above relation to actually give us a unique spatial ordering
of the objects, we need the following assumptions:

• For the objects Oi, Oj , Ok, if i > j and j > k, then i > k (i.e. transitivity).
This falls in line with the assumption that the objects do not twist, hence
k ≯ i. This assumption also allows us extend the relation to objects that do
not directly intersect.

• each pair of objects can be compared (either directly or through the transi-
tivity assumption). In other words, there are sufficient number of relevant,
nonempty intersection regions to uniquely determine the spatial order.

To summarize, after minimizing (6.1), we look at the mean intensities (which de-
pends linearly on the minimizers Cmin

int and Cmin
obj ) in the object intersection regions,

to define the occlusion relation. When the given image satisfies the assumptions listed
above, a unique spatial order for the objects is recovered. In Fig. 7.1, by inspection of
P1 and P2, 1 > 3 and 3 > 2 follow. By transitivity, the spatial order 1 > 3 > 2 follows.

Note 1: In this work, due to the constant intensity assumption in the regions
Ap, we use mean-intensity to test for occlusions. Hence we used the distance mea-
sure D(I0|P , I0|As

) = (µP − cs)
2 in (7.1), to compare the image distribution in the

intersection region P , with the distribution in an object region As. D can be easily
extended to other distance measures to compare general image distributions.

Note 2: The cost of solving the linear system for Cn
int is O(23N ), per gradient de-

scent iteration n of (6.1). After minimization, one can directly project the estimated
sequence Cmin

int onto the set S to infer the spatial order, which has a high complexity
O(2NN !). In the procedure we have used, no additional cost is incurred in deter-
mining the spatial order. To see this, given the object regions Ak, k = 1, 2, .., N ,
the best case is when we can look at just 2 object intersections to successively de-
termine e.g. 1 > 2, 2 > 3,..,N − 1 > N giving the spatial order, which is O(N).
In the worst case, we have to successively inspect, the N object intersection to de-
termine e.g. 1 > s, (s = 2, 3, ..N), then a N − 1 object intersection to determine
2 > s, (s = 3, 4, ..N), and so on. In such a case, the spatial order is given in O(N2).
Also, the cost of converting Cmin

int into mean-intensities is O(22N )(since the trans-
formation matrix is triangular). Thus the total cost for the worst-case scenario is

11



Fig. 8.1. Selective use of shape. Want shape influence only to Red and Cyan curves (occluded
boundaries of A2 and A3).

O(N2 + 22N ) = O(22N ). However, the above O(22N ) cost can be neglected since it
has already been accounted for in the O(23N ) cost in solving the linear system for
Cn

int, every iteration n.

8. Selective Shape Term. Since we are dealing with occlusions in multi-object
segmentation, prior shape information of the objects is used to fill in missing bound-
aries in occluded regions. However, just adding a shape term as in (6.2) means that
the shape term might influence boundary shapes even in unoccluded regions, where
the boundary is unambiguously defined by image intensity. Hence, we introduce our
shape term in a selective manner. That is, the shape term is allowed to take effect
only for occluded boundaries. From the previous section, we see that the constants
Cint encode spatial order information, which we use here to impose shape constraints
selectively.

To motivate the term, in Fig. 8.1, we want the shape term to influence only the red
and cyan curves (occluded boundaries of A2 and A3). That is, for P1 = A1∩A3−A2,
we want to influence only the part of the boundary of P1 which belongs to the occluded
object, i.e the A3-boundary. Similarly, we want to influence only, the A2-boundary of
P2, the A2-boundary of P3, and the A2,A3-boundaries of P4. For P1, a comparison
of µP1

with c1 and c3 would tell us that A3 is occluded. Then to influence the shape
of only the A3-boundary of P1, we can restrict the shape term only to the region
A1 − A2. Thus for P1, we can use a local shape term,

∫

A3−A2

(µP1
− c1)

2Ŝ(A1) dx +

∫

A1−A2

(µP1
− c3)

2Ŝ(A3) dx (8.1)

Since µP1
is very close to c1, the first term is close to zero, and the shape term

does not take effect for A1. For the second term, (µP1
− c3)

2 is considerably larger,
so the shape term for A3 is active in the region A1 − A2, and hence influences only
the A3-boundary of P1. Similar to the above expression, we can define local shape
terms for P2, P3, and P4. Thus we would have a local influence of shape only to the
occluded boundaries of A2 and A3.

12



We follow the above idea for the general case. For each intersection region of p

objects, p > 1, (WLOG)

P = {∩p
s=1As} − {∪N

s=p+1As},

consider the following shape term,

p
∑

s=1

∫

Ps

(µP − cs)
2Ŝ(As) dx. (8.2)

Here, Ps =
⋂p

t=1

t6=s

At −{∪N
s=p+1As}. The above shape term localizes use of shape only

to boundaries of P that belong to occluded objects. Firstly, the terms Ŝ(As), that
constrain the shape of As, are weighted by (µP − cs)

2, which is larger for occluded
objects, and is minimal for the object that is in front. Secondly, the shape term (8.2)
is defined only on Ps, the region that occludes the As-boundary of P .

Now, for N = 2, we present the modified energy with the local shape term. For
the intersection P = A1 ∩ A2 with mean intensity µ, the local shape term defined by
(8.2) in level set formulation is

∫

Ω

H(φ2)(µ − c1)
2Ŝ(φ1) + H(φ1)(µ − c2)

2Ŝ(φ2)dx

Denote I = c1H(φ1) + c2H(φ2) − c2,1H(φ1)H(φ2) + c̃(1 − H(φ1))(1 − H(φ2)). Since
µ = c1 + c2 − c2,1 from (7.2), the energy (6.2) with the local shape term becomes:

E[φ1, φ2, c1, c2, c2,1, c̃] =
∫

Ω

(I0 − I)2dx + λ(

∫

Ω

|∇H(φ1) +

∫

Ω

|∇H(φ2)|) + β

∫

Ω

Ŝ(φ1) + Ŝ(φ2)dx

+β̃

∫

Ω

H(φ2)(c2,1 − c2)
2Ŝ(φ1) + H(φ1)(c2,1 − c1)

2Ŝ(φ2)dx (8.3)

Here, the fourth term is the shape term used to globally influence the shape of the
segmented objects to avoid local minima. β and β̃ balance the shape terms with
β̃ ≫ β.

9. Numerical Implementation. In this paper, given the binary image S of a
prior shape, we use the symmetric area measure to compare shapes. Hence, in (6.1),
the shape term is Ŝ(φk) = (H(φk)−S◦Tk)2. Tk are rigid transformations, which have
to be determined during minimization. To minimize (6.1), we use a finite difference
scheme to solve the resulting Euler Lagrange equations.

We present the numerical implementation for N = 2 case, shown in (8.3). Denote
T = [T1, T2], where Tk = [µk, θk, tk], k = 1, 2 are rigid transformations with scale µk,
rotation θk and translation tk. Also, Φ = [φ1, φ2] and C = [c1, c2, c2,1, c̃]. Rewriting
(8.3) using the shape term shown above,

E[Φ, C, T ] =
∫

Ω

(I − I0)
2dx + λ(

∫

Ω

|∇H(φ1) +

∫

Ω

|∇H(φ2)|) +

∫

Ω

{β + β̃H(φ2)(c2,1 − c2)
2)}

(H(φ1) − S ◦ T1)
2dx +

∫

Ω

{β + β̃H(φ1)(c2,1 − c1)
2}(H(φ2) − S ◦ T2)

2dx (9.1)
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Given (Φ, T ), the minimizing constants C of the above energy are easily computed
as the solution of a linear system. For an index k ∈ {1, 2}, let k̄ denote its complement.
For k = 1, 2, the Euler Lagrange equations for (9.1) are:

δ(φk){(I − I0)(ck̄ − c2,1H(φk̄) − c̃(1 − H(φk̄))) − λ∇ ·
∇φk

|∇φk|
+

{β + β̃H(φk̄)(c2,1 − ck̄)2)}(H(φk) − S ◦ Tk) + β̃(c2,1 − ck)2(H(φk̄) − S ◦ Tk̄)2} = 0

∂φk

∂~n
= 0 on ∂Ω. (9.2)

µk

∫

Ω

{β + β̃H(φk̄)(c2,1 − ck̄)2)}(S ◦ Tk − H(φk))∇STkx · R
′

θk
x dx = 0, (9.3)

∫

Ω

{β + β̃H(φk̄)(c2,1 − ck̄)2)}(S ◦ Tk − H(φk))∇STkx · Rθk
x dx = 0, (9.4)

∫

Ω

{β + β̃H(φk̄)(c2,1 − ck̄)2)}(S ◦ Tk − H(φk))∇STkx dx = 0 (9.5)

Given initial values Φ0, C0, and T0, we use an iterative scheme to minimize (9.1),
by sequentially updating Φ, C, and T using gradient descent.

(I) Initialization (II) Result (III) Initialization (IV) Result

Fig. 10.1. Segmentation of objects with occluded linear boundaries, using only the length
term.

10. Experimental Results. In this section, we present experimental results
using (6.1) on synthetic images and a EM (electron microscope) image of erythrocytes,
with multiple occluded objects. We demonstrate use of prior shape information in the
form of length (Fig.10.1) and explicit shape (Fig.10.3, Fig.10.2) to handle occlusions.
Once the mean intensities are obtained for occlusion regions using the minimizing
constants Cint and Cobj , we show in examples (Fig.10.3) how the occlusion relation
can be deduced for the objects. Finally in (Fig.10.5 and Fig.10.6), we see how these
relationships have been used to impose shape constraints selectively.
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10.1. Segmentation with length and explicit shape. In the images in
Fig.10.1, we assume that only linear segments of objects are occluded. Setting β = 0
in (6.2), we see that the length term alone can be used to resolve segmentation in
occluded regions. Starting with initial level sets {φk}

N
k=1 (N≤ max. number of objects

expected) shown in (I, III), we minimize (6.2) to obtain segmentation results in (II,
IV). The initial level sets have to be overlayed at least partially on the correspond-
ing objects, to avoid local minima. The constants Cint and Cobj can be arbitrarily
initialized.

In the next set of examples in Fig.10.2 and Fig.10.3, we assume that explicit shape
information on the objects is available. In Fig.10.2, given an image with occlusions
(I), in which the objects can be described by a prior shape (binary image shown on
left), we minimize (8.3) using (9.2-9.4) to get the result in (II). The only initial values
required here are the initial level sets (shown in I). Using this, a few iterations of
the equations (9.3-9.4), are used to get an initial guess for the rigid transformation
Tk. Fig.10.3 shows an example for the 3 objects case. Notice that use of prior shape
information has resulted in a good segmentation in spite of lack of any intensity
information (e.g. Image B).

In Fig.10.4 (I), we see a given EM image of erythrocytes (red blood cells), which
are generally known to have a circular surface structure. Naturally, we use a prior
shape of a circle in this case, to resolve occlusions. Starting with a initial guess for the
active contours in (II), we arrive at result (IV), which is not possible without prior
shape information (III).

Shape prior (I) Initialization (II) Result

Fig. 10.2. Occluded boundaries for 2 objects are detected due to the use of explicit shape.

10.2. Spatial Order estimation. An immediate application of computing the
constants Cint, Cobj by minimizing (6.1), is to deduce the occlusion relation between
the objects. This relation defines a unique object spatial order for images that satisfy
the assumptions discussed in Section 7. In the examples shown so far, a unique spatial
order exists for Fig. 10.1, Fig. 10.2, and Fig. 10.3 (image A), but does not exist for
Fig. 10.3 (image B), and Fig. 10.4.

We demonstrate the procedure described in Section 7 for Fig. 10.3 (image A).
The segmented object regions are given by the characteristic functions H(φk) := Hk.
In Fig. 10.3(II), H1, H2, and H3 are the interiors of the Red, Yellow, and Cyan curves
respectively. Let H̄k := 1−Hk. Now, the object regions Hk, define 4 occlusion regions,

P1 = H1H2H̄3,P2 = H1H̄2H3,P3 = H̄1H2H3,P4 = H1H2H3.

The computed constants Cobj , Cint were

c1 = 128.9, c2 = 191.9, c3 = 254.3, c2,1 = 129, c2,2 = 129.1, c2,3 = 192, c3,1 = 129.1
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Shape prior (I) Image A (II) Result

(III) Image B (IV) Result

Fig. 10.3. Segmentation of 3 occluded objects with explicit shape. For the 2 images (A
and B), (I and III) shows the input image with the initial guess, and (II and IV) shows the
result. Correct result is obtained for Image B despite lack of contrast.

The following table shows a comparison for these intensities in different occlusion
regions. The third column shows the mean intensities µk corresponding to the regions
Pk, that can be computed from Cobj , Cint (as shown in the second column).

Table 10.1

Comparison of mean intensities in different regions

Occlusion
Region

Mean-Intensity,(µk) Values

P1 c1 + c2 − c2,1 191.8
P2 c1 − c2,2 + c3 254.1
P3 −c2,3 + c2 + c3 254.1
P4 c3,1+c2,1+c2,2+c2,3−c1−c2−c3 254

When we compare the mean intensities µk with Cobj , we can infer the occlusion
relation as follows,

|µ1 − c2| < |µ1 − c1| gives, 2 > 1, and

|µ3 − c3| < |µ3 − c2| gives, 3 > 2.

which due to the transitivity assumption gives the unique spatial ordering of the
objects as 3 > 2 > 1, i.e. O3, O2, O1 (with increasing depth).

10.3. Selective use of shape. Finally, we will see examples where we have
used the occlusion relation to impose shape constraints selectively. In Fig. 10.5, we
see an image of two objects say (W (white) and G (gray)), with W occluding G. In
addition, the object in front W has sharp features in the intersection region, which we
want the segmentation to preserve. Assuming occluded boundaries to be linear, only
the length term is used to resolve occlusions. In (II), we minimized (6.2) with β = 0.
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(I) Original Image (II) Initialization

(III) Without shape prior (IV) With a circular shape prior

Fig. 10.4. Segmentation of erythrocytes in EM image. (I) Input image with circular
shaped objects. (II) Initial contours that have to be placed close to the objects (III) Incorrect
result without use of shape due to occlusions (IV) Correct result with use of a circular shape
prior.

.

I II III

Fig. 10.5. Selective use of length only for occluded boundaries. (I) Initialization (II)
Without selective use of length, the sharp features in the white object are lost (III) With a
selective length term, the features of the white object are recovered.

The resulting segmentation has correctly filled in the missing linear boundaries for G,
but has not segmented W correctly, since the use of length term evenly, for both the
objects has resulted in the loss of sharp features in W. When we use a selective length
term as in (8.3) with Ŝ(φk) = |∇H(φk)| and setting the parameters β̃ = 0, λ ≪ β,
the required boundaries are computed as needed (III). Notice that the length term is
effected only for the object that is occluded G, hence preserving the features of W.

A similar example is presented in Fig. 10.6, with use of explicit shape. Here (I)
shows two square shaped objects W & G with W occluding G, and each with one of
their corners chipped off. We want our segmentation to be able to complete the miss-
ing boundary for G in the occlusion region, and also be able to preserve edges that are
not occluded. (II) shows the result when a shape term is not used; the length term
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I II III IV

Fig. 10.6. Selective use of Shape (I) Initialization (II) Without shape. Only the length
term is active. (III) Without selective shape, the chipped corners are not segmented due the
influence from the shape term. (IV) With selective shape, the corners are detected and the
occluded boundary of the gray object is also recovered.

completes the occluded part of G linearly. (III) shows the result with a uniform shape
term as in (8.3). Notice that the corners of both W & G are not segmented properly,
due to the influence of the shape term even to non occluded regions. Finally, we get
the correct segmentation in (IV), using a selective shape term as in (9.1). Firstly,
use of the shape term has filled the missing boundary of G that has been occluded.
Secondly, the shape term is applied only to the occluded object G. Hence the corner
of W is recovered. Thirdly, the shape term applied to G is effected only within the ob-
ject W, thus localizing the effect of shape on G. Hence the corner of G is also recovered.

11. Comparisons. In Section 5, we showed that the NMS minimization (2.3)

min
k∈{1,2,...N !}

min
A,Cobj

ẼQk

is equivalent to our constrained minimization (4.1)

min
A,Cobj ,Cint∈{S1,S2,...,SN!}

E.

In the previous sections, we dealt with the implementation details and experiments
for the unconstrained minimization (4.2)

min
A,Cobj ,Cint

E.

Now, we will provide a detailed comparison of computational complexities of (2.3)
with (4.1). Then for a typical example with varying noise levels, we compare the
solutions obtained by the energy (4.1) with its unconstrained version (4.2) that we
use for our experiments.

Here, for the implementation of (2.3) and (4.1), we used an iterative gradient
descent scheme as shown for (4.2). To impose the constraint on Cint for (4.1), during
each iteration n, we project the sequence Cn

int onto S when such a projection is
uniquely defined. To avoid local minima issues, if such a projection is not uniquely
defined, we simply retain the value of Cn

int for the next iteration.

11.1. Complexity comparisons of (4.1) with NMS energies. The key
difference between the (NMS) energy and our formulation is the estimation of the
spatial order of the objects. In our model, firstly we note that there is a one-one
correspondence between the spatial orders Q = {Q1, Q2, ..., QN !} and the sequences
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S = {S1, S2, ..., SN !}. Thus in our constrained formulation (4.1), the spatial order is
given by the estimated value of Cint. We show an example to illustrate the spatial
order estimation in our case. In Fig.11.1, (I) is an image with 3 objects with a ”half
moon” shape. The initial contours are shown overlay-ed on the objects. (II) shows
the segmented contours using gradient descent of (4.1) which converged in about 1000
iterations.

Fig. 11.1. Spatial order estimation through variable Cint. (I) Image with initial guess (II)
Segmented contours (III) Plot of possible Spatial orders (Y axis) against iteration (X axis) (e.g.
between iterations 100 − 200, CRM and CMR are the possible spatial orders).

In the graph (III) (iteration vs spatial order), we see the spatial order correspond-
ing to the estimated Cn

int. The spatial order (Y axis) between the objects (labelled by
colors (Red(R), Magenta(M), Cyan(C))) is indicated by e.g. RMC denotes the order
R > M > C. The first few iterations when the evolving object regions have not yet
intersected, Cn

int is unknown. Then, until about 200 iterations, the projection of Cn
int

to the spatial order set {S1, S2, ..., SN !} is not unique. Finally after 200 iterations,
when a sufficient number of intersection regions between the evolving objects are non
empty, the projection of Cn

int to S is unique and hence defines the spatial order.
In the (NMS) approach (2.3), there are N ! energies ẼQk(Cobj ,A), k = 1, 2.., N !

one minimizes. The spatial order is then given by the smallest of the above energy-
minima. Even in case of a good initial guess for the object boundaries, one would have
to go through the N ! minimizations. Thus, even though the search space is the same
for both (NMS) and our energies, unlike the (NMS) approach, our model determines
the spatial order by gradient descent of Cint. Since the spatial order is integrated
within a single energy, our model involves N level set minimizations in contrast to
N.N ! level set minimizations in the (NMS) model. The level set evolution is the main

cost in both cases, which is O(M2) for grid size M2. In fact, one gradient descent
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Fig. 11.2. Solutions computed using (4.1) and (6.1) for spectral noise images. (I) Image of 2
objects (white and dark gray) with noise induced edges (due to the light gray region) (II) Incorrect
Result using (4.1) (segmentation of cyan curve influenced by image term). (III) Correct Result
using (4.1) (segmentation of cyan curve influenced only by shape term).

iteration in the (NMS) model has a high complexity O(N !.(N.M2)).
In our case, one iteration is a much lesser O(N.M2 + 23N + 2NN !) = O(N.M2 +

2NN !). As before, the N level set minimizations is O(N.M2), solving for the linear
system for the constants Cint is O(23N ), and projecting Cint onto the N ! constraint
set S = {S1, S2, ..., SN !} is O(2NN !). If instead of directly projecting Cint onto S,
the procedure detailed in Section 7 is used, the cost of computing the spatial order
from Cint is only O(22N ). In this case, our complexity for one iteration becomes
O(N.M2 + 23N ).

Note: Our experiments indicate that the energy convergence rate of gradient
descent is the same for (4.1), and for one of the N ! (NMS) energies (i.e the energy
corresponding to the object spatial order). This observation which is part of ongoing
work will be reported in another publication.

11.2. Comparison of (4.1) and its unconstrained version (4.2). For our
experiments section, we used the energy (4.2), E[A, Cobj , Cint], which is the uncon-
strained version of (4.1), i.e. E[A, Cobj , Cint ∈ S]. For images corrupted with white
noise, our experiments indicate that the minimizers computed using the above ener-
gies are very close. This is not true in general for non-white (spectral) noise images,
since (4.2) due to the additional constants Cint intrinsically allows the intensities in
the intersection regions to be different from the object intensities. Thus the resulting
segmentation of occluded objects could be influenced by edges introduced by noise.
For instance, in Fig. 11.2(I) shows an image with spectral noise (in the light gray
region) that corrupts the intersection of the 2 square objects (white and dark gray
regions). (II) shows the incorrect segmentation obtained by the energy (4.2). To make
the intersection region close to constant intensity, the image term competes with the
shape term and has influenced the shape of the cyan curve (occluded object). Thus
one would have to tune the shape parameter β in (4.2) to get to a minimizer close
to that of (4.1) (shown in (III)). Whereas the result computed using (4.1) is robust
to such types of noise, because once the spatial order is determined (i.e. projection
of Cint onto S is unique), occluded boundaries are driven only by the shape term.
Hence tuning of β is not required in this case.

Now we illustrate 2 examples in Figure.12.1 for N = 2, 3 to compare solutions
of the above models for varying white-noise levels. The results for both models were
obtained for the same values of the shape parameter β chosen nominally without
any careful tuning. In both examples, we see identical segmentation results using
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(4.2)(A) and (4.1)(B) for images corrupted with increasing levels of white noise. For
N = 2, 3, the plot shown is the relative-error ξ(%) (Y-axis) with respect to noise level

(X-axis). Here ξ = mean( |Ai−Bi|
|Bi|

, i = 1, 2, ..N), where Ai are the segmented regions

using (4.2) and Bi are the corresponding segmented regions using (4.1). Likewise,
the errors obtained for the object intensities were very low and the estimated spatial
orders were identical for both models. The low errors observed above indicate that
for white-noise images, the minimizers are not dependent on the constraint on Cint.

12. Conclusion. We have presented a variational energy based framework (4.1)
to segment multiple occluded objects using prior shape information of the objects. We
note that the spatial order between the objects are encoded within the constants Cint

which we estimate as part of the minimization process. Our model as we demonstrated
is computationally less expensive than the NMS approach (2.3) which formulates
segmentation energies for each spatial order. Secondly we showed how the estimated
constants Cint and Cobj can be used to impose shape priors selectively, just to occluded
boundaries. Also in our experiments, we have approximated the energy (4.1) by its
unconstrained version (4.2) and the results for the above energies are observed to
be identical for white noise images. As future work, we want to prove the above
observation and provide error estimates for spectral noise images. Secondly, in our
experiments the initial contours have to be placed near the objects to avoid local
minima. This might not be practicable for applications with a large number of objects.
Hence another direction is to automate the contour initialization procedure to extend
the EMI example (Fig. 10.4) to applications such as automatic counting of blood
cells. Finally, we have used one level set per object irrespective of the occlusion scene.
A better way would be to use an optimal number of level set functions depending on
the occlusion scene. For instance, when N objects occlude each other in all possible
regions, we definitely need N level sets, whereas when no occlusions occur, one can
work with log2 N level sets (e.g. multiphase CV).
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