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Abstract

We propose a new variational model for surface processing. It is the
natural analogue, in the context of geometry processing, of the total
variation based image denoising model of Rudin, Osher, and Fatemi.
In particular, it admits as solutions surfaces that may have discontinu-
ties in their normals, and can reconstruct shapes with sharp ridges and
corners. As the analogue of a perfectly well-posed image model, the
proposed surface model differs from those based on ill-posed equations
of image processing. Since the proposed geometry regularization is
variational, it can be incorporated into a variety of applications, such
as surface fairing, 3D object reconstruction from multiple view-points,
or shape optimization. Drawing on important previous work of geome-
ters who were interested in extending certain classical theorems from
smooth to polyhedral manifolds, we describe in detail the appropriate
numerical implementation of the proposed model in the case of trian-
gulated surfaces. We then demonstrate the efficacy of the model with
several surface fairing examples.

1 Introduction

Variational and partial differential equations based image denoising models
have had great success. The goal of image denoising is to remove noise (in the
form of high frequency oscillations) from an image without blurring sharp
edges (object boundaries) in the image. These are places where the image
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intensity function has a discontinuity or very rapid transition between two
different values. Often, these models involve degenerate diffusion equations
whose diffusivity constant depends on the gradient of the solution.

Recently, some of these models have been extended to the denoising
of surfaces [14, 34, 35, 15, 16, 21]. This is a common problem of great
interest in computer graphics applications, and is often referred to as surface
fairing [27, 39]. It can be a necessary procedure, for example, when real life
objects are digitized by a three dimensional scanner by sampling points on
the surface of the object. Errors in the coordinates of the points sampled
lead to noise in the geometry. The goal of surface denoising is then to remove
the oscillations introduced to the surface due to noise. A very important goal
in doing so is to preserve the possible sharp discontinuties in the normals
of the underlying clear surface, such as creases found on man made objects
(e.g. machine parts).

A lot of attention has been devoted to finding the correct analogue of
PDE based image denoising models in the context of surface fairing. In
particular, there is very interesting previous work on the generalization of
the Perona-Malik model [31] to the context of geometry denoising for sur-
faces [16, 34, 35]. In this paper, we will investigate how to generalize one
of the most successful and popular image denoising techniques, namely the
total variation based image denoising model of Rudin, Osher, and Fatemi
[32] (ROF) to the context of surface fairing. There are several motivations
for preferring the ROF model as a candidate for generalization to surfaces
over other models such as Perona-Malik. The standard ROF model is a
well-posed model with fairly well-understood properties [9]. For example, it
has continuous dependence on its data and parameters. Perona-Malik type
models, on the other hand, are notorious for having very sensitive depen-
dence on initial data. It seems reasonable to expect that as the analogue of a
perfectly well-posed image denoising model, the proposed surface processing
model might be better behaved than previously proposed feature preserving
surface denoising models that are generalizations of ill-posed image process-
ing techniques.

A second major motivation for considering the ROF model is, as we will
explain as a major point of this paper, that it has a natural generalization
to surface denoising. The generalizations in the literature about extending
e.g. the Perona-Malik type models to surfaces involve making a somewhat
arbitrary guess about the exact form of the dependence on the geometry of
the surface, especially regarding what combination of principal curvatures
should arise. We believe that there is a most natural way to accomplish this
goal for the ROF model, making it an appealing option.
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2 Background and Previous Work

Much attention has been devoted to extending successful variational image
denoising models to the context of “geometry denoising”, often referred to
as “surface fairing”. In image processing, the goal of denoising is to remove
noise and unnecessary oscillations in the image intensity function, which in
the case of grayscale images can be modeled as a function f(x, y) taking its
values in the interval [0, 1]. The value f(x, y) of the function at a point (x, y)
then represents the grayscale intensity of the pixel found at that location.
Denoising in these models is accomplished by a diffusion process, described
by a parabolic partial differential equation, that can be interpreted as the
steepest descent for an energy that penalizes oscillations. The given possibly
noisy image is taken to be the initial condition for the diffusion equation;
the equation is then solved either for a user-defined duration depending on
the amount of noise to be removed, or to stationary state in the presence of
fidelity terms.

An overriding concern in image denoising is to preserve sharp “edges”
while the noise is diffused away. Edges are the boundaries that separate
distinct objects in the scene depicted in the given image. At these locations,
the image intensity function f(x, y) has either a sharp transition or a jump
discontinuity between the different intensity values of the adjacent objects.
Hence, near edges, f(x, y) is expected to have large gradients. To keep edges
in the image sharp, the processing PDE are chosen to be nonlinear so that
the diffusion constant vanishes, or even becomes negative, at locations where
the gradient of the solution has large magnitude. The first example of this
type of image processing is given in the revolutionary work of Perona and
Malik [31]. The PDE they wrote down is

ut = ∇ ·
(
F ′

α(|∇u|) ∇u
|∇u|

)

u(x, 0) = f(x)
(1)

where the choice of the function Fα(ξ) : R → R makes all the difference:
Perona and Malik’s idea is to choose Fα(ξ) to have the following essential
properties:

1. Fα(ξ) is even, smooth, and positive for all ξ,

2. Fα(ξ) is convex on (−k, k), and

3. Fα(ξ) is concave on (−∞,−k) ∩ (k,∞).
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Equation (1) arises as gradient descent for the following energy with respect
to the L2 inner product:

E(u) =
∫
Fα

(|∇u|) dx (2)

A typical choice for Fα(ξ) is

Fα(ξ) = log
(

1 +
ξ2

α2

)

The switch in the convexity of F (ξ) that takes place at |ξ| = α corresponds
to a switch from forward to backward parabolicity of the PDE (1). Much has
been written about the theoretical implications of this feature: It makes (1)
ill-posed; there is no satisfactory theory of well-posedness for this PDE. In
particular, it is well-known that (1) exhibits extremely sensitive dependence
on initial conditions. Nevertheless, the model is extremely effective at its
intended purpose of smoothing an image (and thus removing noise and fine
detail selectively) without blurring object boundaries, and has become one
of the staples of digital image processing.

More recently, PDE based image denoising algorithms have been adapted
to the denoising of geometry in the surface fairing application of computer
graphics. Noise often gets introduced into the geometry of a surface during
the digitization process, as a scanner samples points from the surface of
the object and records their 3D coordinates; small jitters and errors during
scanning lead to oscillations and noise in the geometry. The goal of surface
fairing is to remove such noise from the digitized surface without blurring
salient features, such as creases and sharp folds across which the normal
to the surface of the original object may be discontinuous; these types of
sharp features are very common in, for example, man made objects such as
machine parts. Hence, a major concern for surface fairing algorithms is to
preserve the relevant discontinuities in the normal field to the surface, and
remove noise and spurious detail at the same time.

An important geometric PDE based models for surface denoising has
been motion by mean curvature [15]. This well-studied motion turns out
to be steepest descent for surface area with respect to the appropriate in-
ner product. It is very effective at removing oscillations from the surface,
but makes no attempt at preserving sharp creases or corners. Neverthe-
less, when sharp features are not present or expected, it is a very effective
surface fairing tool, and its proper discrete implementation on triangulated
surfaces has led to the interesting work [15, 16] that partially motivates the
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present paper. Moreover, it can also be implemented with ease using the
level set method [30], and leads to a fairly well understood and numerically
manageable second order geometric PDE. Geometric motions with normal
velocities given by various other combinations of principal curvatures have
also been considered [40, 23, 14, 24].

More recently, previous researchers have looked for ways to generalize
edge preserving (i.e. selective) image denoising models, such as the Perona-
Malik method, to the task of surface fairing [14, 16, 26]. Since in this context
the salient features to be preserved are discontinuties in the normal to the
surface, the idea has been that the role of |∇u| in (1) and (2) that penalizes
oscillations and noise in an image should be played by some combination of
curvatures in the context of geometry processing – this is reasonable since
curvatures would be expected to be large or singular at rough places on
the surface. Which combination of principal curvatures would best serve
this purpose has not been addressed clearly in the literature, but several
combinations have been tried. For example, references [34, 35] advocate the
following energy over surfaces as variational analogues of (1):

E(Σ) =
∫

∂Σ
Fα

(
k2

1 + k2
2

)
dσ. (3)

In references [34, 35], this energy is shown to lead to a fourth order diffusion
equation for the level set function representing the surface ∂Σ, which is then
solved by splitting the fourth order PDE into a system of two second order
equations. We point out that such curvature dependent energies arise in
other contexts, as well. For example, in image processing, the segmentation
with depth problem that concerns itself with reconstructing a 3D scene from
a single 2D image of it, has led to models such as [29] by the Nitzberg, Mum-
ford, and Shiota that calls for the minimization of a curvature dependent
functional such as (7) over curves in the plane – of course, in the context
of curves, the question of what combination of principal curvatures to take
does not arise. Another field of image processing that involves curvature de-
pendent functionals is the image interpolation problem known as inpainting
[25, 5, 10, 19].

It should be pointed out that there are many other approaches to surface
fairing. For example, some of the pioneering works in the field, [37, 38, 36],
are based on a filtering approach – presumably, they might be connected
with a PDE approach such as motion by mean curvature. Another filter-
ing based example is [2]. A more recent example, [20], adapts another very
effective image denoising technique, namely the bilateral filtering method,
to the surface fairing task. Although these non-variational methods lead to
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some of the most impressive denoising results, we believe that variational
regularization models are more versatile, since they can be easily incorpo-
rated into other reconstruction tasks that appear in, for example, inverse
problems.

A related work to ours is that of Alboul and van Damme [1] who use to-
tal absolute Gaussian curvature, the surface regularization energy proposed
in the present paper, in the different context of connectivity optimization
for triangulated surfaces. The fundamental difference between the present
paper and [1] (and related works) is that the surface processing we propose
maintains connectivity of the vertices but updates continuously their posi-
tions (coordinates), leading to a geometric flow of the surface. In [1], on the
other hand, vertex positions remain fixed and only the connectivities are
updated, leading to a hard combinatorial problem [7]. This type of process-
ing is clearly intended for a very different purpose than that of the present
paper.

3 Our Approach

This section is devoted to describing in detail the proposed model for se-
lective surface fairing. First, in Section 3.1, we recall Rudin, Osher, and
Fatemi’s total variation based image denoising model [32]. Then, in Section
3.2, we provide motivation on how the ROF model should be extended to
surfaces. In Section 3.3, we treat the case of “curve denoising” as a stepping
stone to our ultimate goal. Section 3.4 finally states our proposed model
in light of the insights explained in the previous sections. We also collect
in this section some classical theorems from geometry that give substantial
support to the proposed model as the natural analogue of the ROF model
for geometry denoising.

3.1 Rudin, Osher, and Fatemi Model for Images

A very successful and extremely popular PDE based method in image process-
ing is the total variation based denoising model of Rudin, Osher, and Fatemi.
One of its main advantages is its simplicity: It is one of the simplest varia-
tional image denoising models that has the all important edge preservation
property. Indeed, the model of ROF consists of minimizing the following
strictly convex functional:

∫
|∇u| + λ

∫
(u− f)2 dx (4)
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over all images u. Here, f is the given possibly noisy image, and λ is a user
supplied parameter that controls how much noise should be removed: The
smaller the value of λ, the larger the amount of signal removed from f . The
strict convexity of the model implies, in particular, that the solution exists
and is unique. There are a number of interesting minimization procedures
for (4) that rely on its convexity, such as steepest descent or duality based
methods (numerical solution of the model remains an active research area).
In particular, gradient flow for (4) has been studied extensively and given a
thorough well posedness theory. It takes the form:

ut = ∇ ·
( ∇u
|∇u|

)
+ 2λ(f − u). (5)

This flow is to be solved for large times in order to approximate its unique
stationary state, which would be the minimizer of (4). Often, this process
is substituted by the following regularization procedure:

ut = ∇ ·
( ∇u
|∇u|

)

u(x, 0) = f(x).
(6)

This is equivalent to steepest descent for (4) with the choice λ = 0; of course,
the stationary state is then trivial: the constant function. Hence, in practice
(6) is run only for a user determined duration of time, and that duration
becomes the parameter controlling how much noise is to be removed from
the given image. Owing to the convexity of the total variation term that
acts as the regularizer, both (4) and (6) have continuous dependence on data
f and parameters (λ for (4) and t for (6)). Both procedures lead to very
good denoising results and preserve edges in images, as desired.

Advantages of the ROF model over Perona-Malik are two-fold. First,
as we already mentioned, both ROF procedures (4) and (6) have complete
well-posedness theories and exhibit continuous dependence on their initial
conditions, data, and parameters. In practice, this contributes to the ro-
bustness of the models. The second major advantage of models (4) and (6)
is that they involve a single parameter that needs to be chosen by the user,
versus the two parameters (stopping time and α) that need to be chosen for
(1).

3.2 Extending ROF to Surface Fairing: Motivation

Compared to previous works, we would like to take a more global point
of view to the task of generalizing image processing models to the context
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of geometry processing. Indeed, wondering what combination of principal
curvatures would best serve as the smoothness measure of the surface, in
analogy with |∇u| in image processing, seems a bit too local. We will instead
take our motivations from a different angle.

First, we believe that a useful way to understand image processing mod-
els, especially in order to extend them to other contexts such as geometry
processing, is to consider the types of images they leave unaltered. In other
words, we advocate asking what types images get treated as noise free by
these models. In the case of the ROF model in one space dimension, func-
tions with least energy are the monotone functions. Indeed, if we consider
functions f(x) defined on the unit interval [0, 1] satisfying given boundary
conditions f(0) = a and f(1) = b, then as long as the function f is monotone,
the regularization term in the ROF model, namely the total variation norm,
sees no difference between them: All such functions, whether smooth or
discontinuous, are treated the same by the model by assigning them the
same energy, namely |a − b|. This property is what allows the model to
reconstruct discontinuous signals, since it has no bias against discontinu-
ities in itself. To summarize, the following properties of the total variation
regularization term make it a successful model for image denoising in 1D:

1.
∫ 1
0 |f ′| dx ≥ |a− b| for every function f with f(0) = a and f(1) = b.

2.
∫ 1
0 |f ′| dx = |a− b| if and only if f is monotone on [0, 1].

As a warm up towards generalizing the ROF model to surface fairing,
we first ask what the reasonable extension of ROF would be to the context
of fairing planar shapes, in light of our discussion above. This is the 1D
analogue of the surface processing question we set out to address. In this
case, the features to be preserved are discontinuities in the unit normal to
the curve that forms the boundary of the shape. The regularization term
we propose should, of course, still penalize unnecessary oscillations in the
direction of the normal (which would be due to the presence of noise), but
preserve corners.

We can describe the direction of the normal by considering the angle that
the normal makes with the positive x-axis. It is then reasonable to encourage
this direction to change in a monotone manner along the curve in order to
suppress noise and oscillations in the geometry. In the case of a simple closed
curve, the angle is a monotone function of the arc-length parameter if and
only if the curve is convex. Another way to state this property of convex
shapes, which better lends itself to subsequent generalization, is that the
normal map is one-to-one. This line of reasoning brings us to the following

8



conclusion: For our denoising purposes, the analogue of monotone functions
in the context of planar shape fairing are convex shapes. Thus, the analogue
of the ROF model for shape fairing should treat convex shapes as noise-free
by assigning to them the least possible energy. The obvious candidate for
this purpose is:

E1(Σ) =
∫

∂Σ
|k| dσ (7)

where k denotes the curvature of the curve, and dσ is the length element. In-
deed, (7) is nothing but the total variation of the angle between the tangent
to the curve ∂Σ and the positive x-axis. It is important to note its con-
nections to the winding number of a closed curve Γ, which is a topological
quantity given by ∫

Γ
k dσ = 2πN (8)

where N is the winding number, an integer. Based on (8), the proposed
energy (7) has the following desired properties [17]:

1. E1(Σ) ≥ 2π for every set Σ ⊂ R
2.

2. E1(Σ) = 2π if and only if Σ is convex.

These properties say that all convex shapes are treated as noise-free by model
(7), just as we wanted. Moreover, only convex shapes have the least energy,
and so have absolutely no noise. In other words, the regularization term E1

makes no distinction between convex shapes: Whether they are smooth or
have corners, they all have the same minimal energy. For instance, a disk,
a triangle, and a square all have the same energy. This property endows
the model with the ability to reconstruct shapes with discontinuities in the
normals.

We now turn to the real focus of this paper: Finding the analogue of
total variation denoising for fairing of surfaces. Our starting point is energy
(7), but its generalization to surfaces is not completely clear as there are
many combinations of principal curvatures that one could imagine taking
the place of k. Therefore, we follow the mentality advocated above, and
think instead about surfaces that should remain unaltered by the model. In
other words, the key to our generalization of (7) will be the requirement that
just like (7), our regularization model for surfaces should treat all convex
shapes as noise free. A hint comes from (8) that we should look for an
analogous topological quantity for surfaces. Such a quantity is of course
provided by the Gauss-Bonnet theorem:
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Theorem 1 (Gauss-Bonnet) For a compact, C2 surface ∂Σ, we have
∫

∂Σ
kG dσ = 2πχ (9)

where kG is the Gaussian curvature and χ is the Euler characteristic of the
surface.

We can now state our proposed surface regularization model. In complete
analogy with (8) and (7), based on (9) we propose:

In the context of geometry denoising, the energy

E2(Σ) :=
∫

∂Σ
|kG| dσ (10)

is the natural analogue of total variation regularization that appears in
the ROF model.

This regularization term has the following desired properties that follow
immediately from (9) and the fact that kG does not change sign (and the
normal map is one-to-one) for convex surfaces:

1. E2(Σ) ≥ 4π for every bounded set Σ ⊂ R
3 with C2 boundary.

2. E2(Σ) = 4π if the set Σ is convex.

These two properties imply, as in the case of E1 for curves, that the energy
E2 makes no distinction between convex surfaces: It does not prefer one
to the other based on smoothness, and in particular has no bias against
corners and creases. Hence a sphere, a tetrahedron, and a cube all have the
same energy, which is minimal among all surfaces. This makes the proposed
model capable of reconstructing surfaces with singularities such as ridges
and corners that are so common on man-made objects. Furthermore, energy
(10) is scale invariant: It remains constant under dilations of the surface ∂Σ.
Hence, the proposed model does not suffer from the “shrinkage” issue that
plagues certain other surface processing models, such as motion by mean
curvature.

Moreover, we can see that if a surface ∂Σ has minimal energy 4π, then
in fact Σ has to be convex. Indeed, if Σ is not convex, then there is at
least one point p ∈ ∂Σ such that Σ does not lie entirely on a single side of
the tangent plane at p. Therefore, there is also another point q 	= p on ∂Σ
with the same outward unit normal as p, but not contained in the tangent
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plane at p. Hence, the Gauss map for ∂Σ covers a certain neighborhood on
the unit sphere S

2 at least twice. This implies that (10) has to be strictly
greater than 4π.

In the subsequent sections, we will discuss denoising models based on the
proposed regularization terms of this section, and describe computational
techniques for treating them in practice.

3.3 Warm up: Fairing Curves in the Plane

In this preliminary section, we develop the ideas on geometry processing
presented above in the simple 1D case of curves in the plane. Although for us
this is intended as a warm-up step, it is itself an important problem that has
also received considerable attention, since it often arises in computer vision
applications, especially in the context of shape recognition. A particularly
relevant previous work in this regard is [33]; it develops the analogue of the
Mumford-Shah functional [28] for curve denoising and also involves a fourth
order PDE. Another is the 2.1D sketch model of Nitzberg, Mumford, and
Shiota [29] that involves curvature dependent functionals on curves.

The model we propose, based on the discussions of the previous sections,
is the following: Suppose that the curve to be denoised is the boundary ∂Ω
of some region Ω in R

2. Carry out the following minimization:

min
Σ

∫
∂Σ

|k| dσ + λψ(Σ,Ω)

The first term in the energy to be minimized above is the regularization
term advocated in the previous section. The second term is the fidelity
term, which is responsible for keeping the minimizer of the energy close
to the original given shape Ω. There are several possibilities suggested in
previous studies as a suitable fidelity term, such as:

• ψ(Σ,Ω) = |Σ � Ω| , i.e. the area of symmetric difference between the
two sets,

• ψ(Σ,Ω) = max{maxx∈Σ dΩ(x),maxx∈Ω dΣ(x)}, which is the Hausdorff
distance between the two sets (where dS(x) denotes the distance func-
tion to the set S).

Noting that the choice of the fidelity term is not the emphasis of this paper,
we will simply adopt one of them, say the first one for simplicity, and not
dwell on which one is better to use.
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The parameter λ sets the relative strength of the denoising. As in image
processing applications, there are two options: Either we can set λ = 0
and carry out gradient descent for the proposed energy (the regularization
term) for a certain duration, in which case the stopping time becomes the
parameter controlling denoising level, or we can use λ as the parameter that
sets the denoising level and find the minimizer of the energy (i.e. carry out
gradient descent until stationary state is reached). In either case, we need
to be able to implement steepest descent for the regularization term. A
very convenient approach to this problem is the level set representation of
Osher and Sethian [30]; we show results below with this technique. Another
approach is to explicitly represent the boundary of the unknown set as a
polygonal curve, and evolve it via its vertices. This second approach has
several well-known disadvantages, such as having to keep the vertices more
or less uniformly spaced for numerical stability purposes (although this can
be done, see e.g. [22]). Nevertheless, we pause below to cover also this
method, mainly because it constitutes the 1D analogue of our numerical
approach to the 2D surface denoising problem in the next section, where we
explicitly represent the surface as a triangulation.

In the level set formulation, we represent the set Σ as the 0-super level
set of a function φ(x) : R

2 → R:

Σ = {x : φ(x) > 0}
so that

∂Σ = {x : φ(x) = 0}
Then the energy we would like to minimize can be written in terms of φ as
follows: ∫ ∣∣∣∣∇ ·

( ∇φ
|∇φ|

)∣∣∣∣ |∇H(φ)| + λ (H(φ) − 1Ω(x))2 dx

The non-differentiable dependence on φ of the integrand makes it necessary
to approximate this energy as follows: Let Ψε(ξ) :=

√
ξ2 + ε. We minimize

instead: ∫
Ψε

(
∇ ·

( ∇φ
|∇φ|

))
|∇H(φ)| + λ (H(φ) − 1Ω(x))2 dx

Euler-Lagrange equations for similar energies involving regularization terms
of this type can be found, for example, in [41]. It turns out they lead to the
following gradient descent equations:

∂tφ = |∇φ|∇ ·
( ∇φ
|∇φ|Ψε(k) − 1

|∇φ|(Id− P ∇φ
|∇φ|

)
(∇ (

Ψ′(k)|∇φ|))
)
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where we used the following notation:

k := ∇ ·
( ∇φ
|∇φ|

)
and Pvw = (v · w)v

the first being the curvature of the level sets, and the second is the projection
operator (onto a vector). Figure 1 shows an example computation with this
level set implementation.

Figure 1: Steepest descent for (7) using the level set method. Oscillations on the curve
are diffused out, but the kinks in the middle are fairly well preserved.

We now turn to the alternative method of representing the boundary
curve ∂Σ of the set Σ explicitly as a polygon in the plane. Let the vertices
of the curve be given as{

(x0, y0), (x1, y1), . . . , (xn, yn)
}

listed in counter-clockwise direction, so that (xj, yj) is connected to (xj+1, yj+1)
with an edge of the polygon, and (x0, y0) = (xn, yn) so that the curve is
closed. Then, the energy we minimize is the following discrete analogue of
(7):

E
(
x0, . . . , xn; y0, . . . , yn

)
=

n−1∑
i=0

|θi|

=
n−1∑
i=0

∣∣∣∣cos−1

(
ei−1 · ei
|ei−1| |ei|

)∣∣∣∣
(11)

where ei are the edges of the polygon:

ei = (xi+1 − xi, yi+1 − yi)
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pointing in the counter-clockwise direction. The ei are approximations to
the tangents to the curve represented by the polygon, and θi are the changes
in the tangent angle; see Figure 2 for an illustration. The curvature of the
polygonal curve is concentrated at its vertices; the integral of curvature in
a small neighborhood of vertex (xi, yi) is given by θi. Naturally, formula
(11) takes curvature to be 0 along the edges. A very useful and important
property of approximation (11) is the following:

1. The energy (11) of any closed polygonal curve is at least 2π, and

2. A polygonal curve has least energy, namely 2π, if and only if it is the
boundary of a convex shape.

Thus, we see that not only the continuum model (7) but also its discretiza-
tion given by the discrete energy (11) satisfies our requirements for a good
curve denoising model. In other words, the discrete version of the energy
satisfies the important properties of the continuum model exactly, and not
merely in some limiting sense. We will see in the next section that previ-
ous work by geometers on the subject allows the same to be done for the
triangulated version of our proposed surface denoising model.

It is now easy to take variations of energy (11) with respect to the co-
ordinates (xi, yi) of the vertices vi forming the polygonal curve. An impor-
tant point worth mentioning is the non-smoothness of energy (11) whenever
θi = 0 for some i. This problem can be addressed just as in the standard
ROF model by regularizing energy (11) as follows:

E =
n−1∑
i=0

√
θ2
i + ε =

n−1∑
i=0

√
cos−1 (ξi)

2 + ε (12)

where we define ξi as
ξi =

ei−1 · ei
|ei−1| |ei| .

Taking variations of (12) with respect to xi gives

∂E

∂xi
=

i+1∑
j=i−1

∂(
√
θ2
j + ε)

∂xi

=
i+1∑

j=i−1

cos−1(ξj)√
cos−1(ξj) + ε

· −1√
1 − ξ2j

· ∂ξj
∂xi
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where the terms ∂ξj

∂xi
are given by

∂ξi−1

∂xi
=

1
|ei−2||ei−1|

[
xi−1 − xi−2 − ξi−1

|ei−2|
|ei−1| (xi − xi−1)

]
,

∂ξi
∂xi

=
1

|ei−1||ei|
[
xi+1 − 2xi + xi−1

− ξi

( |ei|
|ei−1| (xi − xi−1) +

|ei−1|
|ei| (xi − xi+1)

)]
,

∂ξi+1

∂xi
=

1
|ei||ei+1|

[
xi+1 − xi+2 − ξi+1

( |ei+1|
|ei| (xi − xi+1)

)]
.

(13)

The expression for ∂E
∂yi

is exactly the same as the above formulas for ∂E
∂xi

,
only with x’s replaced by y’s. Define ni, an approximation to the outer unit
normal associated with the i-th vertex, as

ni =

( − (yi+1 − yi−1), (xi+1 − xi−1)
)

∣∣(xi+1 − xi−1, yi+1 − yi−1)
∣∣ .

Gradient descent for (12) can now be written as

d

dt

(
xi(t), yi(t)

)
=

1
Li

{(
∂E

∂xi

(
xi(t), yi(t)

)
,
∂E

∂yi

(
xi(t), yi(t)

)) · ni(t)
}
ni(t).

where Li is the length element associated with vertex vi, e.g. Li = 1
2(|ei−1|+

|ei|). A sample calculation is shown in Figure 3. We note that projection of
the flow onto an estimate of the normal direction is presumably unnecessary
since the gradient of an energy that depends only on shape should already
point in the normal direction.

Figure 2: Polygonal version of the curve denoising model.
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Figure 3: Polygonal version of the curve denoising model in action. The noisy L-shaped
curve is denoised, but the result maintains the relevant sharp corners.

3.4 The Proposed Model: Fairing Surfaces

In this section we focus on the main point of the present paper: The ana-
logue (10) of the ROF model in the context of geometry processing that
was introduced in Section 3.2. We will record some important theorems
from geometry that indicate how the proposed model is appropriate for its
intended purpose. We will also discuss the numerical implementation of the
model in detail, which relies on some important previous work as well.

Our proposed regularization term (10) appears in previous geometry
literature, and is often called, unsurprisingly, total absolute Gaussian cur-
vature. Furthermore, geometers in fact studied surfaces with minimal total
absolute Gaussian curvature (within a given topological class) previously in
detail; these surfaces are said to be tight. A theorem, very important for
our purposes, establishes a connection of tight surfaces, and hence energy
(10), with a certain generalized notion of convexity. This notion is referred
to as the two-piece property. It is defined as follows. A surface is said to
have the two-piece property if any plane divides the surface into at most
two connected components. Boundaries of convex regions clearly satisfy
this property; however, they are not the only ones. The two-piece property
is a generalization of the notion of convexity because there are surfaces with
different topology that satisfy it, such as certain tori. These surfaces are, in
some sense, “as convex as possible” given their topological type. In partic-
ular, there are no spurious oscillations on them. It is intuitively reasonable
that the two-piece property precludes spurious oscillations, or noise, on sur-
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Figure 4: Zoom in onto one of the corners of the denoised curve from Figure 3.

faces: If the surface is rough with bumps, one can take a plane that just
grazes the bumps and splits the surface into many connected components,
not just two. The following remarkable theorem connects this intuitive no-
tion back to tight surfaces and our proposed regularization (10):

Theorem 2 (from Banchoff & Kühnel [4]) A compact surface ∂Σ is tight
if and only if it has the two-piece property.

This theorem provides further strong support for our proposed model of
surface processing. In particular, it elucidates other surfaces that are treated
as noise-free by the regularization term (10). Note that we would not expect
steepest descent for (10) to be able to take us from, say, a tight torus to
a convex shape, even though a convex shape would have energy 4π versus
8π for the torus. This is because we would expect steepest descent for (10)
to generate a continuous evolution with respect to some reasonable metric,
and a tight torus is presumably a local minimizer in that metric. From an
applications point of view, this is entirely acceptable.

The main task before us now is the numerical implementation of steepest
descent for energy (10). The first step is to choose a representation for the
surface. As we have seen in the case of curves, we have two options: An
implicit representation by the level set method, or an explicit representation
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given by a triangulation. We found that although it is very easy to express
energy (10) in terms of a level set function, its variation (Euler-Lagrange
equation) turns out to be quite complicated and a difficult expression to
work with. Indeed, the expression for (10) in terms of a level set function
φ representing the surface ∂Σ as ∂Σ = {x : φ(x) = 0} can be obtained by
putting together two terms that appear in previous level set based models
of surface denoising. Namely, in [34] the following level set representation of
total curvature k2

T = k2
1 + k2

2 is used in the energy density in their proposed
model of surface denoising:

k2
T =

∑
i,j

∂j

(
∂iφ

|∇φ|
){

∂j

(
∂iφ

|∇φ|
)
− ∂jφj

|∇φ|2
}

(14)

Moreover, in [18] the following level set representation of Willmore energy
density k2

M = (k1 + k2)2, which also appears in surface processing models
[13, 6], is derived:

k2
M =

[
∇ ·

( ∇φ
|∇φ|

)]2

. (15)

The difference of (14) and (15) yields Gaussian curvature kG:

kG =
1
2
(k2

M − k2
T ) (16)

This expression can be somewhat simplified to become:

kG =
1

|∇φ|
∑
i,j

(∂iφ) (∂jφ) det
(
Hess(φ)i,j

)
(17)

where Hess(φ)i,j denotes the (i, j)-th cofactor submatrix of the Hessian of
the function φ : R

3 → R
3. See [12] for another derivation. Note that

surface processing flows with integrals of (14) or (15) are equivalent as long
as the surface maintains its topology, since the integral of their difference is
a topological quantity.

Despite the ease with which kG is obtained in terms of φ above, and
although the resulting expression can be somewhat simplified as shown in
formula (17), going further and taking the variation of (10) with respect to
φ yields many complicated terms. Therefore, we will proceed in this paper
with triangulated surfaces, and leave the very interesting project of a level
set based implementation to a subsequent work (for example, the splitting
procedure used in [34, 35] might be worth exploring). There are at least four
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benefits to using triangulated surfaces. First, they arise very often in com-
puter graphics applications. Second, there is a very developed theory for our
regularization term (10) in the context of triangulated surfaces, which was
developed by geometers interested in extending some classical results from
geometry of smooth surfaces to surfaces with singularities. Third, compared
with level set methods, working with triangulated surfaces sometimes leads
to faster computations. And finally, in the denoising applications consid-
ered in the present paper, one would not expect (or desire) the evolution
to take the surface far enough from its initial state to involve a topologi-
cal change; therefore, one of the main advantages of the level set method
(graceful handling of topological changes) is not so relevant. On the other
hand, an important disadvantage of working with triangulations is the need
to keep vertices more or less uniformly spaced and the triangles fairly regular
on the surface, for numerical stability purposes.

As we already mentioned, several works by previous authors enable us
to work with regularization (10) very effectively in the context of triangu-
lated surfaces. First of all, the important work [3] shows how to define
the Gaussian curvature of a triangulated surface so that the Gauss-Bonnet
theorem, which was important for the motivation leading to our proposed
regularization, holds exactly. It would be reasonable for Gaussian curvature
to vanish on the faces and along the edges of a triangulation, since it would
be for one of the principal curvatures at such locations. The only points
left are the vertices, where the curvature should be concentrated, as delta
functions. Indeed, the formula in [3] assigns curvature to the vertices, and
leads to the following very simple discrete version of

∫
∂Σ kG dσ:

∑
i

(2π − Θi) (18)

where Θi is the total angle at the i-th vertex vi of the triangulation, defined
as follows:

Θi =
∑

fj s.t. vi∈fj

θ(vi, fj)

where θ(vi, fj) denotes the angle formed at vertex vi inside the face (triangle)
fj that it belongs to. We will use the notation kG,i := 2π−Θi; this quantity
represents the integral of Gaussian curvature in a neighborhood of the vertex
vi. See Figure 5 for an illustration.

In summary, the theorem in [3] is the following:
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Figure 5: Total angle Θ = θ1 + θ2 + θ3 + θ4 formed at a vertex of the triangulation.

Theorem 3 (Banchoff [3]) The following discrete version of Gauss-Bonnet
theorem holds for closed triangulated surfaces:

∑
i

kG,i =
∑

i

(2π − Θi) = 2πχ

where χ is the Euler characteristic of the surface.

At this point, a reasonable guess would be that the discrete analogue for
our proposed regularization term (10) is obtained simply by replacing the
summands in (18) with their absolute values:

∑
i

|kG,i| =
∑

i

|2π − Θi| (19)

One can then express the angles θ(vi, fj), and then the total angles Θi, and
finally the entire discrete energy (19) in terms of the coordinates (xi, yi, zi)
of the vertices vi of the triangulation, obtaining a system of ODEs that rep-
resent gradient descent for the discrete energy (19). This was indeed our
first attempt at implementing the proposed denoising model. However, this
idea fails completely. In many examples, the steepest descent terminates too
soon, reaching a stationary state that is clearly not optimal, leaving intact
small irregularities on the surface that should have been removed. The un-
derlying cause of all these problems turns out to be the unfortunate fact that
the discrete energy (19) admits minimizers that violate the implications of
classical theorems that apply to the continuum version (10) of the energy. In
other words, important facts such as Theorem 2 concerning the continuum
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energy (10) do not extend to this specific discretization (19). In particu-
lar, surfaces with minimal discrete energy (19) need not have the two-piece
property. For example, Figure 6 shows a triangulated surface, obtained by
depressing one face of a cube, that turns out to have minimal discrete energy
(19) of 4π; yet this surface clearly lacks the two-piece property.

Figure 6: A surface with minimal discrete energy (19) of 4π that clearly lacks the two-
piece property. This is because discretization (19) of the proposed regularization term (10)
turns out to be inappropriate, as important theorems such as Theorem 2 do not extend
to it. Consequently, in applications, gradient flow leaves many undesirable artifacts on
a noisy surface. The situation is rectified by using the discrete version of (10) given by
Banchoff and Kühnel in [4] for which the discrete analogues of the important theorems for
(10) do hold.

Delving further into previous geometry literature concerning tight sur-
faces, we see that in [4] the correct discrete version of energy (10) is given.
It consists of defining at every vertex vi the positive curvature (weighted by
an area element) k+

G,i as follows. Let Star(vi) denote the set of all vertices
of the triangulated surface connected to vi by edges. Define k+

G,i as follows:

1. If vi lies on the surface of the convex hull of Star(vi), let

k+
G,i = 2π − Φi

where Φi is the total angle at vi on the triangulated surface that forms

21



the boundary of the convex hull of Star(vi).

2. If vi lies in the interior of the convex hull of Star(vi), let k+
G,i = 0, i.e.

in this case we take Φi = 2π.

Then, one defines the negative curvature k−G,i at vertex vi as k−G,i = k+
G,i−kG,i,

and finally, the absolute curvature |κ|i at vi as |κ|i := k+
G,i + k−G,i. Then, the

correct version of (10) for triangulated surfaces, i.e. its proper discretization
given by Banchoff and Kühnel, turns out to be the following:

E2(v1, . . . , vn) :=
∑

i

|κ|i =
∑

i

(
k+

G,i + k−G,i

)

=
∑

i

(
2π − 2Φi + Θi

) (20)

The following theorem from [4], concerning the “discretization” (20) of (10)
on triangulated surfaces, is very important for our application:

Theorem 4 (from Banchoff & Kühnel [4]) A closed triangulated sur-
face with Euler characteristic χ has minimal discrete energy (20) of 2π(4−χ)
among surfaces topologically equivalent to itself if and only if it has the two-
piece property.

This theorem assures us that if the discrete version of our proposed denoising
model (10) is implemented according to (20), then the properties of the
model explained in Section 3.2 that originally motivated us will indeed hold.
In particular, the two-piece property will ensure the absence of spurious
features that were left on the surface with the unsatisfactory implementation
(19).

Our proposed denoising model calls for expressing energy (20) in terms
of the coordinates of the vertices v1, . . . , vn, and carrying out gradient de-
scent by updating the surface via the vi. As far as we know, the geometric
motion that results from gradient descent for energy (10) had not been con-
sidered previously, and constitutes a new model for surface fairing. Even
with all the powerful previous work explained above that we can draw upon
in the context of triangulated surfaces, implementing this geometric motion
remains challenging. Indeed, although all the quantities appearing in (20)
are straight-forward to express in terms of the coordinates of the vertices
vi, the definition of k+

G,i is piecemeal and involves a switch, depending on
the convex hull of the immediate neighborhood of vi, whose nature might of
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course change during the evolution. This might lead to a non-smooth opti-
mization problem in terms of the coordinates. Such is the case, for example,
with the ROF model in image processing: The energy is non-differentiable,
so that its numerical treatment has been the topic of much research.

In this paper, we take a first step towards implementing model (10): We
carry out gradient descent for discrete energy (20) by ignoring all possible
non-differentiability issues for the time being. This may lead to oscillations
about the singular points, but we see no evidence of this in our computations.
A more theoretically justified minimization technique will form the basis of
further work. In particular, the duality based methods [11, 8] originally
developed for the ROF model which allow avoiding the non-differentiability
issues, might have analogues in this setting (although we do not expect
convexity of the energy).

We now describe our straight forward implementation. For each i and
j such that vi ∈ fj, let 1(i, j) and 2(i, j) be the corresponding vertex
indices such that {vi, v�1(i,j), v�2(i,j)} constitute the vertices of face fj of
the triangulated surface, listed in order of positive orientation. For each
i, let {f̃i,1, . . . , f̃i,m(i)} denote the faces of the triangulation that forms the
surface of the convex hull of Star(vi) whose vertices are a subset of the
original set of vertices {vi} of the given triangulated surface. And for each i
and j ∈ {1, . . . ,m(i)}, let ̃1(i, j) and ̃2(i, j) denote the vertex indices such
that {vi, v�̃1(i,j), v�̃2(i,j)} constitute the vertices of face f̃i,j, listed in order of
positive orientation. Then, energy (20) can be expressed as

E2(v1, . . . , vn) = 2πn

+
∑

i




∑
fj s.t. vi∈fj

θ(vi, fj) − 2
∑

j=1,...,m(i)

θ(vi, f̃i,j)


 (21)

where θ(v, f) once again denotes the angle in face f at vertex v. As in our
discussion of polygonal curve denoising in Section 3.3, these angles are easily
expressed in terms of vertex coordinates using inner products:

θ(vi, fj) = cos−1

(
(v�1(i,j) − vi) · (v�2(i,j) − vi)
|v�1(i,j) − vi| |v�2(i,j) − vi|

)

and there is of course a completely analogous expression for θ(vi, f̃i,j). These
expressions can now be differentiated with respect to vi and then used in
differentiating (21); the resulting formulae are not unlike those in Section 3.3,
such as (13). Using them and an estimate of the area element Ai associated
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with the i-th vertex vi obtained from the triangular faces surrounding vi as
in [26], gradient descent can be implemented in a straight forward manner
and leads to an ODE system for the vi(t).

We can look at some simple examples to get an idea about the depen-
dence of (21) on the vi. Figure (7) shows the dependence of the absolute
Gaussian curvature at the vertex of a cone with a circular base on the cone
height h. The exact value is 2π(1−

√
1

h2+1
), which depends smoothly on h,

including at h = 0. Figure (8) shows the absolute Gaussian curvature at the
center vertex of a surface patch as the coordinates of some of the peripheral
vertices are perturbed by a one parameter perturbation. In the process,
the surface patch changes “type” in the sense that the center vertex starts
out on the surface of the convex hull of its star, but as the perturbation
amplitude gets larger, ends up in the interior.

Finally, we give examples of surface fairing with our proposed model.
Figure 9 shows denoising results on a man made object (fandisk) whose
noise-free version has sharp features such as ridges and corners. The pro-
posed model diffuses out the noise but maintains these features very ef-
fectively, as expected. For comparison purposes, the result of denoising the
noisy surface via mean curvature motion is also included; it was implemented
in the triangulated surfaces setting in essentially the same way as described
in [15]. As is well-known, this flow diffuses out the sharp features along with
the noise, as can be seen. Figure 10 shows results of the proposed model on
another surface that contains some sharp features.

4 Conclusion

The geometry processing model presented in this paper constitutes the nat-
ural analogue of the total variation model from image processing; it is based
on the total absolute Gaussian curvature of a surface. As far as we know,
gradient descent for this energy, which leads to an interesting geometric flow
of the surface, had not been considered before. It can be used to denoise sur-
faces while maintaining sharp essential features such as corners and ridges.
Drawing on some of the previous work of geometers, we present some first
steps towards effective numerical implementation of this flow. Numerical ex-
periments in fairing surfaces with the proposed model yield very promising
results.
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Figure 7: Discrete absolute Gaussian curvature of a surface patch under perturbations to
the position of a vertex. Starting from a planar configuration, the central vertex shown on
the left figure is pushed up (or down), forming a cone with a circular base. The plot on the
right shows the exact and computed values of the absolute value of curvature integrated
in a neighborhood of the tip of the cone as a function of its height. The dependence is
smooth, as shown.
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[41] W. Zhu, T. F. Chan, and S. Esedoḡlu. Segmentation with depth: A level
set approach. SIAM Journal on Scientific Computing, 28:1957–1973,
2006.

29



Figure 9: Surface denoising by the proposed model. Upper left surface is the original.
Upper right is the its noised up version. Lower left surface is the denoising obtained
via motion by mean curvature. Lower right is the result of the proposed algorithm; its
evolution is very slow by this stage.
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Figure 10: Another example of surface denoising by the proposed model. On the top is
the noisy surface. On the bottom is the result of the proposed algorithm.
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