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A Wavelet-Laplace Variational Technique for Image
Deconvolution and Inpainting
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Abstract—We construct a new variational method for blind deconvolu-
tion of images and inpainting, motivated by recent PDE-based techniques
involving the Ginzburg-Landau functional, but using more localized
wavelet-based methods. We present results for both binary and grayscale
images. Comparable speeds are achieved with better sharpness of edges
in the reconstruction.

Index Terms—Inpainting, wavelet diffusion, binary image, barcode.

I. PDES AND WAVELETS: COMBINING ADVANTAGES

A. Introduction

This paper presents a general framework for the recovery of
piecewise constant signals and images using a combination of vari-
ational methods and wavelet analysis. The variational formulation
of the problem allows us to build the properties of the recovered
signal directly into the analytical machinery. The efficient wavelet
representation allows us to capture and preserve sharp features in
the signal while it evolves in accordance with the variational laws.
We consider two applications of the introduced method: bar code
deconvolution and image inpainting. Both lie within the same broad
research area of signal recovery from incomplete and corrupted data.

Wavelet analysis has proven invaluable for dealing with a wide
class of signals and images with spatially localized features [13].
Wavelets are designed to capture most of the signal energy using
a few wavelet coefficients. This property has been leveraged into
powerful, spatially adaptive, signal estimation algorithms that are
based on simply shrinking the wavelet coefficients of the noisy signal
[16]. Discrete (fast) wavelet transforms allow for fast implementation
of linear wavelet methods. At the same time, methods utilizing non-
linear operations in the wavelet domain accomplish tasks which are
not possible for traditional linear/Fourier approaches to such problems
as wavelet denoising, linear inverse problems, non-linear wavelet
packet approximation and non-linear multiresolution [5]. Overall, the
ability to capture sharp discontinuities within relatively sparse data
makes wavelets convenient framework for discrete image analysis.

A parallel set of methods are variational, based on nonlinear PDEs.
The seminal methods of Rudin-Osher-Fatemi [20] and Perona-Malik
[18] for image denoising led to a vast body of work on variational
techniques for image understanding [3], [11]. Similarities between
image topology issues and phase transitions in material science and
fluid mechanics motivated the integration of diffuse interface models
into image processing [6], [23]. These techniques are generally based
on the phase-field model of Modica and Mortola [14] and allow
for topology transition between two states of a physical system.
In general, non-linear diffusion models allow the inclusion of a
priori knowledge to ensure regularity while preserving important
features including edges [15]. Anisotropic diffusion filters provide the
advantage of combining image regularization with edge enhancement
properties [18],[17]. As a result, diffusion-based methods have been
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extensively used in image analysis. The diffuse-interface methods
appear both as self-contained techniques [6], [1] and as tools for
approximating the total variation norm [20].

Wavelet methods appeared in a variational context in [22], [2].
The former discusses the TV(total variation) minimization in the
wavelet domain, that successfully reproduces lost coefficients. The
latter describes how some wavelet-based image processing algorithms
actually produce exact or approximate minimizers of variational
problems.

The key idea in this paper combines the basic geometric frame-
work of diffuse interface methods with the non-locality of wavelets.
Wavelet based functionals are inherently multiscale and take advan-
tage of simultaneous space and frequency localization. The main
points of the algorithm are:

• Eliminate blurry edges: The edge sharpness is not restricted
by the diffuse interface scale as in the case of PDE
methods([1],[8],[7]). Our approach is to take the Ginzburg -
Landau energy functional, but replace differential operators with
pseudo-differential ones that have eigen-functions that better
suit the problem. Wavelet basis functions are natural candidates
due to their localized structure and ability to represent images
efficiently.

• Preserve the usage of fast solvers: one advantage of PDE
variational techniques is the usage of FFT. Respectively, in the
wavelet-based technique one can employ the discrete wavelet
transform to speed up the method.

• Design a technology that does not require PDE solving (thus
making the technique accessible for non-math specialists).
Wavelet techniques are common in signal processing making
them a good candidate for implementation by developers un-
familiar with PDEs. There exists a well-developed theory for
wavelet decomposition.

• Create a technique that can be easily extended from binary
images to greyscale.

Our idea is to take a relatively simple PDE model and adapt it
to a wavelet basis. The TV seminorm was proven to be a natural
and efficient measure of image regularity. To avoid computational
challenges related to equations for minimizers of this norm, we re-
formulate the problem using the phase-field method and approximate
the TV functional (in the Γ sense). The Ginzburg-Landau functional,

|u|GL =
ε

2

Z
|∇u(x)|2dx+

1

4ε

Z
W (u)dx, (1)

W (u) = (u2 − 1)2.

is a diffuse interface approximation to the Total Variational functionalR
|∇u|dx in the case of binary images. Several efficient algorithms

for deconvolution and image inpainting have been proposed, using
this functional as the primary regularizer for the solution of an
ill-posed problem. In this paper we replace

R
|∇u(x)|2dx with a

wavelet-based semi-norm, with the goal of removing the ‘fuzzy’
diffuse interface features associated with the methods described
above. By characterizing signal regularity in terms of the decay of
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wavelet coefficients via a Besov semi-norm (see, for instance, [13]),
we are able to construct a method with similar properties to the PDE-
based methods but without ε-scale blur.

The key new idea of our method is to construct an operator,
called the “wavelet Laplacian” which has wavelet basis functions as
eigenfunctions, and acts on them in the same “scale - proportional”
manner as the Laplace operator does on the Fourier basis. Such a
construction diagonalizes the operator in the wavelet basis. While
the Laplace equation

∆u(x) = −4π2
X

k

k2 < u(x), e−2πikx > e2πikx = 0

can be treated as the Euler-Lagrange equation for the minimizers ofZ
|∇u(x)|2dx = 4π2

∞X
k=1

k2| < u(x), e−2πikx > |2,

let us define the “wavelet Laplacian” in a similar context. Given an
orthonormal wavelet basis {ψj,k} define for any function f ∈ L2(R)

∆wu := −
∞X

j=1

22j〈u, ψj,k〉ψj k.

Then the equation ut = ∆wu is a “gradient descent equation”
corresponding to the problem of minimizing the following “weighted
energy” functional:

Ew(u) := 1/2

∞X
j=1

|2j〈u, ψj,k〉|2.

This expression is a square of the Besov 1-2-2 semi-norm if the
wavelet ψ is smooth. For most examples in the paper we choose the
compactly supported, piecewise constant Haar wavelet to generate
Ew, due to its resemblance to a sharp interface jump. We will denote
‖u‖2

w = Ew regardless the choice of basis in all formulas. In the end
of the paper we show an example with Daubechies filter 4.

II. BLIND DECONVOLUTION OF BAR CODE SIGNALS

A. Prior results on the deconvolution of bar-codes

The idea is inspired by Esedoglu’s variational algorithm [8] of
recovering the original bar-code by the output of a scanner with
(partially) unknown parameters. The process of scanning is modeled
as a convolution of an uknown binary (black and white) barcode
signal, with some Gaussian kernel:

Tα,σ : u(x) → α ·Gσ ∗ u(x), α > 0,

Gσ(x) =
1

2σ
√

2π
exp(− x2

2σ2
).

The amplitude α (distance to the scanned surface) can be treated
either as estimated a priori, or unknown; the standard deviation σ
(width of the scanning window) is always treated as unknown, as
this parameter is much harder to estimate in practice. The known
data, i.e. the scanner output, is assumed to be of the form f =
Tα,σ(u) + unknown noise . To deconvolve, the author [8] uses a
variational approach by minimizing the energy functional

Eε,λ(u, σ) = |u|GL + λ

Z
(α ·Gσ ∗ u− f)2dx.

The first two terms of the energy functional in (II-A) represent a
diffuse-interface approximation (in the Γ sense) for the widely used
TV(total variation) norm [9]. The algorithm proceeds by computing
a minimum of the energy using gradient flow methods (applied to all
unknown parameters and the minimizer itself).

B. Blind deconvolution using the wavelet operator

As discussed in section I-A, we revise (II-A) by exchanging the
Fourier basis for the Haar wavelet basis:

Eε,µ = ε‖u‖2
1,2,2 +

1

4ε

Z
W (u)dx+ µ

Z
(α ·Gσ ∗ u− f)2dx.

The gradient descent equation for the minimizer u is

ut = 2ε∆wu−
1

ε
W ′(u)− 2µαGσ ∗ (αGσ ∗ u− f).

We discretize in time using the gradient stable convexity splitting
scheme as in [1]:

E = (E11 − E12)− (E21 − E22)

E11 =
ε

2
‖u‖2

w +
c1
2
‖u‖2

L2 , E12 =
c1
2
‖u‖2

L2 −
1

4ε

Z
W (u)dx

E21 =
c2
2
‖u‖2

L2E22 =
c2
2
‖u‖2

L2 − µ‖(Gσ ∗ un − f)‖2
L2

Here c1 and c2 are chosen so that (E11−E12) and (E21−E22) are
indeed convex. The numerical scheme follows:

un+1 − 2(δt)ε∆wu
n+1 + (c1 + c2)u

n+1 =

un − (δt)(
1

ε
W ′(un)− 2µαGσ ∗ f

−µα2Gσ ∗Gσ ∗ un + (c1 + c2)u
n)

Section III explains the choice of the splitting constants (see Lemma
in III-C). The left hand side of the relation is actually a diagonal
matrix applied to the vector of wavelet coefficients. Thus un+1 can
be easily computed by first explicitly computing the right hand side
and then inverting the operator on the left hand side in the wavelet
domain.

C. Examples of deconvolved bar-codes

The deconvolution problem was solved numerically using the
described scheme. We compare the new method with the algorithm
in [8]. Results obtained for the same set of scanning parameters
show some practical advantages of the wavelet algorithm: assuming
the amplitude is known, our method recovers a sharper barcode. To
compare how well both methods perform in pure signal deconvolution
(apart from dealing with the unknown parameters), we first consider
the barcode recovery from scanning data with known α and σ in the
presence of noise - Fig. 1.

We consider the same sample barcode as in [8]. The unknown
parameter σ is successfully determined for the same range of values
as in [8]. Namely, the blind recovery of the barcode sample used in [8]
is successful for σ ≤ 0.014 assuming one uses the same setting: the
barcode is supported on the interval [0, 1], the width of the smallest
“bar element” is several times less than the “scanning width” σ.

The difference with the original experiment [8] lies in the way
one treats the scanned signal: instead of taking the full number of
scanned pixels (1024), we split the signal into parts which we recover
separately. This simplification helps the algorithm to withstand much
higher noise levels (SNR equal to 5-7 dB). However, the method is
equally successful when applied to the full length signal for larger
SNR . Another advantage of the splitting approach is the ability to
determine σ faster by deconvolving only a piece of the signal, and
to recover subsequent signal parts with known σ.

In the one-dimensional case we use the standard fast discrete
wavelet transform. Our algorithm performance is 0.0125 sec per
iteration. Recovering the barcode of length 256 with unknown
σ ∈ (0, 0.0014) requires about 250 iterations to determine σ and less
than 100 iterations to refine the resulting barcode. In the example
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Fig. 1. Comparison of the PDE based and wavelet-based deconvolution
(going down): (i) the original barcode, (ii) scanner output, (iii) PDE decon-
volution, (iv) wavelet deconvolution.

below (Fig. 2) σ = .012 was recovered as σ∗ = 0.0121 in the
presence of noise with SNR(dB) = 5.9. The reconstructed bar code
matches the original one up to the maximum edge shift of 1 pixel.

Fig. 2. Enlarged part of a sample barcode:(a) scanner output; (b) (one fourth
of) the original (1024-point) barcode; (c) intermediate stage - σ is recovered;
(d)final result: the barcode recovered by the wavelet-based blind deconvolution
algorithm in the presence of noise with mean square SNR = 5.9 dB.

The process of the bar-code recovery is split into two stages. The
first stage starts with a large fidelity coefficient (µ = O(103−104)),
the evolution is continued until the parameter σ stabilizes at some
value with sufficient precision - see Fig.2 (c). This stopping criterion
is convenient since the switching can be performed automatically. At
this point the value of σ is assumed to be recovered, and is treated
as known. Meanwhile extrema of the recovered signal become easily

Fig. 3. Wavelet-based deconvolution (left to right): the original barcode,
noisy (mean square SNR ≈ 12dB) scanner output with σ = .038, wavelet-
based recovery with a substitute value σ = .03.

distinguishable with stable positions.
The second stage includes evolution of the signal with the known

value of σ. The fidelity coefficient µ is taken to be O(1), and the
diffuse interface dynamics has the most influence. As a result, the
very roughly shaped barcode obtained at the first stage becomes
binary - as in Fig. 2 (d).

For the method of [8] one has a serious time restriction coming
from the completely explicit numerical scheme for the scanning width
σ. Adaptive stepping allows to speed up the process. However, at
least 200 iterations are needed to perform the recovery of a signal
256 units long with a known value of σ. Naturally, more iterations
are needed for blind deconvolution.

The speed of both algorithms applied to a 256 units long signal are
given below (all operations not related to the PDE/wavelet change
are performed in an identical manner). Those tests were performed
by running the Matlab code on a laptop with CPU specifications:
Intel Pentium M, 1.73GHz, 504MB of RAM.

CPU time per 10 iter-s # of iter-s σ

PDE: 0.5 & 200 known
PDE: 0.6 & 450 unknown
Wvlt: 0.6 & 150 known
Wvlt: 0.7 & 200 unknown

As opposed to the wavelet version, the efficiency of the PDE
algorithm depends on the choice of parameters and the starting value
of σ. Those factors can influence the length of the recovery process
and even its success. For “untuned” parameters the PDE method can
produce artifacts, like false bars, or fail to recover the true σ. For
the case of the wavelet recovery, the starting value of the scanning
width is not crucial, as long as it has the same order of magnitude.
Overall, the wavelet method tends to be more tolerant to parameter
inconsistencies.

The method directly generalizes to 2 D bar-codes. The important
practical difference lies in the necessity to use the shift-invariant
stationary wavelet transform instead of the standard non-redundant
method in 2D, because of undesirable artifacts the latter produces.
Fig.3 shows a random combination of black and white squares of size
4, serving as a 32 x 32 pixels barcode piece, the scanner output with
unknown σ (originally σ = .077), followed by its perfect recovery.
This technique is easily adapted to any rectangular-based bar codes
by building the rescaling parameters into the convolution kernel.
Moreover, it makes sense to remove all elements of the scale smaller
than that of the bar-code building element (i.e. to set the Haar basis
coefficients of the finest level to be equal to zero). This operation
increases the precision of signal recovery and enhances sharp edges
in the final output. Without removing the last levels the deconvolution
stays perfect for smaller values of sigma and lower noise.

We could recover the value of σ in the same manner as in 1D
and with the same precision, but numerical computations take signif-
icantly longer due to the need for the redundant wavelet transform.
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However, if we use a substitute value of σ, smaller than the true σ0

but of the same order of magnitude, it is equivalent to adding more
noise to the scanner output. If the algorithm works efficiently with
much lower signal to noise ratios, then the substitution of σ does not
influence the recovery output.

III. WAVELET-BASED IMAGE INPAINTING

A. Prior results in image inpainting.

The notion of digital image inpainting using nonlinear PDEs ap-
peared in [12], where the authors introduced a novel technique based
on a 3rd order nonlinear equation. Chan and Shen [4] adapted efficient
variational denoising and segmentation models to the inpainting task
by localizing the support of the forcing term inside the complement
of the inpainting region. Consequent work by Esedoglu and Shen
[7] utilizes this idea for converting the Mumford-Shah segmentation
model to inpainting technique.

Our work builds on a recent phase-field approach [1]. It describes
a model for inpainting binary images using a modified Cahn-Hilliard
equation which has a number of applications for high contrast images,
including inpainting of degraded text, super-resolution of images,
and continuation of roads on aerial photographs. The model has
two scales, the diffuse interface scale, on which it can accomplish
topological transitions, and the feature scale of the image.

We remark that wavelets appeared in the context of variational
image inpainting in [22]. The authors consider missing or damaged
regions in the wavelet domain, instead of the pixel domain. This
model has shown itself to be very efficient in reconstructing the true
signal from lossy wavelet data using a TV norm in the image domain.
Nevertheless, it becomes less applicable when the actual damage has
occurred in the spatial domain (and the lost and true information is
defined spatially). The relation between variational problems and the
wavelet-based image processing algorithms is discussed in [2].

Having in mind the advantages of Cahn-Hilliard model, we keep
the same general form of the energy functional and replace differ-
ential operators by pseudo-differential wavelet operators. Despite the
gains made by the CH inpainting method, the presence of the diffuse
interface scale introduces a longer timescale into the computation
and results in local blurring of edges. Both of these issues can be
addressed by the ideas described in the previous section.

B. The essential idea of the wavelet inpainting method

Rather than working with the full CH model, we adapt a simple
inpainting model based on the second order Allen-Cahn equation.
Adding the inpainting fidelity term completes the energy construction:

E(u) =
ε

2
‖u‖2

w +
1

4ε

Z
W (u)dx+

µ

2
‖(u− f)χΩ‖2

L2 , (E)

where W (u) is a double-well potential, Ω is a “known” domain
in [0, 1]2 and Ew(f) < ∞. The corresponding gradient descent
equation is

ut = ε∆wu−
1

ε
W ′(u)− µ(u− f)χΩ.

Evolving this forward in time, and running to steady state gives a
solution to the inpainting problem.

C. Numerical implementation

We describe a possible approach to the numerical implementation,
which, as in the barcode problem, uses the convexity splitting method
analogous to [1]. Our scheme is

un+1 − un

dt
= (ε∆wun+1 − c1un+1)− (−c1un+1 +

1

ε
W ′(un))+

+(−c2un+1)− (−c2un + µ(un − f)χΩ)).

Lemma (stability) The numerical schemes introduced in II-B and
III-C are unconditionally stable whenever parameters ci satisfy: c2 >
1
ε
(3C2‖u‖∞ + 1), c2 > µ where ‖u‖∞ is an a priori bound on

the L∞ norm of the solution.
The discrete version of the wavelet operator ∆w (denoted by ∆d

w in
the above scheme) can be defined in different ways depending on how
one defines the discrete wavelet transform on a finite interval. The
classic ([13]) discrete wavelet transform (DWT) allowed to achieve
plausible reconstruction only in the case of piece-wise constant
images with edges located at some coarse level of the dyadic grid.
However, in the general case it can produce energy minima with
artifacts previously described in image denoising (see [19]).

The stationary wavelet transform (SWT) gives a perfect solution to
this problem. With the use of redundant representation and averaging,
effects of being “too discrete” are eliminated, and the dynamics of
the solution looks similar to the PDE simulation. The cost of these
improvements is more memory and time required. One way to address
this is to simplify the SWT algorithm by storing fewer variants of
coefficients and using less averaging.

D. Examples of the wavelet inpainting

We compare our results with those of Cahn-Hilliard inpainting. As
was described in [1], Cahn-Hilliard inpainting works the best in a 2-
step procedure: the first part connects pieces of the picture roughly,
using a large interface width ε = O(1), the second part refines the
details with ε = O(.01) after the major ”information redistribution”
was done.

The wavelet algorithm was designed in the same spirit, allowing
the interface width parameter ε to change from large to small, this
change being implemented as gradual ”zooming” to details of smaller
and smaller scale. Since ε puts restrictions on the maximum level of
decomposition the minimizer can have, finding a steady state for a
coarser scale followed by refinement allows to reconstruct “optimal”
details on each subsequent wavelet level.

The following examples (Fig.4) show the typical numerical output
for inpainting based on the wavelet energy. The left hand image in
each picture shows the given part of the true image, with the grey
area covering the missing region, Ωc, and also serves as the initial
condition when running the simulation. The right hand image is the
result of inpainting, i.e. the steady state of a respective equation.

Inpainting of simple shapes.

Fig. 4. Cahn-Hilliard vs. wavelet inpainting (left to right): the input image,
CH inpainting (for two stages respectively: ε−1 = 1 and 100, µ = 3× 105

and 107, 500 iterations for each stage), wavelet-based inpainting ε = 1/32,
µ = 100, 72 iterations.

If the missing region is comprised of relatively thin and “spread
out” pieces, there is no need to run the simulation for several values
of the interface parameter ε, because the length of pieces that need
to be connected is comparable to the dominating image scale. In the
example shown on Fig 5 ε = 1/32 was kept constant until the steady
state was reached after about 150 iterations.
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Fig. 5. (Left vs. right) the original image with missing gray area, inpainted
image. Parameters: ε = 1/32, mu = 500, dt = 1.

The best performance is obtained with a good initial condition.
One can be obtained using a standard linear extrapolation inside
the unknown area. However, such minor change of initial condition
does not have much influence in PDE based inpainting. As a result,
the number of iterations needed to inpaint the same image for the
wavelet method becomes 5-10 times less than for the PDE technique.
Indeed, the difference in the number of iterations performed by each
algorithm is noticeable. There is a technical obstacle that prevents the
wavelet method from becoming much faster than PDE inpainting: the
discrete implementation of the stationary wavelet transform in Matlab
requires much more time than the fast Fourier transform. Indeed,
the wavelet solver swt implementing “a trois” algorithm for the
undecimated wavelet transform performs O(N2 lnN) operations for
an N-dimensional signal, while fft - standard fast Fourier algorithm
needs only O(N lnN) operations. As a result, the wavelet method
needs more time per iteration than the Cahn-Hilliard PDE simulation:

CPU time per 10 iter-s Number of iter-s
CH: 0.86 O(103)

WAC: 12.52 O(101)−O(102)

Nevertheless, the wavelet method overperforms PDEs if it reaches
the steady state after a factor of 15 fewer iterations than Cahn-Hilliard
simulation. The above table estimates the speed of our method
based on the Haar wavelet, which is technically one of the slowest.
Choosing the Daubechie 7/9 wavelet instead, we can decrease the
CPU time per 10 iterations at least by a factor of two. An additional
idea that can speed up computations is the adaptive choice of the
level of decomposition. In case the missing region has relatively small
scale, it suffices to change only fine and medium details of the image
(presumably, the main part of the image is present and the energy
balance of the coarsest levels is preserved).

Gray-scale image inpainting
To generalize the solution of the inpainting problem to the gray-

scale case, let us split the signal bit-wise into channels:

u(x) 
K−1X
m=0

um(x)2−m

here um denotes the m-th component (”digit”) in the binary repre-
sentation of the signal, and um(x) ∈ {0, 1} for any x. In such a
manner, the problem gets reduced to K dyadic inpainting problems,
where each fidelity term is obtained as a respective component of
the known part of the image, i.e., there is absolutely no interaction
between channels after they are separated in the given image and
before the inpainted image is synthesized from them. We give two
samples of grayscale inpainting. The occlusion removal on Fig.6,
where the image has less quality and more distinct color transitions,
was performed using Haar wavelet. The tiger image in Fig.7 with
256 gray levels was recovered using Daubechies wavelet 7/9, with

higher level of regularity and better “stripe-connecting” properties.

Fig. 6. Grayscale inpainting under occluding text. 5-bit image(16 gray levels)
is inpainted after 58 iterations (using Haar wavelet).

Fig. 7. Grayscale inpainting under occluding text. 8-bit image(16 gray levels)
is inpainted after 40 iterations (using Daubechies 7/9 wavelet).

Road inpainting
The described technique can be utilized to perform specialized

inpainting: for instance, to follow roads in aerial photos with possible
defects and occlusions. In our example of the road inpainting (Fig.
III-D a) the missing area is determined by thresholding the image
and treating all pixels with low intensity as unknown (black area in
Fig.III-D b) However, occlusions could be detected by other methods,
e.g. using multi-spectral data to identify occluded regions of a photo.

Fig. 8. Leading bit-channel inpainting. a) first stage setting; b) first stage
result; c) second stage setting; d) second stage result.

As the objective of inpainting is the road recovery, the first (highest
intensity) bit of the image is prioritized as the “leading channel”
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and treated separately. To create the predisposition for broken road
connection without merging distinct neighboring roads, we choose
the maximum distance R allowed between the segments of the same
road (12 pixels). Let V be the set of the initially visible road
parts (the white area in Fig. 8 a). On the first stage of the leading
channel recovery we assume the unknown area Ωc

1 to be the R-pixel
neighborhood of V excluding V itself (the gray area in Fig. III-D a).
We choose the initial value u0 = χV +1/2χΩc

1
. After performing the

binary inpainting we get an intermediate solution u such that supp(u)
is a connected road covering (white area in Fig. 8 b), nevertheless
too wide to determine the precise road location. On the second stage
we refine the unknown area Ωc

2 = supp(u) \ V (the gray area in
Fig.8 c) and repeat the binary inpainting. The output u represents the
recovered leading channel (Fig. 8 d). Other bit channels are recovered
by usual binary inpainting with unknown area as in Fig.III-D b.

Fig. 9. Multistep road inpainting: a) the original road photo with natural and
artificial shadows occluding the road silhouette; b) threscholded image with
black area to be inpainted; c) the final output of bitwise inpainting.
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