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Abstract. While current matting algorithms work very well for some
natural images, their performance is questionable in the presence of sharp
discontinuities in the foreground and/or background regions. To resolve
this problem, we propose to use variational PDE-based inpainting tech-
niques to examine the matting problem, that are highly successful in
inpainting geometric features into unknown regions.
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1 Introduction

Digital Image Composition is commonly used by the graphics community to
create various scenarios for objects by extracting them from their original back-
ground and pasting them realistically to a new background. The above technique
has been popularly used by the movie industry to transport images of actors cap-
tured in a controlled studio environment to new locations. A crucial step that
precedes compositing images is to extract the object in question from its orig-
inal background accurately (i.e. preserving the fractional nature of the object
boundary). The above step is referred to as Image Matting, and additionally as
in our work, if the background is unknown, it is referred to as Natural Image
Matting.

Given an image I : Ω → [0, 1] containing the object of interest, we wish to
recover (α, F , B), using the commonly used matting equation:

I = αF + (1− α)B.

Here F is the foreground intensity corresponding to the object, B is the back-
ground intensity, and α is the soft-segmentation (i.e. α-matte) of the object.
Previous methods attempt to solve the above ill-posed problem by imposing
statistical priors on (F , B) [4, 9], followed by regularity constraints [11] on α.

The problem is further simplified by a user specified trimap Fig.1, that par-
titions the image domain into three regions; definite foreground ΩF , definite
background ΩB , and an unknown transition region D. Thus the problem of re-
covering (α, F , B) is restricted only to D. The above simplification approach
means that the solution’s quality depends on the initial-trimap accuracy. To
generate an accurate trimap could be time-consuming. Recent works [5, 6, 12]
attempt to resolve this problem by adding a prior region-growing step in the
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Fig. 1. Indications of subregions ΩF , D, and ΩB of the image domain Ω

(a) given image (b) desired result (c) by nearest values

Fig. 2. Example of interpolating the missing white region of an image by using the
nearest known pixel values.

algorithm that computes a reasonable trimap from a user given rough guess.
While current algorithms work very well for some natural images, their perfor-
mance is questionable in the presence of sharp discontinues in the foreground
and background regions. The reason is that these algorithms model the back-
ground and foreground intensities by statistical estimates of nearby pixel regions
(usually the nearest neighbor). Thus they do not take into account the inherent
geometry of the foreground and background regions. For example, in Fig.2, (a) is
an image occluded by an object (white region). (b) shows the desired inpainting
result. (c) is the result using nearest neighbor interpolation, variants of which
are used in current matting algorithms such as Poisson matting [11]. We see from
(c) that such methods are not able to achieve correct inpainting results. Hence,
the extracted mattes may be erroneous even for images with simple geometric
structures.
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In response to the above problem, we focus on the class of non-texture im-
ages and propose to estimate the foreground and background by adapting ex-
isting non-texture variational inpainting methods, such as total variation (TV)
inpainting [3] and Euler’s elastica inpainting [1]. The former adapts the ROF
image model [10] and is the first to take the Bayesian approach to inpainting
problems. The latter improves TV inpainting and is a curvature-prior model.
Both inpainting methods perform better in narrow inpainting regions than thick
ones, see [2].

Typically, a matting algorithm consists of three iterative steps. We summarize
our algorithm vis-a-vis these steps.

– Trimap refinement: A prior segmentation step is added to refine the ap-
proximate user defined trimap to conform to the actual α-transition region.
We use an iterative scheme similar to Poisson matting, [11] to refine the
trimap by thresholding the current iteration’s α-estimate.

– Extrapolating F and B: The foreground and background intensities, F
and B are extrapolated (i.e inpainted) into the transition region. We use
PDE-based inpainting techniques (TV, elastica) that work well for interpo-
lating geometric features.

– Solving for α: α is solved in the transition region using the matting equation
subject to suitable priors. Similar to Poisson matting, we search for α in the
Sobolev space H1(Ω).

2 Extrapolating F and B

Here we describe the methods of extrapolating the background intensity B :
Ω → [0, 1] and the foreground intensity F : Ω → [0, 1] through total variation
(TV) and Euler’s elastica inpainting. F and B are obtained by inpainting the
data from the known regions, ΩF and ΩB into the unknown region D.

2.1 Total Variation Inpainting

TV inpainting is a PDE-based variational model and is adapted from the ROF
denoising model [10]. It is based on the observation that edges play an important
role in the geometry of an image. TV inpainting interpolates images across the
missing regions, while preserving sharp edges. We propose to utilize this tech-
nique to extrapolate the background and foreground to examine the matting
problem. The background is extrapolated the following energy minimization:

min
B∈BV (D∪ΩB)

Etv[B] =
∫

D∪ΩB

|∇B|, (1)

with constraint
B |ΩB= I |ΩB .
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Fig. 3. Comparison of a level line to be completed in the unknown region by TV and
elastica inpainting

Minimizing this energy functional is equivalent to connecting sharp edges ac-
cording to the level sets in the known region. This can be seen by the coarea
formula:

∫
|∇B|dx =

∫ 1

0

∫

Γλ

dsdλ ,

where Γλ = {x : B(x) = λ} is the level set and ds is the arc length of the level
sets.
The gradient descent of the Euler-Lagrange equation (1) is

∂B

∂t
= 1D∇ · ( ∇B

|∇B| ), (2)

with condition
B |ΩB= I |ΩB .

The boundary condition along the boundary between D and ΩF is

∂B

∂−→ν = 0.

The formulation for estimating the foreground is similar.

2.2 Euler’s Elastica Inpainting

TV inpainting does not always connect edges correctly. For example, when the
inpainting region is too large, the level lines may form corners at the boundary
of the inpainting region, in order to achieve the smallest distance connection.
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This usually does not agree with visual perception. The geometry of inpainting
regions is crucial for TV inpainting.

Euler’s elastica inpainting improves TV inpainting by additionally penalizing
the curvature. As a result, the level lines are extended properly into the inpaint-
ing region. Figure 3 is an example of completing a level line inside the unknown
region according to TV and elastica inpainting, respectively. The estimated back-
ground through Euler’s elastica inpainting is obtained by the following:

min
B∈BV (D∪ΩB)

Eelas[B] =
∫

D∪ΩB

(a + bκ2)|∇B|dx, (3)

with condition
B |ΩB

= I |ΩB
.

In the functional, a and b are positive constants and κ = ∇ · ( ∇B
|∇B| ) is the cur-

vature of u. The weak absolute curvature is defined for BV functions in [1].
Minimizing this energy functional is equivalent to connecting sharp edges ac-
cording to the curvature of the level sets in the known region. This again can be
seen by the coarea formula:

∫
(a + bκ2)|∇B|dx =

∫ 1

0

∫

Γλ

(a + bκ2)dsdλ .

The gradient descent of the Euler-Lagrange equation of (3) is

∂B

∂t
= 1D∇ · −→V (4)

with
B |ΩB= I |ΩB ,

where

−→
V = φ(k)−→n −

−→
t

|∇B|
∂φ′(k)|∇B|

∂
−→
t

(5)

and −→n =
∇B

|∇B| , −→t = −→n ⊥ ,
∂

∂
−→
t

= −→
t · ∇.

The boundary conditions along the boundary between D and ΩF is

∂B

∂−→ν = 0 and
∂φ′(κ)|∇B|

∂−→ν = 0. (6)

3 Matte Extraction and Trimap Refinement

Given F and B, the matte α is estimated by minimizing the following energy:

min
α

∫

D

(αF + (1− α)B − I)2 +
λ

2
|∇α|2dx , (7)
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with constraints
α |ΩF

= 1 and α |ΩB
= 0.

The first term in the energy seeks an α that adheres to the matting equation.
The second term enforces the smoothness of α, according to parameter λ. The
constraints enforce α to equal 1 in the definite foreground region and equal 0 in
the definite background region. The minimized α is then thresholded to update
the trimap for the subsequent iteration.

4 Numerical Method

In this section, we describe the numerical method of our iterative scheme, n =
1, 2, ... .

1. Trimap refinement:

Ω
(n)
F = {x ∈ Ω : α(n−1)(x) > 0.97}

Ω
(n)
B = {x ∈ Ω : α(n−1)(x) < 0.03}

2. Extrapolating F and B:

B(n) = arg min
B

E[B], with B|
Ω

(n)
B

= I|
Ω

(n)
B

F (n) = arg min
F

E[F ], with F |
Ω

(n)
F

= I|
Ω

(n)
F

3. Solving for α:

α(n) = arg min
α

∫
(αF (n) + (1− α)B(n) − I)2 +

λ

2
|∇α|2,

with constraint α|
Ω

(n)
F

= 1 and α|
Ω

(n)
B

= 0

E[·] can be either Etv[·] or Eelas[·]. Initially, α(0) is given by the user. Repeat
step 1− 3 until α converges, i.e. d(α(n), α(n+1)) < ε, where d for example is the
l1-norm and ε is small.

In the second step, TV inpainting is implemented by lagged diffusivity and
fixed point iteration described in [3] for (2). The numerical scheme is

Bn+1
i,j = (

Bn
i+1,j

|Bn
i+ 1

2 ,j
| +

Bn
i,j+1

|Bn
i,j+ 1

2
| +

Bn
i−1,j

|Bn
i− 1

2 ,j
| +

Bn
i,j−1

|Bn
i,j− 1

2
| )/A,

where
A =

1
|Bn

i+ 1
2 ,j
| +

1
|Bn

i,j+ 1
2
| +

1
|Bn

i− 1
2 ,j
| +

1
|Bn

i,j− 1
2
| .

For elastica inpainting, to avoid modeling boundary conditions (6), we extend
the inpainting region of B from D to D ∪ΩF and extend the inpainting region
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of F from D to D ∪ΩB . The inpainting result of B (resp. F ) on ΩF (resp. ΩB)
is less important since it is not utilized in optimizing α. We use the numerical
scheme described in [1], which is an explicit scheme for

∂B

∂t
= 1D∪ΩF |∇B|∇ · −→V . (8)

As suggested in [8], the factor |∇B| accelerates the original time marching equa-
tion (4) and is discretized by central differencing. The term ∇ · V is discretized
by half-point central differencing,

∇ · V i,j = (V 1
i+ 1

2 ,j − V 1
i− 1

2 ,j) + (V 2
i,j+ 1

2
− V 2

i,j− 1
2
),

where (V 1, V 2) = V in (5).
In (5), the discretization of Dx and Dy at the x-half-point are

DxBi+ 1
2 ,j =

1
2
(Bi+1,j −Bi,j) and

DyBi+ 1
2 ,j = minmod(

1
2
(Bi+1,j+1 −Bi+1,j−1),

1
2
(Bi,j+1 −Bi,j−1)),

where

minmod(a, b) =
sgn(a) + sgn(b)

2
min(|a|, |b|).

The discretizations at other half-points are similar. The reader may consult the
details in [1].

The solution of α matte is obtained by the steepest descent of Euler-Lagrange
equation for (7)

αn+1 = αn − δt([αnF + (1− αn)B − I](F −B)− λ4αn),

where
4α = −4αi,j + αi+1,j + αi−1,j + αi,j+1 + αi,j−1

is the usual five point discrete Laplacian.

5 Experimental Results

In this section, we show experimental results on both synthetic and real images,
and compare our algorithm with a method that uses nearest neighbor inpainting.
The experiments indicate that our method outperforms such nearest neighbor
based matting methods, especially for images with sharp edges. Specifically, the
comparison method we use here is similar to Poisson matting; models α in H1(Ω)
and iteratively refines the trimap region, and uses nearest neighbor interpolation
to fill in F and B values into the unknown region.



8 Ni, Thiruvenkadam and Chan

The first example is shown in Fig.4. The foreground of the given image (a) is
a constant and the background (d) is a bar. The given trimap (b) indicates the
definite foreground, background, and unknown regions by α = 1, α = 0, and α =
0.5, respectively. The first column are the ground truth matte (c), the extracted
mattes by elastica inpainting (e), TV inpainting (g), and the comparison method
(i). The respective mattes are (d), (f), (h), and (j). The background (f) obtained
by the elastica inpainting is very close to the ground truth background (d). As a
result, the corresponding matte (e) is also very close to the ground truth matte
(c). The performance of the TV inpainting strongly depends on the geometry of
the inpainting region and the image data. As expected, the TV inpainting is able
to recover the underlying geometry at the region with smaller width and fails at
the larger scale region. The corresponding matte (g) also reflects the accuracy of
the extrapolated background (h). The comparison method is not able to recover
the underlying geometry (j) and the extracted matte (i) is erroneous.

The second example is shown in Fig.5. The given image (a) is a starfish, as
the foreground, and the background has stripes occluded by the starfish. The
second row shows the elastica inpainting method (c) is able to extract the α matte
accurately while the result of the comparison method (d) is erroneous near sharp
gradients of the background. The third row shows the resulting foreground by
elastica inpainting (e) and nearest neighbor (f). The unknown region is indicated
in between the red curves. The last row shows the resulting background by
elastica inpainting (g) and nearest neighbor (h). Elastica inpainting outperforms
nearest neighbor thus our method is more efficient in extracting the α matte.

The third example is shown in Fig.6. The object of the given image (a) is has
more interesting boundaries and the background has a structure occluded by the
foreground. The second and third rows show the extracted mattes and extracted
foreground by the elastica inpainting and nearest neighbor, respectively. Observe
that near the boundary of the bear and bar, the comparison method (f) is
erroneous. This can be seen clearly in the fourth row, which shows the selected
local regions of elastica inpainting (g), the comparison method (h), and the
original image (i). The last two rows show the extrapolated foreground and
background, respectively. The unknown region is indicated in between the red
curves.

The above results demonstrate that when the background has geometric
structures occluded by the foreground, curvature-prior models, such as elas-
tica inpainting, are able to recover the background correctly. Consequently, the
extracted matte is more accurate. From our experiment, the extracted mattes
from the iterative scheme do not change significantly after about 3 iterations.
The numerical error converges in about 30 iterations.

6 Conclusion and Future Work

In this paper, we propose to employ PDE-based variational inpainting meth-
ods to examine the matting problem. Our results show that elastica inpainting
is effective for non-texture images. As future work we would like to improve
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our matting algorithm in two aspects. The first is to speed up the algorithm.
In particular, the elastica inpainting in the second step involves solving a stiff
fourth-order PDE, thus the process is computationally expensive. Recently, [7]
proposed a method that approximates and changes the elastica inpainting solu-
tion to a combinatorial optimization problem. By their experiment, this method
is two orders of magnitude faster than the stiff PDE solver. The second is to
add a region-growing step to generate a reasonable trimap from the user’s rough
guess.
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(a) given image (b) given trimap

(c) ground truth α (d) ground truth B

(e) α by elastica inpaint (f) B by elastica inpaint

(g) α by TV inpaint (h) B by TV inpaint

(i) α by nearest values (j) B by nearest values

Fig. 4. Comparison of the Euler’s elastica inpainting, TV inpainting, and nearest values
for extrapolating the background and the corresponding extracted mattes.
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(a) given image (b) given trimap

(c) α by elastica inpaint (d) α by nearest values

(e) F by elastica inpaint (f) F by nearest values

(g) B by elastica inpaint (h) B by nearest values

Fig. 5. The proposed method by utilizing the Euler’s elastica inpainting produces a
satisfying matte of the starfish.
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(a) given image (b) given trimap

(c) α by elastica inpaint (d) α by nearest values

(e) αF by elastica inpaint (f) αF by nearest values

(g) elastica (h) nearest (i) original

(j) F by elastica inpaint (k) F by nearest values

(l) B by elastica inpaint (m) B by nearest values

Fig. 6. The proposed method by utilizing the Euler’s elastica inpainting produces a
satisfying matte of the bear.


