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Abstract.
Parametric and nonparametric region based active contour models have been widely used in image segmenta-

tion and showed promising results. However, since segmentation processing in these models are driven by intensity
probability density functions (p.d.f.), intensity inhomogeneity and higher level of noise are always challenging prob-
lems that need to be addressed. In this paper we present a novel local nonparametric model for simultaneous image
segmentation and adaptive smoothing. We treat the smoothed image intensity at each point as a random variable,
whose realizations are the intensities of the observed noisy image in a neighborhood of this point. The neighborhood
size varies from point to point depending on image gradients. A nonparametric p.d.f. estimation is applied to the
smoothed image to get likelihood estimations for both object and background. Then, the simultaneous smoothing
and segmentation is achieved by minimizing the negative log-likelihood estimations together with total length of the
region boundaries. By the choice of the local adaptive neighborhoods the smoothing does not across the boundaries
and is less at the locations where image gradient is higher.

The proposed model is implemented using its level set formulation. The experimental results on synthetic
data, T1 weighted human brain MRI images, FLAIR MRI brain images, and echocardiographic images indicate the
advantages of the proposed model in dealing with higher level noise and intensity inhomogeneity. The existence of
a solution to the proposed model is also discussed.

Key words. Segmentation, smoothing, nonparametric probability density function, level set method, active
contour
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1. Introduction. Parametric and nonparametric region based active contour models
have been widely used in image segmentation and showed promising results. These mod-
els incorporate region intensity statistics into segmentation to overcome the difficulty in edge
based segmentation models that require strong edge information. However, since the seg-
mentation process in these models is driven by intensity probability density functions, the
difficulties of the task caused by intensity inhomogeneity and higher level of noise still need
to be addressed. This is the motivation of this work.

Let Ω be a bounded open subset of RN , and I0 : Ω → R be an observed noisy image. The
celebrated work from Mumford and Shah [1] provides the following model for simultaneous
smoothing and segmentation:

min
I,C

∑

i

∫

Ωi

(Ii − I0)2dX + α

∫

Ω\C
|∇I|2dX + β|C| (1.1)

where C separates Ω into two regions Ωi (i = 1, 2), |C| represents the length of C, I is
a piecewise smooth approximation of I0, and Ii is the restriction of I to Ωi. When I is a
constant Ci in each Ωi, model (1.1) reduces to the following form.

min
C′is,C

∑

i

∫

Ωi

(Ci − I0)2dX + β|C| (1.2)

This piecewise constant Mumford-Shah (MS) model has been well studied by Chan et al. in
[2, 3]. The major advantage of this model is that it can separate two relatively homogeneous
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regions without using edge information. However, the homogeneity assumption limits its
applications.

One of the more general approaches is parametric region based active contour method.
This method is based on the assumption that the image intensity I0(X) at each X ∈ Ωi is
an independent random variable indexed by X with p.d.f. P (I0i(X)|λi) given a parameter
vector λi, where I0i

is the restriction of I0 to Ωi. The framework of this method minimizes
the negative log-likelihood functions together with the length of the boundary, i.e.

min
C,λ′is

−
∑

i

∫

Ωi

log P (I0i(X)|λi)dX + β|C| (1.3)

In the region competition model by Zhu et al. [4] and geodesic active region models by Rous-
son et al. [5] and Paragios et al. [6], P (I0i

(X)|λi) is chosen to be a Gaussian distribution:

P (I0i
(X)|Ci, σi) =

1√
2πσi

exp
(−(I0i

(X)− Ci)2

2σ2
i

)
(1.4)

When all the σi’s are the same and pre-fixed, model (1.3-1.4) reduces to model (1.2). We call
model (1.3-1.4) a global Gaussian model, since it assumes that all random variables I0i(X)
indexed by X ∈ Ωi are normal random variables sharing the same mean Ci and variance
σi. Parametric model (1.3) provides desirable segmentation results, when the parametric
form of the intensity distribution is known. However, a specific assumption of the intensity
distribution can be a significant restriction in real applications. Especially, when the image
has high level of noise and/or complex multi-modal intensity distribution.

To overcome this problem nonparametric models [7] have been developed and success-
fully applied to image segmentation and registration. They are featured by using nonparamet-
ric density estimation to replace the parametric density estimation. For instance, the active
contour for segmentation in [8] is driven by a force determined by the disparity of the p.d.f. ’s
of the object and background, where the p.d.f.’s are approximated by Parzen window density
estimation. Similarly, in [9] the segmention of regions of interest in video sequence is ob-
tained by minimizing the disparity of the p.d.f.’s of the current frame with the previous one,
where the p.d.f. ’s are also estimated using Parzen window density estimation. Also, in the
variational segmentation model in [10] the energy functional incorporates edge information
from the edge map image, and interior texture/intensity information captured using Parzen
density estimation. In [11] Kim et al. segment images through maximizing mutual informa-
tion between the region labels and image intensities, where the Parzen density estimation is
applied to compute their joint p.d.f.. In all these work the p.d.f.’s are estimated using informa-
tion from the whole domain Ω or segmented regions Ωi. The implicit underneath assumption
is that intensities I0(X) for all X ∈ Ω or X ∈ Ωi are drawn as samples from the one unique
distribution. This assumption may not be appropriate in some situations.

An interesting generalization is to make the density estimation local, so that it takes into
account the nonstationary relation among intensities across points. In [12] Hermosillo et al.
propose a local nonparametric density estimation to compute mutual information. The local
density estimation is achieved by weighting the Parzen density estimate in the whole domain
with a normalized Gaussian of a suitable variance. In a recent work of Chan et al. [13],
a neighborhood histogram based segmentation model is proposed. This model compares the
object (resp. background) histogram with all the neighborhood histograms in the object (resp.
background) using the Wasserstein distance. The neighborhood size at each point is chosen
to be the same. Moreover, recently, Azzabou et al. propose an adaptive denoising model [14]
that estimates the intensity of smoothed image at a given pixel by maximizing its conditional
probability relative to the observed noisy image. In their model the joint distribution of the
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smoothed image and noisy image is estimated by applying nonparametric density estimation
using multidimensional isotropic Gaussian kernel with zero mean and adaptive bandwidths.
At each point the set of pairs of the smoothed image and noisy image used as ”samples”
to perform density estimations is extracted from the local neighborhood of this point. The
neighborhood size does not change across points.

Nonparametric models do not require prior knowledge on intensity distribution, they
are more applicable. However, as other data driven models, they also suffer from intensity
inhomogeneity and higher level of noise. To address this problem in this paper we propose a
novel local nonparametric model which is able to perform image segmentation and adaptive
smoothing simultaneously. Our main idea is to treat the smoothed image intensity I(X) at
each point X as a random variable, whose realizations are the intensities of the observed
noisy image I0 in the neighborhood of X . Then, a nonparametric density estimation based
on those realizations is applied to estimate the p.d.f. of I(X), from which the likelihood
for the object and background are obtained. Furthermore, by minimizing the negative log-
likelihood functions together with the length of the boundary, a partition of Ω =

⋃2
i=1 Ωi

is obtained based on the regional statistics of the smoothed image, which is more reliable
than the information from the noisy image. This is different from the nonparametric models
mentioned above that are used purely for image segmentation, where the nonparametric p.d.f.
estimations are applied to the observed image not the recovered image.

First variation of the energy functional with respect to the smoothed image shows that
I(X) at each X is a average of I0 in the neighborhood, it is generated and updated simulta-
neously as the partition does. The processes of smoothing and partition assist each other to
get a desired result. The neighborhood of X , where the samples of I(X) is extracted, is taken
as a ball center at X with radius r(X) within Ωi, i.e. Ωi ∩ B(X, r(X)). By this setting the
optimal I(X) at each X is in fact the average of I0 in the neighborhood Ωi ∩ B(X, r(X))
(see (3.3-3.4) below). In this sense we call I a smooth version of I0. Moreover, different
from the local nonparametric models in [13] and [14] where the local neighborhood sizes at
each point are the same, our local neighborhood size, i.e. the radius of the ball, varies from
point to point depending on image gradients. This ensures that smoothing is much less at the
locations where image gradients are larger so that features can be better preserved and seg-
mentation is more accurate. Finally, to reduce the computation cost in nonparametric density
estimation, we replace the widely used Gaussian kernel by a quadratic kernel.

The organization of the paper is as follows: in section 2 we first present the proposed
model, then provide details about choice of kernel functions and adaptive neighborhood size.
Section 3 discusses some numerical implementation issues. Section 4 focuses on validation
and applications of the proposed model. Existence of a solution to the proposed model is
presented in section 5. Conclusion and future work are drawn in the last section.

2. Proposed Model.

2.1. Energy functional. Given a noisy image I0 our task is to find an image I smoother
than I0 and a curve C separating the object Ω1 from background Ω2 simultaneously. In the
light of region based active contour models for segmentation one way to tackle the segmenta-
tion problem for images with non-uniform intensity or higher level noise might be using the
framework (1.3) with the parametric density estimation replaced by a nonparametric density
estimation (see [15, 16] for details), i.e.

min
C
−

∑

i

∫

Ωi

log P (I0i(X))dX + β|C|, (2.1)
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where I0i
is the restriction of I0 on domain Ωi, P (I0i

(X)) = 1
|Ωi|

∫
Ωi

Kh(I0i
(X)−I0i

(Y ))dY ,

Kh = K(·/h)
h , K(·)is a kernel function, and h is the bandwidth. The most common kernel

functions are unimodal, symmetric about the origin, and fall off quickly to zero. When K
is a Gaussian with zero mean and σ variance, this estimator is the popular Parzen window
density estimator. In model (2.1) the segmentation is driven by the regional intensity p.d.f.
estimation, which may not be trustable if the image I0 is very noisy. To address this problem
we propose to incorporate a feature preserving denosing process into segmentation process,
so that the segmentation can be based on the statistical information of the smoothed image.
Our approach will be using the same framework as in (2.1), but the density estimation is ap-
plied to the smoothed image rather than the observed noisy image. That is minimizing the
following functional:

min
C
−

∑

i

∫

Ωi

log P (Ii(X))dX + β|C|, (2.2)

where P (Ii(X)) is p.d.f. of the smoothed image intensity at X . To get a simultaneous
smoothing and segmentation without adding extra smoothing terms we relate the smoothed
image I and observed noisy image I0 in the following way: treat Ii(X), the restriction of
I on Ωi, at each X ∈ Ωi as a random variable, whose samples are extracted from I0 at a
local neighborhood of X . The local neighborhood is a ball B(X, r(X)) centered at X with
radius r(X) within Ωi. This means that random variable Ii(X) has realizations {I0(Y )|Y ∈
B(X, r(X)) ∩ Ωi}. By a Kernel based nonparametric density estimation we have

P (Ii(X)) =
1

|B(X, r(X)) ∩ Ωi|
∫

B(X,r(X))∩Ωi

Kh(Ii(X)− I0(Y ))dY (2.3)

Substitute this to (2.2), our proposed model reads

min
I1(X),I2(X),C

E(I1(X), I2(X), C),

where E(I1(X), I2(X), C) is defined as follows:

−
∑

i

∫

Ωi

log

(
1

|B(x, r(x)) ∩ Ωi|
∫

B(x,r(x))∩Ωi

Kh(Ii(x)− I0(y))dy

)
dx + β|C| (2.4)

The first part in the energy functional is the negative log likelihood. Through maximizing
the likelihood with the kernel described in next subsection, Ii(X) will be forced to be the
average of I0 in B(X, r(X)) ∩ Ωi. Since every neighborhood of X ∈ Ω is inside Ωi, the
averaging never crosses boundary. Moreover, the radius of the ball r(X) varies from point
to point depending on image gradients (see subsection below). The smoothing, which means
averaging in this model, is adaptive and preserves features. Moreover, by maximizing the
likelihood term we also get a segmentation based on the statistical information of I . The
second part represents the length of the contour, and contributes to the smoothness of the
boundary.

2.2. Kernel. In model (2.4) the kernel function Kh(·) is chosen as a quadratic function
below.

Qh(u) =

{
3(1−(u/h)2)

4h |u| ≤ h
0 |u| ≥ h

(2.5)
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with fixed bandwidth h = 1. FIG.2.1 illustrates the graphs of a gaussian kernel with zero
mean and 0.6 variance restricted to interval [−1.5, 1.5] and Q1 defined above. The purpose
of using a quadratic kernel instead of a Gaussian kernel is to reduce computational cost.
Computation involving exponential function is much more than a quadratic function.

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

FIG. 2.1. Graphs of a gaussian kernel with 0 mean , .4 variance (blue) and a quadratic kernel (2.5) with h = 1
(red).

In general, the bandwidth h is an important parameter in nonparametric p.d.f. estimation,
it determines how we trust each sample, also affects how many samples are incorporated into
estimation. We choose h = 1 because of the following consideration. Practically when we
apply the proposed model, we first scale the intensity of the observed image I0 to be between
0 and .9. By the Euler Lagrangian equations (EL) of (2.4) (see (3.3-3.4) below), Ii(X) must
be the mean of I0 in the neighborhood Ωi ∩ B(X, r(X)), hence |Ii(X) − I0(Y | can’t be
beyond one for all Y ∈ Ωi ∩ B(X, r(X)). This means that if the bandwidth h = 1, I0 at
each point of this neighborhood is picked as a sample contributing to the estimate of the p.d.f.
of Ii(X). Then, the proposed local density estimator is built by varying the neighborhood
size. In this way an averaging neighborhood intensity process, regarding as smoothing, is
performed simultaneously with segmentation.

2.3. Adaptive radius. To have an adaptive smoothing for feature preserving, the radius
r(X) of the ball is chosen depending on image gradients. More precisely, one of the choices
is the following.

r(X) =
a

1 + b|∇Ĩ0(X)|
(2.6)

where a and b are positive numbers, Ĩ0 is a smoothed version of the given image I0 that
could be obtained through convolving I0 with a smooth kernel. By this choice, if X is near
the edge of I0, where the gradient is larger, the averaging to generate I is restricted in a
smaller neighborhood of this point, hence, feature can be preserved. For those points, where
|∇Ĩ0(X)| is smaller, the averaging is carried out in a larger neighborhood to speed up the
smoothing. Our experimental results below will verify this advantage.

If the noise distributions of the observed image in the object and background are not too
inhomogeneous, we may choose r(X) as below.

r(x) =

{
M, |∇Ĩ0(x)| ≤ s

N, |∇Ĩ0(x)| > s
(2.7)
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where M is an integer depending on noise level of the input image I0. It is chosen to be
relatively larger, if the noise level is higher. N should be smaller than M . For most of the
images we have tried, s is set to be the 85th percentile of |∇Ĩ0(x)|. Experimental results are
not very sensitive to these parameters; the general rule to adjust N and s is to set them to be
smaller if fine structures in the noisy image need to be persevered.

One more option is to replace I0 in the above two choices by the smoothed image I , i.e.

r(x) =
a

1 + b|∇I(x)| (2.8)

or

r(x) =

{
M |∇Ĩ(x)| ≤ s

N |∇Ĩ(x)| > s
(2.9)

(a) (b)

(c) (d)

(e) (f)

FIG. 2.2. Compare segmentation and smoothing results of model(2.10) with r(x) as defined in (2.7) and (2.9).
(a) A clean plane image (60 × 90); (b) a noisy plane image obtained by adding speckle noise with
parameter .05 to (a); (c)-(d): segmentation and smoothing results of (b) using model(2.10) with radius
defined in (2.7) respectively; (e)-(f) segmentation and smoothing results of (b) using model(2.10) with
radius defined in (2.9) respectively. For all the results, time step size = .1, β = .5, M = 5, N=1, converge
in 5 iterations.
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To see if r(X) depending on I rather than I0 can significantly improve the segmentation
and smoothing results we did an experiment shown in FIG.2.2. FIG.2.2(a) shows a clean
plane image. A speckle noise with parameter .05 is added to generate a noisy image shown
in (b). The second and the third row demonstrates the segmentation and smoothing results
from model (2.4) with radius defined in (2.7) and (2.9) respectively. There is no significant
difference observed in both segmentation and smoothing results. Therefore, we take r(x)
depending only on I0 in our experiments. Also, if r(X) depends on I , the model will be
more nonlinear and the discussion on existence of a model solution will be more difficult.

2.4. Level set formulation. Level set method was invented and continuously advanced
by S. Osher and J. Sethian in 1988 [17]. The main advantage of level set method is that
topological changes, such as merging and pinching off of contours can be captured naturally,
and all the numerical computation is on fixed grid.

For notation simplicity, we denote the object Ω1 by A while the background Ω2 by Ω\A.
We represent the curve C by the zero level set of a Lipschitz function φ, i.e. C = {x|φ(x) =
0}. The object A and background Ω\A are represented by {x|φ(x) > 0} and {x|φ(x) < 0},
respectively. A Heaviside function defined as H(φ) = 1 when φ > 0 and 0 elsewhere is
used to distinguish A and Ω\A. Thus, set A corresponds to the region where H(φ) = 1,
while Ω\A corresponds to the region where H(φ) = 0. Then, the level set formulation of the
proposed model (2.4) is as follows:

min
I1(X),I2(X),φ(X)

E(I1(X), I2(X), φ(X)) = β

∫

Ω

|∇H(φ)|

−
∫

Ω

H(φ(X)) log
(∫

Ω
χB(X,r(X))(Y )H(φ(Y ))Q1(I1(X)− I0(Y ))dY∫

Ω
χB(X,r(X))(y)H(φ(Y ))dY

)
dx

−
∫

Ω

(1−H(φ(X))) log
(∫

Ω
χB(X,r(X))(Y )(1−H(φ(Y )))Q1(I1(X)− I0(Y ))dy∫

Ω
χB(X,r(X))(Y )(1−H(φ(Y )))dY

)
dX

(2.10)

where χB(X,r(X))(Y ) is the characteristic function of B(X, r(X)).

3. Numerical Implementation . The level set method is used to represent C implicitly
and to express each subregion.

We implement the proposed model using its level set formulation (2.10). We first derive
the gradient flows then apply evolution techniques.

3.1. Certain calculation details. In our implementation we use C∞ regularized version
of Heaviside function as defined in [2] to make the functional differentiable with respect to
φ. The regularized Heaviside function is denoted by H̃ , the derivative of which is called
regularized Delta function and is denoted by δ̃. Moreover, a linear transformation, that does
not affect segmentation results, is applied to make the observed image I0 having range [0, .9].
Because 0 ≤ I0 ≤ .9 and the bandwidth of the kernel is one (see definition of Q1) all I0(Y )’s
for Y ∈ Ωi ∩B(X, r(X)) contributes to the p.d.f. estimation of Ii(X).

To get an optimal φ the functional in (2.10) is discretized first in order to avoid the
difficulty in getting the EL equation for φ. Then we take derivative with respect to φ at each
grid point. EL equations with respect to I1 and I2 can be derived directly from the first
variation. For notation simplicity, we present our equations in two dimensional cases. Let
(xi, yj) = (ih, jh), where h is spacial step size, be a grid point (1 ≤ i ≤ M, 1 ≤ j ≤ N ).
The values of radius r and φ at point (xi, yj) are denoted by ri,j and φi,j respectively. The
length term is discretized using backward finite difference for gradient in the x-direction,
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and forward difference for y-direction. The corresponding discretized version of the energy
functional in (2.10) is shown below.

−
∑

ij

H̃(φi,j) log




∑

k,l∈B((xi,yj),rij)

H̃(φk,l)Q1(I1(xi, yj)− I0(xk, yl))

∑

k,l∈B((xi,yj),rij)

H̃(φk,l)




+
M∑

i=1

N∑

j=1

H̃(φij) log
min(i+rij ,M)∑

k=max(i−rij ,1)

min(j+rij ,N)∑

l=max(j−rij ,1)

H(φ(xk, yl))

−
∑

ij

(1− H̃(φi,j)) log




∑

k,l∈B((xi,yj),rij)

(1− H̃(φi,j))Q1(I2(xi, yj)− I0(xk, yl))

∑

k,l∈B((xi,yj),rij)

(1− H̃(φi,j))




+β
∑

ij

δ̃(φi,j)

√
(φi,j − φi−1,j)2 + (φi,j+1 − φi,j)2

h
(3.1)

Then, the corresponding evolution equation for φij is the following:

dφij

dt =
∑

ij

δ̃(φi,j) log




∑

(k,l)∈B((xi,yj),rij)

H̃(φk,l)Q1(I1(xi, yj)− I0(xk, yl))

∑

(k,l)∈B((xi,yj),rij)

H̃(φk,l)




−
∑

ij

δ̃(φi,j) log




∑

(k,l)∈B((xi,yj),rij)

(1− H̃(φi,j))Q1(I2(xi, yj)− I0(xk, yl))

∑

(k,l)∈B((xi,yj),rij)

(1− H̃(φi,j))




−δ(φ(X)) log
∫
Ω

⋂
B(X,r(X))

(1−H(φ(Y )))dY

+δ(φ(X)) log
∫
Ω

⋂
B(X,r(X))

(1−H(φ(Y )))Q1(I2(X)− I0(Y ))dY

+
∑
m,n

H(φm,n)
δ(φi,j)Q1(I1(xm, yn)− I0(xi, yj))∑

(k,l)∈B((xi,yj),rij)

H(φk,l)Q1(I1(xm, yn)− I0(xk, yl))

−
∑
m,n

(1−H(φm,n))
δ(φi,j)Q1(I2(xm, yn)− I0(xi, yj))∑

(k,l)∈B((xi,yj),rij)
(1−H(φk,l))Q1(I2(xm, yn)− I0(xk, yl))

−βδ̃′(φi,j)
√

(φi,j−φi−1,j)2+(φi,j+1−φi,j)2

h

−βδ̃(φi,j)
2φi,j−φi−1,j−φi,j+1

h
√

(φi,j−φi−1,j)2+(φi,j+1−φi,j)2

−βδ̃(φi+1,j)
φi,j−φi+1,j

h
√

(φi+1,j−φi,j)2+(φi+1,j+1−φi+1,j)2

−βδ̃(φi,j−1)
φi,j−φi,j−1

h
√

(φi,j−1−φi−1,j−1)2+(φi,j−φi,j−1)2

(3.2)
The first variation of (2.10) with respect to I1 and I2 leads to the following equations:
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I1(x) =

∫
B(x,r(x))

H(φ)(y)I0(y)dy∫
B(x,r(x))

H(φ)(y)dy
(3.3)

I2(x) =

∫
B(x,r(x))

(1−H(φ)(y))I0(y)dy∫
B(x,r(x))

(1−H(φ)(y))dy
(3.4)

For φ, we impose boundary condition ∂φ
∂n = 0, for X ∈ ∂Ω, t > 0 and initial condition

φ(X, 0) = φ0(X)forX ∈ Ω. I1 and I2 are always updated using (3.3) and (3.4) respectively.
The choice of the initial φ is extremely flexible, even simple constant initial work for most
of the images we have tried. This eliminates the work of creating the distance function of an
initial curve that is required by regular level set methods.

The evolution equation (3.2) is solved using a semi-implicit scheme invoking the additive
operator splitting (AOS) [18, 19, 20]. The AOS scheme splits the diffusion operator into
a coordinate-by-coordinate fashion, and replaces the inverse of the sum by the sum of the
inverse. It guarantees equal treatment of all coordinate axes, and can be implemented easily
in arbitrary dimensions. Its computational complexity and memory requirement are linear to
the number of pixels. It is stable for large step sizes.

The algorithm usually converges in fewer than 10 iterations, this makes reinitialization
of level set function φ unnecessary. Parameter β affects experimental results and needs to be
tuned for each image, this is inevitable for all the models that involve length term. All the
results shown are based on the best choice of β that we have tried.

Table 3.1: Segmentation Accuracy
Gaussian Noise 0.01 0.05 0.1 0.25

SA 0.996 0.979 0.957 0.868
Salt Pepper Noise 0.05 0.15 0.25 0.50

SA 0.996 0.988 0.970 0.885

4. Validation and Application. We first validate the ability of model (2.10) (or equiv-
alently (2.4)) in simultaneously segmenting and smoothing noisy images. Then, to demon-
strate the advantage of the proposed model in dealing with segmentation and smoothing for
images with higher level noise, we compare the proposed model with piecewise constant MS
model (1.2), global Gaussian model (1.3-1.4) and the model proposed in [21] which is basi-
cally model (2.10) with fixed radius. We also compare our local nonparametric model (2.10)
with the following global nonparametric model which utilizes intensities of I0 in the whole
Ωi to estimate p.d.f. of Ii(X) for X ∈ Ωi.

min
I1,I2,φ

−
∫

Ω

H(φ(x)) log
(∫

Ω
H(φ(y))Q1(I1(x)− I0(y))dy∫

Ω
H(φ(y))dy

)
dx

−
∫

Ω

(1−H(φ(x))) log
(∫

Ω
(1−H(φ(y)))Q1(I1(x)− I0(y))dy∫

Ω
(1−H(φ(y)))dy

)
dx

+β

∫

Ω

δ(φ(x))|∇φ(x)|dx (4.1)

Finally, we apply the proposed model to human brain T1 weighted magnetic resonance (MRI)
images, FLAIR human brain MRI images and short axis human echocardiographic images to
show the effectiveness of the model in medical image analysis .
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 4.1. Segmentation results of a clean image and its noisy versions. From top to bottom, the left
column: a clean cartoon C-shaped image, its noisy versions generated by adding white Gaussian noise
with variance 0.05, and speckle noise with parameter 0.05; the middle column: segmentation results
(red contours) obtained by applying the proposed model to the images next to them; the right column:
smoothed versions of the images on the first column respectively. For all the results, time step size = .1,
β = .01, M = 2, N=1, converge in 20 iterations.

The first set of experiments aims to examine the accuracy of the proposed model (2.10)
in segmenting a noisy image. We start from a clean image C-shaped cartoon image as shown
in FIG. 4.1(a). By adding different levels of Gaussian noise and salt & pepper noise to it we
generate various noisy images. Then we apply model (2.10) to each of the noisy image and
the clean cartoon image to get segmentation of these images. To quantitatively observe how
accurate the model (2.10) is in segmenting noisy images, we treat segmentation result of the
clean cartoon image as the ground truth, then define a segmentation accuracy (SA) measure
to be the ratio of number of pixels sharing the same segmentation with the ground truth over
total pixel number. SA is between 0 and 1, the closer it is to 1, the better the model (2.10)
is in segmenting this noisy image. Table 3.1 lists SA’s corresponding to images obtained by
adding random Gaussian noise with mean 0 and four different variances, and salt & pepper
noise with four different parameters, respectively. Each of the SA shown in the table is the
average value of two SA’s corresponding to two different images obtained through adding
the same type and the same strength of random noise at two different times. It is observed
from Table 3.1 that when variance of Gaussian noise is lower than .1 or parameter of salt &
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pepper noise is less than 0.25, the segmentation accuracy could be higher than 95%. And an
obvious trend is that as noise level increases, SA decreases as expected.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 4.2. Compare three models in segmenting images with lower and higher level of noises. (a) A clean
plane image; (b)-(c) Noisy plane images obtained by adding a random Gaussian noise with mean
0,variance 0.01 and 0.05 to (a), respectively; (d)-(f) Segmentation results of (b) obtained from piecewise
constant MS with β = .05, global Gaussian model with β = .8 and the proposed model (2.10) with
β = 10, respectively; (g)-(i) Segmentation results of (c) from piecewise constant MS model with β = .1,
global Gaussian model with β = 1 and (2.10) with β = 10, respectively.

FIG.4.1 shows segmentation and smooth results obtained by applying model (2.10) to the
clean C-shaped cartoon image (FIG.4.1(a)) and its two noisy versions shown in FIG.4.1(d)
and FIG.4.1(g). The image in FIG.4.1(d) is generated by adding a random Gaussian noise
with zero mean and variance 0.05 to the image in (a), while the one in FIG.4.1(g) is obtained
by adding speckle noise with parameter 0.05. Their boundaries depicted in red curves, which
are found by applying model (2.10), are superimposed on the images in (a), (d), and (g), and
shown in FIG.4.1(b), (e), and (h) respectively. It is observed that they are almost the same,
actually, they are consistent up to 99.6% (SA = .996). FIG.4.1(c), (f), and (i) demonstrate the
reconstructed smooth images of FIG.4.1(a), (d), and (g), respectively. The recovered images
are much smoother and sharper than the corresponding original noisy images.

FIG.4.2 shows the comparison in effectiveness of segmentation among piecewise con-
stant MS (1.2) model, global Gaussian model (1.3-1.4) and the proposed model (2.10). We
add random Gaussian noise with mean 0 and variance 0.01 and 0.05 to a plan image as shown
in FIG.4.2(a) to create two noisy images as shown in FIG.4.2(b) and FIG.4.2(c), respectively.
Then all these three models are applied to the image in FIG.4.2(b) to get the segmentations
( superimposed red contours) as shown in FIG.4.2 (d)-(f) respectively. Visually, not much
difference among them is detected. This indicates all the three models are able to segment
images with low level noise. But after applying these three models to the noisier image in
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FIG.4.2(c), the segmentation results shown in FIG.4.2(g)-(i) respectively are very different.
Moreover, it is visible that the result from model (2.10) is the best as it simultaneously seg-
ments and smoothes the image so that the noise are removed while the boundary of the plane
is well kept. Since the image intensities of the object and background are no longer homoge-
neous, the piecewise constant MS is not suitable in this case. The result from global Gaussian
model keeps plane boundary well but gains more background fault boundaries, as it allows
variation of intensity in Ωi’s.
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FIG. 4.3. SA Graphs of images with Gaussian noise, obtained from three models: red: proposed model, green:
global Gaussian model, blue: piecewise constant MS model.
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FIG. 4.4. SA Graphs of images with speckle noise, obtained from three models: red: proposed model, green:
global Gaussian model, blue: piecewise constant MS model.
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(a) (b)

(c) (d)

(e) (f)

FIG. 4.5. Comparison of segmentation and recovered image from the image in FIG.2.2(b) by the proposed
model with fixed and adaptive radii. (a)-(b) Results from the proposed model with fixed radius 1; (c)-(d)
Results from the proposed model with fixed radius 5;(e)-(f) Results from proposed model with adaptive
radii defined in (2.7) where M = 5, and N=1. For all the results, time step size = .1, β = .5, converge
in 10 iterations.

A quantitative comparison of the three models is provided using SA. We add ran-
dom Gaussian noise with mean 0 and variance 0.05 for 100 times to the clean plane image
FIG.4.2(b) to get 100 noisy images. The three models are then applied to these 100 noisy
images to obtain 100 SA’s for each model, FIG.4.3 shows the graphs of SA for the three mod-
els. Mean value and variance of the 100 SA’s obtained from the proposed model (shown in
red contour), global Gaussian model (shown in green contour) and piecewise constant model
(shown in blue contour) are (.9901, 1.88×10−6), (.9879, 1.37×10−6), (.9446, 7.37×10−6)
respectively. The proposed model has the highest mean and smaller variance, while the piece-
wise constant has the lowest mean and smallest variance. It is obvious that the proposed
model and the global Gaussian model are significantly better than piecewise constant MS,
and the proposed model is slightly better than the global Gaussian model. The reason for
global Gaussian model (1.3-1.4) being comparable with the proposed model (2.10) in this
experiment is that the noisy images are generated by adding Gaussian noise, while model
(1.3-1.4) is under Gaussian intensity assumption. For a better comparison, we repeat the
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above work for 100 noisy images obtained by adding random speckle noise with parameter
.04 for 100 times. Then the significant difference is observed and shown in FIG. 4.4: (2.10)
maintains high mean (.9800) and low variance(8.5366 × 10−6), but model (1.3) gets lower
mean (.8422). Student t-test shows that model (2.10) is significantly better than (1.3-1.4) in
processing these images with non-gaussian noise.

(a) (b)

(c) (d)

(e) (f)

FIG. 4.6. Comparison of global nonparametric model (4.1) with local nonparametric model (2.10).
First row: intermediate segmentation and smoothing result from (4.1); Second row: final result from
(4.1); Third row: final result from model(2.10).

The second comparison is aimed to show the advantage of taking adaptive radius in si-
multaneous segmentation and smoothing. For this purpose we compare model (2.10) that
uses adaptive radius with model in [21] that utilizes fixed radius. FIG.4.5 shows the segmen-
tation and smoothing results of FIG.2.2(b) obtained from them. The results from model in
[21] with fixed radius 1, and 5 are shown in the first and second rows, respectively. The third
row depicts the results from model (2.10) with radius as defined in (2.7), M = 5 and N = 1.
It is evident that the third row gives better results in both segmentation and smoothing. When
the ball sizes are fixed for all X as in [21], it is very harder to choose one uniform ball size
that works for all the locations. If it is too small, noise may not be removed sufficiently, while
should a too big ball size is selected, fine structures may be lost.

The third comparison is to demonstrate the advantage of model (2.10) using local non-
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(a) (b) (c)

(d) (e) (f)

FIG. 4.7. Segmentation and smoothing result of a human echocardiographic image. (a) A noisy human
echocardiographic image; (b)-(c) Recovered image and segmentation result obtained by using model
(2.10) respectively, (time step size is .1, β = 70, a = 4, b = 5, converge in 10 iterations); (d) Segmen-
tation result (c) after applying mask of region of interest; (e)-(f) Segmentation result obtained by using
global Gaussian model with β = 0 and 1 respectively.

parametric density estimation (2.3) over the global nonparametric model (4.1) where the p.d.f.
of Ii is estimated using all the I0(Y ) for Y ∈ Ωi as samples.

In FIG.4.6, the first row corresponds to the segmentation and smoothing results of (4.1)
at the third iteration step. At this stage boundary of the object has been well caught, but
the background noise has not been completely removed yet. While at the 10th iteration step
(shown in the second row), when all the background noise has been removed for the first time,
some fine structures of the object have disappeared. However, model (2.10) gives both good
segmentation and smooth result at its convergent state as shown in the third row.

The last comparison is made on the segmentation of the left ventricle, whose volume is
a measure to evaluate heart function, in a short axis echocardiographic image. It has been
known that intensity distribution of Echocardiographic images is non-gaussian. In FIG. 4.7,
(a) shows the observed image, the mushroom shaped object in the middle is the heart with
papillary muscles excluded. (b) and (c) represent smooth and segmentation result from model
(2.10) respectively. This time, we use radius r(X) as defined in (2.6) with a = 4, b = 5. We
do not use any restriction to the initial and evolving contours, so we need a mask to exclude
background from result (b). (d) shows segmentation result after applying a mask of region
of interest on (c), the red contour represents the boundary of the left ventricle with papillary
muscles excluded. For comparison, we apply global Gaussian model to the same image with
many different choices of β, all the segmentation results are not good, (e) and (f) correspond
to those with β = 0 and 1. It is observed that model (2.10) successfully handles images
whose intensity is of non-gaussian distribution.
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(a) (b) (c)

FIG. 4.8. Segmentation and smoothing result of a noisy T1 human brain image. (a) A noisy T1 image;(b)
Segmentation result obtained by using model (2.10): black: background and CSF; gray:gray matter;
white:white matter; (c) Recovered smooth T1 image. Time step size is .1, β = 80, M = 3, N=2,
convergence is in 10 iterations.

(a) (b)

FIG. 4.9. Segmentation result of a human brain FLAIR MR image. (a) A noisy human brain FLAIR MR
image;(b) Segmentation obtained by applying model (2.10). Time step size is .1, β = 60, M = 0, N=0,
convergence is in 10 iterations.

Finally, we apply model (2.10) with radius as defined in (2.7), M = 3, N = 2 to segment
several real medical images. FIG.4.8 demonstrates segmentation and smoothing results of a
T1 weighted MRI human brain image as shown in FIG.4.8(a). This T1 image involves four
phases: background, cerebral spinal fluid(CSF), gray matter, and white matter. Noise with
unknown type is involved, intensity distribution is of unknown type also, model (2.10) is
applied to this image, segmentation and smoothing results are shown in FIG.4.8(b) and (c)
respectively. The segmentation result is quite comparable to known anatomy, and it is clearly
visible that the recovered image FIG.4.8(c) is significantly sharper than the original one in
FIG.4.8(a). In this experiment we use one level set in a hierarchical way [22]. First, we
segment the image into two regions: white matter together with gray matter, and CSF together
with background. Then we segment white matter from gray matter in the first subregion.

We have also applied model (2.10) to a slice of human brain MR fluid-attenuated inver-
sion recovery (FLAIR) image shown in FIG. 4.9(a). To assist an automated measuring of
white matter hyperintensity (leukoaralosis) volume we apply the proposed model to find its



A Nonparametric Model for Image Segmentation and Adaptive Smoothing 17

boundary. Since this image is clean enough, smoothing is not necessary. Hence, we choose
M and N to be 0 in our model. The segmentation result is given in (b), which is close to the
one drawn by an expert.

5. An Existence Theorem for the Proposed Model. We first recall the definition and
a few properties for the space of functions of bounded variation, that are needed in our proof
[23, 24, 25]. Let Ω be an open subset of RN . We say u ∈ L1(Ω) is a function of bounded
variation, denoted by u ∈ BV (Ω), if the total variation of u

|Du|(Ω) =: supf{
∫

Ω

udivfdx|f ∈ C1
c (Ω;RN ), |f | ≤ 1} < ∞.

|Du|(Ω) is also denoted by
∫
Ω
|Du|. The space of functions of bounded variation, BV (Ω),

is a Banach space endowed with the norm:

||u||BV (Ω) = ||u||L1(Ω) + |Du|(Ω).

Lower Semi-Continuity of variational measure
If u, {uj} ⊂ BV (Ω) and uj → u in L1(Ω), then

|Du|(Ω) ≤ lim infj→∞|Duj |(Ω).

Compactness theorem in BV
Assume Ω ⊂ RN is open and bounded with Lipschitz boundary. If {un}n≥1 is a bounded

sequence in BV (Ω), then there exists a subsequence {unj} of {un}, and a function u ∈
BV (Ω), such that unj → u strongly in L1(Ω) as j →∞.

Discussions on existence
Denote the set {x ∈ Ω|φ(x) > 0} by A, and rewrite (2.10) by using the characteristic

function χA of A as follows:

E(χA, I1, I2) = β

∫

Ω

|DχA| −
∫

Ω

χA(x) log

(∫
B(x,r(x))

χA(y)Q1(I1(x)− I0(y))dy∫
B(x,r(x))

χA(y)dy

)
dx

−
∫

Ω

(1− χA(x)) log

(∫
B(x,r(x))

(1− χA(y))Q1(I2(x)− I0(y))dy∫
B(x,r(x))

(1− χA(y))dy

)
dx (5.1)

where the first term is the total variation of χA, which computes the length of the boundary
of A. Model (2.10) aims to find a nonempty set A having finite perimeter in Ω, i.e. χA ∈
BV (Ω), and functions I1(x), I2(x) ∈ L∞(Ω) that minimizes the energy functional (5.1).

Observe that if I1(x) is a minimizer of (5.1), Q1(I1(x) − I0(y)) = 3
4 (1 − (I1(x) −

I0(y))2) for a.e. x ∈ A ∩ Ω and a.e. y ∈ A ∩ B(x, r(x)) ( otherwise the energy functional
(5.1) at this minimizer would be infinity). Then, from Euler-Lagrange equations, the optimal
I1 and I2 must be related to the optimal A (or χA) by

I1(x)
∫

B(x,r(x))

χA(y)dy −
∫

B(x,r(x))

χA(y)I0(y)dy = 0, x ∈ A (5.2)

I2(x)
∫

B(x,r(x))

(1− χA(y))dy −
∫

B(x,r(x))

(1− χA(y))I0(y)dy = 0, x ∈ Ω \A (5.3)

Since we are only interested in finding a nonempty set A with χA ∈ BV (Ω), we may assume∫
B(x,r(x))

χA(y)dy > 0 for all x ∈ A. Then, equations (5.2) yields

I1(x) =

∫
B(x,r(x))

χA(y)I0(y)dy∫
B(x,r(x))

χA(y)dy
, x ∈ A (5.4)
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Similarly, we have

I2(x) =

∫
B(x,r(x))

(1− χA(y))I0(y)dy∫
B(x,r(x))

(1− χA(y))dy
, x ∈ Ω \A (5.5)

By substituting (5.4) and (5.5) to (5.1) and denoting the resulting energy functional by
E1, we have

E1(χA) := E(χA, I1(χA), I2(χA)),

where I1(χA) and I2(χA)) are given by the right hand side of (5.4)and (5.5), respectively.
Now we reduce the problem (5.1) to

min
χA∈BV (Ω)

E1(χA). (5.6)

Next we will prove the following existence theorem for this problem.
Theorem
Let Ω ⊂ RN be open and bounded with Lipschitz boundary. Assume I0 ∈ L∞ and

||I0||2L∞ ≤ 1− δ for a small constant δ > 0. Then, there exists a set D with finite perimeter
in Ω and

χD = min
χA∈BV (Ω)

E(χA).

Proof: Observe that 0 ≤ Q1(·) ≤ 1, so 0 ≤
∫

B(x,r(x)) χA(y)Q1(I1(x)−I0(y))dy∫
B(x,r(x)) χA(y)dy

≤ 1, from

which we have log(
∫

B(x,r(x)) χA(y)Q1(I1(x)−I0(y))dy∫
B(x,r(x)) χA(y)dy

) ≤ 0, hence the second term in (5.6) is

nonnegative. Similarly, the third term is also nonnegative. Therefore, the energy functional
E(χA) is bounded below by 0 for all A ⊂ Ω with χA ∈ BV (Ω). So there exists a minimizing
sequence {χAn} such that

limE(χAn) = inf
χA∈BV (Ω)

E(χA). (5.7)

Since the second and third terms in E(χAn) are nonnegative, from (5.7) we have that
∫
Ω
|DχAn |

are uniformly bounded. Moreover, it is easy to see that {χAn} is a bounded sequence in
L1(Ω). Hence, {χAn} is a bounded sequence in BV (Ω). By compactness theorem in BV ,
there exists a subsequence of {χAn}, still denoted by {χAn}, and a function u ∈ BV (Ω),
such that as n →∞

χAn → u strongly in L1(Ω), and a.e. on Ω.

Since χAn takes values of either 0 or 1, u must be a characteristic function χD of some D
with finite perimeter in Ω. So we have

χAn → χD strongly in L1(Ω), and a.e. on Ω. (5.8)

Moreover, by lower semi-continuity of BV-norm in L1 topology, we have
∫

Ω

|DχD| ≤ lim infj→∞

∫

Ω

|DχAn |. (5.9)
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From (5.8) it is not difficult to see that as n →∞,
∫

B(x,r(x))

χAn
(y)dy →

∫

B(x,r(x))

χD(y)dy, (5.10)

and at each fixed x ∈ Ω,

Q1(I1(χAn
)(x)− I0(y)) → Q1(I1(χD)(x)− I0(y)), for a.e. y ∈ Ω,

as well as

χAn
(y)Q1(I1(χAn

)(x)− I0(y)) → χD(y)Q1(I1(χD)(x)− I0(y)), for a.e. y ∈ Ω.

Since χAn(y)Q1(I1(χAn)(x) − I0(y)) is bounded by one, by the dominated convergence
theorem, for each x ∈ Ω, as n →∞
∫

B(x,r(x))

χAn
(y)Q1(I1(χAn

)(x)− I0(y))dy →
∫

B(x,r(x))

χD(y)Q1(I1(χD)(x)− I0(y))dy.

(5.11)

Furthermore, from (5.8), (5.10) and (5.11) we get

χAn(x) log

(∫
B(x,r(x))

χAn(y)Q1(I1(χAn)(x)− I0(y))dy∫
B(x,r(x))

χAn(y)dy

)
(5.12)

→ χD(x) log

(∫
B(x,r(x))

χD(y)Q1(I1(χD)(x)− I0(y))dy∫
B(x,r(x))

χD(y)dy

)
, pointwisely on Ω.

(5.13)

On the other hand, note that from (5.4) we have I1(χAn)(x) is the mean of I0 on B(x, r(x))∩
An. Hence, for each x ∈ Ω

sup
y∈B(x,r(x))∩An

|I1(χAn)(x)− I0(y)|2 ≤ sup
y∈B(x,r(x))∩An

|I0(y)|2 ≤ 1− δ.

This implies that for all x ∈ Ω and y ∈ B(x, r(x)) ∩An

3δ/4 ≤ χAn(y)Q1(I1(χAn)(x)− I0(y)) ≤ 1,

and hence, for all x ∈ Ω

|χAn(x) log

(∫
B(x,r(x))

χAn(y)Q1(I1(χAn)(x)− I0(y))dy∫
B(x,r(x))

χAn(y)dy

)
| ≤ log(3δ/4). (5.14)

Applying dominant convergence theorem to

−
∫

Ω

χAn(x) log

(∫
B(x,r(x))

χAn(y)Q1(I1(χAn)(x)− I0(y))dy∫
B(x,r(x))

χAn(y)dy

)
dx,

by using (5.13)and (5.14), we get that as n →∞ this term converges to

−
∫

Ω

χD(x) log

(∫
B(x,r(x))

χD(y)Q1(I1(x)− I0(y))dy∫
B(x,r(x))

χD(y)dy

)
dx.
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By using the same argument we can also have n →∞

−
∫

Ω

(1− χAn
(x)) log

(∫
B(x,r(x))

(1− χAn(y))Q1(I1(χAn)(x)− I0(y))dy∫
B(x,r(x))

(1− χAn(y))dy

)
dx

→ −
∫

Ω

(1− χD(x)) log

(∫
B(x,r(x))

(1− χD(y))Q1(I1(x)− I0(y))dy∫
B(x,r(x))

(1− χD(y))dy

)
dx.

Combining these with (5.8), (5.9) it yields that

E(χD) ≤ lim infn→∞E(χAn
).

Hence χD is a minimizer.

6. Conclusion. A new nonparametric region based active contour model that utilizes
both intensity and edge information was introduced to simultaneously segment and smooth
images. To handle images with intensity inhomogeneity and higher level of noise, we ap-
ply a local nonparametric method to estimate intensity distribution of the smoothed image,
using local intensity information of the observed image. Segmentation and smoothing re-
sults were obtained through minimizing the negative log likelihood the smoothed image and
the length of objects boundaries. The minimization problem was implemented using semi-
implicit iterative scheme. During the iteration, segmentation results were updated based on
better smoothing images, smoothing results were then updated by using the better edge infor-
mation derived from the better segmentation results. The local neighborhood sizes in density
estimation were chosen adaptively based on image gradients, so that the model carries vari-
ate levels of smoothing at different locations, as a result, image features were well kept and
edges were enhanced. The experimental results and comparison with several existing mod-
els on synthetic and real medical images with different types and levels of noise indicate the
potential and advantage of the proposed model in simultaneously segmenting and smoothing
images with higher level of noise.

In the proposed model the band width of the quadratic kernel is set to be one. We use
variate local neighborhood sizes to control the use of samples to achieve adaptive smoothing.
However, in the work of Azzabou et al. [14] the adaptive image smoothing is obtained by
varying bandwidth in density estimation. As our future work, the relationship between variate
bandwidth and adaptive neighborhood size on controlling image smoothing will be studied.
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