
Iterative Total Variation Schemes for

Nonlinear Inverse Problems

Markus Bachmayr∗, Martin Burger†

Abstract

In this paper we discuss the construction, analysis, and implemen-
tation of iterative schemes for the solution of inverse problems based on
total variation regularization. Via different approximations of the non-
linearity we derive three different schemes resembling three well-known
methods for nonlinear inverse problems in Hilbert spaces, namely iter-
ated Tikhonov, Levenberg-Marquardt, and Landweber. These meth-
ods can be set up such that all subproblems to be solved are convex
optimization problems, analogous to those appearing in image denois-
ing or deblurring.

We provide a detailed convergence analysis and appropriate stop-
ping rules in presence of data noise. Moreover we discuss the imple-
mentation of the schemes and the application to distributed parameter
estimation in elliptic partial differential equations.
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1 Introduction

Variational methods based on penalization by total variation have become a
popular and almost standard approach for the computation of discontinuous
solutions of inverse problems (cf. [ROF92; AV94; V02; LP99]). Due to the
properties of the total variation functional, the reconstructions exhibit a
spatially sparse gradient, i.e. they consist of large constant regions and sharp
edges. These properties are very desirable for many inverse problems, where
the unknowns describe densities or material functions changing in different
regions or objects. The total variation reconstructions allow in particular to
separate objects clearly.

Besides their advantages total variation penalization methods also suffer
from several shortcomings. One of them is the difficulty to construct efficient
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computational schemes for the minimization due to nonsmoothness of the
total variation. Another one is a loss of contrast in reconstructions that can
be significant for ill-posed problems. Recently, a novel class of reconstruction
schemes with a multi-scale nature has been proposed for total variation
approaches in imaging (cf. [OBG+05; BGO+06; HBO06; HMO05]), which
can overcome these shortcomings. Instead of a single variational problem an
iterative scheme (or in the limit a continuous flow in pseudo-time) is used
with appropriate stopping criterion dependent on data noise.

In this paper we shall investigate possible generalizations of this iter-
ative approach to nonlinear inverse problems. For such nonlinear prob-
lems, iterative schemes are very natural, since some iterative approximation
is usually needed anyway in order to deal with the nonlinearity. In the
schemes we propose the iterative approach to total variation reconstruction
is directly combined with the approximation of the nonlinearity. The type
of approximation will then distinguish three different methods, similar to
three well-known schemes for nonlinear inverse problems (iterated Tikho-
nov, Levenberg-Marquardt, Landweber).

We mention that all the schemes discussed here are formulated in a more
general way than just for total variation functionals. Indeed the schemes can
be constructed for all common convex regularization functionals, including
quadratic functionals, where the standard iterations are recovered, strictly
convex functionals as considered in [SLS06], or other nonsmooth function-
als such as the ones used in wavelet shrinkage or other sparsity approaches
(cf. [DDD04; CDL+98]). The convergence analysis is formulated here for
the case of total variation schemes, the basic strategy of the proofs, how-
ever, is not restricted to this case and can also be adapted to other convex
functionals with suitable properties.

2 Iteration Schemes

Our basic setup in this paper is to consider ill-posed nonlinear operator
equations of the form

F (x) = y (1)

where F : D(F ) ⊂ X → H, y ∈ H for a Banach space X and a Hilbert
space H. In typical applications, In practice, only noisy data yδ ∈ H that
are corrupted by numerical and measurement errors are available, where
δ > 0 denotes the noise level. We will assume the existence of a ȳ ∈ H with
‖yδ − ȳ‖H ≤ δ and F (x̄) = ȳ for a x̄ ∈ D(F ).

The iterative algorithms that will be introduced below are motivated
by variational regularization methods, where the regularized solution is ob-
tained as a global minimizer of

1
2
‖F (x)− yδ‖2

H + αJ(x) (2)
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with a suitable convex regularization functional J : X → R∪{+∞}. We are
especially interested in the case of total variation regularization, where J is
the seminorm

J(x) = |x|BV (Ω) = sup
g∈C∞0 (Ω,Rn)
‖g‖∞≤1

∫
Ω

x div g (3)

on the space X = BV (Ω) of functions of bounded variation on the domain
Ω. Note that for functions in in the Sobolev space W 1,1(Ω) the identity

|x|BV (Ω) =
∫

Ω
|∇x|

holds.
In a similar spirit are sparse reconstruction techniques with respect to

some orthonormal basis {bk}∞k=1 of X, which use an `1-norm for penalization,
i.e.

J(x) =
∞∑

k=1

|〈x, bk〉|. (4)

A result of this choice is that almost all coefficients 〈x, bk〉 will vanish. A
typical example are Wavelet coefficients, where the `1-norm is equivalent to
the norm in an appropriate Besov space.

Note that the regularization functionals for total variation regularization
and sparse reconstructions are nondifferentiable, and due to the nonlinearity
of F the least-squares fitting term in (2) need not be convex, in particular for
small α. Thus the numerical solution of the corresponding nonconvex and
nondifferentiable minimization problem can be quite expensive for nonlinear
inverse problems. This issue is addressed by the methods studied in the
present work.

A key ingredient for those iterative methods is the Bregman distance,
which was introduced in [Bre67] and can be interpreted as a generalization
of the mean-square distance to more general functionals J . A generalized
Bregman distance for J of x, x̃ ∈ X can be defined as

DJ
ξ (x, x̃) = J(x)− J(x̃)− 〈ξ, x− x̃〉

for a subgradient ξ ∈ ∂J(x̃). Note that for nonsmooth and not strictly
functionals the Bregman distance is not a strict distance (i.e. it can be zero
for x 6= x̃), and it can be multivalued (i.e. for each choice of a subgradient a
different distance will be obtained). In our work this issue will however be
of less importance, since we only use the Bregman distance for penalizations
and all the methods will choose a particular subgradient.
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Our starting point ist the following iterative regularization method for
linear inverse problems recently introduced in [OBG+05]

xk+1 = arg min
x∈BV (Ω)

{1
2
‖Kx− yδ‖2

H + αDJ
ξk

(x, xk)
}

, (5a)

ξk+1 = ξk − α−1
k K∗(Kxk+1 − yδ) , (5b)

where in addition to our above assumptions F (x) = Kx with a linear opera-
tor K ∈ L(X, H). Here αk > 0 can be chosen a priori and large, it is not the
regularization parameter. The role of the actual regularization parameter
is played by the stopping index k∗, determined by a modified discrepancy
principle, at which the iteration is stopped. When the subdifferential of J is
multivalued, which is the case for total variation regularization or sparse re-
constructions, equation (5b) selects a specific subgradient ξk+1 ∈ ∂J(xk+1),
which also lies in the range of the (smoothing) adjoint operator K∗.

In [OBG+05], special attention was paid to the case J = | · |BV (Ω),
K = I, which leads to an iterative method for total variation denoising. For
this particular case, several different motivations have been suggested, for
instance as matching both grey level values and normal fields [OBG+05] and
as a combined denoising and enhancing method [RS06]. The iteration turns
out to cure a major shortcoming of standard total variation denoising by
considerably reducing its systematic error, i.e. the reduction of contrast in
the image. The method was also applied to image deblurring [HMO05] and
extended to non-quadratic fitting terms [HBO06], wavelet-based denoising
[XO06] and MR imaging [HCO+06]. For arbitrary K and J , the iteration (5)
can also be regarded as a generalization of nonstationary iterated Tikhonov
regularization. The latter is obtained by choosing J as the square of a
Hilbert space norm, in which case (5a) and (5b) coincide (up to the Riesz
isomorphism). This interpretation will be our starting point for the present
work. We give three possible extensions of the idea to nonlinear operator
equations, which can also be regarded as generalizations of certain well-
known iterative regularization methods in a Hilbert space context.

2.1 Iterated Variational Method

The first method we consider for the nonlinear case can be regarded as a
generalization of nonlinear iterated Tikhonov regularization. The iterates
are defined analogously to (5) by

xk+1 ∈ arg min
x∈D(F )

{1
2
‖F (x)− yδ‖2 + αkD

J
ξk

(x, xk)
}

, (6a)

ξk+1 = ξk − α−1
k F ′(xk+1)∗

(
F (xk+1)− yδ

)
. (6b)

Note that (6b) is an equation for a subgradient ξk+1 ∈ ∂J(xk+1), it can then
be interpreted as the first-order optimality condition corresponding to (6a).
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Under standard assumptions (see also Section 3), well-definedness of the
iterates, i.e. existence, uniqueness, stability of the minimization problems to
be solved in each step, can be verified using the same arguments as for (2),
cf. [RS06].

At a first glance it is not obvious how this scheme provides any com-
putational advantage compared to standard total variation regularization -
contrary it seems that a single nonlinear variational problem is replaced by
the solution of a sequence of problems of the same type. However, with the
choice of an appropriate regularization functional and a sufficiently large αk,
the variational problem to be solved in each iteration can be made (locally)
convex around xk, so that the global minimum can indeed be computed by
local descent methods. This property cannot be guaranteed by using the
total variation functional only for penalization, but by adding a multiple
of the squared L2-norm, which however should not change the smoothing
properties of the scheme. In our numerical experiments below we shall verify
that this scheme also leads to improved results compared to the standard
variational method.

2.2 Levenberg-Marquardt-Type Method

In each step of the iterated variational scheme above, some approximation
of F will be necessary in order to solve (6a). Hence, one could also consider
variations of the scheme by approximating F directly in each iteration step.
A first possibility is to approximate the operator by its linearization at the
last iterate in each step, which leads to the familiar Levenberg-Marquardt
method in a Hilbert space context. In our case we obtain the scheme

xk+1 = arg min
x∈D(F )

{1
2
‖F (xk) + F ′(xk)(x− xk)− yδ‖2 + αkD

J
ξk

(x, xk)
}

, (7a)

ξk+1 = ξk − α−1
k F ′(xk)∗

(
F (xk) + F ′(xk)(xk+1 − xk)− yδ

)
. (7b)

For this Levenberg-Marquardt-type method, a convex problem has to be
solved in each step, where the only nonlinearity comes from the regulariza-
tion functional. The convex problem in each step of the iteration is the same
as in (5a), (5b) and therefore well-known and efficient numerical methods for
these subproblems are available, e.g. methods based on duality in the case
of total variation. Moreover, the well-posedness of the variational problem
in (7a) follows with the same arguments as for (5a), cf. [OBG+05].
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2.3 Landweber-Type Method

A further simplification of each step can be achieved by linearization of the
least squares functional, which leads to

xk+1 = arg min
x∈D(F )

{〈
F ′(xk)∗

(
F (xk)− yδ

)
, x− xk

〉
+ αkD

J
ξk

(x, xk)
}

, (8a)

ξk+1 = ξk − α−1
k F ′(xk)∗

(
F (xk)− yδ

)
. (8b)

This method reduces to Landweber iteration in the Hilbert space case. If ∂J
is single-valued, it is essentially the same as the algorithm for linear inverse
problems described and analysed in [SLS06] under the assumption that J
is a norm on a smooth and uniformly convex Banach space. Note that
the well-posedness of the variational problem in (8a) follows by the same
considerations as for image denoising with iterated total variation methods,
cf. [OBG+05].

Concerning implementation, the Landweber-type method is the most
straight-forward of the three schemes discussed, it can be realized in two
subsequent steps. First of all, the update of the subgradient (8b) can be
performed, which requires the same effort as the Landweber iteration in
Hilbert spaces – only F and the adjoint of F ′ have to be evaluated. Subse-
quently (8a) can be solved, which is a problem similar to image denoising,
independent of the operator F .

2.4 Stopping Rule

For noisy data, the methods have to be supplied with a suitable stopping
rule. It turns out that, similarly to to the corresponding methods in Hilbert
spaces or to the case of linear operators (5), this can be achieved using
modified versions of Morozov’s discrepancy principle, i.e. we assume the
iterative methods to be stopped at the index k∗(δ, yδ) defined by

k∗ = min{k : ‖F (xk)− yδ‖H ≤ τδ} (9)

with a constant τ > 1. We will formulate further conditions on τ for each
method as part of our convergence results below. The regularized solution
is given by the iterate xk∗ .

We finally mention that for each of these methods, given that dom J ⊆
D(F ), the sequence ξk+1 generated by (6b), (7b) and (8b), respectively,
satisfies ξk+1 ∈ ∂J(xk+1).

3 Convergence Analysis

To obtain a first convergence analysis, we restrict ourselves to the particular
case X = L2(Ω), Ω ⊂ R2 a Lipschitz domain,

J(x) =
κ

2
‖x‖2

L2(Ω) + |x|BV (Ω) + χD(F )(x) (10)
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with some κ > 0, where we set

J2(x) =
κ

2
‖x‖2

L2(Ω) , J1(x) = |x|BV (Ω) + χD(F )(x) . (11)

We assume D(F ) to be convex, which ensures that J1 and J are convex. By
[ET99], any ξ ∈ ∂J(x) can be decomposed as ξ = κx + p, p ∈ ∂J1(x).

We will use the following identity for Bregman distances, which was also
employed for convergence analysis of iterative methods e.g. in [CT93] and
[OBG+05]: Let x, x̃, x̂ ∈ X, ξ̃ ∈ ∂J(x̃), ξ̂ ∈ ∂J(x̂), then

DJ
ξ̃
(x, x̃)−DJ

ξ̂
(x, x̂) + DJ

ξ̂
(x̃, x̂) = 〈ξ̃ − ξ̂, x̃− x〉 . (12)

We denote the Bregman distance corresponding to J by Dξ(x, x̃) in what
follows. For simplicity, we set κ = 1. For any different choice of a κ > 0,
the arguments remain valid with appropriate changes to constants.

For any y ∈ H, let S(y) = {x ∈ D(F ) : F (x) = y}. We make assumptions
on the nonlinear operator F that are rather common in the convergence
analysis for iterative regularization methods.

Assumptions 1. Let F : D(F ) ⊂ L2(Ω) → H be continuous, weakly se-
quentially closed, i.e. for any sequence {xn} ∈ D(F ), xn ⇀ x and F (xn) ⇀ y
imply x ∈ D(F ) and F (x) = y, and Fréchet differentiable with F ′(·) locally
bounded on the closed and convex set D(F ). Furthermore, let F satisfy a
nonlinearity condition of the form

‖F (x̃)− F (x)− F ′(x)(x̃− x)‖ ≤ η‖x− x̃‖L2(Ω) ‖F (x)− F (x̃)‖ ,

x, x̃ ∈ Bρ(x̄) ∩ D(F ) , (13)

for some η, ρ > 0, where x̄ ∈ S(ȳ) ∩ dom J and Bρ(x̄) denotes the open ball
around x̄ of radius ρ in L2(Ω).

It has to be mentioned that the condition (13), restricting the nonlin-
earity of F , is a rather severe one, see [EHN96] for further details. Al-
though there are a number of examples for which it can be verified, such
as distributed parameter identification problems, it remains open for many
problems of practical interest, e.g. parameter identification from boundary
measurements.

As usual for nonlinear problems we can only expect local convergence of
the above algorithms, hence the starting values x0 (also in relation with ξ0)
will need to be close enough to x̄ in an appropriate sense. In our convergence
analysis, it will turn out that the Bregman distance Dξ0(x̄, x0) has to be
small. In the following Lemma we make sure that indeed starting values
with arbitrarily small Bregman distance exist.
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Lemma 1. Let x̄ ∈ BV (Ω) ∩ D(F ). For α > 0, let xα ∈ BV (Ω) ∩ D(F ) be
defined by

xα = arg min
x∈D(F )

{
α|x|BV (Ω) + ‖x− x̄‖2

L2(Ω)

}
(14)

Then xα → x̄ in L2(Ω) as α → 0 and for any γ > 0, there is an α > 0 and
ξα ∈ ∂J(xα) such that DJ

ξα(x̄, xα) < γ.

Proof. By definition of xα, for any α > 0 we have

α|xα|BV (Ω) + ‖xα − x̄‖2
L2(Ω) ≤ α|x̄|BV (Ω) . (15)

This implies xα → x̄ in L2(Ω) and lim supα→0 |xα|BV (Ω) ≤ |x̄|BV (Ω). Let
αk → 0 and xk := xαk , then by lower semicontinuity of the BV seminorm
we have

|x̄|BV (Ω) ≤ lim inf
k

|xk|BV (Ω) ≤ lim sup
k

|xk|BV (Ω) ≤ |x̄|BV (Ω) ,

i.e. |xk|BV (Ω) → |x̄|BV (Ω) as k → ∞. Together with (15), this implies
α−1

k ‖xk − x̄‖2
L2(Ω) → 0. For any k we have a pk ∈ ∂J1(xk) such that αkpk +

2(xk − x̄) = 0. Hence we obtain a subgradient

ξk = pk + xk = −2α−1
k (xk − x̄) + xk ∈ ∂J(xk).

Combining this with the decay of xk − x̄ in L2(Ω), we obtain

DJ
ξk

(x̄, xk) = |x̄|BV (Ω) − |xk|BV (Ω) − 2α−1
k ‖xk − x̄‖2

L2(Ω) + 〈xk, x̄− xk〉 → 0 ,

which proves the assertion.

Note that the sequence of regularization parameters {αk}, as well as
the sequence of iterates {xk}, can depend on δ. In order not to make our
notation too complicated, we will not make this explicit in what follows.

We shall use the abbreviations yk := F (xk), Kk := F ′(xk), rδ
k := F (xk)−

yδ, r̄k := F (xk) − ȳ where appropriate to simplify notation. The norm on
the image space H will be denoted by ‖ · ‖.

Under the assumptions stated above, we show weak∗ convergence in
BV (Ω) as δ → 0 of the methods (6), (7) and (8). In all three cases, the
basic strategy is similar to the one in [OBG+05]. We restrict ourselves to
results on semiconvergence for δ > 0 under the above stopping rule, for
“exact data” with δ = 0 one can show convergence of the full sequence of
iterates by basically the same techniques.

These results should rather be regarded as a first step, because we have
to make repeated use of the Hilbert space structure of L2(Ω) in dealing with
the nonlinearity of F , the methods themselves being applicable in a more
general Banach space setting. On the other hand, we obtain a much stronger
type of convergence than convergence in L2(Ω).
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3.1 Convergence of Iterated Tikhonov Methods

We begin with (6); in this case our assumptions are rather restrictive in com-
parison to the ones necessary for the stationary case (2) (if x0 = 0, the first
step of the method actually concides with (2)). To the best of our knowl-
edge, no analogous result for nonlinear iterated Tikhonov regularization in
a Hilbert space setting is available in the literature, where this method is
usually considered for a fixed number of steps and variable regularization
parameters, which allows for weaker assumptions in the convergence analy-
sis.

We start with a fundamental monotonicity result for the error:

Lemma 2. If for given iterates xk, ξk a minimizer xk+1 for (6a) satisfies

‖yδ−F (xk+1)−F ′(xk+1)(x̄−xk+1)‖ ≤ β ‖yδ−F (xk+1)‖ , 0 < β < 1 , (16)

we have ‖yδ − F (xk+1)‖ ≤ ‖yδ − F (xk)‖ as well as

Dξk+1
(x̄, xk+1)−Dξk

(x̄, xk) ≤ −1− β

αk
‖yδ − F (xk+1)‖2 . (17)

Proof. Monotonicity of residuals follows directly from the definition of the
method. By Proposition 12,

Dξk+1
(x̄, xk+1)−Dξk

(x̄, xk) + Dξk
(xk+1, xk) = 〈ξk+1 − ξk, xk+1 − x̄〉 .

Using (6b) we obtain

〈ξk+1 − ξk, xk+1 − x̄〉 = α−1
k 〈rδ

k+1, Kk+1(x̄− xk+1)〉
= −α−1

k ‖rδ
k+1‖2 + α−1

k 〈rδ
k+1, rδ

k+1 + Kk+1(x̄− xk+1)〉
≤ −α−1

k ‖rδ
k+1‖

(
‖rδ

k+1‖ − ‖rδ
k+1 + Kk+1(x̄− xk+1)‖

)
.

By assumption (16), 〈ξk+1 − ξk, xk+1 − x̄〉 ≤ −α−1
k (1− β)‖rδ

k+1‖2.

The main result of this section is the (semi-)convergence of iterated Tik-
honov methods:

Theorem 3. Let γ < min{1/η, ρ/2}, 0 < α(δ) ≤ αk ≤ α, where δ2/α(δ) <
3γ2/4, and the starting values x0 ∈ D(F ) ∩ BV (Ω), ξ0 ∈ L2(Ω) satisfy
Dξ0(x̄, x0) < γ2/8. Let δm > 0, {δm} → 0 with corresponding stopping
indices {k∗m}, where

τ > (1 + ηγ)/(1− ηγ) , (18)

then for every δm, the stopping index is finite and every subsequence of
{xk∗m} has a subsequence converging to an x ∈ S(ȳ) in the weak∗ topology of
BV (Ω). If furthermore S(ȳ) ∩Bρ(x̄) = {x̄}, xk∗m

∗
⇀ x̄ in BV (Ω).
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Proof. Take δ > 0 arbitrary but fixed and let k∗ be the corresponding stop-
ping index, which at this point can possibly be infinite.

Assume k < k∗ − 1 and Dξk
(x̄, xk) < γ2/8. By definition of the iterates,

1
2
τ2δ2 + αkDξk

(xk+1, xk) <
1
2
‖rδ

k+1‖2 + αkDξk
(xk+1, xk)

≤ 1
2
δ2 + αkDξk

(x̄, xk) .

Hence Dξk
(xk+1, xk) ≤ Dξk

(x̄, xk), and in particular ‖xk+1 − xk‖L2(Ω) ≤√
2Dξk

(x̄, xk), which combined with the same estimate for ‖x̄− xk‖ gives

‖x̄− xk+1‖L2(Ω) < 2
√

2Dξk
(x̄, xk) < γ .

Thus by (13) we can apply Lemma 2 to obtain Dξk+1
(x̄, xk+1) ≤ Dξk

(x̄, xk),
which by induction implies ‖x̄− xk+1‖L2(Ω) < γ for any k < k∗ − 1.

Using (13) and ‖rδ
k+1‖ ≥ τδ, we can verify the required nonlinearity

condition (16) for noisy data for all k < k∗ − 1:

‖rδ
k+1 + Kk+1(x̄− xk+1)‖ ≤ δ + ‖r̄k+1 + Kk+1(x̄− xk+1)‖

≤ δ + ηγ‖r̄k+1‖ ≤ (1 + ηγ)δ + ηγ‖rδ
k+1‖ ,

≤
(1

τ
(1 + ηγ) + ηγ

)
‖rδ

k+1‖ ,

where β := τ−1(1 + ηγ) + ηγ < 1 by our choice of τ .
Hence for τ as in (18), the assumption (16) of Lemma 2 is satisfied for

k < k∗ − 1. By Lemma 2 we obtain

Dξk∗−1
(x̄, xk∗−1) +

k∗−2∑
k=0

1− β

αk
‖rδ

k+1‖2 ≤ Dξ0(x̄, x0) .

Now for given δ, k∗ has to be finite because

(k∗ − 1)τ2δ2

maxk≤k∗−2 αk
≤

k∗−2∑
k=0

1
αk
‖rδ

k+1‖2 ≤
Dξ0(x̄, x0)

1− β
. (19)

Again by definition of the iterates,

αk∗−1Dξk∗−1
(xk∗ , xk∗−1) ≤

1
2
δ2 + αk∗−1Dξk∗−1

(x̄, xk∗−1)

and hence

‖xk∗ − xk∗−1‖L2(Ω) ≤
( δ2

αk∗−1
+

γ2

4

) 1
2
.

10



Since δ2/α(δ) < 3γ2/4, this implies ‖xk∗− x̄‖ ≤ 2γ < ρ. Using convexity
of J and expanding the definition of ξk∗ ,

J(xk∗) ≤ J(x̄) +
k∗∑

k=1

1
αk−1

∣∣〈rδ
k,Kk(x̄− xk∗)〉

∣∣ + ρ‖ξ0‖L2(Ω) .

For k < k∗, by (16), (13) and monotonicity of ‖rδ
k‖ we have∣∣〈rδ

k,Kk(x̄− xk∗)〉
∣∣ ≤ ‖rδ

k‖
(
‖Kk(x̄− xk)‖+ ‖Kk(xk∗ − xk)‖

)
≤ ‖rδ

k‖
(
(1 + β)‖rδ

k‖+ (1 + 3ηγ)‖yk − yk∗‖
)

≤ (3 + β + 3ηρ)‖rδ
k‖2 .

For the remaining summand k = k∗, we have∣∣〈rδ
k∗ ,Kk∗(x̄− xk∗)〉

∣∣ ≤ τδ(1 + ηρ)‖r̄k∗‖ ≤ τδ2(1 + τ)(1 + ηρ) .

Combining this, we get

J(xk∗) ≤ J(x̄) +
3 + β + 3ηρ

1− β
Dξ0(x̄, x0) + τδ2(1 + τ)(1 + ηρ) + ρ‖ξ0‖L2(Ω)

and thus J(xk∗) is uniformly bounded for small δ.
We choose a sequence {δm} with corresponding stopping indices {k∗m} as

in our assumption. We have ‖F (xk∗m)−yδm‖ → 0, and hence ‖F (xk∗m)−ȳ‖ →
0 as δm → 0 by definition of the stopping index.

As J(xk∗m) is uniformly bounded and F is weakly sequentially closed, we
obtain weak∗ convergence in BV (Ω) and weak convergence in L2(Ω) of a
subsequence of any subsequence of {xk∗m} to an x ∈ S(ȳ).

If the solution is unique in Bρ(x̄), a subsequence-of-subsequence argu-
ment gives convergence of xk∗m to x̄ in the same sense.

3.2 Convergence of Levenberg-Marquardt Methods

The following analysis for (7) uses ideas from [Han97], where the Levenberg-
Marquardt method in a Hilbert space setting was analysed as a regulariza-
tion method. Again we start with a monotonicity result:

Lemma 4. Let the parameter αk in (7) be chosen such that for some 0 <
µ < 1,

µ‖yδ − F (xk)‖ ≤ ‖yδ − F (xk)− F ′(xk)(xk+1 − xk)‖ ≤ ‖yδ − F (xk)‖ . (20)

Additionally we assume that for a ν > 1,

‖yδ − F (xk)− F ′(xk)(x̄− xk)‖ ≤
µ

ν
‖yδ − F (xk)‖ . (21)

Then the iterates for the scheme (7) satisfy

Dξk+1
(x̄, xk+1)−Dξk

(x̄, xk) ≤ −µ2(ν − 1)
αkν

‖yδ − F (xk)‖2 . (22)

11



Proof. By Proposition 12,

Dξk+1
(x̄, xk+1)−Dξk

(x̄, xk) + Dξk
(xk+1, xk) = 〈ξk+1 − ξk, xk+1 − x̄〉 .

Using (7b) we obtain

〈ξk+1 − ξk, xk+1 − x̄〉 = −α−1
k 〈rδ

k + Kk(xk+1 − xk), Kk(xk+1 − x̄)〉
= −α−1

k

〈
rδ
k + Kk(xk+1 − xk),

rδ
k + Kk(xk+1 − xk)− rδ

k −Kk(x̄− xk)
〉

≤ −α−1
k ‖rδ

k + Kk(xk+1 − xk)‖(
‖rδ

k + Kk(xk+1 − xk)‖ − ‖rδ
k + Kk(x̄− xk)‖

)
.

Combined with (20) and (21), this yields

〈ξk+1 − ξk, xk+1 − x̄〉 ≤ −µ2(ν − 1)
αkν

‖rδ
k‖2 .

In order to obtain a consistent convergence analysis, we make sure that
for appropriate parameter choice, condition (20) can indeed be fulfilled:

Lemma 5. Let xk ∈ D(F ) ∩ BV (Ω), ξk ∈ L2(Ω) where ξk = xk + pk with
pk ∈ ∂J1(x). For given 0 < µ < 1, the condition (20) is satisfied if αk > 0
is chosen such that

αk ≥
‖F ′(xk)‖

1− µ

(
qδ
k +

√
qδ
k

[
(1− µ)‖F ′(xk)‖+ qδ

k

])
(23)

where qδ
k = ‖F ′(xk)∗(F (xk)− yδ)‖L2(Ω)/‖F (xk)− yδ‖.

Proof. By convexity of J1, 〈xk+1 − xk, pk+1 − pk〉 ≥ 0. Substituting the
optimality condition for (7a), which reads

αk(pk+1 − pk) + αk(xk+1 − xk) + K∗
k

(
rδ
k + Kk(xk+1 − xk)

)
= 0 , (24)

we obtain〈
(K∗

kKk + αk I)−1(−K∗
krδ

k − αk(pk+1 − pk)), pk+1 − pk

〉
≥ 0 . (25)

Using continuity of (K∗
kKk + αk I)−1 we may conclude

‖αk(pk+1 − pk)‖L2(Ω) ≤
(αk + ‖Kk‖2

αk

)
‖K∗

krδ
k‖L2(Ω) . (26)

Again using the optimality condition for (7a) to solve for xk+1 − xk, this
yields the estimate

‖xk+1 − xk‖L2(Ω) ≤ α−1
k

(
1 +

αk + ‖Kk‖2

αk

)
‖K∗

krδ
k‖L2(Ω) . (27)

12



Finally, by the second triangle inequality,

‖rδ
k + Kk(xk+1 − xk)‖ ≥ ‖rδ

k‖ − ‖Kk‖ ‖xk+1 − xk‖L2(Ω)

≥ ‖rδ
k‖

(
1− qδ

k

‖Kk‖
αk

(
1 +

αk + ‖Kk‖2

αk

))
,

and with
αk ≥

‖Kk‖
1− µ

(
qδ
k +

√
qδ
k

[
(1− µ)‖Kk‖+ qδ

k

])
this yields the first inequality in (20). The second one follows directly by
comparing xk+1 to xk in the objective functional for (7a).

With the above ingredients we can also prove (semi-)convergence of the
Levenberg-Marquardt method:

Theorem 6. Let 0 < γ < min{µ/η, ρ}, x0 ∈ D(F ) ∩ BV (Ω), ξ0 ∈ L2(Ω)
such that Dξ0(x̄, x0) < γ2/2, αk satisfy (23) and αk ≤ α, and the stopping
index be chosen with a τ such that

τ > (1 + ηγ)/(µ− ηγ) . (28)

Then for given δ > 0, the iterates for (7) are well-defined for k ≤ k∗,
where k∗ is finite. If δm > 0, {δm} → 0 with corresponding stopping indices
k∗m, then every subsequence of {xk∗m} has a subsequence converging to an
x ∈ S(ȳ) in the weak∗ topology of BV (Ω). If S(ȳ) ∩Bρ(x̄) = {x̄}, xk∗m

∗
⇀ x̄

in BV (Ω).

Proof. If ‖x̄− xk‖ < γ and k < k∗, i.e. τδ < ‖rδ
k‖, we have

‖rδ
k + K∗

k(x̄− xk)‖ ≤ δ + ηγ‖r̄k‖ ≤ (1 + ηγ)δ + ηγ‖rδ
k‖ ,

≤
(1 + ηγ

τ
+ ηγ

)
‖rδ

k‖ .

As a consequence, (21) holds with ν = µτ/(1 + (1 + τ)ηγ) > 1.
Again by induction, Lemma 4 applies for any k < k∗, which gives ‖x̄−

xk‖L2(Ω) < γ for any k ≤ k∗. Summing the inequalities (22),

Dξk∗ (x̄, xk∗) +
k∗−1∑
k=0

µ2(ν − 1)
αkν

‖rδ
k‖2 ≤ Dξ0(x̄, x0)

and hence for some S independent of δ,

k∗−1∑
k=0

1
αk
‖rδ

k‖2 ≤ S .

It follows analogously to (19) that k∗ is finite for given δ > 0.
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To use a compactness argument, an estimate for J(xk∗) independent of δ
is required. Proceeding similarly to Theorem 3 by expanding the definition
of ξk∗ ,

∣∣〈ξk∗ , xk∗ − x̄〉
∣∣ ≤ k∗−1∑

l=0

1
αl

∣∣〈rδ
l + Kl(xl+1 − xl),Kl(xk∗ − x̄)〉

∣∣ + ρ‖ξ0‖L2(Ω) .

For each 0 ≤ l ≤ k∗−1, using that ‖rδ
k∗‖ < ‖rδ

l ‖ by definition of the stopping
index,∣∣〈rδ

l + Kl(xl+1 − xl),Kl(xk∗ − x̄)〉
∣∣ ≤ ‖rδ

l ‖
(
‖Kl(xk∗ − xl)‖+ ‖Kl(x̄− xl)‖

)
≤ ‖rδ

l ‖
(
(1 + 2ηγ)‖yk∗ − yl‖
+ (1 + µ/ν)‖rδ

l ‖
)
,

≤ (3 + 4ηγ + µ/ν)‖rδ
l ‖2 .

As a consequence,

J(xk∗) ≤ J(x̄) + (3 + 4ηγ + µ/ν)S + ρ‖ξ0‖L2(Ω) .

Due to the stopping rule ‖r̄k∗m‖ → 0, thus the statement follows as in the
proof of Theorem 3.

3.3 Convergence of Landweber Methods

We finally turn our attention to the Landweber method for (8). The follow-
ing results are based on estimates that are quite similar to the analysis of
Landweber iteration in a Hilbert space context given in [HNS95].

Lemma 7. Let xk ∈ D(F ) ∩ BV (Ω), ξk ∈ L2(Ω) where ξk = xk + pk with
pk ∈ ∂J1(x). Then (8a) has a unique minimizer xk+1, and if ‖x̄−xk‖L2(Ω) <
γ < ρ and αk is chosen such that αk ≥ (2‖F ′(xk)‖)2, then

Dξk+1
(x̄, xk+1)−Dξk

(x̄, xk)

≤ −(2αk)−1‖F (xk)− yδ‖
(
(1− 2ηγ)‖F (xk)− yδ‖ − 2(1 + ηγ)δ

)
. (29)

Proof. Similarly to Lemma 5 we use the optimality condition for (8a), which
reads

αk(pk+1 − pk) + αk(xk+1 − xk) + K∗
krδ

k = 0 , (30)

as well as 〈xk+1 − xk, pk+1 − pk〉 ≥ 0 to obtain the estimate

‖pk+1 − pk‖L2(Ω) ≤ α−1
k

∥∥K∗
krδ

k

∥∥
L2(Ω)

. (31)

By Proposition 12 we have

Dξk+1
(x̄, xk+1)−Dξk

(x̄, xk) ≤ 〈ξk+1 − ξk, xk+1 − x̄〉
= 〈ξk+1 − ξk, xk+1 − xk〉+ 〈ξk+1 − ξk, xk − x̄〉 .

14



Using (31), for the first term we obtain the bound

〈ξk+1 − ξk, xk+1 − xk〉 = 〈α−1
k K∗

krδ
k, (pk+1 − pk) + α−1

k K∗
krδ

k〉

≤ 2‖Kk‖2

α2
k

‖rδ
k‖2 .

Employing the nonlinearity condition (13), the second term can be estimated
by

〈ξk+1 − ξk, xk − x̄〉 = −α−1
k

〈
rδ
k, rδ

k − rδ
k −Kk(x̄− xk)

〉
≤ −α−1

k ‖rδ
k‖2 + α−1

k ‖rδ
k‖

(
δ + ηγ‖r̄k‖

)
≤ −α−1

k ‖rδ
k‖

(
(1− ηγ)‖rδ

k‖ − (1 + ηγ)δ
)
.

Combining the two estimates, we arrive at the assertion.

Theorem 8. Let 0 < γ < min{1/(2η), ρ}, x0 ∈ D(F ) ∩ BV (Ω), ξ0 ∈
L2(Ω) such that Dξ0(x̄, x0) < γ2/2, αk satisfy 0 < α ≤ αk ≤ α and αk ≥
(2‖F ′(xk)‖)2, and the stopping index be chosen with τ such that

τ > 2(1 + ηγ)/(1− 2ηγ) . (32)

Then for given δ > 0, the iterates for (8) are well-defined for k ≤ k∗,
where k∗ is finite. If δm > 0, {δm} → 0 with corresponding stopping indices
k∗m, then every subsequence of {xk∗m} has a subsequence converging to an
x ∈ S(ȳ) in the weak∗ topology of BV (Ω). If S(ȳ) ∩Bρ(x̄) = {x̄}, xk∗m

∗
⇀ x̄

in BV (Ω).

Proof. Using Lemma 7, we again inductively obtain ‖x̄ − xk‖L2(Ω) < γ for
any k ≤ k∗ and

Dξk∗ (x̄, xk∗) +
k∗−1∑
k=0

(1− 2ηγ)τ − 2(1 + ηγ)
2αkτ

‖rδ
k‖2 ≤ Dξ0(x̄, x0) , (33)

where (1 − 2ηγ)τ − 2(1 + ηγ) > 0 by (32). Now the statement follows
analogously to the proof of Theorem 6.

Proposition 9. Let the assumptions of Lemma 7 hold and assume that for
some C0, C1 > 0,

‖F (xk+1)− F (xk)‖ ≤ C0‖xk+1 − xk‖L2(Ω) ,

‖F (xk+1)− F (xk)− F ′(xk)(xk+1 − xk)‖ ≤ C1‖xk+1 − xk‖2
L2(Ω) .

Then we have

‖F (xk+1)− yδ‖2 − ‖F (xk)− yδ‖2

≤
(
−2αk + C2

0 + 2C1‖F (xk)− yδ‖
)
‖xk+1 − xk‖2

L2(Ω) .
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Proof. Using 〈xk+1 − xk, pk+1 − pk〉 ≥ 0 as above, we obtain

〈xk+1 − xk,K
∗
krδ

k〉 ≤ −αk‖xk+1 − xk‖2 .

Furthermore, we have

‖rδ
k+1‖2 − ‖rδ

k‖2 = ‖yk+1 − yk‖2 + 2〈rδ
k, yk+1 − yk〉

≤ C2
0‖xk+1 − xk‖2 + 2‖rδ

k‖ ‖yk+1 − yk −Kk(xk+1 − xk)‖
+ 2〈K∗

krδ
k, xk+1 − xk〉 ,

which implies the assertion.

This shows that for a given previous iterate xk, one can choose αk large
enough to ensure ‖F (xk+1)−yδ‖ ≤ ‖F (xk)−yδ‖, and furthermore that there
is a threshold α̃ > 0 such that αk ≥ α̃ for all k implies ‖F (xk+1) − yδ‖ ≤
‖F (xk)−yδ‖ for all k. We will use this as motivation for a heuristic selection
criterion for αk in our numerical examples. Note that due to the nonlinear
dependence of xk+1 on αk, Proposition 9 does not imply ‖F (xk+1)− yδ‖ <
‖F (xk)− yδ‖.

4 Application to Parameter Identification

In the following we shall discuss the application of the total variation meth-
ods to parameter identification problems. In these problems one often seeks
parameters being close to piecewise constants (with unknown numbers of
constants on unknown numbers of subdomains), with constants modelling
e.g. material parameters in regions of different composition. Here we will in-
vestigate two particular identification problems in elliptic partial differential
equations with distributed measurements.

4.1 Identification of a Reaction Coefficient

Our first test problem can be shown to satisfy the assumptions of our con-
vergence analysis. The problem consists in recovering q from an observation
uδ of a true solution u ∈ H1(Ω) of

−∆u + qu = f in Ω, u = g on ∂Ω, (34)

where Ω ⊂ Rn, n = 2, 3 is a bounded domain with C1,1 boundary, f ∈ L2(Ω)
and g ∈ H3/2(∂Ω). The nonlinear operator F : D(F ) ⊂ L2(Ω) → L2(Ω) is
defined as F (q) = u(q), where u(q) is the solution of (34) for parameter q.

To gain some insight into the type of ill-posedness and nonlinearity in
this example, we can formally solve for q in (34) directly to obtain

q =
f + ∆u

u
. (35)
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This hints at two causes of instability: On the one hand, u is differentiated
twice; on the other hand, the expression can become unbounded as u tends
to zero, which reflects the fact that we have no information on q at points
where u vanishes unless we make additional assumptions.

This example is taken from [HNS95]. It can be shown that for some
ω > 0, F is Fréchet differentiable with locally bounded derivative and weakly
sequentially closed on

D(F ) = {q ∈ L2(Ω): ‖q − q̄‖L2(Ω) ≤ ω for a q̄ ∈ L2(Ω), q̄ ≥ 0 a.e. } . (36)

The nonlinearity condition required for the convergence analysis in Sec-
tion 3 can be verified for this problem. The following result, under slightly
rephrased assumptions, is given in [HNS95].

Lemma 10. Let q̄ ∈ intD(F ), and assume there is a ρ < ω such that for
some κ > 0, F (q) ≥ κ a.e. for all q ∈ Bρ(q̄) ⊂ D(F ), then there exists an
η > 0 such that

‖F (q̃)− F (q)− F ′(q)(q̃ − q)‖L2(Ω) ≤ η‖q − q̃‖L2(Ω) ‖F (q)− F (q̃)‖L2(Ω)

for q, q̃ ∈ Bρ(q̄).

The assumption of F (q) being uniformly bounded away from zero is a
rather strong one, considering that according to the heuristic solution (35)
it completely rules out a potential source of instability. However, in the
two-dimensional case that will be of interest to us in our numerical tests we
can drop this assumption.

Lemma 11. Let n = 2. Let q ∈ D(F ) with ‖q‖L2(Ω) ≤ C for some C > 0.
Then there exists an η > 0 depending only on Ω and C such that

‖F (q̃)− F (q)− F ′(q)(q̃ − q)‖L2(Ω) ≤ η‖q − q̃‖L2(Ω) ‖F (q)− F (q̃)‖L2(Ω)

for any q̃ ∈ D(F ).

As there is no restriction on the size of C, this contains condition (13). For
a proof, we refer to [B07].

In summary, this shows that the convergence results of Section 3 apply
to problem (34). We finally mention that convergence rates for the method
(2) in the Bregman distance corresponding to the regularization functional
have been obtained in [RS06]. In particular, the authors demonstrated the
results to be applicable to (34) with J as in Section 3.

4.2 Identification of a Diffusion Coefficient

We now turn to a problem of identification of a coefficient of a higher-order
term, which leads to additional complications because the regularity of the
coefficient has more impact on the regularity of the solution.
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Here we want to reconstruct q from a solution u ∈ H1
0 (Ω) of

−div(q∇u) = f , (37)

where Ω ⊂ R2 is convex or a parallelepiped and f ∈ L2(Ω).
It can be shown that the parameter-to-solution map F (q) = u(q) is

continuous and Fréchet differentiable with locally bounded derivative on
{q ∈ L∞(Ω): q ≥ q a.e. } for any q > 0. Furthermore, with the additional
constraint

D(F ) = {q ∈ L∞(Ω): q ≥ q ≥ q a.e. } (38)

with fixed q > q > 0 it can be shown that with J as in Section 3 – here
including the possibility κ = 0 – the minimization problem (2), and similarly
the subproblems arising in (6), (7) and (8) are well-posed. For further details
and proofs, we refer to [CKP98] and [B07].

The convergence results of Section 3 do not carry over to (37), because
unless additional smoothness assumptions such as q ∈ H1(Ω) are made,
which of course is not of interest in our context, the problem cannot be
formulated in a Hilbert space framework and suitable nonlinearity condi-
tions are not available. However, our numerical experiments show that the
methods still give good results for this problem.

4.3 Numerical Implementation

In the implementation of the iterative methods (6), (7) and (8), we need to
handle the nondifferentiability of the BV seminorm in some way. A variety
of approaches has been suggested, but as we are dealing with several differ-
ent classes of total variation minimization problems, the common smoothed
approximation of the total variation (3) of q by

J̃ε(q) =
∫

Ω

√
|Dq|2 + ε2 (39)

with small ε > 0 seems to be most suitable due to its versatility. Note that
for several recently proposed approaches without smoothing, the main issue
is the application to the subproblems in the iterated Tikhonov method (6),
whereas the subproblems in the other methods could also be solved by any
scheme for total-variation deblurring or deconvolution, respectively (cf. e.g.
[C04; HK04; WYZ07]).

The locally superlinearly convergent primal-dual Newton method [CGM99]
can be adapted to the minimization problems (7a) and (8a). In the case of
the potentially nonconvex problem (6a), however, the scheme can possibly
converge to a local maximizer. The latter issue can be avoided by using a
lagged diffusivity iteration [V098], which is a robust descent method, but
shows only locally linear convergence. This method was also used for total
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variation regularization in the form (2) of nonlinear problems, including the
test problem (37), in [AHH06].

The discretization for the test problems (34) and (37) is performed using
the finite element method on an unstructured grid, where we use standard
P 1 elements for both parameter q and state u.

Each step of the primal-dual Newton method or of the lagged diffusivity
iteration requires solving a large linear system of equations. For the primal-
dual Newton method applied to (8), one obtains a sparse positive definite
system, and using the same method for (7) or using the lagged diffusivity
iteration for (6) the respective systems can be written as sparse saddle point
problems. Solving these systems in the large-scale case is a strong challenge
because the occurring derivatives of the total variation lead to complications
in the construction of efficient preconditioners. This point is in fact the most
severe limitiation in the implementation of total variation methods for more
involved inverse problems or identification in 3D. For our purposes, however,
it turns out that employing a sparse direct solver is still reasonably efficient.
A further investigation of efficient preconditioning is however an important
task for future research.

The numerical methods were implemented in Matlab with external C
modules, using the PDE Toolbox for mesh generation and refinement and
the built-in sparse direct solver based on Umfpack for solving linear systems
of equations.

4.4 Results

In our numerical tests, we focus on problem (37), which is of higher practical
interest and more challenging from the computational point of view. Our
numerical results demonstrate that the methods can be used succesfully
also for this kind of problem, not covered by the results of Section 3 due to
missing regularity. We again use the regularization functional (10), where
our examples are chosen such that the constraints on D(F ) remain inactive.
For further numerical experiments, also for the example (34), we refer to
[B07].

To arrive at more practicable algorithms, we slightly deviate from the
assumptions used in our convergence analysis in some points, for instance
in using simplified criteria for selecting the regularization parameters {αk}.
For (6) and (7), the regularization parameters are chosen as prescribed de-
creasing geometric sequences. In the case of (8), where convergence of the
iteration turns out to depend much more strongly on the choice of regulariza-
tion parameters, an ad-hoc backtracking scheme motivated by Proposition
9 is used to ensure that the sequence of residuals is nonincreasing. For both
examples (34) and (37) this leads to sequences {αk} that remain between
certain upper and lower bounds in our numerical experiments.

The used domain Ω ⊂ R2 is the unit disc, on which a mesh of 8648
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Figure 1: Parameter q̄ used to generate sample data.

triangles and 4421 nodes is used in the reconstruction. Right hand side
and boundary data are chosen as f ≡ 1 and g ≡ 0, respectively, for both
examples. The parameter q̄ used to generate sample data, i.e. the exact
solution of the inverse problem, is shown in Figure 1. The data uδ are
generated on an independent, finer grid to avoid “inverse crimes”.

Convergence behaviour and characteristics of reconstructions for (34)
and (37) are quite similar; we present results for (37) with 1% and 5% noise
in what follows and refer to [B07] for further results. Figure 2 shows the
iteration histories of methods (6) and (7) with αk = 10−4 · 0.8k and κ =
0.1, which illustrate the expected semiconvergence property. The obtained
results are almost identical, but computationally the Levenberg-Marquardt-
type scheme (7) is clearly advantageous, since simpler problems need to be
solved in each iteration step.

Figure 3 shows a comparison of the first iterate of the Levenberg-Marquardt-
type scheme that has a residual below the noise level to stationary total
variation regularization (2) with α tuned to the same residual. Typical
features of the iterative schemes, which were also observed in all further nu-
merical experiments, can be discerned here, namely that the reconstructions
share the basic characteristics of the results of the corresponding stationary
method, but have a slightly lower systematic error, i.e. better contrast.

The Landweber-type method (8) leads to qualitatively very similar re-
sults, but has different convergence properties comparable to those of Land-
weber iteration in a Hilbert space. For this reason, it is suitable especially
when the minimization problems in each step of the methods (6) and (7)
become prohibitively expensive to solve, or for high noise levels, but can
be rather inefficient for low noise levels. As to be expected the Landweber
iteration turns out to be much more dependent on the choice of κ. The size
of admissible parameters αk is approximately inversely proportional to κ,
i.e. a smaller κ requires smaller steps and hence leads to slower convergence.
Results for this method are summarized in Table 1.
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Figure 2: Results for example (37), with 1% noise (◦ method (6), × method (7))
and with 5% noise (� method (6), + method (7)), where the dashed lines in (a)
mark the respective noise levels.
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Figure 3: (a) Iterate 16 of (7) as in Figure 2, data with 1% noise, where
mink≤16 αk = 3.51e–6, (b) reconstruction obtained using (2) with the same J and
α = 4.47e–7, adjusted to lead to the same residual.
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κ = 0.1 κ = 1
k Res. DJ L2 Res. DJ L2

0 6.807e–2 3.991e+0 7.952e–1 6.807e–2 4.275e+0 7.952e–1
1 3.840e–2 3.969e+0 6.388e–1 1.589e–2 4.023e+0 5.350e–1

100 1.568e–2 3.793e+0 5.293e–1 1.425e–2 2.302e+0 4.861e–1
500 1.567e–2 3.054e+0 5.293e–1 1.200e–2 1.859e+0 4.323e–1
1000 1.391e–2 2.175e+0 4.744e–1 1.186e–2 1.625e+0 4.153e–1
5000 1.200e–2 1.763e+0 4.322e–1 1.140e–2 1.418e+0 3.574e–1
6000 1.195e–2 1.702e+0 4.257e–1 1.129e–2 1.446e+0 3.784e–1
10000 1.186e–2 1.539e+0 4.143e–1 – – –

Table 1: Results for (37) and the Landweber-type method (8), data with 5% noise,
which here means δ = 1.185e–2. For κ = 0.1 one obtains 4.28e–2 ≤ αk ≤ 1.62e–1,
whereas for κ = 1, 5.36e–3 ≤ αk ≤ 1.70e–2.

5 Conclusions

We have described the construction of three iterative methods for total vari-
ation regularization of ill-posed nonlinear operator equations and have anal-
ysed their convergence under a standard condition on the nonlinearity of the
operator.Illustrative applications to parameter identification in elliptic par-
tial differential equations have been given, as well as numerical results that
demonstrate the usefulness of the schemes and the improvement compared
to standard variational schemes.

An important problem for future research is the construction of efficient
methods for the minimization subproblems to be solved in each step of the
total variation schemes, in particular for Levenberg-Marquardt and iterated
Tikhonov. Indeed the availability or non-availability of efficient schemes
for the subproblems in specific applications might be the decisive fact upon
choosing one of the three schemes.

The schemes we presented in this paper can actually be applied for more
general regularization functionals than just total variation, the main neces-
sary ingredient being convexity of the regularization. Possible examples are
several kinds of regularizations enforcing sparsity (`1-Penalization in some
basis), entropy functionals, or also higher-order total variation functionals
recently investigated in imaging applications. Most of the convergence anal-
ysis carries over if one has a Banach space with suitable embedding into a
Hilbert space, on which the operator satisfies appropriate conditions (as the
one used in this paper). Some details in the convergence proofs still rely
on specific properties of the spaces and regularizations in connection with
properties of the operators F . Hence, we suggest that the right conditions
should be tuned to the specific problem, keeping our analysis as a main guide
line for different applications. We mention that from a practical point of
view the specific statement of the conditions for convergence might have less
impact for iterated Tikhonov and Levenberg-Marquardt methods, whereas
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they can be crucial for the success of the Landweber iteration (see also our
investigations on the importance of adding an L2-term to the regularization
functional).

Acknowledgements

This research was performed when the second author was with the Indus-
trial Mathematics Institute at JKU Linz and the Johann Radon Institute for
Computational and Applied Mathematics (Austrian Academy of Sciences),
and was financially supported by the Austrian National Science Foundation
FWF through project SFB F 013 / 08. The authors would like to thank
Stanley Osher (UCLA) for stimulating discussions on the methods and Ben-
jamin Hackl (MathConsult, Linz) and Andreas Neubauer (JKU Linz) for
useful hints concerning the example problems.

References

[AV94] R. Acar and C. Vogel. Analysis of bounded variation penalty methods
for ill-posed problems. Inverse Problems 10:1217–1229, 1994.

[AHH06] U. Ascher, E. Haber, and H. Huang. On effective methods for implicit
piecewise smooth surface recovery. SIAM J. Scient. Comput., 28:339–
358, 2006.

[B07] M. Bachmayr. Iterative total variation methods for nonlinear inverse
problems. Master thesis, Johannes Kepler Universität Linz, 2007.

[Bre67] L. Bregman. The relaxation method of finding the common points of
convex sets and its application to the solution of problems in convex
programming. U.S.S.R. Comput. Math. and Math. Phys., 7:200–217,
1967.

[BGO+06] M. Burger, G. Gilboa, S. Osher, and J. Xu. Nonlinear inverse scale
space methods. Comm. Math. Sci. 4:179–212, 2006.

[CKP98] E. Casas, K. Kunisch, C. Pola. Some applications of BV functions in
optimal control and calculus of variations. ESAIM: Proceedings 4:83–96,
1998.

[C04] A. Chambolle. An algorithm for total variation minimization and ap-
plications. J. Math. Imaging Vision 20: 89-97 (2004).

[CDL+98] A. Chambolle, R. DeVore, N.-Y. Lee, and B. Lucier. Nonlinear wavelet
image processing: Variational problems, compression, and noise removal
through wavelet shrinkage. IEEE Trans. Image Proc. 7:319-335 (1998).

[CGM99] T.-F. Chan, G. H. Golub, and P. Mulet. A nonlinear primal-dual
method for total variation-based image restoration. SIAM J. Sci-
ent. Comput., 20:1964–1977, 1999.

23



[CS05] T.-F. Chan and J. Shen. Image Processing and Analysis: Variational,
PDE, Wavelet, and Stochastic Methods. SIAM, Philadelphia, 2005.

[CT93] G. Chen and M. Teboulle. Convergence analysis of a proximal-like
minimization algorithm using Bregman functions. SIAM J. Optim.,
3:538–543, 1993.

[DDD04] I. Daubechies, M. Defrise, and C. DeMol. An iterative thresholding
algorithm for linear inverse problems with a sparsity constraint. Comm.
Pure Appl. Math. 57:1413-1457, 2004.

[EHN96] H. W. Engl, M. Hanke, and A. Neubauer. Regularization of Inverse
Problems, volume 375 of Mathematics and Its Applications. Kluwer
Academic Publishers, 1996.

[ET99] I. Ekeland and R. Temam. Convex Analysis and Variational Problems,
volume 28 of Classics in Applied Mathematics. SIAM, Philadelphia,
1999.

[Han97] M. Hanke. A regularizing Levenberg-Marquardt scheme with appli-
cations to inverse groundwater filtration problems. Inverse Problems,
13:79–95, 1997.

[HNS95] M. Hanke, A. Neubauer, and O. Scherzer. A convergence analysis of
the Landweber iteration for nonlinear ill-posed problems. Numerische
Mathematik, 72:21–37, 1995.

[HBO06] L. He, M. Burger, and S. J. Osher. Iterative total variation regulariza-
tion with non-quadratic fidelity. Journal of Mathematical Imaging and
Vision, 26:167–184, 2006.

[HCO+06] L. He, T.-Ch. Chang, S. J. Osher, T. Fang, and P. Speier. MR image
reconstruction by using the iterative refinement method and nonlinear
inverse scale space methods. CAM Report 06-35 (UCLA), 2006.

[HMO05] L. He, A. Marquina, and S. J. Osher. Blind deconvolution using TV
regularization and Bregman iteration. International Journal of Imaging
Systems and Technology, 15:74–83, 2005.

[HK04] M. Hintermüller and K. Kunisch, Total bounded variation regulariza-
tion as bilaterally constrained optimization problem. SIAM J. Appl.
Math. 64: 1311-1333, 2004.

[LP99] R. Luce and S. Perez. Parameter identification for an elliptic partial dif-
ferential equation with distributed noisy data. Inverse Problems 15:291-
307, 1999.

[OBG+05] S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin. An iterative
regularization method for total variation-based image restoration. Mul-
tiscale Model. Simul., 4(2):460–489, 2005.

[RS06] E. Resmerita and O. Scherzer. Error estimates for non-quadratic regu-
larization and the relation to enhancing. Inverse Problems, 22:801–814,
2006.

24



[ROF92] L.-I. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based
noise removal algorithms. Physica D 60:259-268, 1992.
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