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Abstract. We propose simple and extremely efficient methods for solving the Basis Pursuit problem

min{‖u‖1 : Au = f, u ∈ Rn},

which is used in compressed sensing. Our methods are based on Bregman iterative regularization and they give a very accurate

solution after solving only a very small number of instances of the unconstrained problem

min
u∈Rn

μ‖u‖1 +
1

2
‖Au− fk‖22,

for given matrix A and vector fk. We show analytically that this iterative approach yields exact solutions in a finite number

of steps, and present numerical results that demonstrate that as few as two to six iterations are sufficient in most cases. Our

approach is especially useful for many compressed sensing applications where matrix-vector operations involving A and A>

can be computed by fast transforms. Utilizing a fast fixed-point continuation solver that is solely based on such operations for

solving the above unconstrained sub-problem, we were able to solve huge instances of compressed sensing problems quickly on

a standard PC.
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1. Introduction. Let A ∈ Rm×n, f ∈ Rm, and u ∈ Rn. The Basis Pursuit problem [23] solves the

constrained minimization problem

(1.1) (Basis Pursuit) min
u
{‖u‖1 : Au = f}

to determine an `1-minimal solution uopt of the linear system Au = f , typically underdetermined, i.e., m < n

(in many cases, m� n) and Au = f has more than one solution.

The Basis Pursuit problem (1.1) arises in the applications of compressed sensing (CS). A recent burst

of research in CS was led by Candés et al [12, 14, 16], Donoho et al [33, 34, 86], and others [78, 84]. The

fundamental principle of CS is that, through optimization, the sparsity of a signal can be exploited for

recovering that signal from incomplete measurements of it. Let the vector ū ∈ Rn denote a highly-sparse

signal (i.e., k = ‖ū‖0 := |{i : ūi 6= 0}| � n). This principle states that one can encode ū by a linear transform

f = Aū ∈ Rm for some m greater than k, but much smaller than n, and then recover ū from f by solving

(1.1). It is proved that the recovery is perfect, i.e., the solution uopt = ū, for any ū whenever k, m, n, and A

satisfy certain conditions (e.g., see [13, 30, 37, 42, 78, 95, 96] ). While these conditions are computationally

intractable to check, it was found in [15, 16] and other work that the types of matrices A allowing a high

compression ratio (i.e., m � n) include random matrices with i.i.d. entries and random ensembles of

orthonormal transforms (e.g., matrices formed from random sets of rows of the matrices corresponding to

Fourier and cosine transforms).

Recent applications of `1 minimization can be found in [49, 82, 89, 90] for compressive imaging, [59,

66, 68, 67, 94] for MRI and CT, [3, 4, 48, 52, 74, 91] for multi-sensor networks and distributive sensing,
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[61, 63, 64, 75, 85] for analog-to-information conversion, and [81] for bio-sensing. `1 minimization also has

applications in image inpainting and missing data recovery; see [40, 80, 96] for example. Also non-convex

quasi `p-norm approaches for 0 ≤ p < 1 have been proposed by Chartrand [20, 21] and he and Yin [22].

Problem (1.1) can be transformed into a linear program and then solved by conventional linear program-

ming solvers. However, such solvers are not tailored for the matrices A that are large-scale and completely

dense, or are formed by rows taken from orthonormal matrices corresponding to fast transforms so that Ax

and A> x can be computed by fast transforms. This, together with the fact that f may contain noise in

certain applications, makes solving the unconstrained problem

(1.2) min
u
μ‖u‖1 +

1

2
‖Au− f‖22

more preferable than solving the constrained problem (1.1) (e.g., see [24, 25, 27, 35, 39, 47, 56, 60, 87] ).

Hereafter, we use ‖∙‖ ≡ ‖∙‖2 to denote the 2-norm. In Section 2.1 below, we give a review of recent numerical

methods for solving (1.2). Because (1.2) also allows the constraint Au = f to be relaxed, it is used when the

measurement f is contaminated by encoding errors such as noise. However, when there is no encoding error,

one must assign a tiny value to μ to heavily weigh the fidelity term ‖Au − f‖2 in order for Au = f to be

nearly satisfied. Furthermore, one can show that the solution of (1.2) never equals that of (1.1) unless they

both have the trivial solution 0. In this paper, we introduce a simple method based on Bregman iterative

regularization [71], which we review in Section 2.2 below, for finding a solution of problem (1.1) by solving

only a small number of instances of the unconstrained problem (1.2). Our numerical algorithm, based on

this iterative method, calls the fast fixed-point continuation solver FPC [53, 54] of (1.2), which only involves

matrix-vector multiplications (or fast linear transforms) and component-wise shrinkages (defined in (2.4)

below). Using a moderate value for the penalty parameter μ, we were able to obtain a very accurate solution

to the original Basis Pursuit problem (1.1) for a very small multiple of the cost of solving a single instance

of (1.2).

Our results can also be generalized to the constrained problem

(1.3) min
u
{J(u) : Au = f},

for other types of convex functions J (refer to Section 5). Specifically, a solution of (1.3) can be obtained

through a finite number of the Bregman iterations of

(1.4) min
u
μJ(u) +

1

2
‖Au− f‖2.

In addition, in Section 5.3, we also introduce a two-line algorithm (given in Equations (5.19) and (5.20)) also

involving only matrix-vector multiplication and shrinkage operators that generates a sequence {uk} that

converges rapidly to an approximate solution of the Basis Pursuit problem (1.1). In fact, the numerical

experiments in [32] indicate that this algorithm converges to a true solution if the parameter μ is large

enough. Finally, preliminary experiments indicate that our algorithms are robust with respect to a certain

amount of noise. This is also implied by our theoretical results stated in Theorems 2.1 and 5.5.

The rest of the paper is organized as follows. In Section 2, we summarize the existing methods for solving

the unconstrained problem (1.2) and provide some background on our Bregman iterative regularization

scheme. The main Bregman iterative algorithm is described in Section 3.1; its relationship to some previous

work [93] is presented in Section 3.2; and its convergence is analyzed in Section 3.3. Numerical results are
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presented in Section 4. Finally, we extend our results to more general classes of problems in Section 5,

including a description and analysis of our linearized Bregman iterative scheme, and conclude the paper in

Section 6.

2. Background.

2.1. Solving the Unconstrained Problem (1.2). Several recent algorithms can efficiently solve (1.2)

with large-scale data. The authors of GPSR [46], Figueiredo, Nowak, and Wright [47], reformulate (1.2) as

a box-constrained quadratic program, to which they apply the gradient projection method with Barzilai-

Borwein steps. The algorithm `1 `s [62] by Kim, Koh, Lustig, and Boyd [60] was developed for an `1

regularization problem equivalent to (1.2). The authors apply an interior-point method to a log-barrier

formulation of (1.2). The main step in each interior-point iteration, which involves solving a system of

linear equations, is accelerated by using a preconditioned conjugate gradient method, for which the authors

developed an efficient pre-conditioner. In the code SPGL1 [88], Van den Berg and Friedlander apply an

iterative method for solving the LASSO problem [83], which minimizes ‖Au − f‖ subject to ‖u‖1 ≤ σ, by

using an increasing sequence of σ-values in their algorithm to accelerate the computation. In [69], Nesterov

proposes an accelerated multistep gradient method with an error convergence rate O(1/k2). Under some

conditions, the greedy approach StOMP [35] by Donoho, Tsaig, Drori, and Starck can also quickly solve

(1.2).

A widely used method by many researchers to solve (1.2) or the general `1-minimization problems of the

form:

(2.1) min
u
μ‖u‖1 +H(u)

for convex and differentiable functions H(∙) is an iterative procedure based on shrinkage (also called soft

thresholding; see Eq. (2.4) below). It was independently proposed and analyzed by Figueiredo and Nowak in

[44, 70] under the expectation-minimization framework for wavelet-based deconvolution, De Mol and Defrise

[29] for wavelet inversion, Bect, Blance-Feraud, Aubert, and Chambolle in [5] using an auxiliary variable and

the idea from Chambolle’s projection method [17], Elad in [36] and he with Matalon, Shtok, and Zibulevsky

[38] for sparse representation and other related problems, Daubechies, DeFrise, and DeMol in [27] through

an optimization transfer technique, Combettes and Pesquet [24] using operator-splitting, Hale, Yin, and

Zhang [53] also using operator-splitting combined with a continuation technique in their code FPC [54],

Darbon and Osher [25] through an implicit PDE approach, and others. In addition, related applications

and algorithms can be found in Adeyemi and Davies [1] for image sparse representation, Bioucas-Dian [6]

for wavelet-based image deconvolution using a Gaussian scale mixture model, Bioucas-Dias and Figueiredo

for a recent “two-step” shrinkage-based algorithm [7], Blumensath and Davies [8] for solving a cardinality

constrained least-squares problem, Chambolle et al [19] for image denoising, Daubechies, Fornasier, and

Loris [28] for a direct and accelerated projected gradient method, Elad, Matalon, and Zibulevsky in [39] for

image denoising, Fadili and Starck [41] for sparse representation-based image deconvolution, Figueiredo and

Nowak [45] for image deconvolution based on a bound optimization and they together with Bioucas-Dias [43]

for wavelet-based image denoising using majorization-minimization algorithms, and Kingsbury and Reeves

[76] for image coding. These authors, using different approaches, developed or used algorithms based on

the iterative scheme

(2.2) uk+1 ← argmin
u
μ‖u‖1 +

1

2δk
∥
∥u− (uk − δk∇H(uk))

∥
∥2
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for k = 0, 1, . . . starting from a certain point u0 = 0. The parameter δk is positive and serves as the step

size at iteration k. Since the unknown variable u is component-wise separable in problem (2.2), each of its

components ui can be independently obtained by the shrinkage operation, which is also referred to as soft

thresholding:

(2.3) uk+1i = shrink((uk − δk∇H(uk))i, μδ
k), i = 1, . . . , n,

where for y, α ∈ R, we define

(2.4) shrink(y, α) := sgn(y)max{|y| − α, 0} =






y − α, y ∈ (α,∞),

0, y ∈ [−α, α],

y + α, y ∈ (−∞,−α).

Among the several approaches giving (2.2), one of the easiest ones is the following: first, H(u) is

approximated by its first-order Taylor expansion at uk, which is H(uk) + 〈∇H(uk), u − uk〉; then, since

this approximation is accurate only for u near uk, u must be made close to uk so an `2-penalty term

‖u− uk‖2/(2δk) is added to the objective; the resulting step is

(2.5) uk+1 ← argmin
u
μ‖u‖1 +H(u

k) + 〈∇H(uk), u− uk〉+
1

2δk
‖u− uk‖2,

which is equivalent to (2.2) because their objectives differ by only a constant. It is easy to see that the

larger the δk, the larger the allowable distance between uk+1 and uk. It was proved in [53] that {uk} given

by (2.2) converges to an optimum of (1.4) at a q-linear∗ rate under certain conditions on H and δk. Their

convergence results are based in part on the previous work by Pang [72], and Luo and Tseng [65] on gradient

projection methods. Furthermore, a new result from [53] is that the support (i.e., {i : uki 6= 0}) and signs of

uk converge finitely; that is, there exists a finite number K such that sgn(uk) ≡ sgn(uopt), ∀k > K, where

uopt denotes the solution of (1.4); however, an estimate or bound for K is not known.

To improve the efficiency of the iterations (2.2), various techniques have been applied to (2.2), which

include generalizing (2.3) by using more parameters [39], employing various types of linear search on δk and

uk+1 [47], and using a decreasing sequence of μ-values [53]. The last technique is called path following or

continuation. While our algorithm does not depend on using a specific code, we chose to use FPC [54], one

of the fastest codes, to solve each subproblem in (2.2).

In [25], [92] and other work, the iterative procedure (2.2) is adapted for solving the total variation

regularization problem

(2.6) min
u
μTV (u) +H(u),

where TV (u) denotes the total variation of u (see [97] for a definition of TV (u) and its properties). Specifi-

cally, the regularization term μ‖u‖1 in (2.2) is replaced by μTV (u), yielding

(2.7) uk+1 ← argmin
u
μTV (u) +

1

2δk
∥
∥u− (uk − δk∇H(uk))

∥
∥2 .

Each subproblem (2.7) can be efficiently solved by one of the recent graph/network-based algorithms [18,

∗q stands for “quotient”; {xk} converges to x∗ q-linearly if limk ‖xk+1 − x∗‖/‖xk − x∗‖ exists and is less than 1.
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26, 51]. In [25] Darbon and Osher also study an algorithm obtained by replacing μTV (u) in (2.7) by its

Bregman distance (see Subsection 2.2 below) and proved that if H(u) = 0.5‖Au− f‖2 then {uk} converges

to the solution of minu{TV (u) : Au = f}. Their algorithm and results are described in Section 5.3. In the

next subsection, we give an introduction to Bregman iterative regularization.

2.2. Bregman Iterative Regularization. Bregman iterative regularization was introduced by Osher,

Burger, Goldfarb, Xu, and Yin [71] in the context of image processing; it was then extended to wavelet-based

denoising [93], nonlinear inverse scale space in [10, 11], and compressed sensing in MR imaging [57]. The

authors of [71] extend the Rudin-Osher-Fatemi [79] model

(2.8) min
u
μ

∫
|∇u|+

1

2
‖u− b‖2

where u is an unknown image, b is typically an input noisy measurement of a clean image ū, and μ is a

tuning parameter, into an iterative regularization model by using the Bregman distance (2.10) below based

on the total variation functional:

(2.9) J(u) = μTV (u) = μ

∫
|∇u|.

Specifically, the Bregman distance [9] based on a convex functional J(∙) between points u and v is defined as

(2.10) DpJ(u, v) = J(u)− J(v)− 〈p, u− v〉

where p ∈ ∂J(v) is some subgradient in the subdifferential of J at the point v. Because DpJ(u, v) 6= D
p
J(v, u)

in general, DpJ (u, v) is not a distance in the usual sense. However, it measures the closeness between u and

v in the sense that DpJ(u, v) ≥ 0 and D
p
J(u, v) ≥ D

p
J(w, v) for all points w on the line segment connecting u

and v.

Instead of solving (2.8) once, the Bregman iterative regularization procedure of Osher et. al. [71] solves

a sequence of convex problems

(2.11) uk+1 ← min
u
Dp

k

J (u, u
k) +

1

2
‖u− b‖2

for k = 0, 1, . . . starting with u0 = 0 and p0 = 0 (hence, for k = 0, one solves the original problem (2.8).)

Since μTV (u) is not differentiable everywhere, the subdifferential of μTV (u) may contain more than one

element. However, from the optimality of uk+1 in (2.11), it follows that 0 ∈ ∂J(uk+1)−pk+uk+1− b; hence,

they set

pk+1 := pk + b− uk+1,

The difference between (2.8) and (2.11) is in the use of regularization. While (2.8) regularizes u by directly

minimizing its total variation, (2.11) does the same by minimizing the total variation-based Bregman distance

of u to a previous solution uk.

In [71] two key results for the sequence {uk} generated by (2.11) were proved. First, ‖uk − b‖ converges

to 0 monotonically; second, uk also monotonically gets closer to ū, the unknown noiseless image, in terms of

the Bregman distance Dp
k

TV (ū, u
k), at least while ‖uk − b‖ ≥ ‖ū− b‖. Numerical results in [71] demonstrate

that for μ sufficiently large, this simple iterative procedure remarkably improves denoising quality over the
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original model (2.8).

Interestingly, not only for the first iteration k = 0, but for all k, the new problem (2.11) can be reduced

to the original problem (2.8) with the input bk+1 := b+(bk−uk) starting with b0 = u0 = 0, i.e., the iterations

(2.11) are equivalent to

(2.12) uk+1 ← min
u
J(u) +

1

2
‖u− bk+1‖2, where bk+1 = b+ (bk − uk),

and can be carried out using any existing algorithms for (2.8).

The iterative procedure (2.12) has an intriguing interpretation: Let ω represent the noise in b, i.e.,

b = ū+ω, and μ be large. At k = 0, bk−uk = 0, so (2.12) decomposes the input noisy image b into u1+ v1.

Since μ is large, the resulting image u1 is over smoothed (by total variation minimization) so it does not

contain any noise. Consequently, u1 can be considered to be a portion of the original clean image ū. The

residual v1 = b − u1 = (ū − u1) + ω, hence, is the sum of the unrecovered “good” signal (ū − u1) and the

“bad” noise ω. We wish to recover (ū− u1) from v1. Intuitively, one would next consider letting v1 be the

new input for (2.8) and solving (2.8). However, Bregman iterative regularization turns out to be both better

and “nonintuitive”: it adds v1 back to the original input b. The the new input of (2.12) in the 2nd iteration

is

b+ v1 = (u1 + v1) + v1 = u1 + 2(ū− u1) + 2ω.

which, compared to the original input b = u1+(ū−u1)+ω, contains twice as much of both the unrecovered

“good” signal ū − u1 and the “bad” noise ω. What is remarkable is that the new decomposition u2 is a

better approximation to ū than u1 (for μ large enough); one explanation is that u2 not only inherits u1 but

also captures a part of (ū − u1), the previously un-captured “good” signal. Of course, as the convergence

results indicate, uk will eventually pick up the noise ω since {uk} converges to b = ū + ω. However, a high

quality image can be found among the sequence {uk}: the image uk that has ‖uk − b‖ closest to ‖ū− b‖ is

cleaner and has a higher contrast than the best image that one could possibly obtain from solving (2.8) one

single time.

Formally Bregman iterative regularization applied to the problem

(2.13) min
u
J(u) +H(u)

is given as Algorithm 1 in which the Bregman distance Dp
k

J (∙, ∙) is defined by (2.10).

Algorithm 1 Bregman Iterative Regularization

Require: J(∙), H(∙)
1: Initialize: k = 0, u0 = 0, p0 = 0.
2: while “not converge” do

3: uk+1 ← argminuD
pk

J (u, u
k) +H(u)

4: pk+1 ← pk −∇H(uk+1) ∈ ∂J(uk+1)
5: k ← k + 1
6: end while

Below we conclude this section by citing some useful convergence results from [71] that are used in

Section 3.3 below.

Assumption 1. J(∙) is convex, H(∙) is convex and differentiable, and the solutions uk+1 in Step 3 of
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Algorithm 1 exist.

Theorem 2.1. Under Assumption 1, the iterate sequence {uk} satisfies

1. Monotonic decrease in H: H(uk+1) ≤ H(uk+1) +Dp
k

J (u
k+1, uk) ≤ H(uk);

2. Convergence to the original in H with exact data: if ũ minimizes H(∙) and J(ũ) <∞, then H(uk) ≤

H(ũ) + J(ũ)/k;

3. Convergence to the original in D with noisy data: let H(∙) = H(∙; f) and suppose H(ũ; f) ≤ δ2 and

H(ũ; g) = 0 (f , g, ũ, and δ represent noisy data, noiseless data, perfect recovery, and noise level,

respectively); then Dp
k+1

J (ũ, uk+1) < Dp
k

J (ũ, u
k) as long as H(uk+1; f) > δ2.

3. Bregman Iterations for Basis Pursuit.

3.1. Formulations. The main purpose of this paper is to show that the Bregman iterative procedure

is a simple but very efficient method for solving the Basis Pursuit problem (1.1), as well as a broader class

of problems of the form (1.3), in both theory and practice. Below we first give the details of the algorithm,

describe our motivation, and then prove that in a finite number of iterations, uk becomes a minimizer of

‖u‖1 among {u : Au = f}.

We solve the constrained problem (1.1) by applying Algorithm 1 to (1.2) for J(u) = μ‖u‖1 and H(u) =
1
2‖Au− f‖

2:

Version 1:

u0 ← 0, p0 ← 0,(3.1)

For k = 0, 1, . . . do

uk+1 ← argmin
u
Dp

k

J (u, u
k) +

1

2
‖Au− f‖2 ,(3.2)

pk+1 ← pk −A>(Auk+1 − f);(3.3)

Version 2:

f0 ← 0, u0 ← 0,(3.4)

For k = 0, 1, . . . do

fk+1 ← f + (fk −Auk),(3.5)

uk+1 ← argmin
u
J(u) +

1

2

∥
∥Au− fk+1

∥
∥2 .(3.6)

Given uk and pk in Version 1, uk+1 satisfies the first-order optimality condition:

0 ∈ ∂J(uk+1)− pk +∇H(uk+1) = ∂J(uk+1)− pk +A>(Auk+1 − f).

Therefore,

(3.7) pk+1 = pk −A>(Auk+1 − f) ∈ ∂J(uk+1);

hence, Dp
k+1

J (u, uk+1) is well-defined. Clearly, if uk+1i = 0, then one can pick any pk+1i ∈ [−1, 1] and still

have a well-defined Dp
k+1

J (u, uk+1). However, the choice of pk+1 as in (3.7) is not only simple but also crucial

for the sequence {uk} to converge to the minimizer uopt of the constrained problem (1.1).

Theorem 3.1. The Bregman iterative procedure Version 1 (3.1)–(3.3) and Version 2 (3.4)–(3.6) are

equivalent in the sense that (3.2) and (3.6) have the same objective functions (they may differ by up to a
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constant) for all k.

Proof. Let uk and ūk denote the solutions to Versions 1 and 2, respectively. The initialization (3.1) gives

Dp
0

J (u, u
0) = J(u) while (3.4) gives f1 = f . Therefore, at iteration k = 0, (3.2) and (3.6) have the same

optimization problem

min
u
J(u) +

1

2
‖Au− f‖2.

We note that this problem, as well as those for all other k, may have more than one solution. We do not

assume that in this case, u1 (Version 1) is equal to ū1 (Version 2). Instead, we use the fact from [53] that

A>(f − Au) is constant for all optimal solutions u, i.e., A>(f − Au1) = A>(f − Aū1). According to (3.3),

p0 = 0 and f = f1, we have

p1 = p0 −A>(Au1 − f) = A>(f −Au1) = A>(f −Aū1) = A>(f1 −Aū1).

Next, we use induction on pk = A>(fk−Aūk). Given pk = A>(fk−Aūk), we will show the followings: (i)

the optimization problems in (3.2) and (3.6) at iteration k are equivalent, (ii) A>(Auk+1−f) = A>(Aūk+1−

f), and (iii) pk+1 = A>(fk+1 −Aūk+1). Clearly, part (i) proves the theorem.

Part (i): From the induction assumption it follows

Dp
k

J (u, u
k) +

1

2
‖Au− f‖2 = J(u)− 〈pk, u〉+

1

2
‖Au− f‖2 + C1

= J(u)− 〈fk −Aūk, Au〉+
1

2
‖Au− f‖2 + C2

= J(u) +
1

2
‖Au− (f + (fk −Aūk))‖2 + C3

= J(u) +
1

2
‖Au− fk+1‖2 + C3,

where C1, C2, and C3 stand for the terms constant in u; hence, (3.2) and (3.6) have the same objective

function (up to a constant).

Part (ii): A>(Auk+1 − f) = A>(Aūk+1 − f) follows from part (i) and the result in [53].

Part (iii): It follows from the induction assumption, as well as (3.3), (3.5) and part (ii), that

pk+1 = pk −A>(Auk+1 − f) = pk −A>(Aūk+1 − f)(3.8)

= A>(fk −Aūk)−A>(Aūk+1 − f)

= A>
(
f + (fk −Aūk)−Aūk+1

)

= A>(fk+1 −Aūk+1).(3.9)

Remark: When J is not strictly convex, the subproblems in Versions 1 and 2 may both have more than one

solution. The above proof shows, however, even if Versions 1 and 2 generate different intermediate solutions

at certain iteration, they remain equivalent thereafter.

Each iteration of (3.6) is an instance of (1.2), which can be solved by the code FPC [54]. Although our

convergence result below holds for any strictly positive μ, we choose μ so that (1.2) is solved efficiently by

FPC and the total time of the Bregman iterations is nearly optimal.
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3.2. Motivation. In [93], Xu and Osher applied Bregman iterative regularization to wavelet based

denoising. Briefly, they considered

(3.10) min
u
μ‖u‖1,1 +

1

2
‖f − u‖2L2 ,

where ‖u‖1,1 is the Besov norm defined in [31]; if u =
∑
j ũjψj and f =

∑
j f̃jψj , for a wavelet basis {ψj},

they solve

min
{ũj}

μ
∑

j

|ũj |+
1

2

∑

j

|f̃j − ũj |
2.

It was observed in [93] and elsewhere that this minimization procedure is equivalent to shrinkage, i.e.,

ũj = shrink(f̃j , μ), ∀j, where shrink(∙, ∙) is defined in (2.4).

What is interesting is that Bregman iterations gives:

(3.11) ũkj =






f̃j , |f̃j | >
μ
k−1 ,

kf̃j − μ sign(f̃j),
μ
k
≤ |f̃j | ≤

μ
k−1 ,

0, |f̃j | ≤
μ
k
.

So soft shrinkage becomes firm shrinkage [50] with thresholds τ (k) ≤ μ
k
and τ (k−1) = μ

(k−1) .

In [10, 11] the concept of nonlinear inverse scale space was introduced and analyzed, which is basically

the limit of Bregman iteration as k and μ increase with k
μ
→ t. This iterative Bregman procedure then

approaches hard thresholding:

(3.12) ũj(t) =






f̃j , |f̃j | > 1
t
,

0, |f̃j | ≤ 1
t
.

For Bregman iterations it takes

(3.13) kj = smallest integer ≥
μ

|f̃j |

iterations to recover ũj(k) = f̃j , for all k ≥ kj . This means that spikes return in decreasing orders of their

magnitudes and sparse data comes back very quickly.

Next, we consider the trivial example of minimizing ‖u‖1 subject to a>u = f , where 0 6= a ∈ Rn and

f ∈ R. Obviously, the solution is uopt = (f/aj)ej , where ej is the j-th unit vector and aj is the component

of a with the largest magnitude. Without loss of generality, we suppose a ≥ 0, f > 0, and the largest

component of a is a1 > 0, which is strictly larger than the rest (to avoid solution non-uniqueness); hence,

uopt = (f/a1)e1. Let f
k > 0 then the solution of the Bregman iterative subproblem

min
u
μ‖u‖1 +

1

2
(a>u− fk)2
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is given by

(3.14) uk =






0, μ ≥ fka1,
fka1−μ
a21
e1, 0 < μ < fka1.

The Bregman iterations (3.6) start with f1 = f . If μ ≥ f1a1, then u
1 = 0 so f2 = f + (f1 − a>0) = 2f ;

hence, as long as ui remains 0, f i+1 = (i + 1)f . Therefore, we have uj = 0 and f j+1 = (j + 1)f , for

j = 1, . . . , J for

J = max{k : μ ≥ fka1} =

⌊
μ

fa1

⌋

.

If μ < f1a1, J = 0. In both cases, u
J+1
1 = ((J + 1)fa1 − μ)/a21 so

fJ+2 = f + (fJ+1 − a>uJ+1) = (J + 2)f − a1
(J + 1)fa1 − μ

a21
= f −

μ

a1

and

uJ+2 =
fJ+2a1 − μ

a21
e1 =

f

a1
e1,

i.e., uJ+2 = uopt. Therefore, the Bregman iterations give an exact solution in

⌊
μ

f maxi{|ai|}

⌋

+ 2

steps for any problem with a one-dimensional signal f .

We believe that these simple examples help explain why our procedure works so well in compressed

sensing applications.

3.3. Convergence Results. In this section, we show that the Bregman iterative regularization (3.1)–

(3.3) (or equivalently (3.4)–(3.6)) described in Section 3.1 generates a sequence of solutions {uk} that con-

verges to an optimum uopt of the Basis Pursuit problem (1.1) in a finite number of steps; that is, there exists

a K such that every uk for k > K is a solution of (1.1). The analytical results of this section are generalized

to many other types of `1 and related minimization problems in Section 5.

We divide our analysis into two theorems. The first theorem shows that if uk satisfies the linear con-

straints Auk = f , then it minimizes J(∙) = μ‖ ∙ ‖1; the second theorem proves that such a uk is obtained for

a finite k.

Theorem 3.2. Suppose an iterate uk from (3.2) satisfies Auk = f , then uk is a solution of the Basis

Pursuit problem (1.1).

Proof. For any u, by the nonnegativity of the Bregman distance, we have:

J(uk) ≤ J(u)− 〈u− uk, pk〉(3.15)

= J(u)− 〈u− uk, A>(fk −Auk)〉(3.16)

= J(u)− 〈Au−Auk, fk −Auk〉(3.17)

= J(u)− 〈Au− f, fk − f〉,(3.18)
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where the first equality follows from (3.9).

Therefore, uk satisfies J(uk) ≤ J(u), for any u satisfying Au = f ; hence, uk is an optimal solution of

the Basis Pursuit problem (1.1).

Theorem 3.3. There exists a number K < ∞ such that any uk, k ≥ K, is a solution of the Basis

Pursuit problem (1.1).

Proof. Let (Ij+, I
j
−, E

j) be a partition of the index set {1, 2, . . . , n}, and define

U j := U(Ij+, I
j
−, E

j) = {u : ui ≥ 0, i ∈ I
j
+; ui ≤ 0, i ∈ I

j
−; ui = 0, i ∈ E

j}(3.19)

Hj := min
u

{
1

2
‖Au− f‖2 : u ∈ U j

}

.(3.20)

There are a finite number of distinct partitions (Ij+, I
j
−, E

j) and the union of all possible U j ’s is H, the entire

space of u.

At iteration k, let (Ik+, I
k
−, E

k) be defined in terms of pk as follows:

(3.21) Ik+ = {i : p
k = μ}, Ik− = {i : p

k = −μ}, Ek = {i : pk ∈ (−μ, μ)}.

In light of the definition (3.19) and the fact that pk ∈ ∂J(uk) = ∂(μ‖uk‖1), we have uk ∈ Uk. To apply

Theorem 2.1, we let ũ satisfy H(ũ) = 1
2‖Aũ− f‖

2 = 0. Using this ũ in Statement 2 of Theorem 2.1, we see

that for each j with Hj > 0 there is a sufficiently large Kj such that u
k is not in U j for k ≥ Kj . Therefore,

letting K := maxj{Kj : Hj > 0}, we have H(uk) = 0 for k ≥ K. That is Auk = f for k ≥ K.

Therefore, it follows from (3.3) that pK = pK+1 = ∙ ∙ ∙ , and then from (3.5) that fK+1 = fK+2 = ∙ ∙ ∙ .

Because the minimizers of Bregman iterations (3.2) and (3.6) are not necessarily unique, the uk for k > K

are not necessarily the same. Nevertheless, it follows from Theorem 3.2 that all uk for k > K are optimal

solutions of the Basis Pursuit problem (1.1).

Both Theorems 3.2 and 3.3 can be extended to a Bregman iterative scheme in which μ takes on varying

values {μk} as long as this sequence is bounded above. Suppose J(u) = Jk(u) = μk‖u‖1 and pk ∈ ∂Jk(u)

at k-th Bregman iteration and J(u) = Jk+1(u) = μk+1‖u‖1 at iteration k + 1; then, the subproblem (3.2)

becomes

Version 1: uk+1 ← min
u
Jk+1(u)−

μk+1

μk
〈pk, u〉+

1

2
‖Au− f‖2,

where we replace the Bregman distance of J in (3.2) by that of Jk+1 between u and uk, so

pk+1 =
μk+1

μk
pk −A>(Auk+1 − f) = −μk+1

k+1∑

j=1

A>(Auj − f)
μj

.

Using the above identity, the subproblem (3.6), equivalent to (3.2), becomes

Version 2: uk+1 ← min
u
Jk+1(u) +

1

2

∥
∥Au− fk+1

∥
∥2 ,

for

fk+1 = f + μk+1
k∑

j=1

f −Auj

μj
,
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or

fk+1 = f +
μk+1

μk
(fk −Auk), u0 = f0 = 0.

We plan to explore varying step sizes to improve the efficiency of our code.

3.4. Equivalence to the augmented Lagrangian method. After we initially submitted this pa-

per, we found that the Bregman iterative method Algorithm 1 is equivalent to the well-know augmented

Lagrangian method (a.k.a., the method of multipliers), which was introduced by Hestenes [58] and Powell

[73] and was later generalized by Rockafellar [77].

To solve the constrained optimization problem

(3.22) min
u
s(u), subject to ci(u) = 0, i = 1, . . . ,m,

the augmented Lagrangian method minimizes the augmented Lagrangian function

(3.23) L(u;λk, ν) := s(u) +

m∑

i=1

λki ci(u) +
1

2

m∑

i=1

νic
2
i (u)

with respect to u at each iteration k, and uses the minimizer uk+1 to update

(3.24) λk+1i ← λki + νici(u
k+1).

The equivalence between this method and Version 1, (3.1)–(3.3), can be seen by letting

s(u) = J(u),

c =






c1

∙ ∙ ∙

cm




 = Ax− b,

pk = −A>λk,

νi ≡ 1, ∀i.

Then, we have

L(u;λk, ν) = J(u) + 〈λk, Au〉+
1

2
‖Au− b‖2 + C1

= J(u)− 〈pk, u〉+
1

2
‖Au− b‖2 + C1

= the objective function of (3.2) + C2,

where C1 and C2 are constant in u, and also (3.24) yields (3.3). Therefore, whenever u
0 = 0 and λ0 = 0, the

augmented Lagrangian method is equivalent to Version 1 (3.1)–(3.3). This inspires us to study and apply

techniques and results of the augmented Lagrangian method to our problem in the future. Finally, we note

that the Bregman iterative regularization is general not equivalent to the augmented Lagrangian method

when the constraints are not in the form of Au = f .
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4. Numerical Results. In this section, we demonstrate the effectiveness of Algorithm 1 for solving

the Basis Pursuit problem (1.1), where the constraints Ax = f are under-determined linear equations and f

was generated from a sparse signal ū that has ‖ū‖0 << n, where ‖ū‖0 is defined as the number of nonzeros

in u.

Our numerical experiments used two types of A matrices: orthogonalized Gaussian matrices whose

elements were generated from i.i.d. normal distributions N (0, 1) (randn(m,n) in MATLAB) and whose

rows were orthogonalized by QR decompositions, and partial discrete cosine transform (DCT) matrices

whose m rows were chosen randomly from the n× n DCT matrix. These matrices are known to be efficient

for compressed sensing in the sense of allowing a good compression ratio m/n with a high probability, and

have been widely used by researchers in their numerical experiments. We orthogonalized the rows of A

because the subproblem solver FPC tends to be more numerically stable with such As.

The tested original sparse signals ū had numbers of nonzeros equal to 0.1m and 0.2m rounded to the

nearest integers in two sets of experiments, which were obtained by round(0.1*m) and round(0.2*m) in

MATLAB, respectively. Given a number of nonzeros ‖ū‖0, an original sparse signal ū ∈ Rn was generated

by randomly selecting the locations of these nonzeros, and sampling each of these nonzero elements from

N (0, 4) (2*randn in MATLAB). Then, f was computed as Aū. When ‖ū‖0 is small enough, we expect the

Basis Pursuit problem (1.1), which we solved using Algorithm 1, to yield a solution uopt = ū from the inputs

A and f .

We used the fast MATLAB code FPC, basic version 1.0, to solve the unconstrained sub-problem (1.2) at

each Bregman iteration. This basic version does not use any line search techniques to speed up convergence.

The reader may use more recent versions of FPC or other solvers of (1.2) such that GPSR [46], `1 `s [62],

and SPGL1 [88] to repeat the experiments.

While the full Gaussian matrices were explicitly stored in memory, the partial DCT matrices were

implicitly stored as fast transforms for which matrix-vector multiplications of the form Ax and A>x were

computed by the MATLAB commands dct(x) and idct(x), respectively. Therefore, we were able to test

partial DCT matrices of much larger sizes than Gaussian matrices. The dimensions m-by-n of these matrices

are given in the first two columns of Table 4.1.

Our code was written in MATLAB and was run on a Linux (version 2.6.9) workstation with a 1.8GHz

AMD Opteron CPU and 3GB memory. The MATLAB version is 7.1.

The computational results given in Table 4.1 were obtained using the stopping tolerance

(4.1)
‖Auk − f‖
‖f‖

< 10−5,

which was sufficient to give a small error ‖uk − ū‖/‖ū‖ < O(10−6). The total number of Bregman iterations

and running time of Algorithm 1 heavily depends on μ. Throughout our experiments, we used

(4.2) μ =
0.02
√
‖ū‖0

,

because μ bounds the maximum residual ‖Au − f‖ up to a constant factor according to the following: for

any minimizer uopt ≈ ū of the unconstrained subproblem (1.2), it holds that

(4.3) ‖Auopt − f‖
2 = ‖A>(Auopt − b)‖

2 / O(‖ū‖0) ‖A
>(Auopt − b)‖

2
∞ ≤ O(‖ū‖0)μ

2.
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Table 4.1
Experiment results using 20 random instances for each configuration of (n,m, ‖ū‖0).

Results of Algorithm 1
Bregman stopping tol. ‖Auk − f‖/‖f‖ < 10−5

Sub-problem solver FPC-basic, ver 1. Stopping tol: xtol= 10−4, gtol= 10−3

Orthogonalized Gaussian matrices
stopping itr. k relative error ‖uk − ū‖/‖ū‖ time (sec.)
mean std. max mean std. max mean std. max

n m ‖ū‖0/m = 0.1
512 256 2.0 0.0 2 2.16e-08 1.37e-08 4.90e-08 0.1 0.0 0.3
1024 512 2.0 0.2 3 2.42e-08 4.53e-08 1.56e-07 0.3 0.0 0.4
2048 1024 2.1 0.4 4 2.74e-07 1.21e-06 5.42e-06 1.1 0.2 2.1
4096 2048 2.2 0.9 6 3.45e-07 1.17e-06 5.11e-06 5.0 1.8 12.4

n m ‖ū‖0/m = 0.2
512 256 2.6 2.5 13 6.11e-07 2.48e-06 1.11e-05 0.2 0.2 0.8
1024 512 2.0 0.2 3 7.48e-08 1.08e-07 4.19e-07 0.5 0.1 0.7
2048 1024 2.5 1.8 10 7.51e-07 2.26e-06 8.93e-06 2.7 1.9 10.4
4096 2048 2.2 0.4 3 7.85e-08 3.26e-07 1.46e-06 10.4 2.1 14.4

Partial DCT matrices
n m ‖ū‖0/m = 0.1

1024 512 2.3 1.0 6 9.80e-07 2.99e-06 1.09e-05 0.1 0.0 0.2
4096 2048 2.4 0.7 4 3.57e-08 1.40e-07 6.30e-07 0.4 0.1 0.6
32768 16384 2.0 0.0 2 2.06e-06 2.83e-06 9.19e-06 4.7 0.4 6.3

1048576 524288 2.0 0.0 2 2.33e-07 1.05e-07 3.69e-07 205.4 1.5 208.6
n m ‖ū‖0/m = 0.2

1024 512 2.4 1.1 7 6.16e-08 9.19e-08 4.00e-07 0.2 0.1 0.4
4096 2048 2.5 0.6 4 1.06e-06 3.16e-06 1.04e-05 0.8 0.2 1.2
32768 16384 2.0 0.0 2 1.14e-06 2.10e-06 7.98e-06 8.5 0.2 8.9

1048576 524288 2.0 0.0 2 1.91e-07 7.00e-08 2.97e-07 423.6 2.0 428.3

The first equality in (4.3) follows from AA> = I for all orthogonalized Gaussian and partial DCT matrices,

the second approximate inequality “/” is an improved estimate over the inequality ‖ ∙ ‖ ≤
√
n‖ ∙ ‖∞ in Rn,

and the last inequality follows from the optimality of u to (1.2).

For dense Gaussian matrices A, our code was able to solve large-scale problem instances with more than

8 million nonzeros in A (e.g., n×m = 4096×2048 = 223 > 8×106) in 11 seconds on average over 20 random

instances. For implicit partial DCT matrices A, our code was able to handle problems with matrices of

dimension 219 × 220 in less than eight minutes.

It is easy to see that the solver FPC was itself very efficient at solving the subproblem (1.2) for the

assigned values of μ in (4.2). However, to yield solutions by a single call to FPC with errors as small as those

produced by the Bregman iterations, one needs to use a much smaller value of μ. We tried straight FPC on

the same set of test problems using values of μ that are 100 times smaller than those used in the Bregman

procedure. This produced solutions with relative errors that were more than 10 times larger, while requiring

longer running times. However, we cannot conclude that the Bregman iterative procedure accelerates FPC,

since the best set of parameters for FPC to run with a tiny μ-value can be very different from those for a

normal μ-value, but they are not known to us.

What is interesting is that Bregman iterations yield very accurate solutions even if the sub-problems are

not solved as accurately. In other words, our approach can tolerate errors in pk and uk to a certain extent.
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To see this, notice that the stopping tolerances xtol (relative error between two subsequence inner iterates)

and gtol (violation of optimality conditions) for the subproblem solver FPC are much larger (see Table 4.1

for their values) than the relative errors of the final Bregman solutions. The reason for this remains a subject

of further study.

Finally, to compare the Bregman iterative procedure based on the solver FPC with other recent `1

algorithms such as StOMP, one can refer to the CPU times of FPC in the comparative study [55] and

multiplying these times by the average numbers of Bregman iterations.

5. Extensions. In this section we present extensions of our results in Section 3 to more general convex

functionals J(∙) and H(∙), and describe a linearized Bregman iterative regularization scheme.

5.1. Finite convergence. Let J(∙) and H(∙) denote two convex functionals defined on H, a Hilbert

space. Moreover, we assume that there exists a ũ ∈ H that minimizes H(∙) such that J(ũ) < ∞. Consider

the minimization problem

(5.1) min
u∈H

J(u) +H(u).

Below we study the iterates {uk} of the Bregman iterative procedure Algorithm 1 applied to (5.1) assuming

that a solution always exists in Step 3.

Theorem 5.1. Let J(u) be convex and H(u) = h(Au−f), for some nonnegative convex and differentiable

function h(∙) that only vanishes at 0; and assume that J(∙) and H(∙) satisfy above assumptions. In a finite

number of iterations, Algorithm 1 returns a solution of

(5.2) min
u
{J(u) : Au = f}

under the following conditions: There exists a collection U = {U j} satisfying:

1. H = ∪U∈UU ;

Define Hj := minu{H(u) : u ∈ U j};

2. If Hj = 0, then a minimum of {H(u) : u ∈ U j} can be attained;

3. {U j ∈ U : Hj > 0} is a finite sub-collection;

4. There exists a rule to associate each uk with a U jk 3 uk from U so that if Hjk = 0, then Dp
k

J (u, u
k) =

0⇔ u ∈ U jk .

Theorem 5.1 generalizes Theorems 3.2 and 3.3 in Section 3; therefore, its proof is similar to those of

Theorems 3.2 and 3.3, and the only differences are:

1. In the generalized case, ∇H(uk) = A∗∇h(Auk − f) and pk = A∗
∑k
i=1∇h(Au

i − f).

2. Equations (3.15)–(3.18) need to be replaced by

J(uk) ≤ J(u)− 〈u− uk, pk〉

= J(u)− 〈u− uk, A∗
k∑

i=1

∇h(Aui − f)〉

= J(u)− 〈Au−Auk,
k∑

i=1

∇h(Aui − f)〉

= J(u)− 〈Au− f,
k∑

i=1

∇h(Aui − f)〉.
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3. The last condition in Theorem 5.1 generalizes (3.21) and (3.19).

5.2. Bregman Iterations for Strictly Convex Functions. We now consider a strictly convex J(u) ∈

C2(Ω), for a compact set Ω ⊂ Rn, without the homogeneity assumption (see (5.4) below) that we previously

used; we also assume that the sequence {uk} lies in Ω. We have a unique element

(5.3) p(u) ∈ ∂J(u)

for all u, and, in general,

(5.4) J(u) 6≡ 〈u, p(u)〉.

Again we wish to solve the constrained minimization problem:

(5.5) min
u
{J(u) : Au = f}.

Our procedure will be, as before, the Bregman iterations (3.2) or (3.6).

Theorem 5.2. If ‖A>u‖ ≥ δ‖u‖, δ > 0, then ‖Auk − f‖ decays exponentially to zero with k, and

w = limk→∞ uk solves (5.5).

Proof. Following equation (3.7), we have

(5.6) pk+1 − pk +A>(Auk+1 − f) = 0.

By the strict convexity of J ∈ C2(Ω) and the compactness of Ω, there exist ε > 0, independent of k,

and a positive definite matrix unit: Qk+ 12 with εI ≺ Qk+ 12
≺ 1
ε
I, i.e., both Qk+ 12 − εI and

1
ε
I −Qk+ 12 are

strictly positive definite, for some ε > 0 with

(5.7) pk+1 − pk = Qk+ 12 (u
k+1 − uk).

This leads us to

(5.8) uk+1 − uk +Q−1
k+ 12

A>(Auk+1 − f) = 0,

or

(5.9) (I +AQ−1
k+ 12

A>)(Auk+1 − f) = (Auk − f),

or

(Auk+1 − f) = (I +AQ−1
k+ 12

A>)−1(Auk − f)

= −
k∏

j=0

(I +AQ−1
j+ 12

A>)−1f,(5.10)

and hence

(5.11) ‖Auk − f‖ ≤

(
1

1 + εδ2

)k
‖f‖.
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By the nonnegativity of the Bregman distance, we have, letting ũ satisfy Aũ = f :

J(uk) ≤ J(ũ)− 〈ũ− uk, pk〉

= J(ũ) + 〈ũ− uk,
k∑

j=0

A>(Auj − f)〉(5.12)

= J(ũ)− 〈Auk − f,
k∑

j=0

Auj − f〉

so, by (5.11), taking the limit as k →∞, we obtain

(5.13) J(w) ≤ J(ũ) with Aw = f.

5.3. Linearized Bregman Iterations. In [25], Darbon and Osher combined the fixed-point iterations

(2.2) with Bregman iterations for solving the image deblurring/deconvolution problem:

(5.14) min
u
{TV (u) : Au = f}.

Let J(u) = μTV (u). Their Bregman iterations are

(5.15) uk+1 ← Dp
k

J (u, u
k) +

1

2δ

∥
∥u−

(
uk − δA>(Auk − f)

)∥∥2 , k = 1, 2, . . . ,

which are different from the fixed-point iterations (2.2) by the use of regularization. While (2.2) minimizes

J , (5.15) minimizes the Bregman distance Dp
k

J based on J . On the other hand, (5.15) differs from (3.2) by

replacing the fidelity term ‖Au−f‖2/2 by the sum of its first-order approximation at uk and an `2-proximity

term at uk, which are the last three terms in (2.5). This sum is identical to a constant plus the last term in

(5.15).

The sequence {pk} in (5.15) is chosen iteratively according the optimality conditions for (5.15):

(5.16) 0 = pk+1 − pk +
1

δ

(
uk+1 −

(
uk − δA>(Auk − f)

))
,

so each pk+1 is uniquely determined from pk, uk, and uk+1 at the end of iteration k. By noticing that p0 = 0

and u0 = 0, we obtain from (5.16) that

(5.17) pk+1 = pk −A>(Auk − f)−
(uk+1 − uk)

δ
= ∙ ∙ ∙ =

k∑

j=0

A>(f −Auj)−
uk+1

δ
.

Therefore, {pk} can be computed on the fly. In addition, iterating (5.15) is very simple because it is a

component-wise separable problem.

Motivated by Basis Pursuit, we consider the case for which J(u) = μ‖u‖1. Then, letting

(5.18) vk =
k∑

j=0

A>(f −Auj),
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each linearized Bregman iteration (5.15) after rearrangement yields:

uk+1i ← δ shrink(vki , μ), i = 1, . . . , n,(5.19)

vk+1 ← vk +A>(f −Auk+1).(5.20)

This is an extremely fast algorithm, very simple to program, involving only matrix multiplication and

scalar shrinkage.

In [32] we will discuss this method in detail, both in terms of its convergence and speed of execution.

We have the following key results under the assumption that J ∈ C2 is strictly convex over a compact set

Ω ⊃ {uk} (although μTV (∙) is not strictly convex, it can be approximated by the strictly convex perturbed

functional μ
∫ √
|∇u|2 + ε for ε > 0).

Theorem 5.3. Let J be strictly convex and uopt be an optimal solution of min{J(u) : Au = f}. Then

if uk → w, we have

(5.21) J(w) ≤ J(uopt) +
1

δ
〈w, uopt − w〉

and ‖Auk − f‖ decays exponentially in k if

(5.22) I −
δ

2
AA>

is strictly positive definite.

Proof. We have

(5.23) uk+1 = argmin J(u)− J(uk)− 〈u− uk, pk〉+
1

2δ

∥
∥u− uk + δA>(Auk − f)

∥
∥2

which, by (5.17) and (5.18), becomes

uk+1 = argmin J(u)− J(uk)− 〈u− uk, vk−1〉

+
1

δ
〈u− uk, uk〉+

1

2δ

∥
∥u− uk + δA>(Auk − f)

∥
∥2 .

By nonnegativity of the Bregman distance, we have

J(uk) ≤ J(uopt)− 〈uopt − u
k, pk〉

= J(uopt)− 〈uopt − u
k, vk−1〉+

1

δ
〈uopt − u

k, uk〉

= J(uopt)− 〈f −Au
k,

k−1∑

j=0

(f −Auj)〉+
1

δ
〈uopt − u

k, uk〉.

We will show that ‖f − Auj‖ decays exponentially with j; then the middle term in the last right-hand side

above will vanish and the results follow.

We have

(5.24) pk+1 − pk +
1

δ
(uk+1 − uk) = −A>(Auk − f).
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By the strict convexity of J , there exists a symmetric positive definite operator Qk+ 12 so that

(5.25)

(

Qk+ 12
+
1

δ
I

)

(uk+1 − uk) = −A>(Auk − f).

Then

uk+1 − uk = −

(

Qk+ 12
+
1

δ
I

)−1
A>(Auk − f)(5.26)

and

Auk+1 − f =

(

I −A

(

Qk+ 12
+
1

δ
I

)−1
A>

)

(Auk − f).(5.27)

To have exponential decay in k of ‖Auk−f‖, we need the maximum eigenvalue of (I−A
(
Qk+ 12

+ 1
δ

)−1
A>)

to be strictly less than 1, or equivalently, the minimum and maximum eigenvalues of A(Qk+ 12 +
1
δ
)−1A> to

be strictly positive and less than 2, respectively. The former requirement follows from the strict positive

definiteness of A(Qk+ 12 +
1
δ
)−1A>. To have the latter, we note that A(Qk+ 12 +

1
δ
)−1A> ≺ δAA>, which

follows from the Sherman-Morrison-Woodbury formula; hence, it suffices to have δAA> ≺ 2I, i.e., (5.22).

We comment that the rate of exponential decay in k of ‖Auk − f‖ depends on the value of μ even when

δ satisfies the condition I − δ
2AA

> � 0. Since Qk+ 12 is linear in μ (assuming u
k and uk+1 are fixed), we let

Qk+ 12
= μQk+ 12

. When μ is much larger than δ, (Qk+ 12 +
1
δ
)−1 is dominated by 1

μ
Q
−1
k+ 12

so the minimum

eigenvalue of A(Qk+ 12 +
1
δ
)−1A> diminishes linearly to 0 in μ.

If we let μ be very large, then w approaches a minimizer of ‖u‖1 subject to Au = f . We also have a

simple estimate from [25].

Theorem 5.4. If δA>A < I, then

‖Auk+1 − f‖2 +

(
1

δ
− ‖A>A‖

)

‖uk+1 − uk‖2 ≤ ‖Auk − f‖2.

Proof. Since the Bregman distance used in (5.23) is nonnegative we have

(5.28) ‖uk+1 − uk + δA>(Auk − f)‖2 ≤ ‖δA>(Auk − f)‖2

or

(5.29) ‖uk+1 − uk‖2 + 2δ〈uk+1 − uk, A>(Auk − f)〉 ≤ 0

or

(5.30) ‖uk+1 − uk‖2 + δ‖Auk+1 − f‖2 − δ〈uk+1 − uk, A>A(uk+1 − uk)〉 ≤ δ‖Auk − f‖2

or

(5.31) ‖Auk+1 − f‖2 +

(
1

δ
− ‖A>A‖

)

‖uk+1 − uk‖2 ≤ ‖Auk − f‖2.
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Finally we have a result which typifies the effectiveness of Bregman iteration in the presence of noisy

data. Our argument below follows that of [2].

Theorem 5.5. Let J(ũ) and ‖ũ‖ be finite and I − 2δAA> be strictly positive definite. Then the

generalized Bregman distance

D̃p
k

J (ũ, u
k) = J(ũ)− J(uk)− 〈ũ− uk, pk〉+

1

2δ
‖ũ− uk‖2

diminishes with increasing k as long as ‖Aũ− f‖ < (1− 2δ‖AA>‖)‖Auk − f‖.

Proof. Using (5.24) and the fact that 〈uk+1 − uk, pk+1 − pk〉 ≥ 0, we have

‖pk+1 − pk‖2 ≤ −〈pk+1 − pk, A>(Auk − f)〉

so

‖pk+1 − pk‖ ≤ ‖A>(Aku− f)‖.(5.32)

Also, following [25], we have for any ũ for which J(ũ), ‖ũ‖ are both finite

Dp
k+1

J (ũ, uk+1) − Dp
k

J (ũ, u
k) +

1

2δ
‖ũ− uk+1‖2 −

1

2δ
‖ũ− uk‖2

≤ 〈pk+1 − pk +
1

δ
(uk+1 − uk), uk+1 − uk〉(5.33)

+ 〈pk+1 − pk +
1

δ
(uk+1 − uk), uk − ũ〉.

Using (5.24), the first term on the right side of (5.33) equals

(5.34) δ‖A>(Auk − f)‖2 − δ〈A>(Auk − f), pk+1 − pk〉 ≤ 2δ‖A>(Auk − f)‖2

The second term on the right side of (5.33) equals

(5.35) 〈−A>(Auk − f), uk − ũ〉 = −‖Auk − f‖2 + 〈Auk − f,Aũ− f〉.

Adding (5.34) and (5.35) gives us

Dp
k+1

J (ũ, uk+1) − Dp
k

J (ũ, u
k) +

1

2δ
‖ũ− uk+1‖2 −

1

δ
‖ũ− uk‖2

≤ 2δ‖A>(Auk − f)‖2 − ‖Auk − f‖2 + 〈Auk − f,Aũ− f〉.(5.36)

This means that this generalized Bregman distance D̃p
k

J (u, u
k) between ũ and uk diminishes in k as long

as

(5.37) ‖Aũ− f‖ < (1− 2δ‖AA>‖)‖Auk − f‖

i.e. as long as ‖Auk−f‖ is not too small compared with ‖Aũ−f‖ for ũ, the “denoised” solution. Of course if

ũ is a solution of the Basis Pursuit problem, then this generalized Bregman distance monotonically decreases

in k.

6. Conclusion. For solving the Basis Pursuit problem (1.1), which is traditionally formulated and

solved as a constrained linear program, we show that a simple Bregman iterative scheme applied to its
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unconstrained Lagrangian relaxation (1.2) yields an exact solution in a finite number of iterations. Using

a moderate value of the relaxation penalty parameter μ, very few iterations are required for most problem

instances.

Solving (1.1) via (1.2) enables one to use recently developed fast codes designed to solve (1.2) that

require only matrix-vector products and thus take advantage of available fast transforms. As a result, we

are able to solve huge compressed sensing problems on a standard PC to high accuracies.

Our discovery that certain types of constrained problems can be exactly solved by iteratively solving a

sequence of unconstrained subproblems generated by a Bregman iterative regularization scheme is new. We

extend this result in several ways. One yields even simpler iterations (5.19) and (5.20). We hope that our

discovery and its extensions will lead to efficient algorithms for even broader classes of problems.
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