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Experiments of particle-laden inclined film flow [Zhou, Dupuy, Bertozzi, and Hosoi, Phys. Rev.
Lett. 94 (2005)] have displayed different settling behaviors depending on the particle concentration
¢ and angle of inclination 6, in which particles accumulate on the substrate or near the advancing
contact line, or remain mixed. Zhou et al. presented a lubrication model that captures the qualitative
behavior of the high-¢, high-0 regime, characterized by a particle-rich ridge near the contact line,
but cannot explain the other observed settling behaviors. This work presents a model in which
¢ varies through the film depth, unlike Zhou et al.’s model. Average velocities for the liquid and
particulate phases are computed, and the implications for phase separation are discussed. It is
found that the equilibrium depth profile of ¢ is more important than gravitational settling in the
down-slope direction in determining phase separation. The predicted settling behavior is directly

compared with Zhou et al.’s experimental data.

PACS numbers: 47.15.gm, 47.55.Kf, 47.55.nd, 47.57.ef

I. INTRODUCTION

Film flow of particle-laden liquid occurs in many im-
portant contexts, from geophysical flows such as erosion
and turbidity currents [1] to industrial processes includ-
ing papermaking and the application of fertilizers. While
sophisticated constitutive models have been developed
for general suspension flow, these models are generally
not compatible with the lubrication approximation used
for single-phase film flow. As a result, the mathematical
description of particle-laden films remains a challenging
problem.

The complexity of such films is evident in a recent
study by Zhou et al. [2] of flow on an incline. They
observed three distinct flow types, characterized by the
relative motion of the liquid and particulate phases. At

FIG. 1: Particle-rich ridge in an inclined film experiment.
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low inclination angles a and particle volume fractions
¢ the particles settle to the bottom substrate and are
removed from the flow. At intermediate o and ¢ the sus-
pension appeared well mixed for the duration of their ex-
periment. At larger o and ¢ the particles were observed
to accumulate near the advancing contact line, forming
a pronounced ridge up to several times thicker than the
upstream film. They also reported that the growth of the
fingering instability, which is known to deform the con-
tact line in many film problems, is somewhat suppressed
in the third regime.

Zhou et al. also introduced a lubrication model for this
unique particle-rich ridge regime, which was revised and
analyzed in [3]. This model attributes the aggregation
to the buoyant force on the denser particles, with the
relative velocity specified by a hindered settling function
f(#) [4]. The bulk motion is determined by balancing the
gravity force with the viscous stress, which is expressed
in terms of an effective viscosity u(¢) [5]. Thus particles
move downstream slightly faster than the fluid and accu-
mulate near the contact line, where the larger viscosity
makes the film thicker.

In order to depth-average the Stokes equations for the
lubrication approximation, the dependence of ¢ on the
coordinate z normal to the plane must be specified. The
model of Zhou et al. assumes ¢ is independent of z,
which prohibits particles from settling to the substrate.
They use this assumption for simplicity, but note it is rea-
sonable because shear-induced diffusion can oppose the
settling of particles in the z direction, possibly result-
ing in a stable depth profile. Such an equilibrium is the
likely explanation why particles do not always settle out
of the flow as in the low-a, low-¢ regime. Zhou’s assump-
tion has the consequence that the particle-rich ridge by
the mechanism described above occurs in the lubrication
model regardless of a and ¢.

This letter proposes a model that balances shear-
induced migration with settling to explicitly determine



the depth profile of ¢, which is necessary in order to de-
scribe particles settling to the substrate and to explain
the existence of distinct settling behaviors. The specific
depth profile also has a large impact on the relative ve-
locities of the two phases: the phase-averaged velocity of
the mixture depends strongly on z, so a given phase will
move faster when it is concentrated near the free surface
rather than near the substrate. It is found that at an
equilibrium profile this effect represents a larger contri-
bution to the relative velocity than does settling in the
flow direction, which suggests a three-dimensional treat-
ment reflecting the stratified nature of the flow may be
necessary to accurately describe the ridge phenomenon.

Similar models have been studied before, notably by
Schaflinger et al. [6] and Timberlake and Morris [7].
Shaflinger et al. used the “diffusive flux” model for shear-
induced diffusion introduced by Leighton and Acrivos [8],
which states that the volume flux of particles is given by

Ny = —a*4D(¢)V, (1)

where 7 is the shear rate, a is the particle radius, and the
dimensionless diffusion coefficient was found by Leighton
[9] to be well approximated by D(¢) = $¢*(1 + 3¢589).
The use of the scalar shear rate restricts this model to
simple shear flows, which nonetheless include film flow
where ¥ = dv/dz and v is the velocity of the mixture.
Schaflinger et al. balanced this flux with that due to
gravitational settling in the z direction, which they ap-
proximated with a hindered settling function. This con-
dition along with the Newtonian stress balance allowed
them to derive a system of two first-order ordinary dif-
ferential equations for the concentration and shear stress,
which they solved numerically.

Two important features of the solutions can be de-
duced from the form of (1). Because the flux is propor-
tional to the shear rate, the vanishing stress at the free
surface z = h ensures there is no diffusive flux to bal-
ance settling, and therefore ¢(h) = 0 for all solutions[14].
Also, the diffusive flux must be always directed upward
in order to balance gravity, which implies by (1) that
do/dz < 0.

Timberlake and Morris included theory for the depth
profile of concentration in their experimental paper on
film flow of a neutrally buoyant suspension. Their de-
scription uses the “suspension balance” model of Nott
and Brady [10] for particle migration. That more rigor-
ous model calculates a “temperature” measuring fluctu-
ations in particle velocities, which is generated by shear,
dissipated by viscous stress, and diffuses through an ef-
fect related to the finite particle size. This last property is
the most significant difference between the diffusive flux
and suspension balance models, implying that particle
migration depends nonlocally on the shear rate, which in
this case allows a small nonzero concentration at the free
surface. Otherwise the two models generally give similar
predictions [11]. Since Timberlake and Morris considered
neutrally buoyant particles, ¢ increases with z, which is
also confirmed by their experiment. Rather than assum-

ing the film is always in diffusive equilibrium, they retain
the x coordinate in the flow direction, and their calcula-
tions indicate a distance on the order of 200h is necessary
to reach equilibrium. This factor decreases strongly with
the bulk concentration and is proportional to (h/a)?.

II. MODEL

This work will use the diffusive flux model for simplic-
ity, and proceed similarly to Schaflinger et al., but differ
crucially by using an extra term in which the particle flux
opposes gradients in the shear rate, in addition to oppos-
ing concentration gradients as in (1). This effect was
introduced in [8] and quantified in [12] in the expression
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for the particle migration, where the best fit with ex-
periment was obtained with the values K. = 0.43 and
K, = 0.65 for the two constants. Equation (2) corre-
sponds to a particle flux
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where the shear rate 4 has been eliminated in favor of
the shear stress o = u(¢)4.

For a flat film on an incline, equilibrium is reached
when this flux balances that of gravitational settling
in the z direction. Settling rates are commonly ex-
pressed as a product of the velocity of a single sphere
vs = —(2/9)Apg/ s by a hindered settling function f(¢)
for which many empirical formulas exist. Here p and puy
are the density and viscosity of the fluid, g is the grav-
itational constant, and A = (p, — p)/p is the density
difference for particles of density p,. In this case it is
convenient to follow Schaflinger et al. and use the hin-
dered settling function f(¢) = (1 — ¢)/u(¢), leading to
the settling flux

P _gaQApg cosa (1 — (;5)7 ()
9 oy 1(®)
where « is the angle of inclination.
The balance of flux F,, + F; = 0 then takes the form
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where the gradients have been replaced primes denoting
differentiation by z. Substituting the standard formula
w(@) = pup(l — ¢/dm) =2 [5] with the maximum packing
fraction ¢,, ~ 0.67 and differentiating yields
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FIG. 2: The function ¢*(a) determining whether particles
tend toward the top or bottom of the film. Overlaid are Zhou
et al.’s experimental parameters for which particles settle to
the substrate (O, white), remain well mixed (A, light), or
accumulate in a ridge (<, dark). Experimental data are from
figure 2 of [2].

where z and ¢ have now been nondimensionalized using
the depth of the film h and the unit of stress (pg/h) sin a.

For a flat film there is no capillary force, so the pressure
can be set to zero at the free surface z = 1, and is assumed
to be hydrostatic in the suspension. The nondimensional
shear stress then satisfies the equation

o' = —(1+ Ag). (7)

Equations (6) and (7) constitute the system to be stud-
ied here, with the understanding that (6) is replaced
by ¢ = 0 when ¢ = 0 or ¢ = ¢,, to ensure pure
fluid and packed particles are admissible solutions and
to keep the concentration within its meaningful range.
The physical boundary conditions both involve the stress:
0(0) = (1 4+ A¢p) and o(1) = 0, where ¢ is the im-
posed average concentration. Thus for these two equa-
tions there is only a one-parameter family of physically
meaningful solutions, parameterized by ¢g. In practice
this system was easiest to solve by shooting with a Runge-
Kutta method from z = 0 while adjusting the value of
#(0). Once o and ¢ are determined, the mixture velocity
can be calculated using dv/dz = 4 = o(2)/p(é(z)) and
v(0) = 0.

III. SOLUTIONS

Since particle migration in this model does not strictly
oppose the concentration gradient, ¢ is not constrained to
decrease with z as in the work of Schaflinger et al. The
lack of a migration flux at the free surface however is
general to the diffusive flux model, and still applies here,
forcing either ¢(1) = 0 or ¢(1) = ¢y,. Since o > 0, it is
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FIG. 3: Depth profiles of ¢ and v for two average concen-
trations at a = 45°. Bulk concentration ¢o = 0.25: veloc-
ity (dot) and concentration (long dash), bulk concentration
¢o = 0.45: velocity (short dash) and concentration (solid).
Velocities are scaled by the average velocity of a homogeneous
film at the same concentration. With this rescaling the aver-
age velocities at ¢o = 0.25 of the particle and liquid phases
are 0.57 and 0.70, and at ¢o = 0.45 the velocities are 1.41 and
1.33 respectively.

also apparent from equation (6) that ¢(z) is monotone,
because 0@’ is determined by a function of ¢ only with a
single unstable root ¢* = ¢*(«) in its allowable domain
(between 0 and ¢,,). There are then two possibilities:
$o > ¢(O) > ¢* with ¢(1) = Qm, Or ¢y < ¢(0) < Om
with ¢(1) = 0.

In the latter case, the particulate phase is located pref-
erentially near the bottom of the film and (because v(2)
is always increasing) moves slower than the fluid on aver-
age, both of which are necessary conditions for the par-
ticles to settle out of the flow. It seems natural then to
associate ¢g < ¢*(a) with this regime in Zhou et al.’s
experimental work [2]. The case ¢ > ¢*(«) should then
correspond to the particle-rich ridge regime, as the par-
ticles do not settle to the bottom and move faster on
average than the fluid, even without including the set-
tling velocity in the flow direction. While there is no
obvious reason why there should be a regime (other than
the single solution ¢ = ¢*) where the fluid and particles
move at the same velocity, it may be that experiments in
which the suspension stayed well-mixed had ¢y ~ ¢* and
the relatively small difference between the two velocities
did not have time to produce noticeable segregation on
the experimental time scale.

Plotted in figure 2 is the calculated transition point
¢* () and the experimental data from [2]. As expected,
the transition lies within the well-mixed regime. This
calculation involves no fitting parameters, and the agree-
ment is remarkable considering the simplifying assump-
tions of one-dimensional, time-independent flow. The
position of the curve ¢*(«) also suggests that the ex-



FIG. 4: The ratio vrei/vav = (vp — vf)/(Pvp + (1 — @)vy) of
velocities relevant for formation of the particle rich ridge. Ve-
locity difference due to the stratified flow as described above
(dash), and velocity difference due to direct gravitational set-
tling in the flow direction as described by Zhou et al. (solid).

perimentally observed well-mixed films mostly lie in the
¢po < ¢*(a) range, and therefore would likely result in
particles settling out of the flow were the experiments
continued longer.

Examples of the two cases (¢pg > ¢* and ¢y < ¢*) are
shown in figure 3 for a = 45°, ¢*(a) &~ 0.35. The effect
of the increasing concentration profile for ¢y = 0.45 is
to flatten the velocity near the top from the parabolic
shape of an unstratified film, while for ¢¢9 = 0.25 the ab-
sence of particles near the top increases the shear in this
area. Also of interest is the fact that when d¢/dz > 0
both phases move faster than the velocity of an unstrat-
ified film, because of the high-shear, low-¢ region at the
bottom and the low shear at the top where v is at its
greatest. Both phases are slower when d¢/dz < 0.

In figure 4 the relative velocity due to stratification is
compared with the in-plane settling velocity used in [2]
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and [3] at o = 45°. Specifically the vertical axis measures
the ratio vyer/vay = (vp —vy)/(Pvp + (1 — @)vy) that de-
termines the accumulation of particles in an experiment
limited by the length of the channel. For concentrations
greater than 0.37, stratification has a larger effect than
in-plane settling. Since the particle-rich ridge occurs at
rather high concentrations, the stratified flow appears to
be the more important cause of the ridge.

A description of the ridge evolution including strati-
fication is possible within the lubrication context if the
film is assumed to be always in equilibrium between set-
tling and migration, by using the calculations of fig-
ure 4 to determine the relative velocity from ¢. This
would result in a system similar to that in [3], which
for length scales greater than a modified capillary length
describes a ridge that grows linearly with time. If this
route is followed, care must be taken to ensure the length
scale is also large enough to justify the equilibrium as-
sumption. The experiments and two-dimensional calcu-
lations of Timberlake and Morris [7] indicate the distance
travelled before reaching equilibrium can be as large as
tens of centimeters, even for an experiment with fairly
large particles such as [2]. At shorter length scales,
such a two-dimensional model may therefore be neces-
sary, which would generalize the above results by allowing
non-equilibrium concentration profiles. The most likely
effect of non-equilibrium physics would be to lengthen
the timescale of phase separation, making the well-mixed
regime more likely for length-limited experiments.

This new theory demonstrates the importance of par-
ticle migration in determining the flow, and can pro-
vide a starting point for studying effects such as ridge
formation, particle deposition in the clear fluid regime,
the contact-line instability, or span-wise particle banding
[13].
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