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We derive a lubrication model describing gravity-driven thin film flow of a sus-

pension of heavy particles in viscous fluid. The main features of this continuum

model are an effective mixture viscosity and a particle settling velocity, both de-

pending on particle concentration. The resulting equations form a 2× 2 system

of conservation laws in the film thickness h(x, t) and in φh, where φ(x, t) is the

particle volume fraction. We study flows in one dimension under the constant

flux boundary condition, which corresponds to the classical Riemann problem,

and we find the system can have either double-shock or singular shock solutions.

The double-shock solutions correspond to a particle-rich ridge that has been ob-

served in such films. We present the details of both solutions and examine the

effects of the particle settling model and of the microscopic length scale b at the

contact line. The instability of the contact line is also examined through linear

stability analysis, and it is found that the particle-rich ridge makes the contact

line somewhat less unstable, while shifting the most unstable mode to a longer

wavelength. A separate model is introduced which considers the balance between

shear-induced migration and particle settling due to gravity. This model allows
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the prediction of the qualitative features of the flow, i.e. whether particles ac-

cumulate in a ridge or settle to the substrate, in terms of the inclination angle

α and bulk concentrations φ0, and this prediction is compared with published

experimental data.

xv



CHAPTER 1

Introduction

The flow of thin films is important to many fields in science and engineering, such

as the fluid lining of lungs, contact lenses, geophysical salinity currents, paint and

other liquid coatings. From a fundamental perspective, thin films also provide an

important experimental configuration for studying interfacial phenomena, such as

capillarity, surface energy, and wetting. The mathematical and physical complex-

ity of these phenomena has helped to motivate many theoretical, computational,

and experimental studies of thin films. This literature is summarized in section

1.1.

Flows of complex materials such as mixtures are much less understood. Treat-

ing each particle in a large suspension explicitly is clearly undesirable, as the prob-

lem quickly becomes enormous as many microscopic variables are introduced.

However continuum modeling of mixtures has proved challenging. The main

components of such a model are phase segregation, and a large-scale constitutive

description in terms of the phase composition. Both of these questions have been

extensively explored by theoretical, computational, and experimental methods,

resulting in several continuum models. These models are described in section 1.2.

Film flow of suspensions has received far less attention in the literature. In

some sense it can be seen as a special case of suspension flow, and therefore

represents an application with which to test the predictions of suspension models.

However, the application of existing theories to film flows is not straightforward.
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Film flows of Newtonian fluids have already proved to be a rich mathematical

problem, and for particle-laden films one can expect all these complexities as well

as others caused by material inhomogeneity.

This dissertation consists of three main results concerning particle-laden thin

films. The remainder of this chapter is a summary of the relevant background

material. Chapter 2 derives a model for particle-laden films similar to that in-

troduced by Zhou et al. [ZDB05] and Zhou [Zho04]. In chapter 3 the shock

solutions for this model are studied and some conclusions are drawn about the

role of particle settling. A second result appearing in chapter 4, describing the

contact line instability of such a film, was obtained through numerical simulations

carried out by Oleg Alexandrov. This work uses a form of the equations that has

been adapted to include horizontal particle diffusion. A third result, described in

chapter 5, deals with the role of vertical particle diffusion in the selection among

three qualitatively different settling behaviors that have been observed.

1.1 Thin Films

Before summarizing the literature of thin films, it is helpful to inspect the simplest

model for film flow. In this case, the motion is determined simply by a balance

between gravity and viscous stress. This can be seen by applying the standard

lubrication approximation as follows. Consider a film on an inclined plane as in

figure 1.1 with surface given by z = h(x, y, t). Assuming a typical height H is

much smaller than the length scale L in the plane on which the film varies, the

Stokes equations in the plane are to leading order in H/L

∇p = µ
∂2u

∂z2
+ (ρg sinα)x̂, (1.1)

2
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!

u(x,t)

Figure 1.1: Geometry of the thin film.

where α is the angle the plane makes with the horizontal. The other assumption

needed is that the variation of pressure with depth is simply hydrostatic, i.e.

p(z) = p(h) + (ρg cosα)(h− z), (1.2)

which ensures the fluid velocity is negligible in the z direction. The pressure

at the free surface is specified as a boundary condition, it can be taken to be

constant if surface tension is unimportant, otherwise it is given by the Laplace-

Young condition

p
(
x, y, h(x, y)

)
= p0 − γ∇2h(x, y) (1.3)

with p0 representing the atmospheric pressure. The second boundary condition

is the no-slip condition at z = 0: u(x, y, 0) = 0. These conditions allow equation

(1.1)) to be integrated vertically three times, resulting in the depth-averaged

velocity

ū =
h2

6µ

[
γ∇∇2h− (ρg cosα)∇h+ (ρg sinα)x̂

]
. (1.4)
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Equation (1.4) expresses the local balance of forces, and together with the in-

compressibility condition it determines the evolution:

∂h

∂t
+∇ · (hū) = 0. (1.5)

The lubrication approximation thus allows the Stokes equations for the three

components of the fluid velocity, defined on an evolving three-dimensional do-

main, to be replaced with the single equation (1.5) for the film thickness on a

fixed two-dimensional domain.

If both surface tension and the normal component of gravity are neglected,

equation (1.5) reduces to

∂h

∂t
+
g sinα

ν

∂

∂x
h3 = 0. (1.6)

Equation 1.6 was used by Huppert in 1982 as a basic model for film flow [Hup82].

It has the form of a conservation law, which can be solved by the method of

characteristics. Huppert found in this way the solution for a finite volume of

fluid, which is valid for t large enough that the initial distribution of fluid becomes

unimportant. This solution is given by

h =

(
ν

g sinα

x

t

)1/2

(1.7)

for

0 ≤ x ≤ xN =

(
9A2g sinα

4ν
t

)1/3

, (1.8)

and h = 0 for x out of this range. The discontinuity at x = xN is known as a

shock, and the theory of such discontinuous solutions will be discussed in section

(reference to cons. law section).

As suggested by Huppert, the discontinuity signifies a region where, since h

varies on a shorter length scale, the lubrication approximation is less accurate

4



and forces such as capillarity become important. However, in experiments he

reported in the same paper the front position was in good agreement with the

values of xN from the model, suggesting that a detailed understanding of the

front region may not be necessary in order to describe the bulk flow.

Huppert also observed in these experiments that a planar film, after advanc-

ing for a time, becomes unstable at the front, and the interface forms a nearly

periodic wavelike pattern. He compared the flows of two silicone oils with ap-

proximately the same surface tension and differing viscosity, and concluded the

wavelength of the instability is independent of the fluid’s viscosity. Comparing

one of these with glycerine, with approximately the same viscosity and greater

surface tension, he observed that glycerine displayed both a longer wavelength

and a differently shaped instability: silicone oil resulted in an approximately

triangular wave pattern, while glycerine formed a long thin finger-like shape.

Huppert also investigated the wavelength of the instability, and gave a scal-

ing argument that the wavelength should be proportional to (A1/2σ/ρg sinα)1/3,

where A is the cross sectional area of the fluid. His experimental data was con-

sistent with this scaling, and he was able to extract a proportionality constant of

7.5.

Huppert identifies two elements that are missing from this analysis: surface

tension, and contact line effects. Modeling surface tension is straightforward, but

contact lines, as the next section will show, present a greater challenge.

1.1.1 Contact Lines

Precisely, the contact line is the curve along which the solid, meets two separate

fluids, typically air and a liquid. In an article in 1970, Huh and Scriven [HS71]

provided the first full fluid dynamic treatment of the contact line problem. Ear-
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Figure 1.2: Geometry of the contact line.

lier studies by physical chemists, they noted, were concerned with measuring the

contact angle (see figure 1.2). According to a simple thermodynamic argument,

which assigns to the solid-vapor, solid-liquid, and liquid-vapor interfaces ener-

gies γsv, γsl, and γlv per unit area, a static contact angle θ at thermodynamic

equilibrium must satisfy the Young-Dupré equation:

γlv cos θ + γsl = γsv, (1.9)

which minimizes the total interfacial energy [You05]. However this equation was

not verifiable, since accurate measurements of solid surface energies were not yet

available. Measurements of the contact angle itself lacked reproducibility as well,

due to an effect known as contact angle hysteresis: θ takes larger values when the

fluid is advancing (or has recently advanced), smaller values when it is receding

(or has recently receded), and there exists a range of stable angles at which a

contact line may remain stationary. They also point out that the contact angle

can depend on the level of magnification at which it is measured, and in some

6



circumstances a microscopic film can develop beyond the apparent location of

the contact line.

Nonetheless, the contact angle appears to be an essential parameter in de-

scribing the geometry of contact line motion. In their model, Huh and Scriven

assumed a constant contact line speed, a constant contact angle, and chose all in-

terfaces to be planar. With these assumptions, they solved the Stokes equations

for Newtonian fluids in both fluid domains, subject to the following boundary

conditions: equality of the fluid and solid velocities at the fluid-solid interfaces,

and continuity of the fluid velocity and tangential stress across the fluid-fluid

interface. These conditions are sufficient to determine a single solution, and Huh

and Scriven present a closed-form expression for this solution in terms of the

contact angle and the relative viscosities of the two fluids. The velocity, however,

is undefined at the contact line itself, and they also point out that this solution

implies an infinite force exerted by the fluid on the solid. The conclude that the

model cannot therefore be valid, and claim the no-slip boundary condition at the

fluid-solid interfaces, manifested in the matching of the tangential fluid velocity

to that of the solid, is responsible for this paradox.

In 1974 Dussan V. and Davis extended this fluid dynamical treatment of

the contact line problem. They analyzed the singularity under more general

conditions, without any assumptions about the constitutive behavior of the fluids

and solid, the shape or energy properties of the interface, or 2-dimensionality

of the flow. Their basic assumption was that the either points on the fluid-

fluid interface are mapped onto the contact line by the evolution, or vice versa,

i.e. the forward or the backward streak line emanating from the contact line

coincides with the fluid-fluid interface. They also worked with a generalized no-

slip condition, in order to deal with discontinuous velocities, that states that a
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fluid element can come in contact with at most one point on the solid boundary for

all time, without requiring the element to remain on the boundary after contact

is made. They then proved that the opposite (backward or forward) streak line

lies in the interior of one fluid domain, while the other fluid displays what they

described as a “rolling” motion. They also performed experiments with dyed

fluids that demonstrated precisely this flow pattern.

Furthermore, they showed that under these conditions the velocity must be

multi-valued at the contact line, and for Newtonian fluids the force exerted on

the solid must be infinite. Thus the paradox is significantly more general than

the case studied by Huh and Scriven. Both Huh and Scriven and Dussan V.

and Davis point out that a modified boundary condition at the solid interface

allowing some degree of slip would alleviate the singularity. Dussan V. and Davis

also suggest that the fluid may also become non-Newtonian near the contact line,

and since the singularity is logarithmic in the distance from the contact line, this

effect may only be needed at extremely short length scales.

Much progress has been made since these early papers, though a summary of

the entire field is beyond the scope of this introduction. The problem from the

fluid mechanics perspective, of choosing appropriate boundary conditions for the

Stokes equations, remains complex, and practical models are typically not derived

from first principles. A 1985 review article by de Gennes [de 85] describes how

the above paradoxes have been explained. Contact angle hysteresis has been

attributed to imperfections in the solid, which tend to “pin” the contact line at

defect locations.

The energy paradox is best understood in the case of “completely wetting”

materials, in which the spreading energy

S = γSV − γSL − γLV (1.10)
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is positive. The subscripts S, L, and V refer to the solid, liquid, and vapor phases.

It is then energetically favorable for the film to coat the entire surface, so long

as this layer is thick enough that continuum theory, and hence the bulk surface

energies, make sense. An equilibrium thickness is determined by van der Waals

forces, long-range intermolecular forces, between the liquid and solid. Near a

moving contact line, a film will transition from a wedge shape with a small positive

contact angle, such as studied by Huh and Scriven and Dussan V. and Davis, to

a nearly flat precursor film, at approximately this equilibrium thickness. Typical

precursor thicknesses are on the order of 10 nanometers. Finally, the true contact

line at the tip of the precursor will avoid the singularity described by Dussan V.

and Davis, because the slowly thinning precursor will ultimately reach a length

scale at which continuum models break down. (Individual molecules, of course,

can slip.) The considerable energy dissipated in the viscous stress of the the

precursor flow is supplied by van der Waals forces, which are a manifestation of

the energy S released by spreading.

Polymer liquids, including the silicone oils that are popular with experimen-

talists due to their readily controlled viscosity, also display significant slip at

the solid boundary. Slip models are commonly expressed by a mixed boundary

condition for the tangential velocity ut of the form

ut = b
∂ut

∂ν
, (1.11)

where ν is a coordinate normal to the boundary and b is a modeling parameter.

This can be interpreted as letting the linear extrapolation of the velocity vanish

at a distance b past the boundary, and b is therefore known as the slip length

or extrapolation length. Experiments by Léger et al. [LHM97] find slip lengths

of 1 micrometer and higher for silicone oils. The effect is thought to be caused

by the straightening near the boundary of the molecular chains, which in bulk
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flow are highly tangled, contributing to the material’s high viscosity. As noted

by both Huh and Scriven and by Dussan V. and Davis, a slip boundary condition

removes the stress singularity at a contact line. Thus both slip and the precursor

film are equally accurate explanations of the energy paradox for polymer liquids.

As discussed in the following section, models for moving contact lines commonly

include one but not both of these effects, introducing the minimum amount of

complexity needed to avoid a stress singularity.

1.1.2 Advancing Films

An early model for a film problem involving an advancing contact line was intro-

duced by Greenspan in 1977 [Gre78]. He considers the one-dimensional spreading

on a horizontal surface of both an axisymmetric drop and a planar sheet similar

to that of Huppert. This model incorporates a slip length β = α/3h, with α

of the order 10−10cm2, thus slip becomes significant only near the contact line.

Assuming surface tension, rather than gravity, is the dominant driving force,

Greenspan derives the equation

∂h

∂t
+

σ

3µ
∇ ·

[
h(h2 + α)∇∇2h

]
= 0 (1.12)

for the film thickness h(x, y, t). Specifying the slip in the interior of the fluid

domain does not provide a boundary condition at the contact line, so he also re-

quires the normal velocity of the boundary is proportional to the deviation of the

dynamic contact angle θ = arctan |∇h| from its static value θs, motivated by pub-

lished experimental data for the case |θ−θs| � θs � 1. He then finds that leading

order solutions for small values of a modified capillary number ε = 3µκ/θ2σ have

constant curvature, so axisymmetric drops take the form of a spherical cap. The

nondimensional radius a(t) evolves by

ȧ(t) = 1/a3 − 1, (1.13)
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relaxing to the equilibrium radius a = 1. The completely wetting situation corre-

sponds to the limit a� 1, and the solutions scale as (t+c)1/4 with c depending on

the initial data. The corresponding one-dimensional problem describes a straight

ridge spreading into a planar film. The equation becomes

ȧ = 1/a2 − 1, (1.14)

so that a scales like (t+ c)1/3 for completely wetting films. This is the same time

scaling that Huppert found for the gravity-driven film on an incline, even though

both the driving forces and the shape of the film differ.

A study by Silvi and Dussan V [SD85] probed the instability observed by

Huppert, by distinguishing between surface tension and contact line effects. They

repeated the Huppert experiment using a single fluid, glycerin, and two surfaces

made of glass and Plexiglas, so that any differences can be attributed to the

contact line physics and not to surface tension. They found the same two insta-

bility patterns, the sawtooth pattern occurring on glass and the fingering pattern

occurring on Plexiglas. Comparing their results with those of Huppert, they con-

cluded that the fingering patter occurs when the contact angle is large, including

glycerin on both plastic surfaces, and the sawtooth pattern occurs for small con-

tact angles, including glycerin on glass and silicone oil on Perspex. Their results

were also consistent with Huppert’s relation between the surface tension coeffi-

cient and the wavelength of the instability, suggesting that surface tension is the

initial cause of both instabilities.

A subsequent paper by Schwartz analyzes the same problem numerically. The

simulations begin with a mound of fluid h(x, y), which evolves by the lubrication

equation

ht = ∇ ·
[
h3(cosα∇h−B−1∇∇2h− i sinα)

]
, (1.15)

where B = ρgL2/σ is a Bond number and L is a characteristic length scale. The
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equation is solved in conservation form, and boundary cells are given a nonzero

flux only from adjacent interior cells, in order to model a no-slip condition at

the side wall. This flux does however permit the contact line to advance at

the boundary. This equation does not include slip, nor did Schwartz explicitly

introduce a model for the contact line, rather he simply solved the equation at

every cell with h = 0 for dry regions, which he suggests is appropriate for a

completely wetting flow.

The resulting numerical solutions show a saw-tooth instability pattern similar

to that which Silvi and Dussan V linked to completely wetting experiments.

Schwartz observed this instability growing both from the perturbation imposed

by the side wall, and in simulations with an imposed perturbation and no wall,

indicating that is was not merely a wall effect. He further showed that the

instability requires surface tension: a series of simulations with B−1 = 0 failed to

develop any instability.

Troian et al. studied the contact line instability of a vertical film by posing

a matched asymptotic problem [THS89]. For the y-independent base state they

began with Huppert’s solution for the region away from the contact line (outer

region), and defined a quasi-steady inner region where surface tension is signif-

icant. They posed an asymptotic problem for an inner solution h(ξ) such that

the film height is given by H(x, y, t) = HN(t)h(ξ, t). The inner solution scales

as HN(t), the nose height from the outer solution, and the inner length scale is

given by l = HN(3Ca)1/3 in terms of the capillary number Ca = (µ/σ)dXN/dt.

The matching condition with the outer solution is that h(∞) = 0, and they re-

lieved the stress singularity at the contact line by matching to a precursor film

of thickness bHN . The equation they derived for the inner region,

h2(1− hξξξ) =
1− b3

1− b
− (1 + b)

b

h
, (1.16)
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was solved numerically, and solutions were found to have a pronounced hump

that depends weakly (logarithmically) on the value of b. There are also weak

oscillations as the hump decays to the outer value of 1. Thus their model requires

the parameter b that is not known a priori, though an estimate of the order of

magnitude may be sufficient for many purposes.

They next studied the linear stability of periodic perturbations in the y direc-

tion. The looked at two-dimensional solutions for which the contact line structure

is displaced a distance ξB(ζ, t) = −A(ζ)B(t) from the base state ξ = 0, where

ζ = y/l is the scaled y coordinate. Assuming a sinusoidal form for A, they cal-

culated the linearized growth rate for the amplitude B � 1, and found that the

perturbations grow at long wavelengths. They also calculated the most unstable

wavelength to be about 14l, which is fairly close to the value 18l they estimated

from Huppert’s data.

It was noted by Schwartz, Troian et al, and others that the hump that appears

behind the contact line seems to be associated with the onset of instability. Mo-

tivated by this insight, Goodwin and Homsy [GH91] to studied the hump in more

detail. They derived a first model for this region by the principle that specifying

a contact angle will supply the needed information regarding the physics of the

contact line, eliminating the need for any unknown parameters. Working under

the assumption of small contact angles φ and small capillary number Ca = Uµ/γ,

they considered the limit tanφ → 0, (tan3 φ)/Ca → 1, and scaled the problem

accordingly so that the contact angle boundary condition becomes hx = −1 at

x = 0. They also incorporated slip at the solid boundary y = 0 of the form

3u = S(h)uy −
(
1 + S(h)

)
(1.17)

for an unspecified function S, where y is the coordinate normal to the plane.

Applying the lubrication approximation, they find that the surface satisfies the
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equation

hxxx =
1 + S(h)

S(h)h+ h2
− 1. (1.18)

By choosing S(h) = O(h−1) as h→ 0 they find the stress singularity is removed,

similar to the analysis of Greenspan. However, the derivative of the curvature

is infinite at the contact line, which under the lubrication approximation implies

infinite fluid velocities, and they conclude that the lubrication approximation is

therefore inappropriate for this region.

Goodwin and Homsy note that the failure of the lubrication approximation

can be expected as the horizontal and vertical length scales become comparable,

which happens near the contact line for finite contact angles. Therefore they

introduce a Stokes flow problem for a region near the contact line in which both

x and y are scaled as hN(t), the height determined from the outer region by

Huppert’s calculation. Using a boundary integral numerical method, they were

able to solve for the quasi-steady Stokes flow in a moving reference frame following

the contact line, and report the results of simulations for a wide range of φ, Ca,

and inclination angle α. In the fixed volume experiment conducted by Huppert,

the capillary number of the hump region decreases with time, corresponding in

Goodwin and Homsy’s results to a growing hump relative to the surrounding film.

This is consistent with the hypothesis that a large hump, with its associated high

curvature, is responsible for the instability.

An experimental study by Jerrett and de Bruyn [Jd92] investigated the speed

of the film front before and after the onset of instability. They found the front po-

sition before the instability was well described by a power law function of time,

however they observed exponents significantly greater than the value 1/3 pre-

dicted by Huppert: about 1/2 for heavy mineral oil (HMO) and 2/3 for glycerin

on Plexiglas. Data for very small inclination angles (α . 5◦) suggests that this
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anomalously large exponent is a transient that eventually slows to 1/3. They note

that Huppert’s theory is valid for long enough times that the initial conditions

do not matter, and infer from the larger exponent that the initial conditions are

still relevant for their experiment.

Once the instability appeared they observed a finger-shaped pattern for both

fluids. The unstable front was described in terms of the positions of finger tips

and troughs as a function of time, with the tips continuing to move at a power law

rate with approximately the same exponent as the stable film, and the troughs

moving at a linear rate after an exponential transient. Since experimental flows

are well beyond the range of linear perturbations, they find there is no theory with

which to compare the fingering results. A heuristic discussion, though, suggests

that the sawtooth shape results from both small contact angles (as predicted by

Silvi and Dussan V) and weak dependence of the advancing contact angle on the

advancing velocity, while the fingering pattern is associated with the opposite

properties.

Subsequently de Bruyn [de 92] performed the same experiment with silicone

oil on glass, for which the sawtooth pattern appears. He measured the amplitude

of the pattern as a function of time, and found it was not well described by the

exponential growth characteristic of linear instability. While the vertical flow

condition (3Ca)1/3 � tanα used by Troian et al. was not satisfied by de Bruyn’s

experiment, he was able to meaningfully compare his results with their theory.

Guided by Troian et al.’s scaling, de Bruyn plotted finger length versus time,

scaled by the capillary length l and l/U , where U is the velocity of the contact

line, and found the data for eight values of α between 2◦ and 21◦ collapsed

toward a single curve. From the rescaled data it was also apparent that the

fingers grow exponentially until a dimensionless time of approximately 40, and
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was independent of α. The measured growth rate β was approximately 0.11,

compared with the 0.5 in Troian et al.’s calculations. However, these calculations

are valid for α much larger than in the experiment, so quantitative agreement is

not to be expected.

Spaid and Homsy [SH95] then reconsidered the linear stability analysis of

Troian et al. They used two contact line models, a precursor and a slip model,

and found for both the base state and the instability problem that the both

models give very similar results when the precursor thickness is equated with

the slip length. They also determine from the stability calculations that unlike

the Rayleigh instability in which surface tension causes a cylindrical jet to break

up in to drops when breakup results in smaller total surface area, the fingering

instability is driven by gravity, which causes thicker regions of the film to flow

faster, and surface tension is a stabilizing force. They also consider a perturba-

tion representing a weakly viscoelastic fluid, and find viscoelasticity to also be a

stabilizing effect.

Bertozzi and Brenner [BB97] repeated the linear stability analysis for the

precursor model while retaining the terms for gravity normal to the plane, which

had been neglected by Troian et al., thereby extending the result to arbitrary α.

The equation is expressed

ht + (h3)x +∇ ·
(
h3∇∇2h−D(α)h3∇h

)
= 0, (1.19)

where D(α) = (3Ca)1/3 cotα, so that the work of Goodwin and Homsy corre-

sponds to the limit Ca → 0, D(α) = 1. This reflects the fact that both surface

tension and the normal component of gravity act to smooth the profile near the

contact line, in the form of nonlinear fouth- and second-order diffusion respec-

tively. The bump occurs for small values of D, when the fourth-order term dom-

inates, while at large values of D the smoothed profile is monotone. They find
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that the contact line is linearly unstable to long-wave perturbations only when

D is small enough to induce a bump in the profile, corresponding to α & 5− 10◦.

This implies that for the smaller angles used by de Bruyn the films were linearly

stable, even though the fingering pattern was observed. Bertozzi and Brenner

explain this discrepancy in a discussion of transient growth. They find in the

linearized problem that a small perturbation can grow by a factor on the order of

1/b before its ultimate exponential decay, where bhN is the precursor thickness.

Since reasonable sizes for the precursor may be on the order of a micron, corre-

sponding to b = 10−3−10−4, this amplification can be large indeed, and certainly

large enough to engage nonlinear growth mechanisms, which they conclude are

responsible for the observed instability at low angles.

Veretennikov, Indeikina, and Chang [IVC98] have observed thicker films, find-

ing a different flow pattern near the contact line that they describe as a ”nose

front.” This flow is characterized by a contact angle greater than 90◦ and a recir-

culating vortex structure, such that fluid simply falls down onto the solid ahead

of the contact line, essentially creating a new contact line kinematically faster

than the existing line can advance by thermal processes. Recall that Dussan

V. and Davis described the two fluids (liquid and air) at a moving contact line

taking two flow patterns, a rolling motion and a unidirectional wedge motion,

and it is the latter that suffers a stress singularity under no-slip conditions. In

this context, a nose front corresponds to the liquid assuming the rolling role, and

therefore the no-slip condition is not problematic. They performed experiments

on both dry and pre-wet surfaces, and found the nose flow to be more common

on dry surfaces. They found an instability in nose fronts similar to that observed

for thinner wedge fronts, and the shape of the fingers depends on the existence

and thickness of a pre-wetted film on the surface. They suggest that the insta-

bility for nose fronts occurs when the film becomes too thin to support the nose
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flow across the whole width, and the first areas to transition to wedge flow move

slower to become troughs in the fingering pattern.

Kalliadasis [Kal00] carried out a nonlinear analysis of the fingering instability

under the precursor model, retaining terms up to third order in the amplitude

of the perturbation. Using center manifold theory, he arrived at a Kuramoto-

Sivashinsky-type equation for the dominant mode describing the displacement

of the contact line. Numerical solutions of this equation indicate a sawtooth

shape for the fingering pattern similar to that observed in experiments, and the

wavelength of the pattern was found to be sensitive to the precursor thickness.

Since parallel-sided fingers were never observed, Kalliadasis concludes that the

precursor model is inappropriate for dry spreading at large contact angles.

Eres, Schwartz, and Roy [ESR00], in order to more accurately describe partially-

wetting films, introduced another term into the lubrication equation that explic-

itly models the van der Waals forces at the contact line. This model states that

the pressure at the free surface is given by the sum of the standard capillary pres-

sure term and a disjoining pressure given by B[(b/h)3 − (b/h)2]. This pressure is

minimized when h = b, which causes a precursor layer of depth b to form, and is

nearly constant when h� b. The coefficient B is equal to σθ2
e/b for a static con-

tact angle θe. In numerical solutions of the resulting equation, they found three

different fingering behaviors. The first two correspond to the well-documented

sawtooth and parallel-sided fingering patterns at small and moderately large θe.

They found that the sawtooth pattern grows to a maximum amplitude and then

simply translates downstream, while the finger-shaped pattern grows apparently

without bound. At still larger θe, they found parallel-sided fingers grow and

ultimately break up into drops.

Bertozzi, Munch, and Shearer [BMS99] studied a related advancing film prob-
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lem in which a film is driven up a vertical surface by a heat-induced gradient of

the surface tension coefficient, motivated by an experiment performed by Lud-

viksson and Lightfoot [LL71]. After rescaling the variables, the equation takes

the form

ht + (h2 − h3)x = −(h3hxxx)x (1.20)

where the h2 and h3 terms represent the Marangoni and gravitation forces, respec-

tively, and the fourth-order term represents surface tension. They seek solutions

with weak curvature, so that the equation is interpreted as a conservation law

with the non-convex flux (h2 − h3) and the fourth-order term acts as a mild reg-

ularization. Ludviksson and Lightfoot had solved the unregularized problem for

travelling waves connecting a constant downstream thickness h∞ to a precursor

b upstream. For certain realistic values of h∞ and b the unique entropy solution

consists of a rarefaction and a shock, however that solution was not observed in

the experiment. Bertozzi et al. analyzed the effect of the regularizing term, and

discovered that this solution may not occur in the regularized problem. They

found another solution that is robust under this regularization, consisting of a

rarefaction and an undercompressive shock which travels at a different speed than

the entropy shock and separates from the rarefaction. They demonstrated the

existence of a regularized solution using dynamical systems theory and presented

numerical solutions of the regularized equation that approach the undercompres-

sive shock solution. They also found that the undercompressive shock solution

is consistent with Ludviksson and Lightfoot’s qualitative descriptions of their

experimental results.

Further simulations by Kondic and Diez [KD01] of using the precursor model

predict that both sawtooth and finger-shaped patterns can occur in a completely

wetting film. They find that the sawtooth pattern occurs at smaller α and the
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finger-shaped pattern occurs at larger α. They also study the long-time evolution

of these patterns, and like Eres et al. they find the sawtooth pattern saturates at

a maximum amplitude, at which point it appears to settle into a stable traveling

wave profile. Both patterns were observed to ultimately cover the whole plane.

They also find that in a small area in front of the apparent contact line, the film

thickness is less than the precursor. Fluid in this region actually moves upstream

briefly due to the negative capillary pressure, until it is incorporated into the

thicker forward-moving film.

1.2 Suspension Flow

1.2.1 Viscosity

The natural starting point for a suspension flow model is to describe the mixture

as a simple fluid with modified physical properties, since the mass and momentum

densities can be simply obtained by adding the density for each phase. The other

crucial property that must be included is the viscosity. For simplicity it is most

common to describe the mixture as effectively Newtonian, in which case the

viscosity is a scalar, but unknown, function of concentration. However more

complex behavior does exist, and can include shear thinning, shear thickening,

and yield stresses [Sat95].

Einstein [Ein06] may have been the first analyze theoretically the viscosity of

a mixture. Considering a dilute suspension of spheres, he derived the expression

µr = 1+5φ/2+O(φ2) for the relative viscosity µr = µ/µf which is just the mixture

viscosity scaled by that of the suspending fluid µf , and φ is the volume fraction

of the spheres. The coefficient of the φ2 term in the expansion was calculated to

be 7.6 ± 0.8 by Batchelor and Green [BG72] for pure shear flows, and sensitive

20



to the bulk flow in general. This dependence is very complex, since the stress

depends on the spatial arrangement of the particles, which in turn depends on

the large scale flow.

Due to this complexity, empirical functions are generally used to describe

the relative viscosity. These functions generally satisfy µr(0) = 1, µ′r(0) = 5/2,

and limφ→φm µr(φ) = ∞, although the second condition is sometimes violated.

φm represents the maximum permissible concentration corresponding to close

packing, and a range of values have been used from the simple cubic value 0.524 to

the hexagonal packing value 0.740. One of the most common viscosity functions

was first used by Krieger [Kri72]:

µr(φ) =

(
1− φ

φm

)−5φm/2

. (1.21)

Other viscosity functions are somewhat similar to equation 1.21 and generally di-

verge with an exponent of about −2. Simulations of suspensions have also been

carried out by solving the Stokes equations subject to no-slip boundary conditions

on the surface of each particle. One of the most common methods is Stokesian

dynamics [BB88, SB01], which has been used to simulate as many as a few thou-

sand particles. Both simulations and experiments become difficult for φ above

0.5 − 0.6, however, as particles contact each other and form clusters or chains

that can prevent steady shearing. This phenomenon is sometimes described as

a phase transition, and the highly concentrated state has been compared to a

crystal or a glass.

1.2.2 Settling

Suspensions of non-neutrally buoyant particles do not behave macroscopically as

a single fluid, of course, because gravity tends to segregate the particles from the
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fluid. For particles smaller than a micron or so, this effect can be reversed by elec-

trical repulsion due to surface charges and/or Brownian motion of the particles,

producing a colloidal suspension that remains mixed indefinitely, however this

dissertation is concerned with larger non-Brownian particles for which buoyancy

is relevant.

Scaling dictates that the average settling velocity be expressed as

vs(φ) = f(φ)
2a2(ρs − ρ)g

9µ
, (1.22)

where the right hand side is the product of an unknown hindered settling function

f with the exact settling velocity for a single sphere of radius a and density ρs in an

unbounded fluid. It should be expected that f(0) = 1, since in an infinitely dilute

suspension particles separated enough to not affect each other’s motion. That the

hindered settling function decreases with φ can be seen by considering that the

liquid must also move past the particles, and the corresponding viscous dissipation

increases as the separation between particles becomes small. In practice this

decreased settling rate is observable for φ as low as 0.01.

Assuming such a form for the settling rate, i.e. one that is local in space and

decreasing in φ, leads in finite systems to a kinematic shock structure that was

described by Kynch [Kyn52]. The rescaled settling problem can be written as

the conservation law

φt −
(
φf(φ)

)
z

= 0, (1.23)

which in one dimension has solutions consisting of two shocks moving down from

the top of the vessel and up from the bottom, which separate a top region void

of particles, a center region at the initial (uniform) concentration, and a packed

bed at the bottom. The shock speeds are given by the Rankine-Hugoniot jump

condition (see chapter 3 ) expressing mass continuity, which determines the top

shock moves with speed −f(φ0) and the bottom with speed f(φ0)φ0/(φm − φ0)
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for initial uniform concentration φ0. Thus the value of f(φ0) can be measured by

simply observing the speed of the top shock.

A review of many experiments aimed at determining the hindered settling

function, both of the kinematic shock type described above and fluidization ex-

periments in which particles remain stationary amidst a vertical flow of liquid,

has been conducted by Barnea and Mizrahi [BM73]. They found that among

several candidate functions, the best fit was achieved by the formula

f(φ) =
(1− φ)2

(1 + φ1/3) exp
(
5φ/(1− φ)

) . (1.24)

The function f(φ) = (1 − φ)n, proposed by Richardson and Zaki [RZ54], has

been more popular in the literature however, probably due to its simpler form.

A study by Garside and Al-Dibouni [GA77] found that the best fit in this case

is obtained at n = 5.1. It is interesting to note that both functions vanish not at

φm but at φ = 1, indicating that a packed configuration of particles that cannot

shear can nevertheless be penetrated by a fluid current. While the experimental

interpretation of this point in general is unclear, it turns out to be important in

the thin film model and will be discussed in section 3.4.

Particle settling is a complex theoretical problem, including many of the same

difficulties as the effective viscosity problem, and is a subject of ongoing research.

Because of the complexity of the theoretical settling problem, empirical results

such as those above are commonly used for modeling sedimenting mixtures. Low

concentration limits have been studied, typically by solving for fluid velocities

in a representative cell containing a single particle, which leads to the formula

f(φ) = 1− βφ1/3. However, the value of β depends on the details of the shape of

the unit cell and ad hoc boundary assumptions, so even at small concentrations

the relevance of this type of model is questionable.

These representative cell calculations show that, like the viscosity, the sedi-
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mentation velocity depends on the configuration of the particles. Thus the dilute

result of Batchelor [Bat72] for a random fixed array is open to the same crit-

icism. Furthermore, Caflisch and Luke [CL85] showed in 1985 that for such a

system the velocity fluctuations about the mean 〈δV 2〉 scale as V 2
0 φL/a, where

V0 is the single particle settling velocity and L is the size of the container. For

sufficiently large systems, therefore, the fluctuations are so large that the mean

velocity becomes meaningless.

1.2.3 Shear-Induced Migration

It was first observed in 1986 by Leighton and Acrivos [LA87] that if a suspension

is sheared in a bob-in-cup Couette device, particles would slowly migrate out

of the sheared gap into the adjacent reservoir, eventually causing a measurably

lower concentration and viscosity in the gap. They found their experiments were

consistent with a shear-induced diffusion process, with the diffusion coefficient

proportional to a2γ̇, where γ̇ is the shear rate. They also found in the same

experiment a short time increase in the measured viscosity, consistent with a

related diffusion process whereby the concentration equilibrates across the gap,

after an initial inhomogeneity resulting from the loading process. In terms of

the simple shear geometry of the Couette experiment, the observations can be

expressed as: 1) a flux of particles normal to the plane of shear, opposite a

gradient in the shear rate, and 2) a flux of particles in the direction of shear

(perpendicular to the velocity), opposite a gradient in concentration.

Leighton and Acrivos introduce three particle-scale effects in a model to ac-

count for the measured net fluxes in terms of statistical particle encounters. Since

their experiments occurred at fairly high concentrations, they focused on irre-

versible interactions arising from forces of contact between particles. This is in
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Figure 1.3: Influence of concentration gradients on shear-induced migration. Par-

ticles experiencing higher concentrations will interact more frequently, resulting

in a diffusive flux.
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Figure 1.4: Influence of the local viscosity on the asymmetric interactions leading

to shear-induced migration. The particle experiencing a smaller local viscosity is

displaced farther, causing a net flux opposite the viscosity gradient.
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Figure 1.5: Influence of a non-uniform shear rate on migration. Since particle

encounters occur at a rate proportional to the local shear, the suspension expe-

riences a net particle flux toward low-shear regions.
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contrast to purely hydrodynamic interactions between particles merely passing

near each other, which are governed by the time-reversible Stokes equations and

therefore cannot describe a diffusive process. The first effect is that in a concen-

tration gradient, a test particle will interact with more neighbors on the high-φ

side, which will tend to move it opposite the gradient (figure 1.3). This leads to a

flux proportional to γ̇a2φ∇φ when ∇φ is perpendicular to the velocity. A second

effect arises from concentration gradients because of the corresponding viscosity

gradient. When two particles come into contact in a concentration gradient, the

low-µ end of the two-particle body will be more free to move than the high-µ end,

resulting in a net displacement in the direction of decreasing φ (figure 1.4). The

flux from this effect is then expected to be proportional to (γ̇a2φ2/µ)(dµ/dφ)∇φ.

The third effect is that when there is a gradient in the scalar shear rate, there

will again be an excess of interactions on the high-shear side of a test particle,

tending to move the particle toward low-shear regions (figure 1.5). Gradients in

shear stress σ can then be expected to produce a particle flux proportional to

γ̇a2φ2/σ∇σ. All three effects are justified only when the relevant gradients are

normal to the velocity.

This model of shear-induced migration was used to successfully analyze a

number of flows, including the viscous resuspension of particles from a settled

bed [LA86], which had previously been assumed to require turbulence. However,

the model as formulated by Leighton and Acrivos only describes flows in which

the gradients in concentration and shear stress are either parallel or normal, and

both are normal to the velocity. The model was extended to more general flows

by Phillips et al. [PAB92] in 1991. In this form, the effects are divided into those

due to anisotropic collision frequencies, with a coefficient Kc, and anisotropic

response to collisions, with a coefficient Kµ. They then express the total flux in
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an Eulerian frame in conservation form

Dφ

Dt
= a2Kc∇ · (φ2∇γ̇ + φγ̇∇φ) + a2Kµ∇ ·

(
γ̇φ2 1

µ

dµ

dφ
∇φ

)
, (1.25)

where D/Dt = ∂/∂t + v · ∇ is the material derivative. While this model is still

derived from the causes described by Leighton and Acrivos, which are restricted

to gradients normal to the velocity, the Phillips et al. model is the simplest

possible generalization to arbitrary flows. Phillips et al. were able to compare

their model to experiments in a nonhomogeneous wide-gap Couette flow aided

by NMR imaging, which allows the measurement of the concentration without

disturbing the flow. This allowed the parameters to be measured as well, and

they found the best fit for Kc = 0.41 and Kµ = 0.62.

A separate ‘suspension balance’ model was introduced by Nott and Brady

[NB94] in 1994 motivated by an analogy with the kinetic theory of gasses. They

defined several macroscopic quantities in terms of particle properties without

reference to the suspending fluid, including an average velocity, a stress tensor,

and a ‘temperature’ representing velocity fluctuations about the mean. This

model was found to offer better predictions in Poiseuille flow than the previous

‘diffusive flux’ models. In Poiseuille flow, a Newtonian fluid adopts a parabolic

profile, with a maximum at the centerline and zero velocity at the walls, and

both models predict a higher concentration at the center where the shear is

lower. The diffusive flux models, however, predict that since by symmetry the

shear rate must vanish at the center, φ must reach φm regardless of the average

concentration, which results in a sharp cusp in the concentration profile. While

the suspension balance model allows fluctuational motion to originate only from

shear stress, this random motion is also allowed to diffuse analagous to heat in

a gas, resulting in a positive temperature at the center and therefore smooth

concentration profiles. Nott and Brady discuss finite particle size effects as a
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mechanism for such heat transfer. They find the suspension balance model agrees

well with numerical simulations, and generalizes more naturally to fully three-

dimensional inhomogeneous flows. Drawbacks to this model include increased

complexity and the need for more modeling functions to be determined, such as

the viscosity and heat flux of the particle phase.

A further conceptual difference between the two models is that Nott and

Brady describe the particle pressure as the fundamental result of particle inter-

actions. They then determine the resulting particle fluxes which correspond to

Leighton and Acrivos’s shear-induced migration via the hindered settling function

in the same manner as a gravitational stress. Brady and Morris [MB98] later gen-

eralized the suspension balance model to include anisotropic interactions, which

are characterized by three normal stresses rather than a single pressure.

Nott and Brady also note that although the Stokes equations are in theory

reversible, there is a finite ‘domain of reversibility’ in time after which this re-

versibility is not realistic. This is because even though the Stokes equations

governing the fluid for known particle positions are linear in the particle veloci-

ties, they are nonlinear in the particle positions and result chaotic motion. Small

perturbations introduced by thermal fluctuations, for example, or truncation and

roundoff error in numerical simulations, will therefore be eventually amplified, de-

stroying the time-reversible symmetry in real systems. For this reason, Nott and

Brady argue that there is no contradiction in attributing shear-induced diffusion

to hydrodynamic interactions, and the contact forces discussed by Leighton and

Acrivos are unnecessary.
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1.2.4 Numerical Simulations

The most popular method of simulating viscous suspensions is known as ‘Stoke-

sian dynamics’, and was devised by Brady and Bossis in 1988 [BB88]. The

method is modeled after molecular dynamics, in which large ensembles of atoms

or molecules are evolved by calculating pairwise forces of interaction. This tech-

nique is possible in Stokes flow because, given the positions of particles, the

specification of hydrodynamic forces and torques e.g. by gravity and no inertia

act as boundary conditions on the particle surfaces that uniquely determine the

fluid velocity and pressure everywhere. These fluid properties then are sufficient

to determine the translational and angular velocities of all particles. Both of

these calculations are linear and invertible, and can therefore be consolidated as

a single linear system from which the particle evolution is determined, having

eliminated all reference to the suspending fluid.

Simulation results [FB00, SB02] are generally in agreement with experiments

for the mixture viscosity, although above approximately 50% concentration ex-

perimental measurements begin to vary, due to non-Newtonian behavior and

clustering. Similarly, migration effects, also known as normal stress differences,

are in agreement between simulation and experiment. Simulations of sediment-

ing mixtures tend to show the same divergent velocity fluctuations predicted in

theory, which is at odds with most experiments. Early Stokesian Dynamics sim-

ulations were restricted to 50-200 particles arranged in a ‘periodic monolayer’

[CP94, BLS95], due to computational limitations, however increased processing

power and a faster algorithm [SB01] now allow fully three-dimensional simula-

tions involving at least 1000 particles.
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1.2.5 Other Complex Fluids

Some similarities can be found in the dynamics of dry granular flows. Since air is

still present in almost all granular flows, they are distinguished from suspensions

primarily by the dominance of particle inertia over fluid viscosity, which is mea-

sured by the Bagnold number [Bag54]. Granular flows are extremely complex, as

the materials can change from a plastic solid to a viscous liquid to an inelastic

gas as the velocity increases. Determining an appropriate constitutive relation

for granular materials remains a significant modeling challenge.

The work of Pouliquen et al. on granular chute flows is particularly relevant

to this discussion because the geometry is similar to a gravity-driven thin film.

Surface roughness is crucial for such experiments: with smooth surfaces a flow

will either come to a stop at small inclination angles θ or accelerate indefinitely

at larger θ, with a steady flow occurring only at a critical value of θ. Such flows

are well described by a constant friction coefficient. On rough surfaces there is

a finite range of θ for which stationary flows are reached, which suggest a more

liquid-like model. A fingering instability arises in these flows with much the same

shape as in liquid films, however the mechanism is different, involving vertical

segregation of the particles based on size [PDS97]. With monodisperse particles

the front does not finger.

Pouliquen found [Pou99] that the smallest angle θstop for which steady flow is

possible decreases monotonically with the thickness h of the material, so the same

information is contained in the function hstop(θ). He used this fact to rescale his

measurements of the average velocity, and found that the dimensionless velocity

u/
√
gh is linearly proportional to the ratio h/hstop(θ), with the proportionality

constant independent of θ. One model for the constitutive relation for this type

of flow was proposed in 2006 by Jop et al. [JFP06], and is characterized by a yield
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stress criterion and an effective viscosity that is proportional to the pressure and

inversely proportional to the shear rate. The latter fact invites comparison to the

suspension balance model of Nott and Brady, where the particle contributions to

the pressure and viscosity are proportional.

Another related problem is the evolution of thin films in the presence of sur-

factant, which occurs in human lungs both naturally and as a method of drug

delivery. One of the earliest mathematical treatments of this system is that of

Jensen and Grotberg in 1992 [JG92]. Assuming weak capillarity and surface dif-

fusion, they analyzed the rate of spreading caused by Marangoni forces. They

derived spreading rates in terms of the rate surfactant is added to the system,

and found that a shock exists at the leading edge of the surfactant. For slow

influxes, the diffusive shock width ultimately increases faster than the spreading

rate, eventually destroying the shock and leading to diffusive spreading. They

also describe a thinning that occurs behind the shock that in experiments has led

to film rupture, and propose a model for rupture based on van der Waals forces.

Other studies have focused on an instability observed in experiments, in which

long dendritic fingers emanate from a drop of surfactant placed on an uncontam-

inated film. Warner, Craster, and Matar [WCM04] found a likely mechanism

for this instability, involving a nonlinear equation of state by which the surface

tension is determined from the surfactant concentration. They found a time-

dependent base state for a symmetrical problem and performed a linear stability

analysis, which revealed an instability consistent with the experimental litera-

ture. A subsequent analysis by Levy and Shearer [LS06] with both gravity and

Marangoni driving forces found comparable solutions, and characterized the un-

derlying shock and rarefaction dynamics. They found that while the system is not

hyperbolic but mixed hyperbolic-parabolic, the techniques of hyperbolic systems
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are useful to describe the essential features of the solutions.

1.3 Particle-laden Films

Only a few studies have been done that specifically explore particle laden thin

films. One theoretical study by Schaflinger, Acrivos, and Zhang [SAZ90] applies

the diffusive flux suspension model to two flow geometries, a film and a Poiseuille

flow. They analyzed a film on an incline at steady state, by assuming no varia-

tion in the flow-wise and span-wise directions. In the depth-wise direction they

obtained a condition for stationary flows by balancing gravitational settling with

shear-induced diffusion. For simplicity they considered only diffusive fluxes, i.e.

resulting from the gradient in concentration and not from the gradient in shear

rate. Consequently in their equilibrium profiles the concentration is greatest at

the bottom and decreases with height. As a boundary condition they matched

the liquid and particle fluxes of the steady state profile to a well-mixed inflow.

Since the particles in the steady solutions are concentrated more in the slower

moving bottom of the film, matching fluxes results in a greater average concen-

tration in the steady film than the inflow. For sufficiently concentrated inflow

they found there is no steady solution, and particles simply pile up near the inlet.

Li and Pozrikidis [XP03] conduced a numerical simulation of a neutrally buoy-

ant suspension in two dimensional film flow. The Stokesian dynamics numerical

method is not easily extended to flows with a free surface; they used a bound-

ary element method to solve for the Stokes flow outside of circular and elliptical

particles in the plane, and their method also allowed the free surface of the fluid

to deform due to the presence of the particles. While this method is easy to

extend to arbitrarily shaped particles and emulsions of drops, the computational

efficiency suffers at moderately high concentrations. Their simulation at 10% con-

34



centration found particles tending away from both the solid boundary and free

surface toward the center of the film, however computational speed prevented the

use of enough particles for statistical results.

More recently an experimental study was performed by Timberlake and Mor-

ris [TM05] of inclined film flow containing neutrally buoyant particles. In their

experiments a gate was used upstream to maintain a steady influx of mixture,

and downstream from the gate the film depth was found to decrease slowly in

the direction of flow x. They were able to measure the suspension velocity us-

ing a stereoscopic photographic technique and particle correlation velocimetry.

Although they were not able to directly measure the vertical positions of parti-

cles, they inferred from their velocity data that the concentration was somewhat

greater near the free surface and vanished near the bottom. This is consistent

with theories of migration, since the shear stress and shear rate both vanish at

the free surface.

Timberlake and Morris also applied the suspension balance model of Nott and

Brady [NB94] to this problem, enforcing constant flux of material independent

of x. Unlike Acrivos et al., they imposed a finite normal stress jump at the free

surface, representing their experimental observation that the surface becomes

rough on the scale of the particle size. They found reasonable agreement between

the model and experiment for the film depth and concentration profile, but the

model failed to predict zero concentration near the solid boundary as seen in the

experiment.

Another recent experiment was performed by Zhou, Dupuy, Bertozzi, and

Hosoi [ZDB05, Zho04], using heavy particles. They used the same constant flux

flow geometry as Timberlake and Morris, and found that rather than reaching

a steady state the film displays one of three settling behaviors as it advances.
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At low inclination angles and concentrations, the particles settle out of the flow

leaving a film of clear fluid, while at intermediate angles and concentrations the

suspension appeared well-mixed for the duration of the experiment. At high

angles and concentrations the particles accumulate near the moving contact line

in a “particle-rich ridge”. They performed enough experiments with varied angles

and concentrations to construct a phase diagram for the three settling behaviors.

They also observed that while the fingering instability typical of pure liquid films

occurs in the first two regimes, it is largely suppressed when the ridge appears.

Zhou et al. also introduced a model to describe this third regime, character-

ized by spatially varying rheology, which appears to have no analogue in pure fluid

motion. They did not include shear induced diffusion, and attributed the particle

accumulation at the contact line to gravitational settling in the flow direction.

The main ingredients then were a hindered settling function to determine the

relative velocities of the two phases, and an effective viscosity which controls the

average velocity. In order apply lubrication theory they also found it necessary to

assume the concentration is independent of the depth coordinate z, an assump-

tion that will be discussed below. They were then able to derive a system of two

coupled fourth-order evolution equations similar to the single fluid lubrication

equation. They also argued that the large scale evolution of that system is deter-

mined by the ‘reduced’ system obtained by retaining only first-order derivative

terms, much like the first-order equation 1.6 studied by Huppert captures many

of the features of equation 1.19.

These reduced equations, which take the form of a 2×2 system of conservation

laws, were briefly studied in Zhou et al.’s work. They found double-shock solu-

tions for this system depending on the precursor thickness b used in the boundary

condition, and the region between the shocks was thicker and higher in concen-
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tration much like the observed ridge. They also noted that the speeds of the

two shocks become nearly equal at small values of b, though their calculations

were not sufficient to determine whether equality is attained at finite b or in the

limit b→∞ or not at all. This issue is significant because if the speeds actually

coincide at some b∗ > 0 the existence of shock solutions for b < b∗ would be called

into question. Furthermore, they described the physical derivation and the shock

solutions only briefly, and a more complete description of the solutions is needed

in order to understand the consequences of this model.

37



CHAPTER 2

Derivation of a Lubrication Model

In this chapter a lubrication model for particle-laden thin films will be derived

following the techniques of Zhou [Zho04] and Zhou et al. [ZDB05], in order to

describe the particle-rich ridge regime. Since depth-averaging of the equations of

motion is an essential feature of lubrication models, an assumption will be needed

about the vertical stratification of the flow. This assumption, that the particle

concentration is independent of z, will be discussed further below, and a second

model will also be derived in chapter 5 which allows for stratified films.

Since shear-induced migration will not be included in the basic model, it

is not necessary to choose between the suspension balance and diffusive flux

techniques. Still there is a basic choice to be made in the dependent variables.

“Two-fluid” models specify the velocities of each phase, which are coupled by drag

forces, while “one-fluid” models specify instead average and relative velocities

[Ung93]. Following Zhou et al. [ZDB05] this work will use a one-fluid model,

which is generally more convenient for viscous suspensions because strong drag

forces typically ensure that the relative velocity is small.

Deriving a one-fluid model involves balancing forces first for the mixture as a

whole, without regard to interactions between the two components. In the present

case inertia is negligible, and these forces are just gravity and viscous stress. We

use an empirical expression for the latter in which the mixture is considered a

Newtonian fluid, with an effective viscosity depending on the particle volume
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fraction φ. For a fluid of kinematic viscosity µf one form for this relation is

[Kri72, SP05]

µ(φ) = µf (1− φ/φm)−2, (2.1)

where φm ≈ 0.67 is the random packing fraction of spheres. This viscosity leads

to a stress tensor of the form

Π = pI− 1

2
µ(φ)

[
∇v + (∇v)T

]
, (2.2)

where p is the fluid pressure and v is a velocity characterizing the motion of the

mixture. Since the two mixture components in general have different velocities,

say vf and vp for the fluid and particulate phases respectively, v must be some

average of the two. Much of the experimental literature deals with neutrally

buoyant mixtures, in which the two velocities are the same and the distinction

is unnecessary, but in the current case the question is relevant. We argue that

since the effective viscosity phenomenon involves neither inertia nor gravity, it

should be independent of the masses of the two phases, therefore we select the

volume-averaged velocity. The one-fluid variables are thus

v = (1− φ)vf + φvp, vrel = vp − vf , (2.3)

and the individual phase velocities can be recovered by

vp = v + (1− φ)vrel, vf = v − φvrel. (2.4)

The average velocity satisfies the Stokes equations:

∇ ·Π = ρ(φ)g, ∇ · v = 0, (2.5)

where ρ(φ) is the mixture density and g is the gravitational field. The density

is given by ρ(φ) = ρf (1 + ∆φ), where ∆ = (ρp − ρf )/ρf and ρf and ρp are the

densities of the fluid and particulate phases.
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Figure 2.1: Geometry of the particle-laden film. b represents the precursor, dis-

cussed below.

We now define the problem geometry as in figure 2.1, considering a plane solid

surface inclined at an angle θ to the horizontal, to be coated with an advancing

gravity-driven film. We choose a coordinate system in which z is normal to the

inclined plane, x and y lie in the inclined plane, y · g = 0, and suppose the film

emerges from a gate at x = 0 at a constant thickness and particle concentration

for t > 0.

In deriving the equation for v, we follow the standard methods used for

pure fluid films [Gre78, ODB97]. The lubrication approximation, valid at small

Reynolds numbers and geometric aspect ratios, assumes v lies in the x-y plane

and
∣∣∂v

∂z

∣∣ � max
(∣∣∂v

∂x

∣∣ , ∣∣∣∂v
∂y

∣∣∣). Correspondingly, we now consider all velocities to

be two-dimensional vectors, as well as the gradient ∇ = x ∂
∂x

+ y ∂
∂y

, and define

g⊥ = g ·z = |g| cos θ and g‖ = g− g⊥z = (|g| sin θ)x. In this notation, the Stokes
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equations now read

∂p

∂z
= −ρ(φ)g⊥, (2.6a)

∇p = µ(φ)
∂2v

∂z2
+ ρ(φ)g‖. (2.6b)

The Laplace-Young boundary condition states that the pressure at the free sur-

face, z = h(x, y), is given by

p (x, y, h(x, y)) = −γ∇2h(x, y) (2.7)

where γ is the coefficient of surface tension. The pressure is then determined by

p(x, y, z) = −γ∇2h(x, y) +

∫ h(x,y)

z

ρ(φ(x, y, z′))g⊥dz
′ (2.8)

from the depth and particle concentration of the film. Here it is convenient to

assume the particle concentration is independent of the z coordinate, so that the

integral in (2.8) is merely ρ(φ)g⊥(h− z). We will discuss this assumption further

in our treatment below of particle motion.

Combining (2.6b) and (2.8) and defining P (x, y) = −γ∇2h + ρ(φ)g⊥h, we

have

∇P − zg⊥∇ρ = ρ(φ)µ(φ)
∂2v

∂z2
+ ρ(φ)g‖. (2.9)

The boundary conditions of interest are no stress (∂v/∂z = 0) at the free interface

and no slip (v = 0) at the solid interface. Equation (2.9) can now be integrated

twice in z with the constants of integration determined by these conditions, to

arrive at the equation

µ(φ)v = (hz − z2

2
)(ρ(φ)g‖ −∇P ) +

1

2
(h2z − z3/3)g⊥∇ρ(φ) (2.10)

for the volume-averaged velocity. Integrating once more gives the depth-averaged

velocity

vav =
h2

3µ(φ)

[
γ∇∇2h− g⊥

(
∇(ρ(φ)h)− 5

8
h∇ρ(φ)

)
+ ρ(φ)g‖

]
. (2.11)
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Modeling the relative velocity due to particle settling turns out to be more

difficult. Recall that in the above lubrication analysis, we have assumed the par-

ticles are evenly distributed across the film depth. Realistically this assumption

is not justified and is used here only for simplicity. The vertical distribution

of particles involves a balance between gravitational settling and shear-induced

migration, and is studied in chapter 5.

Nevertheless we use the uniform vertical distribution φ = φ(x, y, t) on the

following grounds. Zhou et al. found that particles settle out of the fluid only at

low angles and concentrations, so some depth profile must exist. An experiment

and theory by Timberlake and Morris with neutrally buoyant particles found

dφ/dz > 0 [TM05], due to shear-induced particle migration [LA87]. However

Schaflinger et al. [SAZ90] considered heavy particles in their analysis and found

dφ/dz < 0. Also the analysis in chapter 5 demonstrates that both increasing and

decreasing depth profiles are possible, depending on φ and α. Since it is unclear

even whether the actual concentration profile for film flow increases or decreases

with depth, and since we are seeking a simple model, the uniform depth profile

appears reasonable.

We begin our model of the expression (1.22) for the settling velocity, and

using the Richardson-Zaki hindered settling function

v = fRZ(φ)vs = (1− φ)nvs (2.12)

where n ≈ 5 for Stokes flow [RZ54]. We also seek a correction to represent the

impeding effect of the solid substrate on particle motion. The Stokes problem for

a sphere settling in a half-space parallel to a wall has been solved approximately

by the method of images [HB65], leading to the series solution

v =

(
1− 259

256

(a
h

)
+

9

16

(a
h

)
log

(a
h

)
− 1

16

(a
h

)3

+
15

256

(a
h

)4

+ ...

)
vs (2.13)
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for the velocity, where h > a is the distance from the center of the particle to

the wall. Since we seek a depth-averaged solution we are concerned not with the

velocity itself, but its average value over the interval (0, h). Figure 2.2 shows

this average for a range of h/a, where the velocity has been taken to be zero for

h < a. Also plotted is the correction we will use to approximate wall effects:

w(h) =
A(h/a)2√

1 +
[
A(h/a)2

]2
(2.14)

with A = 1/18. This function has the desired properties w ≈ 0 for h < a, w ≈ 1

for h� a, and unlike equation (2.13) is differentiable and positive on (0,∞). We

have chosen the parameter A so that this function resembles (2.13), but since the

latter neglects the net flow and the effects of other particles it should mainly be

viewed as a correction to ensure vrel → 0 for very thin films.

For lack of a comprehensive theory incorporating both wall effects and hin-

dered settling, we simply assume the effects are multiplicative, obtaining the

settling velocity

vrel = f(φ)w(h)vs (2.15)

relative to the fluid which we interpret as a depth average. Having specified the

two velocities required for a one-fluid description, we apply conservation of volume

to the mixture as a whole and separately to the particulate phase, obtaining the

evolution equations1:

∂h

∂t
+∇ · (hvav) = 0,

∂φh

∂t
+∇ · (φhvp) = 0. (2.16)

Inserting equations (2.11), (2.15), and (2.4) into (2.16) now gives us the complete

system

1In [ZDB05] both terms of the first equation of (2.16) had an extra factor of ρ(φ), due to the
use of a mass-averaged rather than volume-averaged velocity in constructing the stress tensor.
This error appears to leave the qualitative properties of the model unchanged.
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Figure 2.2: Our correction for the impeding effect of the solid boundary on a

single particle’s settling velocity (solid), and an analytical result neglecting the

free surface and large-scale fluid motion (dashed).
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∂h

∂t
+∇ ·

(
h3

3µ(φ)

[
γ∇∇2h− g⊥

(
∇(ρ(φ)h)− 5

8
h∇ρ(φ)

)
+ ρ(φ)g‖

])
= 0,

(2.17a)

∂(φh)

∂t
+∇ ·

(
φh3

3µ(φ)

[
γ∇∇2h− g⊥

(
∇(ρ(φ)h)− 5

8
h∇ρ(φ)

)
+ ρ(φ)g‖

]
+ φh(1− φ)f(φ)w(h)vs

)
= 0.

(2.17b)

Next we nondimensionalize the equations for the constant flow rate problem,

with the rescaling used in [BB97] for a clear fluid. If the upstream gate height h0

represents a typical film thickness, then the first- and fourth-order terms in (2.17)

are comparable at a length scale x0 = (`2h0)
1/3, where ` = γ/ρfg‖ is the capillary

length. The time derivative is on the same scale as well if t ∼ t0 = µfx0/Caγ,

where Ca = h2
0/3`

2 is the dimensionless capillary number. Defining h̃ = h/h0,

x̃ = x/x0, t̃ = t/t0, ρ̃(φ) = 1 + ∆φ, µ̃(φ) = (1 − φ/φmax)
−2, w̃(h̃) = w(h), and

dropping the tildes, and replacing∇ with ∂/∂x in anticipation of a y-independent

solution, we obtain the dimensionless system

∂h

∂t
+

∂

∂x

(
h3

µ(φ)

[
hxxx −D(θ)

(
(ρ(φ)h)x −

5

8
hρ(φ)x

)
+ ρ(φ)

])
= 0

(2.18a)

∂(φh)

∂t
+

∂

∂x

(
φh3

µ(φ)

[
hxxx −D(θ)

(
(ρ(φ)h)x −

5

8
hρ(φ)x

)
+ ρ(φ)

]
+

vsφh(1− φ)f(φ)w(h)) = 0.

(2.18b)

Here D(θ) = (3Ca)1/3 cot θ is a parameter measuring the relative importance of

the 2nd-order terms.

The above nondimensionalization represents the scales at which all terms in

(2.17) are equally significant. However, at length scales x� x0, the second- and
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fourth-order terms become small, and can be considered simply a weak diffusive

regularization to the dominant first-order system,

∂h

∂t
+

∂

∂x

(
h3ρ(φ)/µ(φ)

)
= 0 (2.19a)

∂(φh)

∂t
+

∂

∂x

(
φh3ρ(φ)/µ(φ) + vsφh(1− φ)f(φ)w(h)

)
= 0. (2.19b)

Zhou et al. presented this alternative scaling and presented numerical evidence

that the higher-order terms can be neglected. Note also that the second-order

terms can also be dropped regardless of the length scale if θ = π/2.

Following Zhou et al., we adopt the precursor model for the contact line

because it simplifies the analysis by preserving the symmetry of the Riemann

problem, discussed in chapter 3 below. With a precursor of nondimensional

thickness b� 1 and concentration φR, the initial conditions for the constant flow

rate problem are

(h, φ)|t=0 =

 (1, φL) if x < 0

(b, φR) if x > 0
. (2.20)

Both b and φR are model parameters not determined by the bulk flow, and must

be specified. Since the film depths are on the order of millimeters, meaningful

values for b are between 10−6 and 10−1, corresponding to precursors no thinner

than the molecular scale. Reasonable values for the concentration φR are between

0 and φL. We mainly consider φR = φL for definiteness, but also discuss φR = 0.

The system (2.19) is related to thin film equations that have been studied for

pure fluids, some of which were discussed in the introduction. If φ(x, t) ≡ 0 or

more generally φ ≡ φ0 ≥ 0 and a → 0 (so that vs = 0), the system degenerates

to the single equation (1.6) studied by Huppert [Hup82] which has single shock

solutions to the Riemann problem. Bertozzi et al. studied a variant of (1.6)

in which Marangoni forcing competes with gravity, resulting in more complex
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shock structures [BMS99]. Lubrication models have given rise to pairs of coupled

equations describing a thin films containing surfactant [IM98, LS06]. Also related

are models for sedimenting mixtures [Kyn52] in which the particle concentration

exhibits kinematic shocks.
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CHAPTER 3

Hyperbolic Theory and the Reduced Equations

3.1 Conservation Laws

Before analyzing the reduced system (2.19), it is necessary to review the theory

of systems of nonlinear conservation laws in one dimension. Conservation laws

are equations of the form

∂U

∂t
+

∂

∂x
F (U) = 0, U, F (U) ∈ Ω ⊂ Rn. (3.1)

Although initial-value problems for (3.1) are not in general well-posed, there is a

large body of analytical techniques for finding and characterizing solutions when

they exist [Lax73]. The analysis is especially simplified for the Riemann problem,

in which the initial data is a step function

U(x, 0) =

 UL if x < 0

UR if x > 0
, (3.2)

such as (2.20) with uniform concentration.

Both the equation and initial data of the Riemann problem can be expressed

in terms of the single variable ξ = x/t, and this symmetry extends to solutions

as well. Imposing this form on the solution reduces the problem to finding a

heteroclinic orbit for the autonomous system

[
J
(
U(ξ)

)
− ξI

]
U̇(ξ) = 0, (3.3a)
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U(−∞) = UL, U(+∞) = UR, (3.3b)

where J(U) is the Jacobian derivative of the flux function F . Smooth solutions of

(3.1), known as rarefactions, are therefore either constant or vary along integral

curves Ri of a Jacobian eigenvector ri. For this reason, most existence results

apply to strictly hyperbolic systems, in which the eigenvalues are real and distinct.

Equation (3.3a) also requires that rarefaction solutions be parametrized by

the corresponding eigenvalue λi, which is possible only if λi is strictly increasing

on Ri between UL and UR. We discuss here the simplified case when F satisfies

the genuine nonlinearity condition, that λi varies strictly monotonically along Ri

for all i and Ri, and consider the more general case in the appendix.

In a genuinely nonlinear systemRi(U) consists of two connected curvesR+
i (U) =

{U ′ ∈ Ri(U)| λi(U
′) > λi(U)} and R−

i (U) = {U ′ ∈ Ri(U)| λi(U
′) < λi(U)}, and

a connecting orbit exists when UL = U and UR ∈ R+
i (U), or UR = U and

UL ∈ R−
i (U). Consequently smooth solutions do not exist for general data, and

solutions are generally sought from the larger class of weak solutions.

A weak solution to the conservation law (3.1) is an L∞ function U(x, t) that

in addition to the initial condition satisfies∫ x2

x1

(
U(x, t2)− U(x, t1)

)
dx+

∫ t2

t1

(
F (U(x2, t))− F (U(x1, t))

)
= 0 (3.4)

for all x2 > x1 and t2 > t1 > 0. This includes all smooth solutions to (3.1), but

also allows discontinuities along a curve x = st that satisfies the vector Rankine-

Hugoniot condition

F (U+)− F (U−) = s
(
U+ − U−)

(3.5)

where U− and U+ are the values of U on either side of the discontinuity. The

Hugoniot locus H(U−) is defined as the set of U+ that satisfy (3.5) for some

s. [Note that while the symmetry of (3.5) implies U2 ∈ H(U1) is equivalent to
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U1 ∈ H(U2), it does not follow that H(U1) = H(U2)].

Such weak solutions are not unique, however, and a method must be chosen to

select a single solution. Various criteria, known as entropy conditions, have been

proposed in order to distinguish the shock, or admissible discontinuity, from any

other weak solutions. One condition, the method of viscous profiles, is motivated

by the fact that conservation laws often appear physically as approximations to

higher-order regularized equations such as

∂

∂t
U ε +

∂

∂x
F (U ε) = ε

∂2

∂x2
U ε (3.6)

which are well-posed for ε > 0. A solution to (3.1), according to this method,

should be stable in the sense that it appears as the pointwise limit in x, t of

solutions Uε to (3.6) as ε → 0. This condition has the advantage of a clearly

desirable physical interpretation that assures shock solutions are unique, however

it has the drawback of being difficult to verify.

A simpler method from the analytical perspective is the Lax entropy condi-

tion, which is equivalent to the viscous profile condition for a certain class of

scalar conservation laws. This method relies on strict hyperbolicity to index the

eigenvalues λi of J(U) in increasing order for each U . These eigenvalues represent

the characteristic speeds at which the equation propagates information, as can

be seen in rarefaction solutions to the Riemann problem in the persistence of the

left state UL for x ≤ λi(UL)t and the right state UR for x ≥ λi(UR)t. The Lax en-

tropy condition requires the discontinuity be continually reinforced by conflicting

information from a single characteristic field, i.e. it moves with a speed s that

satisfies

λi(UL) > s > λi(UR) (3.7)

for exactly one i. That characteristic is emphasized by calling the discontinuity

an i-shock.
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In a neighborhood of any U the Hugoniot locus H(U) consists of two smooth

curves intersecting at U , and the four branches leaving U correspond to the four

cases of 1- or 2-shocks with U as the right or left state. We denote the continua-

tions of these branches by U+
i if U is the left state and U−

i if U is the right state.

The allowable connections C+
i (UL) = R+

i (UL)∪ S+
i (UL) through the i-th charac-

teristic also locally form a smooth curve for each i. The variation of an i-shock or

i-rarefaction solution is confined to the interval {ξ : min(λi(UL), λi(UR)) < ξ <

max(λi(UL), λi(UR))}, so compound connections can be generated by stringing

together waves of different characteristics as long as ξ increases with i. In fact,

{C+
i }n

i=1 locally generate a smooth coordinate system, so if UR is sufficiently close

to UL the Riemann problem is well-posed.

Existence of solutions for large data depends on the topology of H(U). A

famous example of a system with no solutions for certain Riemann data is the

Keyfitz-Kranzer equation (3.8) [KK90], in which H(U) is compact. A bounded

Hugoniot locus implies a bound on the strength of a shock, and consequently

some large-data Riemann problems have no weak solutions. Section 3.3 describes

a theory for such systems relating the regularized profiles to a Dirac mass, however

this theory is far from complete.

A final complication to the selection of weak solutions is the nature of the

regularization actually present in the physical system. The Lax and Oleinik con-

ditions are intended to admit those shocks that appear as viscous limits under

the simplest possible regularization. If the actual regularization is different, the

viscous profiles could converge to a weak solution other than that selected by the

entropy criteria. This possibility is indeed relevant to conservation laws describ-

ing thin films, which are generally regularized by nonlinear fourth-order capillary

terms such as in (2.18). In fact, a scalar thin film equation with similar regu-
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larization is known to select an entropy-violating double-shock solution, rather

than the single-shock entropy solution [BMS99].

3.2 Particular Solutions

Returning to the reduced system (2.19), we note that the equations are physically

meaningful for (h, φ) in the phase space Ω = {(h, φ) : 0 < h, 0 < φ < φmax},

which can also be expressed in terms of the conserved quantities u ≡ h and

v ≡ φh as {(u, v) ∈ R2 : 0 6 v < φmaxu}. While the above theory depends on the

latter parameterization, the flux functions are most simply expressed in terms of

h and φ, so we retain these variables for presenting our results.

The simple connections for a left state of (hL, φL) = (1.0, 0.3) are shown in

figure 3.1. The rarefaction curves have been integrated from (3.3a) by a Runge-

Kutta method, and H(UL) has been calculated by eliminating s from (3.5) at

each point and solving the resulting equations for u and v. For a given shock

connection, the shock speed can be recovered by substituting u and v back into

(3.5).

Since h was rescaled by the film thickness set at the upstream gate, we choose

(h, φ) = (1.0, 0.3) as the left state. For a specified right state (b, φR), represent-

ing the precursor film, a solution to the Riemann problem can be determined by

finding intersections between the two connection diagrams. In figure 3.2 we have

plotted the possible shock-shock connections for four values of b with φR = φL.

At b = 0.1 there is a solution with a 1-shock from the upstream state to an

intermediate height and concentration slightly larger, and a 2-shock from this in-

termediate state to the precursor. As the precursor becomes thinner, the height

and concentration of this intermediate state increase. For b = 0.01 the inter-
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Figure 3.1: The phase space of the reduced model, and the connections from

(h0, φ0) = (1.0, 0.3), �. The system is hyperbolic except in the shaded region.

Black lines represent shock connections and gray represents rarefactions. Solid

lines are connections to the right, i.e. the (h0, φ0) is the left state, and dashed

lines are connections to the left. 1-waves and 2-waves can be distinguished by

their slope at (h0, φ0): 2-waves are nearly horizontal at this scale.
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mediate state is approximately (h, φ) = (1.1757, 0.3663), and in figure 3.3 we

compare this connection with a numerical solution with the same initial data,

and find both shock speeds and the height and concentration of the ridge are in

agreement. The numerical solution was calculated using the Lax-Freidrichs finite

difference method with grid spacing 3.3× 10−7 and timestep 3.3× 10−7.

At b = 0.008 the Hugoniot locus has undergone a bifurcation such that the 1-

and 2-shock curves are no longer distinct, and an additional connected component

has appeared. The shock speed and characteristic speeds coincide at several

points along these curves, such that various sections correspond to 1-shocks, 2-

shocks, or are not admissible at all. There is still a shock-shock connection that

satisfies the Lax entropy condition. At b = 0.0015, however, there are no longer

any intersections, and since the rarefactions also fail to intersect, this initial data

has no solution. We will discuss this case further in §3.3.

As shown in figure 3.1, the equations using (2.12) are neither strictly hyper-

bolic nor genuinely nonlinear on this entire domain. Hyperbolicity fails near the

maximum concentration, as the eigenvalues become complex and the equations

become elliptic. It is not clear whether this feature is desired in a model of the

thin film. Change of type certainly complicates the mathematical question of

well-posedness for such a system, but remembering that the first-order system is

only an approximation to the full fourth-order model, this is most likely an incon-

venience rather than a physical flaw. Physical models proposed for dry granular

materials result variously in hyperbolic, parabolic, and elliptic equations, so phys-

ically the change of type does not seem altogether unreasonable.

If the concentration in the precursor is taken to be 0 rather than φL, double-

shock solutions again occur and the same non-existence issue occurs for small b.

For larger b, an additional type of solution occurs consisting of a 1-rarefaction
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Figure 3.2: 1-shock connections (solid line) from an upstream state

(hL, φL) = (1.0, 0.3) (�) and 1- and 2-shock connections from four precursor

states (hR, φR) = (b, 0.3) (4) where b = 0.1 (dot), 0.01 (dash), 0.002 (dot-dash),

and 0.0005 (dot-dash-dash). The solutions involve an intermediate state between

the two shocks, marked by ©. As b becomes small, the Hugoniot locus un-

dergoes a bifurcation, becoming disconnected, and ultimately fails to produce a

shock solution.
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Figure 3.3: Film thickness (solid) and concentration (dashed) of a numerical

solution of the conservation laws at t = 1, with (hL, φL) = (1.0, 0.3) and

(hR, φR) = (0.01, 0.3). Numerical diffusivity generally affects the leading shock

less than the trailing shock, since for the latter one of the characteristic speeds

is close to the shock speed.
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and a 2-shock, with both h and φ in the intermediate state less then their values

at the left. A numerical solution for this case is shown in figure 3.4, again com-

puted using the Lax-Freidrichs finite difference method in a moving frame. This

behavior does not correspond to anything observed in the experiments of Zhou

et al., and is probably observable only for heavily pre-wet substrates if at all.
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Figure 3.4: Numerical solution of the conservation laws at t = 1, with

(hL, φL) = (1.0, 0.3) and (hR, φR) = (0.02, 0), corresponding to a 1-rarefaction

and 2-shock. While some of the smoothness is due to numerical diffusivity, the

1-rarefaction can also be distinguished from a 1-shock by the fact that both h

and φ are less than their values on the left.
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3.3 Singular Shocks

The problem of non-existence due to non-trivial Hugoniot topology has been

studied before, and a weaker form of solution known as a singular shock has been

described. An illustrative example is the Keyfitz-Kranzer equation [KK90]

∂

∂t

 u

v

 +
∂

∂x

 u2 − v

1
3
u3 − u

 = 0, (3.8)

which is everywhere both strictly hyperbolic and genuinely nonlinear, but for all

U = (u, v) the Hugoniot locus is compact, specifically figure-8 shaped. Thus

shocks can only connect states that are sufficiently close, and certain Riemann

problems have no classical solution.

In [KK95], Keyfitz and Kranzer present three sequences of functions U ε(ξ =

x/t) to (3.8) that approximately solve (3.8) as ε→ 0 but are also singular in this

limit. The first sequence results from an asymptotic expansion of the solution to

the regularized equation

∂U

∂t
+

∂

∂x
F (U) = εt

∂2U

∂x2
(3.9)

in ε, and the second and third are explicitly constructed from C∞ functions and

piecewise constant functions. They introduce a space of measures in which these

sequences converge to a limit involving Dirac-like masses superimposed on a clas-

sical shock. They also propose overcompression as an admissibility requirement

for singular shocks, i.e. (3.7) must hold for both characteristics; if singular shocks

are accepted under this restriction (3.8) is well posed for all Riemann data. How-

ever, these conclusions are restricted to (3.8). Also, Keyfitz and Kranzer empha-

size that while the limiting measures appear as limits of approximate solutions,

no well-defined criterion has been proposed by which the limits themselves can

be called solutions.
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Sever discusses the selection mechanism for singular shocks in a more general

context in [Sev07]. For a distribution solution

U(x, t) = M(t)δ(x− st) +

 UL if x < st

UR if x > st
(3.10)

characterized by a point mass M(t) located at x = st, conservation implies the

singular mass must satisfy

dM

dt
= s(UR − UL)−

[
F (UR)− F (UL)

]
. (3.11)

Since the speed s is unknown, this is an undetermined system for the n + 1 pa-

rameters dM/dt, s. For (3.8), Keyfitz and Kranzer determined unique solutions

by requiring the first component of M to vanish, justified by an argument spe-

cific to that system. Sever writes that this last constraint generally comes from

properties of the system such as symmetry groups or a convex entropy function.

The proper constraint for system (2.19) is not yet apparent.

Equations (2.19) with regularization (3.6) also show behavior consistent with

a singular shock. In order to investigate this, numerical solutions were generated

with a fully implicit centered difference scheme on a moving nonuniform grid.

The number of grid points at each mesh size was fixed, however every 10 time

steps the grids were rearranged using cubic interpolation as necessary to center

the area of maximum resolution around the singularity. Meanwhile the entire

computational domain moved a constant speed chosen to approximately match

the speed of the discontinuity. The scaling of the regularized solution satisfies

U ε(x, t) = U1(εx, εt), so rather than take ε→ 0 we fixed ε = 1 and evaluated the

solution at long times.

Figure 3.5 contains the results of this calculation. Both components of the

singular mass increase linearly in time, as required by (3.11), and the singularity
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is overcompressive. As the singularity evolves in time the maximum height and

concentration grow, and at t ≈ 3 × 108 the concentration exceeds the packing

fraction. While this linear second-order diffusion may behave differently from the

nonlinear fourth-order diffusion in (2.18), the unphysical concentrations suggest

the model may be inaccurate for high concentrations.

3.4 Alternative Settling Function

In this section we propose a modification to the unregularized system (2.19)

to ensure the concentration does not exceed φmax. We begin with a heuristic

explanation of how (2.12) may be incompatible with (2.1) in the limit φ→ φmax.

The volume-averaged velocity is controlled by µ(φ)−1, which vanishes in this limit,

while fRZ(φ) and hence the relative flux is nonzero. This imposes a forward flux

of particles with no net volume flux, requiring fluid therefore to move backward.

This situation is probably unrealistic, because the limit µ(φ) → ∞ is intended

to model the case when the particles are packed tightly enough to prevent any

shear flow. In that case, it seems more appropriate to model the particles as an

immobile porous medium, with a Darcy’s law flux of pure fluid and vrel < 0.

Incorporating such a transition into the current model presents challenges, as the

particle velocity must be specified relative to the laboratory frame rather than

the fluid, essentially changing to a two-fluid model at high concentrations. A

much simpler alternative is to simply let vrel vanish along with v at φ = φmax;

this is readily accomplished by using the hindered settling function proposed by

Buscall et al. [BGO82]

fB(φ) = (1− φ/φmax)
5 (3.12)

instead of (2.12). The two settling functions are plotted in figure 3.6.
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Figure 3.5: Film thickness (top) and particle concentration (bottom), from nu-

merical solutions of the regularized system (3.6) in the singular shock regime, with

b = 0.001, φ0 = 0.3, and ε = 1, calculated on a grid moving at speed s = 0.45547

and evaluated at times 5×107 (solid), 1×108 (dot-dash), and 2×108 (dot). The

dashed line on the bottom plot marks φm.
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Figure 3.6: Two forms of the hindered settling function. The Richardson-Zaki

form (solid line) vanishes at concentration 1.0, another form due to Buscall et al.

(dashed line) vanishes at the packing fraction 0.67.
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With this modification, solving the Riemann problem is simplified in two

significant ways: the equations are strictly hyperbolic throughout the relevant

domain Ω, and the bifurcation causing shock solutions to break down does not

occur. In figure 3.7 we have plotted shock-shock connections for four values of b.

These solutions exist even for very small precursors, so the system appears to be

well-posed regardless of b. Figure 3.8 summarizes the manner in which the type

of solution depends on the settling function and the Riemann data.

In figures 3.9-3.10, we compare the shock solutions to the two systems and

their dependence on the precursor b. The behavior of the Hugoniot curves in the

fRZ(φ) system, shown in figure 3.2, implies the intermediate height and concentra-

tion approach a maximum value at a critical precursor thickness b = b∗ ≈ 9×10−4,

below which there is no meaningful solution. As b→ 0 in the fB(φ) system, the

intermediate height increases apparently without bound and the concentration

approaches φmax. We also observed in both limits that the speeds of the 1- and

2- shocks to become approximately equal.

3.5 Genuine Nonlinearity

While most physical systems are strictly hyperbolic, systems arising naturally are

often not genuinely nonlinear. In the Euler equations of compressible flow, one

characteristic field is linearly degenerate: ri · ∇λi ≡ 0. For this characteristic,

Ri(U) and Si(U) coincide and connections take the form of contact discontinu-

ities, which satisfy (3.5) with the inequalities in (3.7) replaced by equality. More

generally, when the variation of λi along Ri changes sign, the strict inequality in

(3.7) becomes too restrictive and an entropy condition is needed to select which

contact discontinuities are admissible solutions.
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Figure 3.7: Shock connections using the settling function fB(φ) = (1− φ/φmax)
5

instead of fRZ(φ). The bifurcation that caused some initial data to have no

solution no longer occurs. The solid line is the 1-shock connection from (hL, φL),

(�), and the 2-shocks are plotted from various precursors (4) given by b = 10−1

(dot), 10−2 (short dash), 10−3 (long dash), 10−4 (dot-dash), 10−5 (dot-dot-dash),

and 10−6 (dot-dash-dash). Each solution involves an intermediate state marked

by ©.
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Figure 3.8: Type of solution (1-rarefaction and 2-shock, 1-shock and 2-shock, or

singular shock) as determined by b and φL (assuming hL = 1 and either φR = φL

or φR = 0), for both hindered settling functions. Richardson-Zaki settling and

φR = φL (upper left), Richardson-Zaki settling and φR = 0 (lower left), Buscall

et al. settling and φR = φL (upper right), Buscall et al. settling and φR = 0

(lower right).
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Figure 3.9: Height and concentration of the intermediate state vs. the precursor

thickness b. Squares and circles are the height and concentration of solutions using

the hindered settling function fRZ(φ), triangles and diamonds are the height and

concentration of solutions using fB(φ).
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Figure 3.10: The speed of the shocks that make up the solutions to the connection

problem for various precursors. Squares are solutions using the hindered settling

function fRZ(φ), and triangles with fB(φ).
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For a scalar conservation law, genuine nonlinearity is simply the strict con-

vexity (or concavity) of the flux function F . If the function changes concavity,

contact discontinuities are chosen by the Oleinik condition [Ole63], that the shock

speed s(UL, UR) satisfies

s(UL, UR) ≤ s(UL, U) (3.13)

for any U between UL and UR. Liu has provided a generalization to 2× 2 [Liu74]

and n × n systems [Liu75] that requires (3.13) hold for all U ∈ H(UL) between

UL and UR. Both Liu’s and Oleinik’s conditions reduce to (3.7) for a genuinely

nonlinear system. While potentially only a bounded segment of H(UL) could be

available for discontinuous waves, relaxing condition (3.7) provides more solutions

by allowing both continuous and discontinuous waves in the same characteristic.

Liu provides an existence proof, by constructing such a compound wave. This

connection involves a shock to the first point U∗ satisfying s(UL, U∗) = λi(U∗),

followed by a rarefaction from U∗ to UR ∈ R+
i (U∗). The point U∗ is both the

first local minimum of s along H(UL), hence the last point for which Liu’s en-

tropy condition is satisfied, and the first point for which λi ≥ s, necessary for a

continuing rarefaction wave.

In (2.19), r1 · ∇λ1 = 0 holds along the curve shown in figure 3.11. For

(hL, φL) = (1, 0.3) the branches S+
1 and R−

1 nearly coincide, so this branch repre-

sents to good approximation the states accessible through a 1-shock, 1-rarefaction

compound wave as well. In figure 3.12 the eigenvalue and shock speed are plotted

on this curve as a function of φ. For φ < φL, both speeds increase away from

UL, indicating a simple rarefaction. With φL < φ∗ ≈ 0.369, the shock speed is

strictly decreasing with φ so the connection is a shock satisfying the Liu-Oleinik

condition. This case includes the solutions described in §3.2 for b = 0.1 and

b = 0.01. For φ > φ∗ neither simple wave is feasible, but a contact discontinuity
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Figure 3.11: Failure of genuine nonlinearity for (2.19): ∇λ1 · r1 = 0 on the gray

line. Connections from (hL, φL) = (1.0, 0.3) (�) are plotted on the dashed line,

which include shocks up to (h∗, φ∗) ≈ (1.18, 0.369) (♦) or a compound shock to

(h∗, φ∗) followed by a rarefaction. 2-shocks are plotted from right states (4) for

one case (b = 0.02, dotted line) with a simple 1-shock, 2-shock solution, and

another case (b = 0.002, dashed line) with a compound 1-shock, 1-rarefaction

wave and a 2-shock. The equations are elliptic in the shaded region.
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Figure 3.12: Rarefaction speeds (dashed line) and shock speeds (solid) for the

connections along the first characteristic from a left state (hL, φL) = (1.0, 0.3),

(�), (corresponding to figure 3.1), plotted as a function of the concentration φR at

the right state. The linear degeneracy curve in figure 3.11 indicates the minimum

characteristic speed occurs at φR ≈ 0.34. If φR > φ∗ ≈ 0.37 (♦), a single shock

solution is not admissible and the solution consists of a hybrid shock-rarefaction

wave.
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from φL to φ∗ can connect with a rarefaction from φ∗ to φ because λ1 is now both

increasing and greater than the shock speed.

This compound wave is in practice difficult to distinguish from a simple shock.

As noted above, the states accessible to a compound wave are nearly the same

states lying on R1 or S1, so the constant state UI appearing between 1-waves

and 2-waves cannot easily be used to identify the compound wave. Additionally,

figure 3.12 demonstrates that λ1 changes very slowly along its characteristic at

intermediate concentrations, so for instance in the presence of numerical diffusion,

the rarefaction appears indistinguishable from a shock. Thus although some

solutions are necessarily compound waves, their observable properties (other than

failing to satisfy the Lax condition) are similar to those of a simple shock.
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CHAPTER 4

Linear Stability of the Contact Line

This chapter characterizes the stability of the contact line of a particle-laden film

in the context of the lubrication model described above, with respect to the trans-

verse perturbations that may grow into the fingering instability. The important

result is a linear stability analysis performed by Dr. Oleg Alexandrov, which

provides a theoretical explanation for Zhou et al.’s observation that the particle-

rich ridge suppresses the instability. The basic mechanism is understood from

the clear fluid case, in which the destabilizing effect of the fluid velocity increas-

ing with film thickness competes with the stabilizing effect of surface tension.

The involvement of surface tension indicates that the full fourth-order equations

(2.17) need to be studied in any stability calculation. In dimensionless form, the

two-dimensional system then appears as

ht+∇·
{

h3

µ(φ)
∇∇2h−D(α)

[
h3

µ(φ)
∇(ρ(φ)h)− 5

8

h4

µ(φ)
∇(ρ(φ))

]}
+

{
ρ(φ)

µ(φ)
h3

}
x

= 0

(4.1)

(φh)t +∇ ·
{

φ

µ(φ)
h3∇∇2h−D(α)

[
φ

µ(φ)
h3∇(ρ(φ)h)− 5

8

φ

µ(φ)
h4∇(ρ(φ))

]}
+

{
φρ(φ)

µ(φ)
h3 + Vsφhf(φ)w(h)

}
x

= 0. (4.2)

Numerical simulations of equations (4.1)-(4.2) show an instability affecting

φ but not h. This is because the second- and fourth-order regularizing terms,
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although present in both equations, affect only the average velocity

vav =
h3

µ(φ)
∇∇2h−D(α)

[
h3

µ(φ)
∇(ρ(φ)h)− 5

8

h4

µ(φ)
∇(ρ(φ))

]
+
ρ(φ)

µ(φ)
h3x̂. (4.3)

of the two phases, and not the relative velocity

vrel = Vsf(φ)w(h)x̂ (4.4)

of the particles with respect to the liquid. A stable two-dimensional model must

include a regularizing effect on this relative velocity.

Such regularization should naturally be present due to shear-induced diffu-

sion. Due to the thin geometry of film flow, diffusion will be most pronounced

in the (normal) z direction, an effect already incorporated in the model in the

assumption that particles are evenly distributed in this direction. As the detailed

below, this effect can also be significant in horizontal directions when gradients

in φ are large.

Leighton and Acrivos [LA87] describe shear-induced diffusion as a concentration-

and shear rate-dependent diffusion of particles with diffusivity D = a2γ̇D̂(φ) for a

suspension subject to a shear rate γ̇, and experiments of Leighton [Lei85] indicate

that the dimensionless coefficient is approximated by D̂(φ) = 1
3
φ2

(
1 + 1

2
e8.8φ

)
.

Using dimensional variables, the particle flux due to shear induced migration

appears as an extra term in equation (4.4):

(φh)t +∇ ·
(
(vav + vrel)φh−

[
a2γ̇D̂(φ)

]
h∇φ

)
= 0. (4.5)

The shear rate can be approximated by γ̇ = |dvav/dz|. In smooth regions this ve-

locity is generally dominated by its first order term, which before depth-averaging

is

vav(z) ≈ 3ρ(φ)

µ(φ)

(
hz − z2

2

)
, (4.6)
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giving an average shear rate

γ̇ ≈ 3

2
(g sinα)

ρ(φ)

µ(φ)
h. (4.7)

Substituting (4.7) and the velocities (4.4)-(4.3) into (4.5) and reverting to dimen-

sionless variables then yields the equation

(φh)t +∇ ·
{

φ

µ(φ)
h3∇∇2h−D(α)

[
φ

µ(φ)
h3∇(ρ(φ)h)− 5

8

φ

µ(φ)
h4∇(ρ(φ))

]
−3

2
a2(3Ca)1/3D̂(φ)

h2ρ(φ)

µ(φ)
∇φ

}
+

{
φρ(φ)

µ(φ)
h3 +

2

3
Vsφhf(φ)w(h)

}
x

= 0 (4.8)

for the particle flux, replacing equation (4.2), while equation (4.1) remains unal-

tered.

The base state for a contact line stability analysis is the solution to the system

(4.1), (4.8) with one-dimensional Riemann initial data:

h(x, y, t = 0) =

 1 for x < 0

b for x > 0
(4.9)

φ(x, y, t = 0) = φ0 (4.10)

representing the opening of a gate along the line x = 0 at time t = 0, which admits

a film of depth 1 and concentration φ0 onto a dry surface and assumes a precursor

film of thickness b � 1. A numerical solution of this base state calculated by

Oleg Alexandrov is shown in figure 4.1, along with a numerical solution of the

reduced system (2.19). As reported in [ZDB05], the reduced system remains a

good approximation of the full fourth-order system, differing primarily in the lack

of a capillary ridge, so the first-order shock terminology remains a useful way to

describe solutions of the fourth-order system.

In two dimensions, the regularized shock solution corresponds to a straight

contact line. Whether the contact line remains straight in any experiment is
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Figure 4.1: The base state, obtained by a numerical solution of the one-dimen-

sional Riemann problem at times 0, 2000, 4000, and 6000. Dashed lines are

solutions of the full fourth-order equations and solid lines are shock solutions of

the first-order reduced system. The smoothness of the trailing shock is a numer-

ical artifact. The left plot displays film thickness, and the right is concentration.

The simulation parameters are as follows: φ0 = 0.3, b = 0.01, α = π/2. The

graphs have been shifted along the x axis to make them appear closer together.

75



determined by the stability of this base state with respect to transverse pertur-

bations. In the clear fluid problem, the base state is a single regularized shock

and can be written as a traveling wave h(x, t) = h(x − Ut) for an appropriate

choice of U [THS89, BB97]. In contrast a double shock solution cannot be rep-

resented as a traveling wave, so in this case the base state must be considered a

function of both x and t.

Following [BSB05], the dynamic linear stability analysis begins with the ansatz

h̄(x, y, t) = h(x, t) + εg(x, t) cos qy (4.11)

φ̄(x, y, t) = φ(x, t) + εψ(x, t) cos qy, (4.12)

which allows, together with equations (4.1) and (4.8), the derivation of the fol-

lowing evolution equations for the perturbations g and ψ:

gt+

{
h3

[
a(φ)

(
g(3) − q2g′

)
+ a′(φ)h(3)ψ

]
+3a(φ)h2h(3)g

}
x

+q2a(φ)h3
(
q2g − g′′

)
+

{
h2 [3b(φ)g + hb′(φ)ψ]

}
x

= 0 (4.13)

(φg+hψ)t+

{
h3

[
c(φ)

(
g(3) − q2g′

)
+ c′(φ)h(3)ψ

]
+3c(φ)h2h(3)g

}
x

+q2c(φ)h3
(
q2g − g′′

)
+

{
h2 [3d(φ)g + hd′(φ)ψ]

}
x

+ Vs

{
f(φ)w(h)

[
φg + hψ

]
+ hφ

[
ψw(h)f ′(φ) + f(φ)gw′(h)

]}
x

− C
[
{p′(h)r(φ)φxg + p(h)r′(φ)φxψ + p(h)r(φ)ψx}x − q2p(h)r(φ)ψ

]
= 0. (4.14)

Here we denoted a(φ) = 1/µ(φ), b(φ) = ρ(φ)/µ(φ), c(φ) = φ/µ(φ), d(φ) =

φρ(φ)/µ(φ), C = 3
2
a2(3Ca)1/3, p(h) = h2, r(φ) = D̂(φ)ρ(φ)/µ(φ). Also, for sim-

plicity, it is assumed that the film flows vertically so α = π/2 and D(α) = 0.

Sufficiently small perturbations will grow or decay exponentially in time, i.e.

as eβ(q)t. Anticipating this behavior, the growth rate β(q) was extracted from
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Figure 4.2: On the left, the perturbation g(t, x) at time T = 4000 for q = 1

(the solid line). The superimposed dashed curve is h(x, t) shown to illustrate

the positions of the leading and trailing shocks. On the right is the decay of

the perturbation in time. Around T = 4000 the part of the perturbation at the

trailing shock starts dominating the part of the perturbation at the leading shock,

and the decay slows down. The parameters used are b = 0.01, φ0 = 0.3, α = π/2.
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numerical simulations of the perturbation equations (4.13)-(4.14) by examining

the evolution of the quantity maxx |g(t, x)| in time. An example of this evolution

appears in figure 4.2, showing a complication that occurs as the perturbation

splits into two parts, each localized near one of the shocks. At early times the

maximum is attained by the perturbation at the leading shock, but later the

perturbation at the trailing shock dominates, and this transition shows up as a

kink in the amplitude plot.

The long time growth rates were used to infer β(q), shown in figure 4.3, which

like the pure fluid case displays a long wave instability. Also plotted are the

growth rates from calculations with Vs set to zero, which forces the concentration

to remain constant, thereby modeling a homogeneous fluid with the same bulk

properties as the mixture. The differences in the growth rate between the two

calculations can then be attributed to settling and the associated particle-rich

ridge, and this effect appears as an 11% reduction in the growth rate of unstable

modes.

The above stability analysis shows that particle settling and the formation of

a ridge has a moderate stabilizing effect, slowing the growth rate of the fingering

instability and pushing the most unstable mode to a slightly longer wavelength.

This matches the effect seen in the experiments of Zhou et al. [ZDB05], though

it is not clear that the modest reduction in the growth rate described above is

sufficient to explain the observed effect on finger growth.
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Figure 4.3: The growth rate β(q) for the film without settiling (solid) and with

settling (dash).
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CHAPTER 5

Shear Induced Migration in a Thin Film

This chapter analyzes the effects of shear-induced migration on the vertical distri-

bution of particles in a film. The models presented above assumed this is always

a uniform distribution, but for more accuracy the distribution should determined

by a balance between migration and gravity.

Such a balance has been calculated before by Schaflinger et al. [SAZ90] and

by Timberlake and Morris [TM05]. Shaflinger et al. used the “diffusive flux”

model for shear-induced diffusion introduced by Leighton and Acrivos [LA87],

which states that the volume flux of particles is given by

Nd = −a2γ̇D̂(φ)∇φ, (5.1)

where γ̇ is the shear rate, a is the particle radius, and the dimensionless diffusion

coefficient was found by Leighton [Lei85] to be well approximated by D̂(φ) =

1
3
φ2(1 + 1

2
e8.8φ). The use of the scalar shear rate restricts this model to simple

shear flows, such as one-dimensional film flow where γ̇ = dv/dz and v is the

velocity of the mixture. Schaflinger et al. balanced this flux with that due to

gravitational settling in the z direction, which they approximated with a hindered

settling function. This condition along with the Newtonian stress balance allowed

them to derive a system of two first-order ordinary differential equations for the

concentration and shear stress, which they solved numerically.

Two important features of the solutions can be deduced from the form of (5.1).
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The diffusive flux must be always directed upward in order to balance gravity,

which implies by (5.1) that dφ/dz ≤ 0. Also, since the flux is proportional to

the shear rate, the vanishing stress at the free surface z = h ensures there is no

diffusive flux to balance settling, and therefore φ(h) = 0 for all solutions1.

Timberlake and Morris included theory for the depth profile of concentration

in their experimental paper on film flow of a neutrally buoyant suspension. Their

description uses the “suspension balance” model of Nott and Brady [NB94] for

particle migration. That more rigorous model calculates a “temperature” mea-

suring fluctuations in particle velocities, which is generated by shear, dissipated

by viscous stress, and diffuses through an effect related to the finite particle size.

This last property is the most significant difference between the diffusive flux

and suspension balance models, implying that particle migration depends nonlo-

cally on the shear rate, which in this case allows a small nonzero concentration

at the free surface. Otherwise the two models generally give similar predictions

[FMB02]. Since Timberlake and Morris considered neutrally buoyant particles,

φ increases with z, which is also confirmed by their experiment. Rather than

assuming the film is always in diffusive equilibrium, they retain the x coordinate

in the flow direction, and their calculations indicate a distance on the order of

200h is necessary to reach equilibrium. This factor decreases strongly with the

bulk concentration and is proportional to (h/a)2.

5.1 Derivation of the Model Equations

This analysis will use diffusive flux model for simplicity, and proceed similarly to

Schaflinger et al., but differ crucially by using an extra term in which the particle

1A steady solution with no diffusive flux is also possible where the maximum concentration
φm is reached, corresponding to packed spheres, however this cannot happen at the free surface
in Shaflinger et al.’s model because dφ/dz ≤ 0.
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flux opposes gradients in the shear rate, in addition to opposing concentration

gradients as in (5.1). Here we use the particle migration expression [PAB92]

(1.25) rewritten as

Dφ

Dt
= a2∇ ·

[
Kcφ∇(γ̇φ) +Kηγ̇

φ2

µ(φ)
∇µ(φ)

]
, (5.2)

with the values Kc = 0.43 and Kη = 0.65 for the two constants. Equation (5.2)

corresponds to a particle flux

Fm = −a2Kcφ∇
(

σ

µ(φ)
φ

)
− a2(Kη −Kc)

σφ2

µ(φ)2
∇µ(φ)

= − a2φ

µ(φ)

(
Kc∇(σφ) + (Kη −Kc)

σφ

µ(φ)
∇µ(φ)

)
, (5.3)

where the shear rate γ̇ has been eliminated in favor of the shear stress σ = µ(φ)γ̇.

For a flat film on an incline, equilibrium is reached when this flux balances

that of gravitational settling in the z direction, which will again be modeled using

a hindered settling function. In this case it is convenient to follow Schaflinger et

al. and use the hindered settling function f(φ) = (1 − φ)/µ(φ), leading to the

settling flux

Fs = −2

9

a2∆ρg cosα

µf

φ(1− φ)

µ(φ)
. (5.4)

The balance of flux Fm + Fs = 0 then takes the form

Kc(σφ)′ + (Kη −Kc)
σφ

µ(φ)
µ(φ)′ = −2

9

∆ρg cosα

µf

(1− φ) (5.5)

where the gradients have been replaced primes denoting differentiation by z.

Substituting the viscosity formula µ(φ) = µf (1 − φ/φm)−2 and differentiating

yields [
1 +

2(Kη −Kc)

Kc

φ

φm − φ

]
σφ′

= φ(1 + ∆φ)− 2∆

9Kc

(cotα)(1− φ), (5.6)
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where z and σ have now been nondimensionalized using the depth of the film h

and the unit of stress (ρg/h) sinα.

For a flat film there is no curvature, so the pressure can be set to zero at the

free surface z = 1, and is simply hydrostatic in the suspension. The nondimen-

sional shear stress then satisfies the equation

σ′ = −(1 + ∆φ). (5.7)

Equations (5.6) and (5.7) constitute the system to be studied here, with the un-

derstanding that (5.6) is replaced by φ′ = 0 when φ = 0 or φ = φm to ensure pure

fluid and packed particles are admissible solutions and to keep the concentration

within its meaningful range. The physical boundary conditions both involve the

stress: σ(0) = (1 + ∆φ0) and σ(1) = 0, where φ0 is the imposed average con-

centration. Thus for these two equations there is only a one-parameter family

of physically meaningful solutions, parameterized by φ0. In practice this system

was easiest to solve by shooting with a Runge-Kutta method from z = 0 while

adjusting the value of φ(0). Once σ and φ are determined, the mixture velocity

can be calculated using dv/dz = γ̇ = σ(z)/µ(φ(z)) and v(0) = 0.

5.2 Solutions

Since particle migration in this model does not strictly oppose the concentration

gradient, φ is not constrained to decrease with z as in the work of Schaflinger

et al. The lack of a migration flux at the free surface however is general to the

diffusive flux model, and still applies here, forcing either φ(1) = 0 or φ(1) = φm.

Since σ ≥ 0, it is also apparent from equation (5.6) that φ(z) is monotone, since

σφ′ is determined by a function of φ only with a single unstable root φ∗ = φ∗(α)

in its allowable domain (between 0 and φm). There are then two possibilities:
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φ0 > φ(0) > φ∗ with φ(1) = φm, or φ0 < φ(0) < φm with φ(1) = 0.

Considering the latter case, the particulate phase is located preferentially near

the bottom of the film and (because v(z) is always increasing) moves slower than

the fluid on average, both of which are necessary conditions for the particles

to settle out of the flow. It seems natural then to associate φ0 < φ∗(α) with

this regime in Zhou et al.’s experimental work [ZDB05]. The case φ0 > φ∗(α)

should then correspond to the particle-rich ridge regime, as the particles do not

settle to the bottom and move faster on average than the fluid, even without

including the settling velocity in the flow direction. While there is no obvious

reason why there should be a regime (other than the single solution φ ≡ φ∗) where

the fluid and particles move at the same velocity, it may be that experiments in

which the suspension stayed well-mixed had φ0 ≈ φ∗ and the relatively small

difference between the two velocities did not have time to produce noticeable

segregation on the experimental time scale. Plotted in figure 5.1 is the curve

φ∗(α) overlayed on the experimental data of Zhou et al., which appears consistent

with this hypothesis.

Figure 5.2 shows the concentration and velocity profiles for two solutions of

this system at α = 45◦ with φ∗(α) = 0.35, for φ0 = 0.45 and φ0 = 0.25. The

effect of increasing concentration for φ0 = 0.45 is to flatten the velocity profile

near the top from the parabolic shape of an unstratified film, while for φ0 = 0.25

the velocity has an inflection point in this area. Also of interest is the fact that

when dφ/dz > 0 both phases move faster than the velocity of an unstratified film,

because of the high-shear, low-φ region at the bottom and the low shear at the

top where v is at its greatest. Both phases are slower when dφ/dz < 0.

In figure 5.3 the relative velocity due to stratification is compared with the

in-plane settling velocity used in [ZDB05] and [CBH06] at α = 45◦. Specifically

84



Figure 5.1: The function φ∗(α) determining whether particles concentrate toward

the top or bottom of the film, overlaid on Zhou et al.’s experimental parameters

for which particles settle to the substrate (circle, white region), remain well mixed

(triangle, light region), and accumulate in a ridge (diamond, dark region). Ex-

perimental data were inferred from figure 2 of [ZDB05].
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Figure 5.2: Depth profiles of φ and v for two average concentrations at α = 45◦.

Bulk concentration φ0 = 0.25: velocity (dot) and concentration (long dash),

bulk concentration φ0 = 0.45: velocity (short dash) and concentration (solid).

Velocities are scaled by the average velocity of a homogeneous film at the same

concentration. With this rescaling the average velocities at φ0 = 0.25 of the

particle and liquid phases are 0.57 and 0.70, and at φ0 = 0.45 the velocities are

1.41 and 1.33 respectively.
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for formation of the particle rich ridge. Velocity difference due to the stratified

flow as described above (dash), and velocity difference due to direct gravitational

settling in the flow direction as described by Zhou et al. (solid).
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the vertical axis measures the ratio vrel/vav = (vp − vf )/(φvp + (1 − φ)vf ) that

determines the accumulation of particles in an experiment limited by the length

of the channel. For concentrations greater than 0.37, stratification has a larger

effect than in-plane settling. Since the particle-rich ridge occurs at rather high

concentrations, the stratified flow appears to be the more important cause of the

ridge.

A description of the ridge regime including stratification is possible within

the lubrication context if the film is assumed to be always in equilibrium be-

tween settling and migration, by using the calculations of figure 5.3 to determine

the relative velocity from φ. This assumption does not appear to be justified,

however, especially since the solution can be expected to develop shocks as in

[CBH06], so a fully two-dimensional model may be necessary. The experiments

and two-dimensional calculations of Timberlake and Morris [TM05] indicate the

distance travelled before reaching this equilibrium is on the order of tens of cen-

timeters, even for an experiment with somewhat larger particles such as Zhou

et al. [ZDB05]. Non-equilibrium effects would probably not alter the selection

of settling regimes other than to increase the time for which the film stays well-

mixed, making that regime more likely for length-limited experiments.
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CHAPTER 6

Summary

In chapter 1 we reviewed the literature on thin films, focusing on those studies

most relevant to this work. Studies of thin films have dealt with the rate of ad-

vance, which in lubrication theory is determined by the shape of the free surface,

and with the fingering instability that often deforms the contact line. Special

modeling techniques are needed to deal with the advancing contact line, because

lubrication models give unphysical results at the contact line. We reviewed sev-

eral studies of suspension flow, demonstrating the use of common continuous

models for particle settling, effective viscosity, and shear-induced migration. We

also discussed the experiments by Zhou et al. of particle-laden films[ZDB05],

which posed the problems that this dissertation addresses: the appearance of a

particle-rich ridge and its effect on the contact line instability, and the selection

between this ridge and two other settling behaviors.

In chapter 2 we derived a lubrication model consisting of two fourth-order

equations for particle-laden film flow, incorporating effective viscosity and hori-

zontal particle settling. This derivation follows the procedure outlined in [ZDB05],

and produces a corrected system that is also generalized to two dimensions.

Chapter 3 follows the technique suggested in [ZDB05] of analyzing the re-

duced system, obtained by neglecting second- and fourth-order spatial deriva-

tives, which takes the form of a 2× 2 system of conservation laws. The theory of

such systems indicates solutions will be consist of either two shocks, a composite
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shock-rarefaction, or a singular shock, depending on the details of the precursor

model. Changing the form of the particle settling velocity eliminates the need for

un-physical singular shock solutions, and the resulting system appears to always

have a classical weak solution of either two shocks or a rarefaction-shock. The

double-shock solutions have the same structure as the particle-rich ridge observed

in experiments.

In chapter 4 a linear stability analysis of the advancing film shows a long-

wave instability, as in the fluid case, corresponding to the observed finger-like

deformations of the contact line. Numerical studies indicate two-dimensional

problem requires additional regularization in order to be well-posed, and a simple

model is presented for such a regularization due to shear-induced diffusion. The

stability calculation for this regularized system shows that particle settling, and

the associated particle-rich ridge, has a mild stabilizing effect on the contact line

and shifts the most unstable mode to slightly longer wavelengths. This result

is in qualitative agreement with Zhou et al.’s observation that the instability is

somewhat suppressed by the formation of a ridge.

Chapter 5 considers a more general model for particle-laden films, allowing

the particle concentration to vary with depth. This model assumes that the

concentration reaches a steady state in which vertical settling is balanced by

shear-induced migration. Depending on the overall concentration and the incli-

nation angle, this balance can result in higher concentrations at the top or the

bottom. This distinction determines whether particles move on average faster

or slower than the liquid, which in turn probably determines whether particles

settle out of the flow or accumulate in a ridge. A straightforward application

to a one-dimensional flow appears computationally feasible and could quantify

this statement. Predictions of the settling behavior are consistent with the ex-
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perimental phase diagram in [ZDB05]. A drawback of this model however is

that the concentration may not always be in equilibrium, particularly in regions

near a shock. Numerical simulation of the non-equilibrium version of this model

represents a more challenging problem for further study.
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