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A Multi-resolution Stochastic Level Set Method

for Mumford-Shah Image Segmentation
Yan Nei Law, Hwee Kuan Lee, Andy M. Yip

Abstract

The Mumford-Shah model is one of the most successful image segmentation models. But existing algorithms for

the model require a good initial guess to obtain good results and are therefore impractical. To make the model practical,

it is essential to develop an algorithm which can compute the global or near global optimal solution efficiently. While

gradient descent based methods are well-known to find a local minimum only, even many stochastic methods do not

provide a practical solution to this problem either. We propose a hybrid approach which combines gradient based and

stochastic optimization methods to resolve the problem of sensitivity to the initial guess. At the heart of our algorithm

is a well-designed basin hopping scheme which uses global updates to escape from local traps in a way that is much

more effective than standard stochastic methods. In our experiments, a very high quality solution is obtained within

ten stochastic hops whereas the solutions obtained with other standard stochastic methods are incomparable even

after thousands of steps. We also propose a multi-resolution approach to reduce the computational cost and enhance

the search for the global minimum. Furthermore, we derived a simple but useful theoretical result relating solutions

at different resolutions.1

I. INTRODUCTION

Image segmentation is indispensable in many applications since it facilitates the extraction of information and

interpretation of image contents. For instance, in high throughput imaging, storage and organization of a large

number of images according to the extracted information are required. Therefore, it is crucial to segment each

image into meaningful partitions in an accurate, fast, automated and robust way. The segmentation problem is

fundamental to image processing. But it is a difficult one since it is highly ill-posed.

While standard segmentation methods may work reasonably well when the images have simple contents and are

of high quality, they perform poorly on practical images which are often non-ideal. For example, the nuclei of the

breast cancer cells in Fig. 2 have a diverse intensity levels. Thus, simple thresholding or even adaptive thresholding

[1] may miss many nuclei. In the brain MRI image shown in Fig. 8, the various matters and tumor have no sharp

defining boundary. Most edge-based segmentation methods do not work. In the zebrafish image shown in Fig. 9,

the proliferating-cell nuclear antigen (PCNA) clusters (black dots around the intervillus pockets) consist of many
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clusters of cells. Most algorithms will treat spatially separated clusters as individuals. But sometimes it may be more

useful to perceive them collectively as a region. Similarly, the villi also appear to be formed by many small white

patches. This can make the recognition of the PCNA and villi much more difficult. The high noise level also poses

additional difficulty which would fail methods like thresholding and watershed [1]. When these complexities can

not be reduced by repeating or redesigning the experimental setup, sophisticated computational methods provide

valuable alternatives.

There are many advanced approaches for image segmentation: clustering, histogram-based, region-growing, graph

partitioning and optimization model-based. A recent survey in segmentation can be found in [2]. Among the various

advanced segmentation approaches, optimization model-based methods often give very promising results, provided

that the underlying optimization problem is solved accurately numerically. An advantage of this approach is that

one can incorporate domain knowledge into the model explicitly through rigorous mathematical modeling.

The Mumford-Shah Segmentation Model

In this paper we consider the well-known Mumford-Shah segmentation model [3] which is one of the best

models in segmentation. It can handle gracefully the aforementioned complex situations and is very robust to noise.

A distinctive feature is that it is region-based which allows it to segment objects without edges. For the same reason,

it can group a cluster of smaller objects into a larger object.

For a given image u0, the piecewise constant Mumford-Shah model seeks for a set of curves C and a set of

constants c = (c1, c2, . . . , cn) which minimize an energy functional given by:

FMS(C, c) =
n∑

i=1

∫

Ωi

|u0(x, y)− ci|2dxdy + µ× Length(C). (1)

The curves in C partition the image into n mutually exclusive segments Ωi for i = 1, 2, . . . , n. The idea is to

partition the image so that the intensity of u0 in each segment Ωi is well-approximated by a constant ci. The

goodness-of-fit is measured by the fitting term
∫
Ωi
|u0(x, y)− ci|2dxdy. On the other hand, a minimum description

length principle is employed which requires the curves C to be as short as possible. This increases the robustness

to noise and avoids spurious segments. The parameter µ > 0 controls the trade-off between the goodness-of-fit and

the length of the curves C.

Optimization Methods

Solving the optimization problem associated with most sophisticated models, including the Mumford-Shah model,

is far from trivial. Updating of the curves C in Eq. (1) is complicated in situations in which the curves need to be

split or merged. A breakthrough in solving the Mumford-Shah optimization problem is achieved by Chan and Vese

[4], and a more general version in [5]. They propose to use the level set method introduced by Osher and Sethian

[6] to represent the curves C by the zeroth level of a set of functions Φ defined on the image domain. Simply put,

it is a change of variable from C to Φ. As a result, the energy functional in (1) becomes FMS(Φ, c), see §II-C
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for details. The problem then becomes a standard variational problem which is much easier to handle. Methods for

solving such a variational problem can be largely divided into two categories: deterministic and stochastic.

In gradient descent based deterministic methods, a new solution is obtained by moving the current solution along

a descent direction in which the energy is decreasing [7]. In greedy based deterministic methods, membership in

pixel or region level is updated in a greedy way in order to optimize the energy locally, see the section Related Work.

These deterministic methods work well when the energy functional is convex. When it is non-convex, which is the

case of the Mumford-Shah model, the solution obtained can be far from the globally optimal solution. Moreover,

tremendously different solutions may be obtained when different initial solutions are used.

Global optimization techniques such as interval arithmetics and subdivision schemes [8] are available. But they

are often suitable only for problems of very small size due to their high complexity.

For non-convex energy functionals, Monte Carlo (MC) methods, a major class of stochastic methods, provide

viable alternatives. They can overcome the problem of being trapped in a local minimum. In particular, simulated

annealing implemented with the Metropolis algorithm [9] and a local updating scheme has been popular in solving

many optimization problems. The annealing theorem says that such a method can converge to the global solution

in the long run [10]. However, its convergence to the global solution is logarithmically slow. Moreover, it is often

difficult to specify a good annealing schedule to make the method work, see Fig. 7. Thus, it still does not provide

a practical solution to our problem.

To remedy the weaknesses of simulated annealing with local updates, many advanced MC methods such as

generalized ensembles [11], [12], reweighting [13], [14], cluster algorithms [15] and basin hopping [16] have been

developed over the past couple of decades to handle a variety of problems in condensed matter physics that cannot

be solved efficiently using traditional simulated annealing. Some of these methods adopt global updating strategies.

To the best of the authors’ knowledge, they have not been utilized to solving the Mumford-Shah image segmentation

problem. We show in this paper that basin hopping with global updates provides a very effective means to solving

the problem.

Our Contribution

In this paper, we propose a hybrid approach, which we called Stochastic Level Set Method, to combine the

strengths of advanced deterministic and stochastic optimization approaches. It is a kind of basin hopping method

[16] which uses the gradient information of the energy function to make the best local move and uses a stochastic

split-and-merge method to make a global move towards the global solution. The split-and-merge step is the crucial

element in our algorithm. It is tailor-made for the Mumford-Shah model and can overcome the slowness of many

standard stochastic methods by allowing a large change in the partition of the image. Our work has solved a

practical problem existed in current Mumford-Shah algorithms: The need to specify a “good” initial guess which

is usually unknown in many imaging applications.

To further reduce the computational cost, we use a multi-resolution method. A key issue is to ensure that the

solution at a lower resolution indeed gives a good approximation to the original problem. For this, we derived an
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important theoretical result relating solutions at different resolutions.

Related Work

Our method combines the best of deterministic and stochastic methods for the Mumford-Shah energy. A similar

hybrid approach has been proposed for solving the shape-from-shading problem [17]. But we go beyond it by using

the more sophisticated basin hopping method.

A greedy region merging method is proposed in [18] which starts with a very fine segmentation and progressively

merges two regions at a time according to a predefined schedule. Other greedy schemes are considered in [19],

[20]. In these methods, the membership of a small group of pixels is updated at a time. A different approach is

proposed in [21] which reduces the optimization problem to a series of simple thresholding and filtering steps.

These methods are very efficient to compute a local optimal solution of the Mumford-Shah energy. But they make

no attempt to compute the global solution.

A very interesting result is obtained in [22]. They show that for n = 2 in Eq. (1) and for fixed constants

c = (c1, c2), the non-convex Mumford-Shah energy can be reformulated as a convex energy. Thus, a global

solution (for a fixed c) can be easily computed. However, the result does not hold for n > 2. Therefore, when

n > 2, we are dealing with a non-convex energy which makes existing algorithms impractical due to the need of

a good initial solution — a luxury which is seldom available.

As with many variational models, the Mumford-Shah model can be cast in a probabilistic framework in which

the pointwise maximum a posteriori estimate is equivalent to the solution of the original model [23]. In [24], a soft

Mumford-Shah segmentation model in the probabilistic framework is also proposed. However, the algorithms used

to compute the optimal distributions are deterministic. Thus the aim in these work is fundamentally different from

us — we apply stochastic optimization methods to optimize a deterministic model whereas the above methods apply

deterministic optimization methods to optimize stochastic models. These algorithms make no significant attempt

to compute a global solution and may get trapped in a local minimum. Indeed, our framework may be applied to

improve their solution quality.

A work which appears to be the closest to the present one is given by Juan et al. [25]. They consider stochastic

methods to compute solutions to various active contour models, including the Mumford-Shah. The major difference,

also our main contribution, is that our updates are global whereas theirs are local. In their method, each point on the

active contour (or level set function) moves in its normal direction at a speed which is a random perturbation of the

one suggested by the gradient descent. Thus the speed depends only on local quantities. In contrast, our hopping step

is region based and is thus global which can escape from local minima effectively (see Fig. 4). Another important

difference is that, being based on local updates, their method relies on simulated annealing that is constrained by

the annealing theorem. Our method does not require any annealing schedule but can still overcome local traps and

stabilize in a finite number of steps.
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Fig. 1. A schematic plot of the basin hopping method with x-axis representing the multi-dimensional solution space C. The method essentially

flattens the energy landscape to reduce energy barriers.

II. ALGORITHM

In this section, we present our proposed algorithm. In §II-A, we present the basic ideas behind basin hopping and

explain why it is superior to sole deterministic or sole stochastic methods. Next, in §II-B, we present the outline of

our proposed algorithm. A detailed description of each major component of our method is presented in §II-C–§II-F.

A. The Basin Hopping Method

The basin hopping method [16] combines deterministic and stochastic methods to remove energy barriers and

escape from local minima. We illustrate the main ideas of the method through a schematic depicted in Fig. 1.

Starting from an initial guess (point A), a gradient descent is performed to find the local minimum (point B). A

stochastic hopping step is invoked to jump from point B to a new iterate, say point C, which is a global update

move selected randomly from a small set of candidate moves. A gradient descent is performed again from point C

to obtain a lower energy minimum at point D. Several hopping steps can be performed to obtain a better iterate,

for example, an additional hop brings the iterate from point D to E and then to F.

In general, each point is attracted to a local minimum through a gradient descent process. In effect, basin

hopping simplifies the energy landscape. This effective energy is depicted as the staircases in Fig. 1. Notice that

the simplified energy has much less energy barriers. We may view the method as a series of hopping between

local minima (basins). If the new local minimum gives a lower energy, then the new solution will be taken without

reservation. Otherwise, a coin may be flipped to determine if the new iterate is accepted. For methods using local

updates, it is necessary to allow temporary increases in energy. But for methods using global updates, they can still

escape from local minima even if we accept only a new solution leading to a decreased energy.

In contrast, the gradient descent method of [4] computes a local minimum only. Good results can be obtained

efficiently, provided that a good starting point is available. Greedy algorithms of [18]–[20] can be viewed as a series
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of deterministic hops. A problem is that if the hopping leads to a bad solution, then there is no way out. But basin

hopping explores many possibilities. Thus, it is clear that stochastic methods have an edge over deterministic ones

for non-convex problems.

Basin hopping is clearly much better than simulated annealing with local updates, this is verified in Fig. 7. With

basin hopping, a local minimum is quickly found using the gradient descent while in simulated annealing, a minimum

is not found until the final temperature. The energy landscape is also not simplified in simulated annealing. The

exploration of the search space using local updates is much slower than that using the global updates we proposed.

Finally, once the temperature is lower than the energy barrier ∆E, the probability of escaping from this local

minimum goes as ∼ exp(−∆E/T ), which is exponentially small.

The success of the basin hopping method highly depends on the design of the hopping strategy. Our hopping

strategy is a stochastic region splitting and merging method which is specially designed for the Mumford-Shah

energy and is effective for the diverse images we tested. On the other hand, repeated hopping and local optimization

increase the computational cost. We alleviate this problem using a multi-resolution approach.

B. The Stochastic Level Set Method

The proposed algorithm is outlined as follows:

1) Reduce the resolution of the original image by L levels.

2) Local optimization: Apply the level set based gradient descent method with initial curves C0 to obtain a new

iterate Ccurr and energy Ecurr.

3) Repeat the followings up to a predetermined number of steps or until all possible hops have been rejected:

a) Hopping: Use the stochastic split-and-merge to hop to a configuration C ′.

b) Local optimization: Apply the level set based gradient descent method with initial curves C ′ to obtain

a proposed new iterate Cprop and energy Eprop.

c) Accept/reject: If ∆E = Eprop − Ecurr < 0, then set Ccurr ← Cprop and Ecurr ← Eprop.

4) Repeat the followings until the original resolution is reached:

a) Increase the image resolution by 1 level.

b) Local optimization: Apply the level set based gradient descent method with initial curves Ccurr to obtain

a new iterate Cprop.

c) Accept: Set the current iterate, Ccurr ← Cprop.

We remark that the dependence of the Mumford-Shah energy on the constant c is ignored since it can be

determined from the curves, see Eq. (3) below. This method can be formulated with simulated annealing [10]

by setting the acceptance probability to min{1, exp(−∆E/T )} and decreasing the value of T gradually. But our

hopping scheme is global so that simulated annealing is not needed.
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C. Level Set Methods for the Mumford-Shah Model

Splitting and merging of evolving curves are non-trivial, Vese and Chan [5] propose to use a set of functions

Φ = (φ1, . . . , φm) defined on the image domain to encode the segments into the intersections of the positive and

negative regions of Φ and to encode the dividing curves C into the locations at which one of component functions

is zero. In this paper, we use two level set functions φ1, φ2 to represent up to 4 phases. Each phase may consist of

more than one connected component. Each connected component is a segment. For each location (x, y), the phase

that it belongs is determined by the following encoding:

Phase 1: φ1(x, y) > 0 and φ2(x, y) > 0,

Phase 2: φ1(x, y) > 0 and φ2(x, y) < 0,

Phase 3: φ1(x, y) < 0 and φ2(x, y) > 0,

Phase 4: φ1(x, y) < 0 and φ2(x, y) < 0.

Then, the Mumford-Shah energy (1) can be expressed as

FMS(Φ, c) =
∫

Ω

(u0 − c1)2H(φ1)H(φ2)dxdy +
∫

Ω

(u0 − c2)2H(φ1)[1−H(φ2)]dxdy

+
∫

Ω

(u0 − c3)2[1−H(φ1)]H(φ2)dxdy +
∫

Ω

(u0 − c4)2[1−H(φ1)][1−H(φ2)]dxdy

+ µ

∫

Ω

[|∇H(φ1)|+ |∇H(φ2)|] dxdy. (2)

Here, H(z) is the Heaviside function which is 1 if z > 0, 1/2 if z = 0, and 0 otherwise. The crucial advantage of

such a change of variable from C to Φ is that the minimization with respective to Φ is much easier to carry out.

Moreover, splitting and merging of curves and subregions are done by simply “moving the level set functions up

and down”. In general, we can use m level set functions to represent up to n = 2m phases. See [5] for details.

We remark that it is possible to obtain many segments using only a small number of phases. But the segments

within each phase are fitted with the same constant ci by the model.

D. The Level Set Based Gradient Descent Method

The gradient descent method brings an initial solution to its respective local minimum. This method is used to

optimize FMS(Φ, c) with respect to Φ. To optimize FMS(Φ, c) with respect to c as well, we use the alternating

approach in [4]. Starting from a given initial guess Φ0, we update Φ and c alternatively as follows:

1) For a given fixed Φk−1, compute ck by solving the problem minc FMS(Φk−1, c).

2) For a given fixed ck, compute Φk by applying one step of gradient descent starting at Φk−1.

For the ease of presentation, we shall call this alternating method as level set based gradient descent.

It can be easily shown that the problem in the first step has the following explicit solution:

ci = average of u0 over phase i, for i = 1, 2, . . . , n. (3)

Thus the constants can easily be determined from Φ.
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For the second step, we denote by ∂FMS

∂Φ the gradient of FMS with respective to Φ. Then, the gradient descent

method computes the next iterate by the following update:

Φk = Φk−1 −∆t
∂FMS

∂Φ
(Φk−1, ck), (4)

where ∆t > 0 is the step length parameter. The detailed numerical implementation of Eq. (4) can be found in [5].

When the alternating minimization converges at the K-th step, we obtain a configuration (ΦK , cK) which is the

local minimum of FMS starting from Φ0.

E. Stochastic Region Split-and-Merge

The success of our proposed method depends largely on the type of hop performed. We design a very effective

stochastic split-and-merge in which a large area of the image can be splitted and merged in a single step. This

greatly reduces the number of hops to search for a global minimum. In our examples, it is sufficient to get a much

improved segmentation within 10 split-and-merge steps whereas the results of standard simulated annealing with

local updates are incomparable even after thousands of steps.

In the splitting step, we randomly choose a segment Ωi (a connected component in a phase) according to the

probability distribution Prob(choosing Ωi) = wi/
∑

i wi, where

wi =
∫

Ωi

(u0(x, y)− c̄i)2dxdy.

Here, c̄i is the average of u0 over Ωi. This weighting scheme is designed for the Mumford-Shah model since

it prefers to split a segment having a high sum-of-differences-squared, which resembles the fitting term of the

Mumford-Shah energy. We have also considered other possible weighting schemes. Since a sum-of-differences-

squared of a connected component can be written as the product of region size and intensity variance:

wi = |Ωi| × 1
|Ωi|

∫

Ωi

(u0(x, y)− c̄i)2dxdy,

it is intuitive to try on a weighting scheme using either one of them. However, we found that these two schemes are

unable to escape from local minima (results not shown in the paper). Using region size, the largest but homogeneous

regions (e.g. background) are often picked. But they are often not good candidates to split. Using variance, very

small regions (e.g. 2-pixel regions) are often picked. However, the move due to splitting these small regions is too

small to escape from local minima. In contrast, using the sum-of-differences-squared can balance these two factors.

Another possible weighting scheme we considered is based on the energy change ∆E. This approach is quite

natural since it leads to a greedy way to minimize the energy. In this scheme, we randomly choose a segment

with probability proportional to a decreasing function of ∆E, e.g. exp(−∆E) and max{−∆E, 0}. This scheme

is inconsistent with the essence of basin hopping, which is to allow a temporary increase in energy so that large

global changes can be achieved. This scheme often picks small local updates to avoid a large increase of energy.

We found that ∆E often depends heavily on the length term. Thus, the inclusion of the length term may hinder

the splitting of large regions. This is the reason why we exclude the length term in our splitting scheme.
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To split the selected segment into two subsegments, we apply the ISODATA thresholding method [26] which

computes an optimal threshold so as to make the intensity levels within each subsegment as close as possible. This

can reduce the fitting term of the Mumford-Shah energy optimally.

In the merging step, we try to merge either one of the resulting subsegments obtained in the splitting step with

one of the remaining n−1 phases. Thus, there is 2(n−1) potential mergers. The merger which causes the greatest

reduction in the fitting term is used. In case the chosen merger has been rejected previously since the last hop is

accepted, the merger which causes the next greatest reduction is used instead. Our merging step is deterministic.

We found experimentally that stochastic merging based on the reduction in the fitting term does not give a better

performance than the deterministic scheme, see Fig. 5 (Middle). Thus we use the deterministic scheme for simplicity.

F. A Multi-resolution Hybrid Approach

Down-sampling of the image reduces the search space and provides a less noisy image. This can further reduce

the number of local minima. Computational cost for low resolution images is also relatively cheap. For these

reasons, we apply the stochastic level set method at a low resolution image to search for a global minimum at the

reduced resolution. This allows us to find a close-to-optimal solution quickly. Since detailed features are lost in the

low resolution image, it is necessary to refine the solution at the original resolution. We do this by progressively

increasing the resolution one level (a factor of two in each dimension) at a time until the original resolution is

reached. Each time the resolution is increased, we apply the (deterministic) level set based gradient descent method

to refine the solution. We found that only a small number of iterations are needed because a good solution is already

obtained after applying the stochastic level set method at the lowest resolution. Our results show that this approach

allows us to obtain a solution of better quality in much less time compared to the pure deterministic method in [5]

and its multi-resolution version, see Fig. 2 and 5 (Left).

In order for the multi-resolution method to work, there are two main issues. Firstly, an outline of the target objects

should be preserved at the lowest resolution. This restricts the number of resolution levels that can be reduced.

The resolution of the images used in the experiments is reduced by 2− 3 levels with no problem in preserving the

object outlines. Secondly, the optimization problems at different levels must have similar solutions. We found that

if the image at one level lower is constructed by a simple local averaging, then the segmentation obtained from

the lower resolution image is also optimal for the original image among all segmentations at the lower resolution.

This result is stated precisely in the following theorem. The proof of the theorem can be found in the Appendix.

Theorem 1: Let u = (ui,j) be a given M ×M image. Let v = (vi,j) be the M/2×M/2 lower resolution image

constructed by a simple averaging, that is,

vi,j =
1
4
(u2i−1,2j−1 + u2i−1,2j + u2i,2j−1 + u2i,2j)

for 1 ≤ i, j ≤ M/2. Then the solution of the Mumford-Shah problem with data u is identical to that with data v if

the segmentation of u is restricted to the resolution one level lower, i.e. u2i−1,2j−1, u2i−1,2j , u2i,2j−1, u2i,2j must

belong to the same segment for each i, j.
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III. METHODS

For the images used in our experiments, the breast cancer cell image is obtained within the first and second

authors’ institute. The brain MRI and zebrafish intestine images are obtained in [27] and [28] respectively.

To validate our method, we compare it with the pure gradient descent method proposed in [4], [5]. While other

existing methods such as the multi-scale scheme in [20] and the thresholding method in [21] can be computational

more efficient, they are deterministic and not designed for global optimization. Thus, the solutions obtained are

qualitative similar. For this reason, it is sufficient to compare our method with the standard gradient descent method.

To demonstrate the efficiency of our proposed hopping scheme, we also compare our method with the multi-scale

version of the gradient descent method and the simulated annealing method.

In our results, we use 4 phases which are sufficient to obtain a good segmentation for each of the test images.

The parameter µ is chosen manually. To test the robustness of the methods to the initial guess, we use various

initial guesses when testing on the breast cancer cell image. These initial guesses have been used in [4], [5]. For the

other two images, we choose the initial condition so that the pure gradient descent method gives the most visually

appealing results.

We count the number of gradient descent steps and use it as the number of iterations. The computational cost

spent on the stochastic split-and-merge steps is negligible. When applying the hopping steps, the image resolution

is reduced by three levels for the cell and the MRI images. 10 hops are applied. 100 gradient descent steps are

taken both initially and after each hop. Thus a total of 1100 gradient descent steps are taken at the lowest resolution

(3rd level). At the 2nd, 1st and original levels, 100, 80 and 20 gradient descent steps are taken respectively. To

standardize the number of iterations at different levels for comparison, we treat one iteration at L levels lower than

the original level as 1/4L iterations at the original level. This is because the number of pixels is reduced by a

factor of 1/4L and the cost per iteration is proportional to the number of pixels. As a result, our method takes 64

equivalent iterations at the original level. For the zebrafish image, the image resolution is reduced by two levels

and the remaining settings are the same. Hence, our method takes 109 equivalent iterations at the original level.

For the pure gradient descent method, the number of iterations varies and is reported in each figure individually. We

tried to use the smallest possible number of iterations while maintaining the quality of the resulting segmentations.

In our comparison to the simulated annealing, we start the simulated annealing scheme with assigning each pixel

to a random phase membership. Each update is done by randomly choosing a pixel, proposing a new randomly

chosen phase membership, and then accepting the proposed change with the probability min(1, exp(−∆E/T )).

Here, ∆E is the change of energy due to the proposed change and T is the annealing temperature which is initially

set to 6 × 107 and reduced by a factor of 0.98 in every 40 ×N (number of pixels) updates. We call N times of

such local updates as one iteration. The computation cost of one iteration is comparable to that of one iteration of

our stochastic level set method. The annealing scheme is chosen to obtain the largest decreased of energy with the

least number of iterations.

All algorithms are implemented in MATLAB 7 with a Pentium D 3GHz machine. The total CPU times are

recorded. The energy of the resulting segmentations are reported in Table I as a measure of the goodness of the
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results.

IV. RESULTS

A. Robustness to the Initial Condition

In this test, the image we used consists of breast cancer cells. The results of the pure gradient descent and

our hybrid methods utilizing different initial conditions are shown in Fig. 2. The gradient descent method is very

sensitive to the initial condition. A reasonable result is obtained using the Initial Condition 1. But the other two

results are poor. Further increasing the number of iterations does not improve the solution (results not shown here)

since the iterations are trapped in a local minimum. In contrast, the stochastic level set method is very robust to

the initial condition. For all the three distinct initial conditions, our method leads to essentially the same solution

(pairwise difference less than 0.3%). Although we are not able to verify that the solution is globally optimal, the

quality of the segmentation is much better and the energy is lower, cf. Table I.

B. The Hopping Process

In Fig. 3, we show some intermediate results during the hopping process. These results use the Initial Condition 3

in Fig. 2. After the first 100 iterations at the lowest level, the iterate is trapped in a local minimum. The result there

is qualitatively similar to the one by the pure gradient descent at the original level, cf. Fig. 2, 3rd row 3rd column.

After five rounds of hopping, a much improved result is obtained. As the resolution increases (after 10 hops), the

refinements are very little, showing that the results in the lowest level are indeed very good. This indicates the

potential to further lower the resolution when applying the hopping steps.

Next, we demonstrate the effect of our global hopping. In Fig. 4, we show the result before and after the fifth hop.

Before the hop, the energy is 3.22× 1012 and a large segment in the dark gray phase is chosen. Then it is splitted

into two subsegments depicted in vertical and horizontal strips in the second picture. They roughly correspond to

the background and cytoplasm respectively, cf. the original image in Fig. 2. Our splitting step is able to pick up

this segment (with a high probability of 0.31) and try to correct it. The subsegment in vertical strips is then merged

with the black background where the energy increases to 3.35 × 1012. After the gradient descent is applied, the

energy drops significantly to 3.05× 1012 which is much lower than the energy before the hop. Therefore, the hop

is accepted. This scenario is in analogy with the illustration in Fig. 1 where a hop brings the iterate from point D

to E and then F.

C. Multi-resolution with hopping vs. multi-resolution without hopping

The result of multi-resolution gradient descent method without hopping is shown in Fig. 5 (Left). The Initial

Condition 3 is used and the number of iterations for each level is the same as those for stochastic level set method.

We can see from the figure that the result is trapped in a local minimum and looks similar to the result of the

pure gradient descent method, cf. Fig. 2, 3rd row 3rd column. This indicates that a multi-resolution approach alone

without hopping is insufficient to escape from a local minimum. The convergence profile is shown in Fig. 7 (Left).
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Fig. 2. Segmentation of the breast cancer cell image. 1st row: Original image with size 480 × 640. 2nd row: Three initial conditions. 3rd

row: Gradient descent method with µ = 3 × 107 and 300 iterations. The CPU time is 690 sec. 4th row: Stochastic level set method with

µ = 3× 107. Number of equivalent iterations at the original level is 64. The CPU time is 135 sec. The difference between each pair of phase

assignments is less than 0.3%.

D. Deterministic merging vs. stochastic merging

In the merging step, instead of choosing the merger which causes the greatest reduction in the fitting term, we

randomly choose a combination (a subsegment and a phase) with probability proportional to the reciprocal of the

fitting term to merge. The result is shown in Fig. 5 (Right). The Initial Condition 3 is used. The result is very similar

to the result obtained by deterministic merging scheme, cf. Fig. 2, 4th row 3rd column. Since such a stochastic

merging scheme does not significantly improve the result, we choose the simpler deterministic one.
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Fig. 3. Intermediate results of the stochastic level set method. Five rounds of hopping give a much improved result (cf. Fig. 2, 3rd row 3rd

column). As the resolution increases (after 10 hops), the refinements are very little, showing that the results in the lowest level are indeed very

good.

Before split-and-merge 
(Energy = 3.22×1012) 

Splitted subsegments 

  
After split-and-merge 
(Energy = 3.35×10

12
) 

After gradient descent 
(Energy = 3.05×10

12
) 

  

 

Fig. 4. Result before and after the fifth hop. In a single hop, a large area in the image is splitted and merged. Energy increases after the

split-and-merge but decreases significantly after the gradient descent iterations. This scenario is in analogy with the illustration in Fig. 1, where

a hop brings the iterate from D to E and then F.
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Multi-resolution GD 
(Energy = 2.86×1012) 

Stochastic Merging 
(Energy = 2.24×1012) 

  
 

Fig. 5. Comparison with competitive approaches. (Left) Multi-resolution gradient descent method without hopping. The solution is trapped by

a local minimum. (Right) Stochastic level set method but with a stochastic merging scheme. No significant improvement over the deterministic

scheme is observed.

E. Stochastic level set method with global updates vs. simulated annealing with local updates

We performed a systematic investigation of different annealing schemes on the breast cancer cell image. Forty-

one different annealing schemes are performed and we pick the best scheme for comparison with the stochastic

level-set method.

The results of simulated annealing after 1000, 3000 and 8000 iterations are shown in Fig. 6. It takes about 20

hours for every 1000 iterations. Note that one iteration consists of 480×640 local updates, see the Method section.

After 1000 iterations, the result is still incomparable to our result although it has already taken 20 hours. In terms

of quality, the result after 3000 iterations is similar to ours. The disagreement between the two phase assignments

is about 2%. Our energy is about 0.2% lower. To gain our confidence that our method can obtain solutions of good

quality, we further run the simulated annealing until 8000 iterations. The result is only slightly (2%) different from

the result after 3000 iterations. Compared to our result, the energy of simulated annealing after 8000 iterations

is 2% lower than ours and the phase assignments differ only by 3%. Thus even after 8000 iterations, simulated

annealing does not perform significantly better than our method.

Next, we compare the convergence profile of four different methods. The plots of the energy vs. number of

iterations (up to 100 iterations) for the stochastic level set method (solid line), the gradient descent method (dashed

line), the multi-resolution gradient descent method (dashed-dot line) and the simulated annealing method (dotted

line) are shown in Fig. 7 (Left). For the stochastic level set and gradient descent methods, we start with the

Initial Condition 3. For the simulated annealing method, we start with a random configuration. We observe that the

stochastic level set method achieves a much lower energy level in less iterations than the other two methods. We

also show in Fig. 7 (Right) the result of simulated annealing up to 8000 iterations. Our energy level is reached by

simulated annealing only after about 3000 iterations after which the energy stabilizes.

F. More Examples

1) Brain MRI Image: The results on a brain MRI image are shown in Fig. 8. The objective is to segment out

the tumor near the middle and to separate the grey matters from the white matters. In this image, the segments
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Fig. 6. Simulated annealing after 1000, 3000 and 8000 iterations. The CPU time for every 1000 iterations is about 20 hours.
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Fig. 7. Convergence profile of energy for various methods. (Left) 100 iterations for the gradient descent and simulated annealing methods. 64

iterations for the stochastic level set and multi-resolution gradient descent (GD) methods. (Right) 8000 iterations for the simulated annealing.

Stochastic level set method obtains a much lower energy in smaller number of iterations. The spikes in the solid curve are due to a temporary

increase in energy right after the merging step (but before the gradient descent iterations followed). Both hops that are accepted and rejected

are shown.

have a complex topology and shape. The image is also noisy. The Mumford-Shah model can exhibit these complex

segments as a solution. But it is non-trivial to realize. The pure gradient descent method groups the tumor and the

white matters together for many different initial conditions. But our method can obtain the desirable segmentation

with all the different initial conditions that we tried (only one is shown in the figure).

2) Proliferating-cell Nuclear Antigen: The results are shown in Fig. 9. The objects to segment consist of clusters

of small molecules — proliferating-cell nuclear antigen (PCNA) in this case. They are depicted in the original

image as black dots around the intervillus pockets. The stochastic level set method has no difficulty in segmenting

them out. They are depicted in black color in Fig. 9. The black phase obtained by the gradient descent method

contains many features which are not PCNA and are actually of lighter colors in the original image.
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Gradient descent Stochastic level set 

  
 

Fig. 8. Segmentation of the brain MRI image. (Top left) Original image with size 190×200. (Top right) Initial condition. (Bottom left) Gradient

descent method with µ = 1000 and 1000 iterations. The CPU time is 217 sec. (Bottom right) Stochastic level set method with µ = 1000. The

number of equivalent iterations at the original level is 64. The CPU time is 17 sec.

TABLE I

ENERGY OF THE SEGMENTATION RESULTS OBTAINED BY THE TWO METHODS. (IC STANDS FOR INITIAL CONDITION.)

Date set Energy Energy % improvement

(Gradient descent) (Stochastic LS)

Breast (IC 1) 3.83× 1012 2.24× 1012 42

Breast (IC 2) 3.81× 1012 2.24× 1012 41

Breast (IC 3) 2.90× 1012 2.24× 1012 22

Brain MRI 1.96× 107 1.29× 107 34

Zebrafish 2.06× 107 1.46× 107 29
Energy reduced about 20 ∼ 40%.
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Fig. 9. Segmentation of the zebrafish image. (Top left) Original image with size 156×188. (Top right) Initial condition. (Bottom left) Gradient

descent method with µ = 1000 and 1000 iterations. The CPU time is 170 sec. (Bottom right) Stochastic level set method with µ = 1000. The

number of equivalent iterations at the original level is 109. The CPU time is 21 sec.

V. DISCUSSION

In this paper, we propose a hybrid optimization method to solve the Mumford-Shah segmentation problem. Using

numerous images with distinct features, we show that our method is very robust to the initial guess and outperforms

standard deterministic and stochastic methods. It also obtains solutions of lower energy in much less computational

resources. Our results suggest that coupling global and local updates is a promising approach to solving non-convex

variational problems in image segmentation. Our intuition is that although the objective function is non-convex, its

landscape is usually “not that complicated” either (at least for our examples). This is because of the regularization

terms. However, designing an effective global updating scheme for a given problem can be non-trivial since the

global landscape of the objective function is difficult to characterize. But for the Mumford-Shah model, splitting

and merging based on the sum-of-differences-squared appear to be a good candidate. Finally, we remark that while

we use gradient descent to carry out local optimization, it can be replaced by any other fast local optimization

procedures, e.g. [21].
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APPENDIX I

PROOF OF THEOREM 1

Let Ω0 and Ω1 be the image domain at the original level (level 0) and at one level higher (level 1) respectively.

Let Ωk
l for k = 1, . . . , n be the kth phase in Ωl for l = 0, 1 defined by a segmentation Φ. Let

F0(c, Φ) = h2
n∑

k=1

∑

(i,j)∈Ωk
0

(ui,j − ck)2 + µLength(Φ)

be the objective function at level 0 and let

F1(c, Φ) = (2h)2
n∑

k=1

∑

(i,j)∈Ωk
1

(vi,j − ck)2 + µLength(Φ)

be the objective function at level 1. Here h2 and (2h)2 are the area of a pixel in level 0 and level 1 respectively.

Let Φ̃ be an arbitrary segmentation at level 1 and let c̃(Φ̃) be the optimal constants determined from Φ̃. Let Ω̃k
l

be the kth phase in Ωl defined by Φ̃. Let v̄ = (v̄i,j) a constant extension of v from Ω1 to Ω0, i.e. it is an M ×M

image such that v̄i,j = vdi/2e,dj/2e. Then we have

F0(c̃(Φ̃), Φ̃) = h2
n∑

k=1

∑

(i,j)∈Ω̃k
0

(ui,j − c̃k)2 + µLength(Φ̃)

= h2
n∑

k=1

∑

(i,j)∈Ω̃k
0

(v̄i,j − c̃k + ui,j − v̄i,j)2 + µLength(Φ̃)

= h2
n∑

k=1

∑

(i,j)∈Ω̃k
0

(v̄i,j − c̃k)2 + µLength(Φ̃) + h2
n∑

k=1

∑

(i,j)∈Ω̃k
0

(ui,j − v̄i,j)2

+2h2
n∑

k=1

∑

(i,j)∈Ω̃k
0

(v̄i,j − c̃k)(ui,j − v̄i,j)

= (2h)2
n∑

k=1

∑

(i,j)∈Ω̃k
1

(vi,j − c̃k)2 + µLength(Φ̃) + constant

+2h2
n∑

k=1

∑

(i,j)∈Ω̃k
1

(vi,j − c̃k)
1∑

p,q=0

(u2i−p,2j−q − vi,j)

= F1(c̃(Φ̃), Φ̃) + constant.

Let (c1, Φ1) be the optimal solution of F1 at level 1. Then, we have

F0(c̃(Φ̃), Φ̃) = F1(c̃(Φ̃), Φ̃) + constant ≥ F1(c(Φ1),Φ1) + constant = F0(c(Φ1),Φ1)

for any Φ̃ defined on Ω1. Thus, Φ1 is also a minimizer of F0 on Ω1.
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