
LEVEL SET BASED NONLOCAL SURFACE RESTORATION

BIN DONG, JIAN YE, STANLEY OSHER, AND IVO DINOV

Abstract. In this paper we extend nonlocal smoothing techniques for image
regularization in [12] to surface regularization, with surfaces represented by
level set functions. We test our algorithm on both phantom and observed
surfaces, including city terrain and cortical surfaces.

1. Introduction

Variational and partial differential equations (PDEs) based image denoising mod-
els have had great success in the past twenty years (see e.g. [18, 16, 3, 25]). The
goal is to remove noise (in the form of random high frequency oscillations) from an
image, while keeping features, e.g. sharp edges and textures.

Recently, some of the models used for image denoising have been extended to
denoising surfaces (see [5, 6, 7, 14, 22, 23]). There are mainly two ways to repre-
sent surfaces. One is using triangular meshes, the other is implicitly, usually using
level set functions. The well known advantages of handling implicitly represented
surfaces over triangulated surfaces are numerical simplicity and flexibility of topo-
logical changes. Topological flexibility is important and it makes possible for our
algorithm to do not only denoising, but also topology corrections. In this paper we
shall focus on implicitly represented surfaces. We note that Yoshizawa, Belyaev and
Seidel [24] recently introduced a nonlocal averaging algorithm for denoising triangu-
lated surfaces. Their algorithm is also related to some earlier works on semi-local
similarity-based shape descriptors and applications in shape matching, retrieval,
and modelling [4, 10, 11, 19, 26]. Although both our and Yoshizawa-Belyaev-Seidel’s
methods are based on ideas of nonlocal means introduced by Buades, Coll and Morel
[1] for image denoising, our approach is different in the sense that we are handling
implicit surfaces with all their advantages. Elmoataz, Lezoray and Bougleux [9]
recently introduced a nonlocal discrete regularization framework, which is the dis-
crete analogue of the continuous Euclidean nonlocal regularization functionals in
[12, 13]. This method is applied for image and manifold processing using weighted
graphs of the arbitrary topologies. This approach is useful for various types of
images, meshes, manifolds and data represented as graphs.
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1.1. Nonlocal Means. The nonlocal means method was introduced by Buades,
Coll and Morel in [1]. They suggested the following nonlocal averaging for image
denoising:

NL(u)(x) =
1

c(x)

∫

Ω

e−da(u(x),u(y))/h2

u(y)dy

where c(x) is a normalization factor and

da(u(x), u(y)) =

∫

Ω

Ga(t)|u(x + t) − u(x − t)|2dt,

with Ga a Gaussian with standard deviation a. This algorithm gives excellent
results in image denoising (see [1, 12]). In a later work by Buades, Coll and Morel
[2], they showed that the nonlocal means filter can be extended from the linear
regression neighborhood filter. They also derived and analyzed the corresponding
PDE to the linear regression neighborhood filter, as well as the connection between
bilateral filters [21] and Perona-Malik equations [17].

1.2. Variational Viewpoints. In [12, 13], Gilboa and Osher put nonlocal aver-
aging into a variational framework (an earlier variational formulation was done in
[15]). In this paper, we extend their formulation to surface denoising.

In [12, 13], the following energy was used

J(u) :=
1

4

∫

Ω

∣

∣∇wu
∣

∣

2
dx.

(This uses ideas introduced in [27].) The corresponding gradient flow of the energy
J(u) is the nonlocal heat equation

(1.1) ut = ∆wu :=
1

2
divw(∇wu) =

∫

Ω

(u(y) − u(x))w(x, y)dy,

for x ∈ Ω. The discrete version of (1.1) is

(1.2) uk+1
j = uk

j + dt
∑

l∈Nj

wjl(u
k
l − uk

j ),

where uj denotes the value of u at grid point j with j going over all grid points in
the computational domain, and Nj is some neighborhood of j such that w(l, j) > 0
for l ∈ Nj . The CFL restriction for the time step dt is

1 ≥ dt
∑

l∈Nj

wjl, ∀j.

In [12], they showed that excellent denoising results can be obtained by using some
properly chosen weight w, which is related to the kernel of nonlocal means.

The following section shows how we choose the weight w and apply (1.2) to
surface denoising.

2. Numerical Strategies and Discussions

Throughout this paper, all surfaces are represented by signed distance functions.
To be precise, the surface S is taken as the boundary of some domain Σ. The
corresponding signed distance function φ satisfies: φ(x) < 0, for x ∈ Σ; φ > 0, for
x /∈ Σ; and |∇φ| = 1 away from its singularities. Thus we have S = {x : φ(x) = 0}.
Our strategy for surface denoising is described as follows.

Strategy:
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(1) Surfaces are represented by signed distance functions φ.
(2) Calculations are performed on a narrow band of zero level set of φ, denoted

as Σδ with δ the width of narrow band.
(3) Choice of weight w(x, y) and similarity function D(x, y):

w(x, y) = e−|x−y|2/c1e−D(x,y)/c2 ,
D(x, y) = ‖φ[x] − φ[y]‖2

2, x ∈ Σδ, y ∈ Nx,

where Nx is a neighborhood of x within Σδ , and φ[x] is a 3D patch of φ
centered at x.

(4) Under discrete formulations, the iterative scheme (1.2) now reads as

(2.1) φk+1
j = φk

j + dt
∑

l∈Nj

wjl(φ
k
l − φk

j ),

with wjl calculated as given in (3), and dt chosen to be

dt = 1/ max
j

{
∑

l∈Nj

wjl},

where j goes over all grid points in Σδ.
(5) Stopping time k = K is chosen by the user (see the remark below for more

details).

Remark 1.

(1) The reason we use a narrow band calculation is not only for numerical
efficiency, but also because we want to (and should) focus more on the zero
level set and its neighboring level sets. The nearby level sets contain more
relevant information than distant level sets.

(2) The way of choosing weight wjl in (3) is, in fact, a semi-nonlocal version of
the original nonlocal means in (1.2) (see [12]). The parameter c1 controls
how much one wishes to penalize distant of two grid points in the weight,
while c2 controls how much one wishes to penalize similarity of the two
patches. Larger c1 allows one make use of more remote information, while
larger c2 gives results with sharper features (but requires more iterations
in general).

(3) In the definition of similarity function D(x, y) in (3), we simply measure
the L2 distance of two cubical patches without doing Gaussian smoothing
first. This is because the signed distance function is not very noisy, even
though its zero level set is quite noisy. Hence the direct L2 distance gives
a good measurement of similarity, which saves computation time.

(4) Here we let users to determine the stopping iteration K. The reason is
that for real noisy surfaces (like the cortical surfaces from MRI scans in
Section 3.2), the type of noise can be arbitrary (not necessarily Gaussian
noise). Hence there is no apparent way of giving a unified stopping criteria
as people did for image denoising. In our experiments below, the number
of iterations is around 300 for the twin-cubes and city terrain, and around
150 for the cortical surfaces. In future, we shall define a unified stopping
criteria for our method.
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3. Numerical Results

In this section, we present numerical results for the algorithm given in the pre-
vious section. We will first show some denoising results for some shapes corrupted
with Gaussian white noise. Then we test the algorithm on some biological data
generated from high resolution MRI scans. For all experiments, the width δ of the
narrow band Σδ is chosen to be 2, i.e. Σδ has grid points of 5 level sets including
the approximate zero level set. For each given grid point x ∈ Σδ, Nx is chosen to
have 100 grid points which are closest to x within Σδ. The patch φ[x], centering at
x, is taken to be of size 5 × 5 × 5 (whose grid points could lie outside of Σδ).

All biological data, i.e. cortical surfaces and MRI images, are provided by
the Laboratory of Neural Imaging, Center for Computational Biology, UCLA,
http://www.ccb.ucla.edu.

3.1. Denoising: Synthesis Noise. The noisy level set function φ̃ is given by
φ̃ = φ + ε, with ε ∈ N (0, σ). We compared our approach to mean curvature based
surface regularization:

φt = |∇φ|

(

∇ ·
( ∇φ

|∇φ|

)

− λ(H(φ) − H(φ̃))

)

,

with H the Heaviside function. The parameter λ is chosen manually for each
example.

Figure 1 is a man made shape, where two boxes are attached together. Mean
curvature smoothing gives a fair result which removes most of the noise and pre-
serves some edge information. Our approach gives a much better result. All noise is
removed and the edges are not only preserved perfectly, but also reconstructed for
some regions. This is not surprising because one can regard the nonlocal smoothing
as a “copy-paste” procedure. Since the noisy shape has some sharp edges uncon-
taminated, the algorithm then “copies” them to the regions where the edges are
lost and reconstruct them almost perfectly (as one can see from (c) in Figure 1).
One may notice that some corners are not recovered from the noisy data. This is
because the neighborhood Nx is not global and we are not taking rotations into
account, so that within Nx, no similar information (i.e. corners) can be found. We
shall take rotation into account in our future work. Figure 2 shows denoising results
for a cortical surface (gray matter), where our approach preserves the features (e.g.
sulci) very well. Figure 3 shows denoising results for man made city terrain surface.
This is actually a harder surface to denoise than the previous ones, because the
“holes” on the base of the surface make it a high genus surface, i.e. the topology
is changed by noise. Also, the thickness of the base is only 3 grid points, which is
hard to preserve for some algorithms. For example, the mean curvature algorithm
will destroy the base as one can see from (c) of Figure 3. If one uses a triangular
mesh based algorithm to denoise the surface, it will be very tricky to correct the
topology and reconstruct back the base. In contrast, our algorithm here did a very
good job in removing noise, and in topology corrections (see (d) of Figure 3).

3.2. Denoising: Real Noisy Data. The cortical surface (white matter) in Figure
4 is obtained from high-resolution MRI scans. The raw data is a volumetric mask
of size 181 × 217 × 181 segmented from MRI scans manually, which means the
segmentation is accurate; however it is very noisy. Then the mask is transformed
to a signed distance function using a fast sweeping method introduced in [20].
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(a) (b) (c)

Figure 1. Figure (a) is the noisy shape; (b) is the result using
mean curvature smoothing with λ = 0.1; (c) is our approach.

Cortical surfaces are much more complicated than the previous examples. First,
they have very deep and narrow sulci and thin gyri. Since sulci and gyri are very
important features for cortical surfaces, we want to preserve them as much as
possible during regularization. In addition, the noisy cortical surfaces have lots of
isolated small pieces that need to be removed. Our algorithm performed well here
in removing noise and isolated pieces, while preserving sulci and gyri, as one can
see from Figure 4 and Figure 5.

4. Conclusion

We have shown that our extension of nonlocal smoothing to surface regularization
is very effective in removing spurious oscillations while preserving and even restoring
sharp features. Furthermore, thanks to the implicit representation of surfaces,
topology corrections are made by our algorithms for some of the surfaces.

References

1. A. Buades, B. Coll, and J-M. Morel. On image denoising methods, Multiscale Model. Simul.,
4(2) (2005), pp. 490–530.

2. A. Buades and B. Coll and J-M. Morel. Neighborhood filters and PDE’s, Numer. Math. 105(1)
(2006), pp. 1–34.

3. M. Burger, G. Gilboa, S. Osher and J. Xu. Nonlinear inverse scale space methods, Commun.
Math. Sci., 4(1) (2006), pp. 179–212.

4. P. Bhat, S. Ingram and G. Turk. Geometric texture synthesis by example, Second Eurographics
Symposium on Geometry Processing (2004).

5. U. Clarenz, U. Diewald, and M. Rumpf. Anisotropic diffusion in surface processing, T. Ertl,
B. Hamann, and A. Varshney, editors, Proc. IEEE Vis. (2000), pp. 397–405.
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(a)

(b)

(c)

(d)

Figure 2. The two figures in (a), (b), (c) or (d) are the front and
back views of the same cortical surface. Figure (a) is the clean
gray matter; (b) is the noisy one; (c) is the denoising result from
mean curvature smoothing with λ = 0.001; (d) is the result by our
approach.
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(a)

(b)

(c)

(d)

Figure 3. The two figures in (a), (b), (c) or (d) are the global
view and a close-up of the same city terrain. Figure (a) is the
clean terrain surface; (b) is the noisy one; (c) is the denoising
result from mean curvature smoothing with λ = 0.01; (d) is the
result by our approach.
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(a)

(b)

(c)

Figure 4. The two figures in (a), (b) and (c) are noisy (left) and
regularized (right) white matter viewed from left, right and top.
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(a)

(b)

(c)

Figure 5. The first figure in (a), (b) and (c) illustrates which
slice of the cortical surface is shown. The second and third figures
in (a), (b) and (c) are the corresponding close-ups for the axial
((x, y)-slice), sagittal ((y, z)-slice) and coronal ((x, z)-slice) slices
of the cortical surface and the MRI scan. Here blue curves are
the original segmentation for white matter, and the red ones are
regularized one.


