
Image denoising using diffusion on curvelet-scaled

Gabor filter responses

Jim Bremer ∗ Yoel Shkolnisky † Arthur Szlam ‡

October 29, 2007

1 Introduction

In [5], a general framework for adaptive function regularization was introduced,
and this framework was demonstrated in several applications, including image
denoising. The basic idea of the method applied to image denoising is to choose
a set of features and consider the pixels of the image as lying in feature space.
We then try to use the heat equation on the points in feature space to smooth
the image. In this note, we would like to give a more in depth account of
image denoising in this framework using curvelet scaled Gabor filter responses
as features.

1.1 Weights from images

To build the image-dependent weights we first associate a feature vector to each
location x in the image I by convolving I with a filter bank. Here we will be
mostly concerned with the Gabor filters described in 1.2. If g = (g1, · · · , gd) are
our filters, Q = [0, 1] × [0, 1], and I : Q �→ R is our (noisy) image, map Q into
R

d by
Fg(I) : Q → R

d

x �→ (I ∗ g1(x), · · · , I ∗ gd(x))
(1)

Once we have features F(I), let

ρ(x, y) = ||Fg(I)(x) −Fg(I)(y)|| ,
where || · || is the Euclidean norm in R

d. Now we pick a (usually exponentially
decreasing) function h and variance parameter ε, and define

W (x, y) = h

(
ρ(x, y)2

ε

)
. (2)

∗Department of Mathematics, U.C. Davis
†Department of Mathematics, Yale University,
‡Department of Mathematics, U.C.L.A.

1

A common choice is h(a) = exp(−a). The idea is that we expect that very close
data points (with respect to ρ) will be similar, but do not want to assume that
far away data points are necessarily different. The exponential weight h in (2)
gives a large preference to very close points.

It is computationally prohibitive to find W (x, y) for all pairs of pixels. In
addition, unless there are patterns repeated in many locations in the image, far
away pixels are unlikely to be useful in determining the denoising. So we modify
ρ by choosing sets S = S(x) ⊂ Q so that

ρ(x, y) =
{

ρg(x, y) if y ∈ S(x);
∞ otherwise. . (3)

A simple and effective choice for S(x) is a square of fixed side length centered at
x. Even within the coarse search box S there may be many pixels that are not
too similar to x. To further decrease the computational complexity and to insure
that x only communicates with pixels very similar to it, we fix a small number k
and set ρ(x, y) = ∞ for any y which is not one of the k nearest ρ neighbors of x.
Finally, we follow [4] and modify ρ so that the distance between x and its four
nearest spatial neighbors is not set to ∞ regardless of whether they are among
the k nearest points to x in feature space; this leads to a dramatic reduction in
artifacts. With h as above, building W with the modified ρ results in a matrix
with at most k + 4 entries per row.

1.2 Construction of curvelet-scaled Gabor filters

To build the filters we partition the frequency plane into radial bands, and then
the radial bands into polar rectangular tiles, doubling the number of tiles every
two bands, as in [2]. In each frequency tile, we place a Gaussian bump with
mean in the centroid of the tile, and variances scaled as the ratio of the radial
length of the tile to the angular width of the tile. To make real filters, we also
place a bump in the tile reflected through the origin.

More precisely: the radial variable is split into NB + 1 bands

B0 =
1

2(NB+1)
[0, 2]

Bj =
1

2(NB+1)
[2j , 2j+1] for j = 2, . . . , NB

giving NB + 1 annuli. For each annulus, [−π, π] is split into Nθ(Bi) pieces,
where Nθ(B0) = 1, Nθ(B1) = 4, and then Nθ(B1) is doubled every two bands
after Nθ(B1) giving the sequence 1, 4, 4, 8, 8, · · · .

An elliptical Gaussian is placed in each polar rectangle. To do this, first we
define center points:

Cθ =
θ1 + θ2

2

Cρ =
ρ1 + ρ2

2
.

Pick a number δ and choose variances such that the value of the Gaussian
centered at (Cθ, Cρ) is δ at the points

(
ρ1+ρ2

2 , θ2

)
and

(
ρ2,

θ1+θ2
2

)
. In our ex-

periments below, we take NB = 6 and δ = .3.

1.3 Evolving the heat equation in feature space

We interpret the weight W (i, j) as a measure of similarity between the pixels
i and j. A natural averaging filter acting on functions on Q can be defined by
normalization of the weight matrix as follows: let

D(x) =
∑
y∈V

W (x, y)1 ,

and let the filter be
K(x, y) = D−1(x)W (x, y) , (4)

so that
∑

y∈V K(x, y) = 1. This filter acts on a function f on Q via

Kf(x) =
∑
z∈Q

K(x, z)f(z) .

and hence it is a local averaging operation, with locality measured by the sim-
ilarities W . One can also think of the matrix K = D−1W as a diffusion or
random walk on Q which is run for one step, by multiplying from the other
side. This filter can be iterated several times by considering the power Kn;
from the point of view of the diffusion process, this corresponds to taking n
steps of the random walk, whose transition probabilities are the transpose of K.
We can think of applying the powers of K as running the heat equation on Q
embedded in the feature coordinates. This heat equation is nonlinear because
of the use of the image in the definition of K, but is linear in the sense that we
do not update K after applying it. Thus, as t �→ ∞, Knf tends to a constant.

We can balance smoothing by K with fidelity to the original noisy function
by setting

fn+1 = (Kfn + βf)/(1 + β) (5)

where β > 0 is a parameter to be chosen, and large β corresponds to less
smoothing and more fidelity to the noisy image. This is a standard technique
in PDE based image processing, see [3] and references therein. If we consider
iteration of K as evolving a heat equation, the fidelity term sets the noisy
function as a heat source, with strength determined by β. Note that even
though when we smooth in this way, the steady state is no longer the constant
function, we still do not usually wish to smooth to equilibrium.

2 Experiments

We now show the results of some denoising experiments. We build the Gabor
filters and K as above, setting h(a) = −a. We choose the parameters ε and n by

1Note that D(x) = 0 if and only if x is not connected to any other vertex, in which case
we trivially define D−1(x) = 0, or simply remove x from the graph.

Figure 1: Top left: clean boat image. Top right: noisy boat with σ = 20. Middle
right:denoising using diffusion in NL-means type patch embedding, SNR=16.75.
Middle left: denoising using diffusion on curvelet-Gabor features averaged with
the NL-means type denoising, SNR=17.13. Bottom right: residual from the
NL-means type denoising. Bottom left is the residual from the denoising using
diffusion on curvelet-Gabor features averaged with the NL-means type denois-
ing.

Figure 2: Top left: clean Lena image. Top right: noisy Lena with σ = 20.
Middle right:denoising using diffusion in NL-means type patch embedding,
SNR=17.65. Middle left: denoising using diffusion on curvelet-Gabor features
averaged with the NL-means type denoising, SNR=17.93. Bottom right: resid-
ual from the NL-means type denoising. Bottom left is the residual from the de-
noising using diffusion on curvelet-Gabor features averaged with the NL-means
type denoising.

Figure 3: Top left: clean peppers image. Top right: noisy peppers with
σ = 20. Middle right:denoising using diffusion in NL-means type patch em-
bedding, SNR=17.88. Middle left: denoising using diffusion on curvelet-Gabor
features averaged with the NL-means type denoising, SNR=18.28. Bottom
right: residual from the NL-means type denoising. Bottom left is the resid-
ual from the denoising using diffusion on curvelet-Gabor features averaged with
the NL-means type denoising.

hand to maximize recovered SNR. As a baseline in our experiments, we will use
a 7× 7 NL-means type denoising. This NL-means denoising is obtained exactly
as the Gabor-filter denoising, except with a different choice of filters. e.g. for
3 × 3 patches, use the 9 filters

f1,0 =
1 0 0
0 0 0
0 0 0

, f1,2 =
0 1 0
0 0 0
0 0 0

. . . f3,3 =
0 0 0
0 0 0
0 0 1

; (6)

for 7 × 7 patches, we get 49 filters. Once we have the filter responses from the
image (which are just the 7×7 patches surrounding a given pixel), we proceed as
above with the construction of ρP using the filters fi,j , and KP using ρP , again
choosing all parameters to maximize recovered SNR. We note that in terms of
SNR, and in our subjective assesment, in terms of visual quality, this form of
the NL-means algorithm (using a coarse search with a small fixed number of
neighbors for each pixel chosen from inside the coarse search, multiple iterations
with a relatively small ε in equation (2), and forcing the four nearest spatial
neighbors of a pixel to be neighbors in the weights) outperforms [1] and gives
results equivalent to [4].

It has been reported that experimentally [4] that choosing the parameter β
to be 0 is optimal for the NL means type denoising; our experience corrobrates
this. In terms of SNR, the Gabor feature denoising tends to perform better with
a non-zero fidelity, but visual artifacts are more pronounced. For simplicity of
comparison for between both sets of weights, we choose β in equation (5) to be
0.

The images cleaned by diffusion on the Gabor filters and by the patch filters
have essentially equivalent SNR’s. But more important than a simple ranking
is the fact that the two choices of filters distill different and complementary
information. For example, the Gabor filters diffusion does a much better job
preserving the thin, faint cables in the boats image, and the soft edged pole in the
Lena image. On the other hand, the patch filters smooth content free portions
of the images much more completely, and are superior for preserving repeating
textures, such as the rapidly alternating light and dark stripes in the bottom
left of Lena’s hat. This suggests taking the additive mean of the denoisings
obtained by the two methods; and in fact, doing so results in a significant and
consistent increase in recovered SNR as well as in subjective image quality over
either of the methods alone.

Figures 1, 2, and 3 display examples of denoising with a diffusion on the
curvelet-Gabor features averaged with an NL-means denoising, and the NL-
means denoising for comparison. On the top left of each figure we have the
clean image. On the top right is the noisy image f0 with σ = 20. On the
middle right of the each figure is a denoising using diffusion in NL-means type
patch embedding, and then on the middle left is the denoising using diffusion
on curvelet-Gabor features averaged with the NL-means denoising. On the
bottom right of the each figure is the residual from the NL-means type patch
embedding, and on the bottom left is the residual from the denoising using
diffusion on curvelet-Gabor features averaged with the NL-means denoising.

References

[1] A. Buades, B. Coll, and J. M. Morel. A review of image denoising algorithms,
with a new one. Multiscale Model. Simul., 4(2):490–530 (electronic), 2005.

[2] E. J. Candes and D. L. Donoho. New tight frames of curvelets and optimal
representations of objects with piecewise smooth singularities. Comm. Pure
Appl. Math., 2004.

[3] T. F. Chan and J. Shen. Image processing and analysis. Society for Industrial
and Applied Mathematics (SIAM), Philadelphia, PA, 2005. Variational,
PDE, wavelet, and stochastic methods.

[4] Guy Gilboa and Stanley Osher. Nonlocal linear image regularization and
supervised segmentation. Multiscale Modeling Simulation, 6(2):595–630,
2007.

[5] A. Szlam, Mauro Maggioni, and Ronald Coifman. Regularization on graphs
with function-adapted diffusion processes. submitted, 2006.

