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ABSTRACT. A multiscale method for computing the effective slow bebaof a
system of weakly coupled general oscillators is presentld.oscillators may be
either in the form of a periodic solution or a stable limit &/cFurthermore, the
oscillators may be in resonance with one another and theyebgrate some hid-
den slow dynamics. The proposed method relies on correatiiing a set of slow
variables that is sufficient to approximate any variablefandtional that are slow
under the dynamics of the ODE. The advantages of the methdehmnstrated
with examples. Particular emphasis is given to the effesyathronization. Har-
monic oscillators with slowly varying properties are alsodied. The algorithm
follows the framework of the heterogeneous multiscale weth

1. INTRODUCTION

Ordinary differential equations (ODESs) with highly osatlbry periodic solutions
have been proven to be a challenging field of research froim dealytic and nu-
merical points of view [6, 7]. One typical example is the esieely studied equa-
tion of Van der Pol, known as the Van der Pol oscillator [14],

(1.1) i=—x+v(l—a?)i.

Equation (1.1) has a unique, stable limit cycle that tendféccircles? + i? = 2

in the limitz — 0. A second type of oscillators arise when a system of ODEs has a
family of periodic solutions. We refer to a pair, v), with z, y € R¢ as an oscillator

if the trajectory(xz(t), y(t)) is either periodic or approaches a stable periodic limit
cycle. The period in both cases is denoigd

In this paper we suggest an integration scheme for systembich different os-
cillators are weakly coupled. The coupling strength is tetkebe proportional to a
small parameters < 1. Accordingly, we are interested in the long time behavior
of the dynamics, usually in the intenval< ¢ < ¢ T Let {(z;, ;) }r_, denote a
set of oscillators withz;, i, € R%. We consider ODE systems of the form

(1.2) T = f(X’ y) + Eg(X), X(O) = X0

where() < ¢ < 1 is a small parameter that characterizes the separatiomef ti
scales in the dynamics and= (xy, y1, 2, ¥, - . ., T, Y ). On a time scale that is
independent of the termeg(x) constitutes a small perturbation to the leading order
term f(x) and can be neglected in the limitas- 0. However, in the longer time
scale of ordee!, this perturbation may accumulate to an important contidiou

that cannot be ignored. We assume that the solution of (&r@ains in a bounded
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domainD, C R for 0 < t < ¢ 'T. Here the diameter dP, and7T < oo are two
constants independent ef Here,T' < oo is a constant that is independenteof
For any fixede and initial conditionx(0) = x, we denote the solution of (1.2) by
x(t; €,x0). For brevity we will writex(¢) whenever it is clear what the value for
and the initial conditions are.

One of the main difficulties in numerical integration of (lu&ing explicit methods,

is that stability requirements force a step size that is depbone. This generally
implies that the computational complexity for integratifig2) over a time-='T

is at least of the order af '. Our scheme can be applied to problems for which
specialized algorithms such as the exponential integg48p19] do not apply, or do
not yield efficient approximations. The new schemes progpaseéhis manuscript
generalize those in [1] to systems of nonlinear oscillatGnsr method is sublinear
in the frequency of the oscillators.

The various types of oscillators make a general theory diffiéAs a recourse, we
first describe the main idea behind our algorithm and thetyapi several exam-
ples involving different types of oscillators. The geneapproach is to identify a
set of functions ok that are slow with respect to the dynamics of (1.2), i.englo
the trajectories of (1.2) the time derivatives of these fioms are bounded above by
Coe. We classify these functions as the amplitudes and the plhfiseences (rela-
tive phases) of the oscillators, and we generally refer ¢éontlas slow variables of
the system. System (1.2) is then integrated using the theefrerk of the heteroge-
neous multiscale method (HMM) [3, 4, 5] — a micro-solver grtes the full ODE
(1.2) at different times, and each time for short time segmafith the help of the
slow variables, the microscale integrations uncover tiséesy’s effective dynamics
at different times. The system is then integrated very effity by a Macro-solver
using this effective dynamics.

For convenience, Section 2 describes briefly the main esut algorithm pro-
posed in [1]. We refer the readers to [1] for more details amci@alysis of the
algorithm related to accuracy, efficiency, and convergeseztion 3 analyses the
slow variables admitted by ODE systems of the form of (1.2) s&ction 4 gives
a few numerical examples. These examples are chosen in tord&ess the im-
portance of correctly tracking the relative phase betwessmillators. In Section 5
we analyze a similar setup for a class of time dependent hamescillators. We
conclude in Section 6.

2. THEHMM SCHEME

In order to study the long time properties of (1.2) it is imjamit to distinguish
between the fast and slow constituents of the dynamics. Wéhsd a real valued

smooth function (variable)(x) is slow with respect to (1.2) if there exists a non
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empty open setl C R¢ such that

(2.1) max

xoEAteET

d
aa(x(t; €, xo))‘ < Cpe
where( is a constant that is independenteandZ = [0, ¢ 'T]. Otherwisen(x)
is said to be fast. Similarly, we say that a quantity or camstaof order one if it is
bounded independent ef

In [1] we suggested looking for a set of slow variabfes (&;(x), ..., &.(x)) that
is sufficient to approximate any smooth variable or funaidhat is slow under the
dynamics of the ODE. In other words, any variablex) that is slow with respect
to (1.2) can be written as(x) = a(¢(x)) for some functiomy : R” — R?. The
functions&; (x), ..., &.(x) are functionally independent, i.6V&(x), ..., V& (x)
are linearly independent in the open skt Augmenting the slow variables with
d—rfastones = (zy,...,x4) suchthav(, z)/0x # 0in A, the new coordinate
system can be thought of as a chart. We will refer to such & tietrhas a maximal
number of slow variables as a maximally slow chart (or a slbartfor shorthand)
in A with respect to the dynamics (1.2). Covering theBgtby maximally slow
charts we obtain an maximally slow atlas By. Consequently, averaging theory
[12] implies that for smalt, £(x(¢; €, x0)), is well approximated i by an effective
equation of the form

(2.2) § = el(¢), £(0) = &(xo).

This statement in proven in [1]. We do not assume that the®@ffeequation (2.2)
is available as an explicit formula. Instead, the idea betkive HMM algorithm is
to evaluateF'(£) by numerical solutions of the original ODE (1.2) on signifitg
reduced time intervals. In this way, the HMM algorithm appnoates an assumed
effective equation whose form is typically unknown. Thisagtgy is advantageous
if one can approximaté'(¢) efficiently.

A key step in applying the algorithm is the identification flaw atlas. In a section
of [1], we present both analytic and numerical methods fatifig such an atlas for
the simple case in whicfi(x) is linear, i.e.,f(x) = Ax whereA is a diagonalizable
matrix whose eigenvalues have non-positive real partss theén proven that the
slow atlas for the ODE can be described using a single chadhwdonsists of the
following slow variables:

e Trivial slow variables that correspond to a basis for thel Npace ofA.

e Amplitudes of oscillators (or rather square of), which atadyatic func-
tions ofx.

e The relative phase between pairs of oscillators which spoad to some
specific coupling of different oscillators through initienditions. If the
ratio between the frequencies of two oscillators is a raiorumber, then

this relative phase can be expressed as a polynomial in
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A simple example is the following system described by
0 1 0 00

~10 0 00
(2.3) 00 0 10
0 0 -1 00
00 0 00

Here(z, x2) and(x3, z4) are harmonic oscillators with frequenty2r. It is easily
verified that the amplitudes = 2? + x3 andl, = 3 + 23 and the relative phase
J1 = x1x3 + vy, + 22 + 4 are slow variables. In addition; is trivially slow.

The main purpose of this paper is to extend these ideas toex wialss of ODEs.
We find that the slow charts have the same structure, i.eongists of generalized
concepts of amplitudes and relative phases. A few typicaigtes for which this
program can be carried through are analyzed in the followetgions.

2.1. Thealgorithm. Supposée& = (& (x),...,&.(x)) is a slow atlas for (1.2). The
ODE (1.2) is integrated using a two level algorithm. Eactel@orresponds to the
integration of (1.2) on a different time scale. The first is advb-solver, which
integrates an effective equation for the slow varialglg2.2). The second level
is a micro-solver that is invoked whenever the Macro-sohegds an estimation
of the effective equation. Each time the micro-solver isoked, it computes a
short time solution of (1.2) using a suitable initial datdneTtiime derivative of is
approximated by

(2.4) £(t) ~ (E), = / "E(t 4 1Kty — T,

where, K (-) denotes a smooth averaging kernel. Note §tiamnot necessarily slow,
butis bounded independentofThe properties of averaging with respect to a kernel
will be discussed shortly. Sample times of the Macro-scdwerdenoted,, . . ., ¢y,
whereN = ¢ 'T'/H. The output of the Macro-solver is denotegl . .., xy. The
output of the micro-solver with step sizeinitiated at time,, with initial conditions

x,, is denotedx’, ..., x™, where M = n/h is taken to be an even integer. The

) n !

structure of the algorithm, depicted in Figure 1, is as fofo

(1) Initial conditions:x(0) = x, andn = 0.
(2) Force estimation:
(a) micro-simulation: Solve (1.2) if,,,t, + n] with initial conditions
xX(tn) = Xp.
(b) averaging: approximatgt,) by (£(t,)),.
(3) Macro-step (exemplified by Forward Euler scheme):
Xpp1 = Xmia + Hox, wherex,q = x/% is the position at the middle of the
micro simulation andx is the least squares solution of the linear system

0% - VE(Xmia) = f}(&(xmm» = (&),



foralli=1...r.
(4) n = n + 1. Repeat steps (2) and (3) to time' 7.

The averageql time derivative of (é}n = Ex K,, can be calculated using either the
chainrule ag = V¢ -z = V¢ - (f(x) + €g(x)), or using integration by parts as
Ex Ky =—{x K.
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FIGURE 1. The cartoon depicts the time steps taken by the HMM
scheme. At the:-th macro step, a micro-solver with step size
integrates (1.2) to approximatgt) in a time segmentt,,, t,, + 7.
This data is used to calculatg(x(t))),. Then, the Macro-solver
takes a big step of sizH §x, wheredx is consistent witk(é)n, le.,

ox - V& = (&), for all identified slow variables;.

Let K (-) denote a smooth kernel function with supporf@n | such thayfo1 K(r)dr
=1 andfo1 K(1)(t —1/2)dr = 0. For simplicity, we assume thaf(-) is symmet-
ric with respect to its mid point. Also, foy > 0 let

(2.5) Ky()=n"Kn™").
We will take n to bee dependent such thét < n < e !. The convolution of a
functiona(t) with K, is denoted as

(2.6) (@) = (a* K,)(t) = /0 " () K (t — 7).

Typically, the fast dynamics in equations such as (1.2) esafriwo types (compare

to the linear cas¢ = Ax). The first consists of modes that are attracted to a
low dimensional manifold in a time scale of order one. Thesel@s are referred

to as transient or dissipative modes. The second type d¢srdigscillators with
constant or slowly changing frequencies that are indepderafe. For sufficiently
large values ofy = 7(e), averaging with respect to the kernel approximates the
asymptotic dynamics of the different modes. With a symmédternel, dissipative
variables are practically relaxed and negligible at thepuidt of the time interval in
integral (2.6). Averaging of oscillatory modes filters oighhfrequency oscillations
and approximates the slow parts of the dynamics. The ernbrsduced by the
averaging is estimated in [1]. Asymmetric kernels can alsaubed in order to

obtain an improved accuracy.
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3. S .OW VARIABLES

Let (x,y) denote an oscillator. First, we would like to generalize ¢hacepts of
amplitude and phase of harmonic oscillators to non-harmonés. This will allow
us to identify the slow variables in the weak coupling casg)(XFor simplicity, we
consider 1-dimensional oscillators, i.e,y € R. Higher dimensions can be treated
similarly.

3.1. Uncoupled oscillators. We consider several examples.
Harmonic oscillator: Consider the simple linear ODE

(3.1) {”?" =Wy

Yy = —WT,

wherew € R. The amplitude of the oscillator is given ty,, = 24y Itis a slow
variable sincd},,, = 0. The phase is given bytan ¢y, = z/y. Hence ¢y, = 1.

Van der Pol oscillator: Consider (1.1) withy = ¢:

T =y
3.2
(3-2) {y =—x+¢€(1—2?y.
To leading order iry, this example is the same as the harmonic one. Hence, one
can still take the amplitude a4, = = + y*. Itis a slow variable sincé,q, =
2¢(1 — 2%)y* = O(e). The phaseb,q, is given bytan ¢.q, = z/y and ¢yq, =
1+ e(1—2%)y/Lap.
Volterra-Lotka oscillator: A version of the \Volterra-Lotka oscillator takes the
form

# =a(l—y)
59 {y =vly(z —1),

wherer > 0 satisfiese < v <« 1. Equation (3.3) admits a family of periodic
solutions that can be parametrized according to the irdGabitionsd < z(0) < 1
andy(0) = 1. An example trajectory is depicted in Figure 2. The trajgctdong a
single period can be divided into two parts. The first is atrnetty slow movement
close to they = 0 line. The second segment is a rapid relaxation along theruppe
arc depicted in Figure 2. The relaxation time is of the order.dt can be verified
that/,; = x —Ilnx + v(y — Iny) is a constant of motion; i.el,, = 0. Hence, it may
serve as an amplitude of the oscillator.

In order to get a notion of phase, as in [11], we parametrizengles period of
(x(t),y(t)) by timet . For small values of, y is a dissipative variable that relaxes
to zero rapidly on a time scale of the order:of Hence, we can use the variable
x to track the progress along the trajectory of the oscillaiod neglect the fast
relaxation time, thus creating a notion of periodicallymjimg phase. Consider the

branch given by = 0 and let(z,y) = (¥u(t), U (t)) denote a solution of (3.3)
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with initial conditions at the beginning of the branch. Wédide the phase,, as
b = ¥ (z(t)), wherey ;' denotes the inverse function ¢f;. Differentiating
with respect to time yield$ ¢.1(x(t)) = 1.

12F
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1=0.046, 3.373

FIGURE 2. The trajectory of the Volterra-Lotka oscillator (3.3)tkvi
v =0.01, 2(0) = 0.5 andy(0) = 1.

Relaxation oscillators: Consider the following ODE used in [2]

{:)’3 = 1 a8y

3.4
54 gy =tz t+y—v’)

The dynamics of (3.4) has a slow manifeld: + v — »* = 0, depicted in Figure 3.
Hence, after a short initial relaxation time of ordethe oscillator is attracted to
a periodic limit cycle. The upper and lower branches of thisic polynomial are
stable up to the turning points at whidh/dy = 0. For any initial condition, the
solution of(z(t), y(t)) is rapidly attracted to one of the stable branches o@ @)
time scale. The trajectory then moves closely along thedbramtil it becomes
unstable. At this point the solution is quickly attractedhe other stable branch.
The trajectory of the oscillator is depicted in Figure 3. \der Pol named these
types of oscillators as relaxation oscillators due to tls¢ felaxation process at the
instabilities.

In this example, the amplitude of the oscillator can be ustded as the distance of
the trajectory(x(¢), y(t)) from the limit cycle. In the relaxation oscillator (3.4) $hi
distance converges to zero exponentially fast in a timeesafabrdere. Hence, the
amplitude of the oscillator can be considered a dissipatveable.

The phase of the oscillatos,(¢) is obtained by parameterizing the limit cycle
with respect to time [11]. Note that the peridd, is bounded independent afWe
define the phase locally on each branch of the slow manifolek fast transitions
between the stable branches are neglected since the ivarisite is of the order
of e. Without loss of generality we consider the upper branch. (k€), y(t)) =

(vux(t), ¥nx(t)) denote the trajectory of (3.4) over the upper branch. Siriegis
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monotonic, we can use it to parametrize the advancemeng afdfectory along the
stable branch of = y — y3. Hence, we take,, = ¥ !(z(t)), wherey ! :— t

denotes the inverse function of,.. As before, we have tha%trlx = 1. The inverse
of ¥y, is generally hard to find. However, the numerical algorithesatibed in

the following section only requires its derivative whichasnveniently given by

(V) = 1/ ¥
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FIGURE 3. The trajectory of the relaxation oscillator (3.4).

3.2. Coupled oscillators. Let {(x;,3;)}*_, denote a collection oscillators. The
amplitude and phase of thigh oscillator are denoted;(z;, v;) and¢;(z;, v;), re-
spectively. The solution of the coupled system (1.2) is tktho(t) = (z1(t), y1(y),

- 2x(t), yk(y)), while the solution of the decoupled system, obtained irithi
e — 0, is denotedx(t) = (Xi(t),Y1(y),..., Xk(t),Yi(y)). The discussion on
uncoupled oscillators suggests the following properoesbupled systems.

e If I;(X;,Y;) is slow with respect to the decoupled dynamics, thén;, ;)
is slow with respect to coupled system (1.2).

e If the variablel;(X;,Y;) is dissipative under the decoupled dynamics, then
I;(x;,y;) is dissipative under the dynamics of (1.2).

e The variablep, (z1,y;) is fast.

e Foralli = 1,...,k—1, The Variablesﬂ- = ¢i+1($i+1, yi+1) — ¢Z([L'Z, yz) are
slow with respect to (1.2).

The set of variables = (14,..., I, ¢1,J1, ..., Jy_1) decomposes the dynamics
of the system into slow variables (slow amplitudes and iredgihases), dissipative
ones (dissipative amplitudes), and a single periodic fasable,¢,. Furthermore,
the Jacobiaret(0x/0x) # 0, i.e.,x is a change of variables. Lét= (&,...,¢&,)
denote a vector consisting of only the slow coordinateg.oBy a dimensionality
count we see that is a maximally slow chart for (1.2). Since the relative phase

is defined locally on particular stable branches of the dyognthe chart is also
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defined locally. The slow atlas is obtained by patching d#ife charts into a global
coordinate system that consists of the slow variables ih Esalized region.

As an example, let us consider a relaxation oscillator (2dypled to a harmonic
one (3.1):

T = wy +egi(x)

7 = —wr(x)

By = —1—xy + 8y + €ga(x)
Jo = l(—z+y—y),

(3.5)

A slow chart for (3.5) can be taken to be-= (13, J;), where

I = Lar (21, = 22 4+ 92
(3.6) 1 har (71, Y1) 1 (91
rlx

J1 = Onar (T2, y2) — T2, Ya).

Recall however that the amplitude of the relaxation odaitlas not a slow variable
since the trajectory of the oscillator converges to a litle on a time scale that
is of the order ot.

The algorithm described in Section 2.1 requires solving raes-determined sys-
tem at every Macro step in order to find a displaceme&rthat is consistent with the
macroscopic evolution of the slow variables. For the exanaplhand this system
reads

0x - Vfl(Xmid) - <j1>17 = <%[1(X('))>77
(3.7) . d
0x - V(J1)Xmia) = (J1)y = <£J1(X('))>n

Recall thatx,,;q is the position at the middle of each micro simulatioX./; is
evaluated by

V(J1) = v¢rlx(x2a y2) - V¢har(1’1>?/1) = V%_li(iﬂz) - Vwﬂi(xl)

—1 wlﬁar t T —1/(w 1
3.8) i / O(( ) ) /(() Y1)
S Vn(t(ae) | | (-1 —2—8y3) |7
0 0

for ¢’ # 0. Here, being consistent with our previous definitiong, (¢) denotes the
x-component of a branch of an uncoupled linear oscillater, i; (t) = .. (t) =
cos(t). As we remarked before)’ ~ 0 corresponds to the switch in the phase

definition from one stable branch to the other. We verify thatevaluation of/;
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under giverx(t) is

(3.9)
—1/(wy) wyi + €g1(x)
d . 0 —wr
g VX ) | —1 - 8 ()
0 e =29+ Y2 — y3)
px) g

—1 -2, +8y3  wy
More generally, for a system of the form

i1 = filzr, ) + egi(x)
(3.10) vy = f2($1,y1)

Ty = [3(w2,12) + €92(x)

Y2 = f4(1’2,?/2),

where, fore = 0, (z1,y1) and(z2, y2) are oscillators of the types described above,
the time evolution of the (slow) relative phase is given by

i B _ . 92(x) 91(x)
(3.11) Si=V(h)-x Falwa, o) filwn, )

dt
Setting up the algorithm one needs to be careful near transibetween different
branches. Recall thaf; is the difference between phases whose time derivatives
arel + O(e). Therefore, one can eliminate the singularities that oadwen f, or
f3 vanishes by employing a cutoff.

A second problem happens whe¢nx.iq) Or f3(xmiq) vanish since the left hand
side of (3.7) vanish as well. This can be easily avoided bgrekng the micro
simulation by a single extra period, i.e., we integrate fgtesn in a time segment
7= [tr, t+ k+n+To). We then choosg as a segment of lengthwithin 7 with a
convenient mid-point. Sincg, is of order one, the additional cost (per Macro step)
is independent of.

4. NUMERICAL EXAMPLES
In this section we describe a few examples of coupling betvdgéerent oscillators.

4.1. Van der Pol-harmonic coupling. Consider the following system

i’l =1 + EAIQ

4.1) gl =—z1 +e(l — 22y
To = (14 ew)ys
g2 = —(1+ ew)mo,

with initial conditionse; = y; = 25, = 1 andy, = 0. The parameted is a coupling
constant and is independentofWith A = 0, (z1,y;) is a Van der Pol oscillator
10



(1.1) withv = e and(x2, y-) is @ harmonic oscillator with a frequenty+ ew) /2.
Hence, the difference between the frequencies of the twitlaiecs is of ordere.
For A # 0 the two oscillators are coupled weakly.

Following the discussion of Section 3, the slow charts fot)#cludes two ampli-
tudes and a the relative phase, and it spans a three dimahsidyspace for each
x(t) away from the turning points. We denate= (1, I, J;) with

I = vdp(‘rhyl) = xf + ?J%
(4.2) Iy = Iae (22, y2) = 25 + 43
Ji = ¢har(x2ay2) - ¢vdp(x1ayl)-

Alternatively, since the leading order term in (4.1) is Anefollowing [1], it is
possible to replacéd, by

(4.3) §3 = 1122 + Y1yo-
Indeed{ = (14, I, &3) is a slow chart for (4.1).

The algorithm described in Section 2.1 was implementedgutie slow chart
defined in (4.2) withe = 107*, w = 10. Initial conditions arer; (0) = y;(0) =
x2(0) = 1 andy»(0) = 0. We compare results fol = 0 and A = 10. Figure 4
depicts the time evolution of the amplitude of the Van derd&dillator,/;, = 2% +
y7. In order to observe the effect of the relative phase, weiplBigure 5 the values
of x; andzx, during three different runs of the micro-solver. In Figuee 8 = 0 and
the two oscillators are decoupled. We see that the two asmi$i slowly drift out
of phase due to the slightly different frequencies. With= 10 the oscillators are
coupled and maintain a constant relative phase. The phevanté phase locking,
(also called entrainment or synchronization) is well kndwn linear oscillators
[7, 11].

12
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FIGURE 4. The amplitude of the Van der Pol oscillator described
by (4.1). A = 0: decoupled andd = 10: coupled to a harmonic
oscillator with a slightly different frequency.
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FIGURE 5. The phase of the Van der Pol and harmonic oscillators
described by (4.1). (&)l = 0: decoupled, and (R} = 10: coupled

to a harmonic oscillator with a slightly different frequend®otted
line: Van der Pol oscillator, solid line: harmonic. The twacdlators

are synchronized when coupled.

4.2. Relaxation-harmonic coupling. Consider the following system

il :—1—x1—|—8y{’+6Ax2

. e R
(4.4) 3{1 € (—z1+y1 —yy)

Ta2 = (Wo + ew)?/z

U2 = —(wo + ew)xs,

wherew, = 27 /T, andTy is the period of the decoupléd,, y;) oscillator. Initial
conditions arer; = 0, y; = —1, andzy = 3, = 1/4/2. The parameter is a
coupling constant and is independenteofWith A = 0, (x1,y1) is the relaxation
oscillator (3.4) andx, y-) is @ harmonic oscillator with frequengy, + ew) /2.
Hence, the frequencies of the two oscillators are close . A~gr 0 the two oscilla-
tors are coupled weakly.

Following the discussion of Section 3 the slow variables(fof) can be taken to
be the amplitude of the harmonic oscillator and the relgtivase, and away from
turning points, it spans a two dimensional subspace alongdpectory. Recall that
the amplitude of the relaxation oscillator is dissipatiWe denotef = (13, Jy),
where

I = Ly (22, 92) = 73 + y3

4.5
( ) Ji = ¢har(x2>y2) o ¢rlx(x1’y1)'

The algorithm described in Section 2.1 was implementedytsie above slow vari-
ables withe = 104, w = 10. Time derivatives of/; were calculated using (3.9)
with a cutoff to exclude points in which either or 5 vanish. The micro-solver,
integrating the full system (4.4) was implemented usingraatée step size method

in order to speed up integration along the stable branchéleolimiting cycle.
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Hence, our scheme operates on three time scalésande . We compare results
for A = 0 and A = 40. Figure 5 depicts the values of andx, during three
different runs of the micro-solver. In Figure 64, = 0 and the two oscillators
are decoupled. We see that the two oscillators slowly duftad phase due to the
slight difference in oscillator frequencies. With= 40 the oscillators are coupled
and maintain a constant relative phase. Figure 7 depictsalw¢ion of (4.4) with
wo = 4w /Ty, i.e, the frequency of the harmonic oscillator is slightiffetent than
twice the frequency of the relaxation oscillator. With= 40 the relaxation os-
cillator is synchronized with exactly half the frequencytioé harmonic one. This
phenomenon is referred to 1-2 entrainment or resonance.
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FIGURE 6. The phase of the relaxation and harmonic oscillators de-
scribed by (4.4). (a) decoupled, = 0, and (b) coupledA = 40,

to a harmonic oscillator with a slightly different frequgnd®otted
line: harmonic oscillator, solid line: relaxation. The twscillators

are synchronized when coupled.

5. TIME DEPENDENT HARMONIC OSCILLATORS

In this section we apply our method described above to systéitine form
(5.1) x = Aet)x + €f(x), x(0) = xo,

wherex € R?* and A(et) is a smooth2k x 2k real matrix that is diagonalizable
by a smooth similarity transforn®#(¢) and P(¢t)~1 for t € Z = [0, 'T]. We
assume that the eigenvalues are uniformly bounded awayZevminZ and have
non-positive real parts. Without loss of generality we ¢desthe case in which all
eigenvalues are purely imaginary. Eigenvalues with negagial part correspond to
dissipative variables, which were discussed in Sectioni2ally, we assumed that

(5.1) has a unique solution i
13



t=1 no* t=5 [1o* t=9 mo*

FIGURE 7. Example of 1-2 entrainment between a relaxation oscil-
lator and a harmonic one. Dotted line: harmonic oscillasotjd
line: relaxation.

We rewrite (5.1) as

x=A(s)x+ef(x), x(0)=x

s = €, 3(0) = U

and denotex = (z1,y1,..., 2k, yx) aNd f(x) = (fiz, frys- s fows foy). The
above assumptions imply that(s) can be written asi(s) = P(s)A(s)P~!(s),
whereP(s) is an invertible matrix with bounded inverse ! (s) andA(s) has2 x 2
blocks on its diagonal and takes the form

0 )\1(8)
—Ai(s) 0

(5.2)

(5.3) A(s) =
0 )\k(s)
—)\k(s) 0

By assumptioninf;c; inf;—;_x |\;(et)| > Cp > 0. In order to integrate (5.2) using
the algorithm described in Section 2 one needs to idegfifglow variables. The
variables is trivially slow. The rest of the slow variables can be ciisd ask am-
plitudes ofk harmonic oscillators ankl— 1 relative phases. Note that our algorithm
makes no explicit use of the decompositionAdf).

For simplicity, we first suppose th&t(s) is the identity matrix for alk. Then, for
all j =1...k, (z;,y;) is an harmonic oscillator with amplitude

(5.4) I;(x) = xgj,l + xgj.

It is easily verified that;(x) = 2¢(z;fr; + y;/;,) and are slow with respect to

(5.2). Ate = 0, the oscillators are decoupled and the amplitudes are aatisst

Let X(t) = (Xi(t), Yi(t),. .., Xi(t), Yi(t) denote the solution of (5.2) with= 0.
14



Also, forj = 1...k —1let J;(x) = X;'(x) — X;'(x), whereX; ' : R — R
denotes the inverse function Kfj(t) (which exists locally). We have that

S0) = (VX 0]y X0 = [V 00], gy 500
B xl(t) arj(t) y1( ) +eda i yi(t) +€0uf;
(5:5) X X ) Y;(t)
[awfl B axfj] () = Yi(t)  yi(t) = Y5(0)
Yi(t)  Yj(t) Yi(t) Yi(t)

From the theory of averaging [1, 12], we have that the diffeeebetween; andY;
is of the order ot i.e.
(5.6) sup |y; () — Y;(£)| < Ce,

tel

forall j = 1...k and some constant > 0 that does not depend enWe conclude
that J;(x) is slow with respect to (5.2). Summarizing, we have found tha-
(I, ..., Iy, J1,..., Jr_1,s) is a slow chart for (5.2).

Generalization of the analysis above to any invertible andath change of basis
matrix P(t) is as follows. First, assume that the eigenvaldgs) ... \;(s) are
distinct for alls. Then, for fixeds, there exisk constant free quadratic polynomials
I;(x), = 1...kthat are slow with respect to to (5.2). Sindés) is smooth, there
existsk variablesl; (s, x) such thatV,I; - Ax = 0 for all x € R?* ands € [0, 7.
Due to (5.3),/; are quadratic polynomials v with time dependent coefficients.
We approximate the dependence af;, by a polynomial of degres:

(5.7) L(x,s)= > (O d;s"x

1<li|<2 1=0

where we used multi-index notatiore N?* andx! = z%'yi> ... 23 'y2*. In [1] we
describe how to evaluate the coefficient of such multi- wmteslynomlals from their
values on a grid.

In order to identify the relative phase among the oscilatwe use the follow-
ing definition. We say that théth coordinate (out of2k) participates in/; if
|1;(e;)| is larger than some threshold. Hekeg, denotes the standard basis for
R?*. Let the coordinate; participate inl; with i; # i;. Then, for all; =
L. k=1, Jj(x) = X, '(x) = X, '(x) is slow with respect to (5.2) . As before,
E=(,....Ix, J1,. .., Jx_1, ) is a slow chart for (5.2).

This suggests the following algorithm for integrating (5.Rotations are the same
as in section 2.1

(1) Initial conditions:x(0) = x, andn = 0.
(2) micro-simulation: Solve (5.2) ift,, — n,t, + n] with initial conditions
x(t,) = Xp.
(3) Slow variables:
15



(a) Findk quadratic slow variables . .. I;.
(b) Find k& distinguished coordinates . . . i, that participate inf; ... I,
respectively.
(C) take§ = (]1, R R (R /A S).
(4) Averaging: approximaté(t, ) by (£(t,)),.
(5) Macro-step (forward Euler exampled,, .1 = xiq + Hx, whereix is the
least squares solution to the linear system

0% - V& (%Xmia) = Fi(€(xmia)) = (&),

foralli =1...2k.
(6) n = n + 1. repeat steps (2) through (5) to tinae' T".

Suppose that, for somg = t; we have that\, (s;) = \s(s;), and different other-
wise. In this case, we have a degeneracy of the slow subsjmaggthe trajectory.

As explained in [1], in addition td; and I, the relative phase between the first
two oscillators can also be described by two equivalent gatedpolynomials. For
example, fork = 2 if P(s;) is the identity matrix than botf; (x) = z122 + Y12
and K (x) = z1y2 — x9y; are slow. In other words, at the resonange= \,, there

are four linearly independent quadratic slow variableBgathan two. However,

I, I, J;, Ky and K, are not functionally independent. For this reason one needs
to eliminateK; and K, and keep the slow variables that correspond to amplitudes,
so that the same structure of the slow clgast (1, 15, J;) is kept throughout the
algorithm. The relative phasg is calculated in the same way as away from the res-
onance, by parametrization with respect to time along thadires of the trajectory.

In order to eliminate the two extra quadratic variables wee nlbat the eigenvalues
only coincide ats = s;. Finding the coefficients of (5.7) requires solving a least
squares problem on a grid. Using a largge '), grid spacing in the temporal
coordinates will greatly reduce the fit of the phase-related polynomials

As an example, we applied the above algorithm to a systemmbsaillators f =
2) with A\ (s) = 0.8, \a(s) = 0.5+ s, ¢ = 10~ andI = [0, ¢ !]. Hence, the system
passes througha— 1 resonance at = 0.3 (¢ = 3000). Also,

1 1 S —1 Y1

-1 2 2 —s 0
(5.8) P(s) = 0 2s 1 1 , f(x) = —1s

s =2 —s/2 0 0

Since only linear combinations of slow variables, rathantthe detected ones, are
defined uniquely, it is difficult to compare the time evolutiof the slow variables
themselves between different simulation methods. InstBaglire 8 depicts the
time evolution of two local averagés?), and(y3),,, which are also slow for suffi-
ciently largen [1]. Simulation parameters aig¢ = 0.1 X, n =70, m = 2,a = 1
andb = 0.05¢!. Both Macro and micro solvers use an fourth order Runge&utt
scheme. We see that around the 1-1 resonah@eases to be a fast variable and

the related local time averages develops minor oscillatiéior this reason it takes
16



larger values of) to smooth out oscillations. On the other hand, slow varmhble
consistently slow throughout the integration even aro@stdmnances.
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FIGURE 8. Local time averages for a system of two time dependent
linear oscillators. Solid line - fourth order Runge-Kuttatmod and
plus symbols - HMM. Att = 3000 the two oscillators are in reso-
nance and the local averages are not slow.

Finally, we would like to remark on the significance of thewasption thatA(s)
defined in (5.1 is smoothly diagonalizable for all This condition is important in
order to guaranty that the dynamics of (5.1) can b descrilyesldw charts that
consists of2k variables plus a single fast harmonic oscillator. Howetlgg as-
sumption fails in several interesting situations. In thase the method described
above fails since there may not be a uniform separation legtwaeslow and fast
time scales. The standard way for integrating over suchrtgnomoints efficiently is
by using variable size steps [10, 13] .

6. CONCLUSION

In [1] we propose a general approach for decomposing a vieldinto its fast and
slow constituents using polynomials. The decompositionsisd in an algorithm
that efficiently integrates the slow parts of the dynamiaheuat fully resolving the
fast parts. In this paper we further develop this idea andrekit to fully nonlinear
oscillators. This is different from oscillations in systemhose Jacobian have large
purely imaginary eigenvalues. In other words, the osditktcannot be locally
approximated as harmonic. We study how to compute the daroepling of such
oscillators in the weak coupling limit. We present seversamples in which the
oscillators, when uncoupled, are either constrained torenglie solution or are
attracted rapidly to an invariant manifold.

The slow variables are classified as amplitudes and relphases, in analogy to
corresponding variables for harmonic oscillators. Theamoof relative phase is

defined by parametrizing the stable branches of the invanamifold according
17



to time. Some specific knowledge of the orbits of uncoupledgllasors is needed.
Following the HMM framework, the time evolution of the slovanables in the
coupled system is computed using on the fly short-time sinaula of the full sys-
tem. Thus, we are able to compute the slow behavior of thesyssing large time
steps.

Finally, we see that a similar approach provides an efficienterical algorithm for
a class of weakly coupled harmonic oscillators with timeatefent, slowly varying
frequencies. If two or more eigenvalues cross, then thesy# in resonance and
may exhibit non-trivial slow behavior. None the less, thgoailthm proposed is
consistent as long as the leading part of the dynamics iodagable.
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