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ABSTRACT. A multiscale method for computing the effective slow behavior of a
system of weakly coupled general oscillators is presented.The oscillators may be
either in the form of a periodic solution or a stable limit cycle. Furthermore, the
oscillators may be in resonance with one another and therebygenerate some hid-
den slow dynamics. The proposed method relies on correctly tracking a set of slow
variables that is sufficient to approximate any variable andfunctional that are slow
under the dynamics of the ODE. The advantages of the method isdemonstrated
with examples. Particular emphasis is given to the effect ofsynchronization. Har-
monic oscillators with slowly varying properties are also studied. The algorithm
follows the framework of the heterogeneous multiscale method.

1. INTRODUCTION

Ordinary differential equations (ODEs) with highly oscillatory periodic solutions
have been proven to be a challenging field of research from both analytic and nu-
merical points of view [6, 7]. One typical example is the extensively studied equa-
tion of Van der Pol, known as the Van der Pol oscillator [14],

(1.1) ẍ = −x+ ν(1 − x2)ẋ.

Equation (1.1) has a unique, stable limit cycle that tends tothe circlex2 + ẋ2 = 2
in the limit ν → 0. A second type of oscillators arise when a system of ODEs has a
family of periodic solutions. We refer to a pair(x, y), withx, y ∈ R

d as an oscillator
if the trajectory(x(t), y(t)) is either periodic or approaches a stable periodic limit
cycle. The period in both cases is denotedT0.

In this paper we suggest an integration scheme for systems inwhich different os-
cillators are weakly coupled. The coupling strength is taken to be proportional to a
small parametersε � 1. Accordingly, we are interested in the long time behavior
of the dynamics, usually in the interval0 ≤ t ≤ ε−1T . Let {(xi, yi)}k

i=1 denote a
set ofk oscillators withxi, yi ∈ R

di . We consider ODE systems of the form

(1.2) ẋ = f(x,y) + εg(x), x(0) = x0,

where0 < ε � 1 is a small parameter that characterizes the separation of time
scales in the dynamics andx = (x1, y1, x2, y2, . . . , xk, yk). On a time scale that is
independent ofε the termεg(x) constitutes a small perturbation to the leading order
termf(x) and can be neglected in the limit asε → 0. However, in the longer time
scale of orderε−1, this perturbation may accumulate to an important contribution
that cannot be ignored. We assume that the solution of (1.2) remains in a bounded
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domainD0 ⊂ R
d for 0 ≤ t ≤ ε−1T . Here the diameter ofD0 andT < ∞ are two

constants independent ofε. Here,T < ∞ is a constant that is independent ofε.
For any fixedε and initial conditionx(0) = x0 we denote the solution of (1.2) by
x(t; ε,x0). For brevity we will writex(t) whenever it is clear what the value forε
and the initial conditions are.

One of the main difficulties in numerical integration of (1.2) using explicit methods,
is that stability requirements force a step size that is of order one. This generally
implies that the computational complexity for integrating(1.2) over a timeε−1T
is at least of the order ofε−1. Our scheme can be applied to problems for which
specialized algorithms such as the exponential integrators [8, 9] do not apply, or do
not yield efficient approximations. The new schemes proposed in this manuscript
generalize those in [1] to systems of nonlinear oscillators. Our method is sublinear
in the frequency of the oscillators.

The various types of oscillators make a general theory difficult. As a recourse, we
first describe the main idea behind our algorithm and then apply it to several exam-
ples involving different types of oscillators. The generalapproach is to identify a
set of functions ofx that are slow with respect to the dynamics of (1.2), i.e., along
the trajectories of (1.2) the time derivatives of these functions are bounded above by
C0ε. We classify these functions as the amplitudes and the phasedifferences (rela-
tive phases) of the oscillators, and we generally refer to them as slow variables of
the system. System (1.2) is then integrated using the the framework of the heteroge-
neous multiscale method (HMM) [3, 4, 5] — a micro-solver integrates the full ODE
(1.2) at different times, and each time for short time segments. With the help of the
slow variables, the microscale integrations uncover the system’s effective dynamics
at different times. The system is then integrated very efficiently by a Macro-solver
using this effective dynamics.

For convenience, Section 2 describes briefly the main results and algorithm pro-
posed in [1]. We refer the readers to [1] for more details and an analysis of the
algorithm related to accuracy, efficiency, and convergence. Section 3 analyses the
slow variables admitted by ODE systems of the form of (1.2) and section 4 gives
a few numerical examples. These examples are chosen in orderto stress the im-
portance of correctly tracking the relative phase between oscillators. In Section 5
we analyze a similar setup for a class of time dependent harmonic oscillators. We
conclude in Section 6.

2. THE HMM SCHEME

In order to study the long time properties of (1.2) it is important to distinguish
between the fast and slow constituents of the dynamics. We say that a real valued
smooth function (variable)α(x) is slow with respect to (1.2) if there exists a non
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empty open setA ⊂ R
d such that

(2.1) max
x0∈A,t∈I

∣

∣

∣

∣

d

dt
α(x(t; ε,x0))

∣

∣

∣

∣

≤ C0ε

whereC0 is a constant that is independent ofε andI = [0, ε−1T ]. Otherwise,α(x)
is said to be fast. Similarly, we say that a quantity or constant is of order one if it is
bounded independent ofε.

In [1] we suggested looking for a set of slow variablesξ = (ξ1(x), . . . , ξr(x)) that
is sufficient to approximate any smooth variable or functional that is slow under the
dynamics of the ODE. In other words, any variableα(x) that is slow with respect
to (1.2) can be written asα(x) = α̃(ξ(x)) for some functioñα : R

r → R
d. The

functionsξ1(x), . . . , ξr(x) are functionally independent, i.e.,∇ξ1(x), . . . ,∇ξr(x)
are linearly independent in the open setA. Augmenting the slow variables with
d−r fast onesz = (z1, . . . , xd−r) such that∂(ξ, z)/∂x 6= 0 inA, the new coordinate
system can be thought of as a chart. We will refer to such a chart that has a maximal
number of slow variables as a maximally slow chart (or a slow chart for shorthand)
in A with respect to the dynamics (1.2). Covering the setD0 by maximally slow
charts we obtain an maximally slow atlas forD0. Consequently, averaging theory
[12] implies that for smallε, ξ(x(t; ε,x0)), is well approximated inI by an effective
equation of the form

(2.2) ξ̇ = εF (ξ), ξ(0) = ξ(x0).

This statement in proven in [1]. We do not assume that the effective equation (2.2)
is available as an explicit formula. Instead, the idea behind the HMM algorithm is
to evaluateF (ξ) by numerical solutions of the original ODE (1.2) on significantly
reduced time intervals. In this way, the HMM algorithm approximates an assumed
effective equation whose form is typically unknown. This strategy is advantageous
if one can approximateF (ξ) efficiently.

A key step in applying the algorithm is the identification of aslow atlas. In a section
of [1], we present both analytic and numerical methods for finding such an atlas for
the simple case in whichf(x) is linear, i.e.,f(x) = Ax whereA is a diagonalizable
matrix whose eigenvalues have non-positive real parts. It is then proven that the
slow atlas for the ODE can be described using a single chart which consists of the
following slow variables:

• Trivial slow variables that correspond to a basis for the Null space ofA.
• Amplitudes of oscillators (or rather square of), which are quadratic func-

tions ofx.
• The relative phase between pairs of oscillators which correspond to some

specific coupling of different oscillators through initialconditions. If the
ratio between the frequencies of two oscillators is a rational number, then
this relative phase can be expressed as a polynomial inx.

3



A simple example is the following system described by

(2.3)













0 1 0 0 0
−1 0 0 0 0
0 0 0 1 0
0 0 −1 0 0
0 0 0 0 0













.

Here(x1, x2) and(x3, x4) are harmonic oscillators with frequency1/2π. It is easily
verified that the amplitudesI1 = x2

1 + x2
2 andI1 = x2

2 + x2
4 and the relative phase

J1 = x1x3 + yx + 2x+ 4 are slow variables. In addition,x5 is trivially slow.

The main purpose of this paper is to extend these ideas to a wider class of ODEs.
We find that the slow charts have the same structure, i.e., it consists of generalized
concepts of amplitudes and relative phases. A few typical examples for which this
program can be carried through are analyzed in the followingsections.

2.1. The algorithm. Supposeξ = (ξ1(x), . . . , ξr(x)) is a slow atlas for (1.2). The
ODE (1.2) is integrated using a two level algorithm. Each level corresponds to the
integration of (1.2) on a different time scale. The first is a Macro-solver, which
integrates an effective equation for the slow variablesξ (2.2). The second level
is a micro-solver that is invoked whenever the Macro-solverneeds an estimation
of the effective equation. Each time the micro-solver is invoked, it computes a
short time solution of (1.2) using a suitable initial data. The time derivative ofξ is
approximated by

(2.4) ξ̇(t) ∼ 〈ξ̇(t)〉η =

∫ η

0

ξ̇(t+ τ)Kη(t+ η − τ)dτ,

where,K(·) denotes a smooth averaging kernel. Note thatξ̇ is not necessarily slow,
but is bounded independent ofε. The properties of averaging with respect to a kernel
will be discussed shortly. Sample times of the Macro-solverare denotedt0, . . . , tN ,
whereN = ε−1T/H. The output of the Macro-solver is denotedx0, . . . ,xN . The
output of the micro-solver with step sizeh, initiated at timetn with initial conditions
xn is denotedx1

n, . . . ,x
M
n , whereM = η/h is taken to be an even integer. The

structure of the algorithm, depicted in Figure 1, is as follows.

(1) Initial conditions:x(0) = x0 andn = 0.
(2) Force estimation:

(a) micro-simulation: Solve (1.2) in[tn, tn + η] with initial conditions
x(tn) = xn.

(b) averaging: approximatėξ(tn) by 〈ξ̇(tn)〉η.
(3) Macro-step (exemplified by Forward Euler scheme):

xn+1 = xmid +Hδx, wherexmid = x
M/2
n is the position at the middle of the

micro simulation andδx is the least squares solution of the linear system

δx · ∇ξi(xmid) = Fi(ξ(xmid)) = 〈ξ̇i〉η,
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for all i = 1 . . . r.
(4) n = n+ 1. Repeat steps (2) and (3) to timeε−1T .

The averaged time derivative ofξ, 〈ξ̇〉η = ξ̇ ∗Kη, can be calculated using either the
chain rule asξ̇ = ∇ξ · ẋ = ∇ξ · (f(x) + εg(x)), or using integration by parts as
ξ̇ ∗Kη = −ξ ∗K ′

η.

micro−solver
h

η η

Macro−solver

x

ξ
H

FIGURE 1. The cartoon depicts the time steps taken by the HMM
scheme. At then-th macro step, a micro-solver with step sizeh
integrates (1.2) to approximatex(t) in a time segment[tn, tn + η].
This data is used to calculate〈ξ(x(t))〉η. Then, the Macro-solver
takes a big step of sizeHδx, whereδx is consistent with〈ξ̇〉η, i.e.,
δx · ∇ξi = 〈ξ̇i〉η for all identified slow variablesξi.

LetK(·) denote a smooth kernel function with support on[0, 1] such that
∫ 1

0
K(τ)dτ

= 1 and
∫ 1

0
K(τ)(τ − 1/2)dτ = 0. For simplicity, we assume thatK(·) is symmet-

ric with respect to its mid point. Also, forη > 0 let

(2.5) Kη(·) = η−1K(η−1·).
We will take η to beε dependent such that0 < η � ε−1. The convolution of a
functiona(t) with Kη is denoted as

(2.6) 〈a(t)〉η = (a ∗Kη)(t) =

∫ η

0

a(τ)Kη(t− τ)dτ.

Typically, the fast dynamics in equations such as (1.2) is one of two types (compare
to the linear casef = Ax). The first consists of modes that are attracted to a
low dimensional manifold in a time scale of order one. These modes are referred
to as transient or dissipative modes. The second type consists of oscillators with
constant or slowly changing frequencies that are independent of ε. For sufficiently
large values ofη = η(ε), averaging with respect to the kernel approximates the
asymptotic dynamics of the different modes. With a symmetric kernel, dissipative
variables are practically relaxed and negligible at the midpoint of the time interval in
integral (2.6). Averaging of oscillatory modes filters out high frequency oscillations
and approximates the slow parts of the dynamics. The errors introduced by the
averaging is estimated in [1]. Asymmetric kernels can also be used in order to
obtain an improved accuracy.
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3. SLOW VARIABLES

Let (x, y) denote an oscillator. First, we would like to generalize theconcepts of
amplitude and phase of harmonic oscillators to non-harmonic ones. This will allow
us to identify the slow variables in the weak coupling case (1.2). For simplicity, we
consider 1-dimensional oscillators, i.e.,x, y ∈ R. Higher dimensions can be treated
similarly.

3.1. Uncoupled oscillators. We consider several examples.

Harmonic oscillator: Consider the simple linear ODE

(3.1)

{

ẋ = ωy

ẏ = −ωx,
whereω ∈ R. The amplitude of the oscillator is given byIhar = x2+y2. It is a slow
variable sinceİhar = 0. The phaseφ is given bytanφhar = x/y. Hence,φ̇har = 1.

Van der Pol oscillator: Consider (1.1) withν = ε:

(3.2)

{

ẋ = y

ẏ = −x + ε(1 − x2)y.

To leading order inε, this example is the same as the harmonic one. Hence, one
can still take the amplitude asIvdp = x2 + y2. It is a slow variable sincėIvdp =

2ε(1 − x2)y2 = O(ε). The phaseφvdp is given bytanφvdp = x/y and φ̇vdp =
1 + ε(1 − x2)y/Ivdp.

Volterra-Lotka oscillator: A version of the Volterra-Lotka oscillator takes the
form

(3.3)

{

ẋ = x(1 − y)

ẏ = ν−1y(x− 1),

whereν > 0 satisfiesε � ν � 1. Equation (3.3) admits a family of periodic
solutions that can be parametrized according to the initialconditions0 < x(0) < 1
andy(0) = 1. An example trajectory is depicted in Figure 2. The trajectory along a
single period can be divided into two parts. The first is a relatively slow movement
close to they = 0 line. The second segment is a rapid relaxation along the upper
arc depicted in Figure 2. The relaxation time is of the order of ν. It can be verified
thatIvl = x− lnx+ ν(y− ln y) is a constant of motion; i.e.,̇Ivl = 0. Hence, it may
serve as an amplitude of the oscillator.

In order to get a notion of phase, as in [11], we parametrize a single period of
(x(t), y(t)) by timet . For small values ofν, y is a dissipative variable that relaxes
to zero rapidly on a time scale of the order ofν. Hence, we can use the variable
x to track the progress along the trajectory of the oscillatorand neglect the fast
relaxation time, thus creating a notion of periodically changing phase. Consider the
branch given byy = 0 and let(x, y) = (ψvl(t), ψ̃vl(t)) denote a solution of (3.3)
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with initial conditions at the beginning of the branch. We define the phaseφvl as
φvl = ψ−1

vl (x(t)), whereψ−1
vl denotes the inverse function ofψvl. Differentiating

with respect to time yieldsd
dt
φvl(x(t)) = 1.

0 0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

1.2

x

y

t=0 

t=0.046, 3.373 t=3.284 

t=3.31

FIGURE 2. The trajectory of the Volterra-Lotka oscillator (3.3) with
ν = 0.01, x(0) = 0.5 andy(0) = 1.

Relaxation oscillators: Consider the following ODE used in [2]

(3.4)

{

ẋ = −1 − x+ 8y3

ẏ = ε−1(−x+ y − y3).

The dynamics of (3.4) has a slow manifold−x+ y − y3 = 0, depicted in Figure 3.
Hence, after a short initial relaxation time of orderε the oscillator is attracted to
a periodic limit cycle. The upper and lower branches of this cubic polynomial are
stable up to the turning points at whichdx/dy = 0. For any initial condition, the
solution of(x(t), y(t)) is rapidly attracted to one of the stable branches on anO(ε)
time scale. The trajectory then moves closely along the branch until it becomes
unstable. At this point the solution is quickly attracted tothe other stable branch.
The trajectory of the oscillator is depicted in Figure 3. Vander Pol named these
types of oscillators as relaxation oscillators due to the fast relaxation process at the
instabilities.

In this example, the amplitude of the oscillator can be understood as the distance of
the trajectory(x(t), y(t)) from the limit cycle. In the relaxation oscillator (3.4) this
distance converges to zero exponentially fast in a time scale of orderε. Hence, the
amplitude of the oscillator can be considered a dissipativevariable.

The phase of the oscillator,φrlx(t) is obtained by parameterizing the limit cycle
with respect to time [11]. Note that the period,T0, is bounded independent ofε. We
define the phase locally on each branch of the slow manifold. The fast transitions
between the stable branches are neglected since the transition time is of the order
of ε. Without loss of generality we consider the upper branch. Let (x(t), y(t)) =

(ψrlx(t), ψ̃rlx(t)) denote the trajectory of (3.4) over the upper branch. Sincex(t) is
7



monotonic, we can use it to parametrize the advancement of the trajectory along the
stable branch ofx = y − y3. Hence, we takeφrlx = ψ−1

rlx (x(t)), whereψ−1
rlx :→ t

denotes the inverse function ofψrlx. As before, we have thaṫφrlx = 1. The inverse
of ψrlx is generally hard to find. However, the numerical algorithm described in
the following section only requires its derivative which isconveniently given by
(ψ−1

rlx )′ = 1/ψ′
rlx.

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−1.5

−1

−0.5

0

0.5

1

1.5

x=y−y3 

FIGURE 3. The trajectory of the relaxation oscillator (3.4).

3.2. Coupled oscillators. Let {(xi, yi)}k
i=1 denote a collection oscillators. The

amplitude and phase of thei’th oscillator are denotedIi(xi, yi) andφi(xi, yi), re-
spectively. The solution of the coupled system (1.2) is denotedx(t) = (x1(t), y1(y),
. . . , xk(t), yk(y)), while the solution of the decoupled system, obtained in thelimit
ε → 0, is denotedx(t) = (X1(t), Y1(y), . . . , Xk(t), Yk(y)). The discussion on
uncoupled oscillators suggests the following properties for coupled systems.

• If Ii(Xi, Yi) is slow with respect to the decoupled dynamics, thenIi(xi, yi)
is slow with respect to coupled system (1.2).

• If the variableIi(Xi, Yi) is dissipative under the decoupled dynamics, then
Ii(xi, yi) is dissipative under the dynamics of (1.2).

• The variableφ1(x1, y1) is fast.
• For all i = 1, . . . , k−1, The variablesJi = φi+1(xi+1, yi+1)−φi(xi, yi) are

slow with respect to (1.2).

The set of variables̃x = (I1, . . . , Ik, φ1, J1, . . . , Jk−1) decomposes the dynamics
of the system into slow variables (slow amplitudes and relative phases), dissipative
ones (dissipative amplitudes), and a single periodic fast variable,φ1. Furthermore,
the Jacobiandet(∂x̃/∂x) 6= 0, i.e., x̃ is a change of variables. Letξ = (ξ1, . . . , ξr)
denote a vector consisting of only the slow coordinates ofx̃. By a dimensionality
count we see thatξ is a maximally slow chart for (1.2). Since the relative phase
is defined locally on particular stable branches of the dynamics, the chart is also
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defined locally. The slow atlas is obtained by patching different charts into a global
coordinate system that consists of the slow variables in each localized region.

As an example, let us consider a relaxation oscillator (3.4), coupled to a harmonic
one (3.1):

(3.5)



















ẋ1 = ωy1 + εg1(x)

ẏ1 = −ωx1(x)

ẋ2 = −1 − x2 + 8y3 + εg2(x)

ẏ2 = ε−1(−x+ y − y3),

A slow chart for (3.5) can be taken to beξ = (I1, J1), where

(3.6)
I1 = Ihar(x1, y1) = x2

1 + y2
1

J1 = φhar(x2, y2) − φrlx(x2, y2).

Recall however that the amplitude of the relaxation oscillator is not a slow variable
since the trajectory of the oscillator converges to a limit cycle on a time scale that
is of the order ofε.

The algorithm described in Section 2.1 requires solving an under-determined sys-
tem at every Macro step in order to find a displacementδx that is consistent with the
macroscopic evolution of the slow variables. For the example at hand this system
reads

(3.7)
δx · ∇I1(xmid) = 〈İ1〉η = 〈 d

dt
I1(x(·))〉η

δx · ∇(J1)(xmid) = 〈J̇1〉η = 〈 d
dt
J1(x(·))〉η

Recall thatxmid is the position at the middle of each micro simulation.∇J1 is
evaluated by

(3.8)

∇(J1) = ∇φrlx(x2, y2) −∇φhar(x1, y1) = ∇ψ−1
rlx (x2) −∇ψ−1

har(x1)

=









−1/ψ′
har(t(x1))
0

1/ψ′
rlx(t(x2))

0









=









−1/(ωy1)
0

1/(−1 − x2 − 8y3
2)

0









,

for ψ′ 6= 0. Here, being consistent with our previous definitions,ψhar(t) denotes the
x-component of a branch of an uncoupled linear oscillator, i.e.,x1(t) = ψhar(t) =
cos(t). As we remarked before,ψ′ ∼ 0 corresponds to the switch in the phase
definition from one stable branch to the other. We verify thatthe evaluation ofJ1
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under givenx(t) is
(3.9)

d

dt
J1 = ∇(J1) · ẋ =









−1/(ωy1)
0

1/(−1 − x2 + 8y3
2))

0









·









ωy1 + εg1(x)
−ωx1

−1 − x2 + 8y3
2 + εg2(x)

ε−1(−x2 + y2 − y2
2)









= ε

[

g2(x)

−1 − x2 + 8y3
2

− g1(x)

ωy1

]

.

More generally, for a system of the form

(3.10)



















ẋ1 = f1(x1, y1) + εg1(x)

ẏ1 = f2(x1, y1)

ẋ2 = f3(x2, y2) + εg2(x)

ẏ2 = f4(x2, y2),

where, forε = 0, (x1, y1) and(x2, y2) are oscillators of the types described above,
the time evolution of the (slow) relative phase is given by

(3.11)
d

dt
J1 = ∇(J1) · ẋ = ε

[

g2(x)

f3(x2, y2)
− g1(x)

f1(x1, y1)

]

.

Setting up the algorithm one needs to be careful near transitions between different
branches. Recall thatJ1 is the difference between phases whose time derivatives
are1 + O(ε). Therefore, one can eliminate the singularities that occurwhenf1 or
f3 vanishes by employing a cutoff.

A second problem happens whenf1(xmid) or f3(xmid) vanish since the left hand
side of (3.7) vanish as well. This can be easily avoided by extending the micro
simulation by a single extra period, i.e., we integrate the system in a time segment
Ĩ = [tk, t+k+ η+T0]. We then chooseI as a segment of lengthη within Ĩ with a
convenient mid-point. SinceT0 is of order one, the additional cost (per Macro step)
is independent ofε.

4. NUMERICAL EXAMPLES

In this section we describe a few examples of coupling between different oscillators.

4.1. Van der Pol-harmonic coupling. Consider the following system

(4.1)



















ẋ1 = y1 + εAx2

ẏ1 = −x1 + ε(1 − x2
1)y1

ẋ2 = (1 + εω)y2

ẏ2 = −(1 + εω)x2,

with initial conditionsx1 = y1 = x2 = 1 andy2 = 0. The parameterA is a coupling
constant and is independent ofε. With A = 0, (x1, y1) is a Van der Pol oscillator
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(1.1) withν = ε and(x2, y2) is a harmonic oscillator with a frequency(1+ εω)/2π.
Hence, the difference between the frequencies of the two oscillators is of orderε.
ForA 6= 0 the two oscillators are coupled weakly.

Following the discussion of Section 3, the slow charts for (4.1) includes two ampli-
tudes and a the relative phase, and it spans a three dimensional subspace for each
x(t) away from the turning points. We denoteξ = (I1, I2, J1) with

(4.2)

I1 = Ivdp(x1, y1) = x2
1 + y2

1

I2 = Ihar(x2, y2) = x2
2 + y2

2

J1 = φhar(x2, y2) − φvdp(x1, y1).

Alternatively, since the leading order term in (4.1) is linear, following [1], it is
possible to replaceJ1 by

(4.3) ξ3 = x1x2 + y1y2.

Indeed,ξ = (I1, I2, ξ3) is a slow chart for (4.1).

The algorithm described in Section 2.1 was implemented using the slow chartξ
defined in (4.2) withε = 10−4, ω = 10. Initial conditions arex1(0) = y1(0) =
x2(0) = 1 andy2(0) = 0. We compare results forA = 0 andA = 10. Figure 4
depicts the time evolution of the amplitude of the Van der Poloscillator,I1 = x2

1 +
y2

1. In order to observe the effect of the relative phase, we plotin Figure 5 the values
of x1 andx2 during three different runs of the micro-solver. In Figure 5a,A = 0 and
the two oscillators are decoupled. We see that the two oscillators slowly drift out
of phase due to the slightly different frequencies. WithA = 10 the oscillators are
coupled and maintain a constant relative phase. The phenomenon of phase locking,
(also called entrainment or synchronization) is well knownfor linear oscillators
[7, 11].

0 2 4 6 8 10 12 14 16 18 20
0
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6
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10

12
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A=10 

A=0 

FIGURE 4. The amplitude of the Van der Pol oscillator described
by (4.1). A = 0: decoupled andA = 10: coupled to a harmonic
oscillator with a slightly different frequency.
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FIGURE 5. The phase of the Van der Pol and harmonic oscillators
described by (4.1). (a)A = 0: decoupled, and (b)A = 10: coupled
to a harmonic oscillator with a slightly different frequency. Dotted
line: Van der Pol oscillator, solid line: harmonic. The two oscillators
are synchronized when coupled.

4.2. Relaxation-harmonic coupling. Consider the following system

(4.4)



















ẋ1 = −1 − x1 + 8y3
1 + εAx2

ẏ1 = ε−1(−x1 + y1 − y3
1)

ẋ2 = (ω0 + εω)y2

ẏ2 = −(ω0 + εω)x2,

whereω0 = 2π/T0 andT0 is the period of the decoupled(x1, y1) oscillator. Initial
conditions arex1 = 0, y1 = −1, andx2 = y2 = 1/

√
2. The parameterA is a

coupling constant and is independent ofε. With A = 0, (x1, y1) is the relaxation
oscillator (3.4) and(x2, y2) is a harmonic oscillator with frequency(ω0 + εω)/2π.
Hence, the frequencies of the two oscillators are close. ForA 6= 0 the two oscilla-
tors are coupled weakly.

Following the discussion of Section 3 the slow variables for(4.1) can be taken to
be the amplitude of the harmonic oscillator and the relativephase, and away from
turning points, it spans a two dimensional subspace along the trajectory. Recall that
the amplitude of the relaxation oscillator is dissipative.We denoteξ = (I1, J1),
where

(4.5)
I1 = Ihar(x2, y2) = x2

2 + y2
2

J1 = φhar(x2, y2) − φrlx(x1, y1).

The algorithm described in Section 2.1 was implemented using the above slow vari-
ables withε = 10−4, ω = 10. Time derivatives ofJ1 were calculated using (3.9)
with a cutoff to exclude points in which eitherẋ1 or ẋ2 vanish. The micro-solver,
integrating the full system (4.4) was implemented using a variable step size method
in order to speed up integration along the stable branches ofthe limiting cycle.
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Hence, our scheme operates on three time scales:ε, 1 andε−1. We compare results
for A = 0 andA = 40. Figure 5 depicts the values ofx1 andx2 during three
different runs of the micro-solver. In Figure 6a,A = 0 and the two oscillators
are decoupled. We see that the two oscillators slowly drift out of phase due to the
slight difference in oscillator frequencies. WithA = 40 the oscillators are coupled
and maintain a constant relative phase. Figure 7 depicts thesolution of (4.4) with
ω0 = 4π/T0, i.e, the frequency of the harmonic oscillator is slightly different than
twice the frequency of the relaxation oscillator. WithA = 40 the relaxation os-
cillator is synchronized with exactly half the frequency ofthe harmonic one. This
phenomenon is referred to 1-2 entrainment or resonance.
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(b) 

FIGURE 6. The phase of the relaxation and harmonic oscillators de-
scribed by (4.4). (a) decoupled,A = 0, and (b) coupled,A = 40,
to a harmonic oscillator with a slightly different frequency. Dotted
line: harmonic oscillator, solid line: relaxation. The twooscillators
are synchronized when coupled.

5. TIME DEPENDENT HARMONIC OSCILLATORS

In this section we apply our method described above to systems of the form

(5.1) ẋ = A(εt)x + εf(x), x(0) = x0,

wherex ∈ R
2k andA(εt) is a smooth2k × 2k real matrix that is diagonalizable

by a smooth similarity transformP (t) andP (t)−1 for t ∈ I = [0, ε−1T ]. We
assume that the eigenvalues are uniformly bounded away fromzero inI and have
non-positive real parts. Without loss of generality we consider the case in which all
eigenvalues are purely imaginary. Eigenvalues with negative real part correspond to
dissipative variables, which were discussed in Section 2. Finally, we assumed that
(5.1) has a unique solution inI.
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FIGURE 7. Example of 1-2 entrainment between a relaxation oscil-
lator and a harmonic one. Dotted line: harmonic oscillator,solid
line: relaxation.

We rewrite (5.1) as

(5.2)
ẋ = A(s)x + εf(x), x(0) = x0

ṡ = ε, s(0) = 0,

and denotex = (x1, y1, . . . , xk, yk) and f(x) = (f1,x, f1,y, . . . , fk,x, fk,y). The
above assumptions imply thatA(s) can be written asA(s) = P (s)Λ(s)P−1(s),
whereP (s) is an invertible matrix with bounded inverseP−1(s) andΛ(s) has2×2
blocks on its diagonal and takes the form

(5.3) Λ(s) =













0 λ1(s)
−λ1(s) 0

. . .
0 λk(s)

−λk(s) 0













.

By assumption,inft∈I infi=1...k |λi(εt)| ≥ C0 > 0. In order to integrate (5.2) using
the algorithm described in Section 2 one needs to identify2k slow variables. The
variables is trivially slow. The rest of the slow variables can be classified ask am-
plitudes ofk harmonic oscillators andk−1 relative phases. Note that our algorithm
makes no explicit use of the decomposition ofA(s).

For simplicity, we first suppose thatP (s) is the identity matrix for alls. Then, for
all j = 1 . . . k, (xj , yj) is an harmonic oscillator with amplitude

(5.4) Ij(x) = x2
2j−1 + x2

2j .

It is easily verified thatİj(x) = 2ε(xjfk,j + yjfj,y) and are slow with respect to
(5.2). At ε = 0, the oscillators are decoupled and the amplitudes are constants.
Let X(t) = (X1(t), Y1(t), . . . , Xk(t), Yk(t) denote the solution of (5.2) withε = 0.
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Also, for j = 1 . . . k − 1 let Jj(x) = X−1
1 (x) − X−1

j (x), whereX−1
j : R 7→ R

denotes the inverse function ofXj(t) (which exists locally). We have that

(5.5)

d

dt
Jj(x(t)) =

[

∇xX
−1
1 (x)

]

x=x(t)
· ẋ(t) −

[

∇xX
−1
j (x)

]

x=x(t)
· ẋ(t)

=
ẋ1(t)

Ẋ1(t)
− ẋj(t)

Ẋj(t)
=
y1(t) + ε∂xf1

Y1(t)
− yj(t) + ε∂xfj

Yj(t)

= ε

[

∂xf1

Y1(t)
− ∂xfj

Yj(t)

]

+
y1(t) − Y1(t)

Y1(t)
− yj(t) − Yj(t)

Yj(t)
.

From the theory of averaging [1, 12], we have that the difference betweenyj andYj

is of the order ofε, i.e.

(5.6) sup
t∈I

|yi(j) − Yj(t)| ≤ Cε,

for all j = 1 . . . k and some constantC > 0 that does not depend onε. We conclude
that Jj(x) is slow with respect to (5.2). Summarizing, we have found that ξ =
(I1, . . . , Ik, J1, . . . , Jk−1, s) is a slow chart for (5.2).

Generalization of the analysis above to any invertible and smooth change of basis
matrix P (t) is as follows. First, assume that the eigenvaluesλ1(s) . . . λk(s) are
distinct for alls. Then, for fixeds, there existk constant free quadratic polynomials
Ij(x), j = 1 . . . k that are slow with respect to to (5.2). SinceA(s) is smooth, there
existsk variablesIj(s,x) such that∇xIj · Ax = 0 for all x ∈ R

2k ands ∈ [0, T ].
Due to (5.3),Ij are quadratic polynomials inx with time dependent coefficients.
We approximate thes dependence ofIk by a polynomial of degreem

(5.7) Ij(x, s) =
∑

1≤|i|≤2

(
m

∑

l=0

cj
i,ls

l)xi,

where we used multi-index notationi ∈ N
2k andxi = xi1

1 y
i2
1 . . . x

2k−1
k y2k

k . In [1] we
describe how to evaluate the coefficient of such multi-indexpolynomials from their
values on a grid.

In order to identify the relative phase among the oscillators we use the follow-
ing definition. We say that thei’th coordinate (out of2k) participates inIj if
|Ij(ei)| is larger than some threshold. Here,ei denotes the standard basis for
R

2k. Let the coordinateij participate inIj with i1 6= ij . Then, for all j =
1 . . . k − 1, Jj(x) = X−1

i1
(x) − X−1

ij
(x) is slow with respect to (5.2) . As before,

ξ = (I1, . . . , Ik, J1, . . . , Jk−1, s) is a slow chart for (5.2).

This suggests the following algorithm for integrating (5.2). Notations are the same
as in section 2.1

(1) Initial conditions:x(0) = x0 andn = 0.
(2) micro-simulation: Solve (5.2) in[tn − η, tn + η] with initial conditions

x(tn) = xn.
(3) Slow variables:
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(a) Findk quadratic slow variablesI1 . . . Ik.
(b) Find k distinguished coordinatesi1 . . . ik that participate inI1 . . . Ik,

respectively.
(c) takeξ = (I1, . . . , Ik, J1, . . . , Jk−1, s).

(4) Averaging: approximatėξ(tn) by 〈ξ̇(tn)〉η.
(5) Macro-step (forward Euler example):xn+1 = xmid +Hδx, whereδx is the

least squares solution to the linear system

δx · ∇ξi(xmid) = Fi(ξ(xmid)) = 〈ξ̇i〉η,
for all i = 1 . . . 2k.

(6) n = n+ 1. repeat steps (2) through (5) to timeε−1T .

Suppose that, for somesi = εti we have thatλ1(si) = λ2(si), and different other-
wise. In this case, we have a degeneracy of the slow subspace along the trajectory.
As explained in [1], in addition toI1 andI2, the relative phase between the first
two oscillators can also be described by two equivalent quadratic polynomials. For
example, fork = 2 if P (si) is the identity matrix than bothK1(x) = x1x2 + y1y2

andK1(x) = x1y2 − x2y1 are slow. In other words, at the resonanceλ1 = λ2, there
are four linearly independent quadratic slow variables rather than two. However,
I1, I2, J1, K1 andK2 are not functionally independent. For this reason one needs
to eliminateK1 andK2 and keep the slow variables that correspond to amplitudes,
so that the same structure of the slow chartξ = (I1, I2, J1) is kept throughout the
algorithm. The relative phaseJ1 is calculated in the same way as away from the res-
onance, by parametrization with respect to time along the branches of the trajectory.
In order to eliminate the two extra quadratic variables we note that the eigenvalues
only coincide ats = si. Finding the coefficients of (5.7) requires solving a least
squares problem on a grid. Using a large,O(ε−1), grid spacing in the temporal
coordinates will greatly reduce the fit of the phase-related polynomials.

As an example, we applied the above algorithm to a system of two oscillators (k =
2) with λ1(s) = 0.8, λ2(s) = 0.5+ s, ε = 10−4 andI = [0, ε−1]. Hence, the system
passes through a1 − 1 resonance ats = 0.3 (t = 3000). Also,

(5.8) P (s) =









1 1 s −1
−1 2 2 −s
0 2s 1 1
s −2 −s/2 0









, f(x) =









y1

0
−y2

0









.

Since only linear combinations of slow variables, rather than the detected ones, are
defined uniquely, it is difficult to compare the time evolution of the slow variables
themselves between different simulation methods. Instead, Figure 8 depicts the
time evolution of two local averages〈x2

1〉η and〈y2
2〉η, which are also slow for suffi-

ciently largeη [1]. Simulation parameters areH = 0.1ε−1, η = 70, m = 2, a = 1
andb = 0.05ε−1. Both Macro and micro solvers use an fourth order Runge-Kutta
scheme. We see that around the 1-1 resonancex2 ceases to be a fast variable and
the related local time averages develops minor oscillations. For this reason it takes
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larger values ofη to smooth out oscillations. On the other hand, slow variables are
consistently slow throughout the integration even around resonances.
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FIGURE 8. Local time averages for a system of two time dependent
linear oscillators. Solid line - fourth order Runge-Kutta method and
plus symbols - HMM. Att = 3000 the two oscillators are in reso-
nance and the local averages are not slow.

Finally, we would like to remark on the significance of the assumption thatA(s)
defined in (5.1 is smoothly diagonalizable for alls. This condition is important in
order to guaranty that the dynamics of (5.1) can b described by slow charts that
consists of2k variables plus a single fast harmonic oscillator. However,this as-
sumption fails in several interesting situations. In this case the method described
above fails since there may not be a uniform separation between a slow and fast
time scales. The standard way for integrating over such turning points efficiently is
by using variable size steps [10, 13] .

6. CONCLUSION

In [1] we propose a general approach for decomposing a vectorfield into its fast and
slow constituents using polynomials. The decomposition isused in an algorithm
that efficiently integrates the slow parts of the dynamics without fully resolving the
fast parts. In this paper we further develop this idea and extend it to fully nonlinear
oscillators. This is different from oscillations in systems whose Jacobian have large
purely imaginary eigenvalues. In other words, the oscillators cannot be locally
approximated as harmonic. We study how to compute the correct coupling of such
oscillators in the weak coupling limit. We present several examples in which the
oscillators, when uncoupled, are either constrained to a periodic solution or are
attracted rapidly to an invariant manifold.

The slow variables are classified as amplitudes and relativephases, in analogy to
corresponding variables for harmonic oscillators. The notion of relative phase is
defined by parametrizing the stable branches of the invariant manifold according
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to time. Some specific knowledge of the orbits of uncoupled oscillators is needed.
Following the HMM framework, the time evolution of the slow variables in the
coupled system is computed using on the fly short-time simulations of the full sys-
tem. Thus, we are able to compute the slow behavior of the system using large time
steps.

Finally, we see that a similar approach provides an efficientnumerical algorithm for
a class of weakly coupled harmonic oscillators with time dependent, slowly varying
frequencies. If two or more eigenvalues cross, then the system is in resonance and
may exhibit non-trivial slow behavior. None the less, the algorithm proposed is
consistent as long as the leading part of the dynamics is diagonalizable.
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